Restrictions on parameters of power-law magnetic field decay for accreting isolated neutron
- 格式:pdf
- 大小:363.16 KB
- 文档页数:8
SOLIDWORKS Sheet MetalDassault Systèmes SolidWorks Corporation175 Wyman StreetWaltham, Massachusetts 02451 USA© 1995-2022, Dassault Systemes SolidWorks Corporation, a Dassault Systèmes SE company, 175 Wyman Street, Waltham, Mass. 02451 USA. All Rights Reserved.The information and the software discussed in this document are subject to change without notice and are not commitments by Dassault Systemes SolidWorks Corporation (DS SolidWorks).No material may be reproduced or transmitted in any form or by any means, electronically or manually, for any purpose without the express written permission of DS SolidWorks.The software discussed in this document is furnished under a license and may be used or copied only in accordance with the terms of the license. All warranties given by DS SolidWorks as to the software and documentation are set forth in the license agreement, and nothing stated in, or implied by, this document or its contents shall be considered or deemed a modification or amendment of any terms, including warranties, in the license agreement.For a full list of the patents, trademarks, and third-party software contained in this release, please go to the Legal Notices in the SOLIDWORKS documentation.Restricted RightsThis clause applies to all acquisitions of Dassault Systèmes Offerings by or for the United States federal government, or by any prime contractor or subcontractor (at any tier) under any contract, grant, cooperative agreement or other activity with the federal government. The software, documentation and any other technical data provided hereunder is commercial in nature and developed solely at private expense. The Software is delivered as "Commercial Computer Software" as defined in DFARS 252.227-7014 (June 1995) or as a "Commercial Item" as defined in FAR 2.101(a) and as such is provided with only such rights as are provided in Dassault Systèmes standard commercial end user license agreement. Technical data is provided with limited rights only as provided in DFAR 252.227-7015 (Nov. 1995) or FAR 52.227-14 (June 1987), whichever is applicable. The terms and conditions of the Dassault Systèmes standard commercial end user license agreement shall pertain to the United States government's use and disclosure of this software, and shall supersede any conflicting contractual terms and conditions. If the DS standard commercial license fails to meet the United States government's needs or is inconsistent in any respect with United States Federal law, the United States government agrees to return this software, unused, to DS. The following additional statement applies only to acquisitions governed by DFARS Subpart 227.4 (October 1988): "Restricted Rights - use, duplication and disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(l)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252-227-7013 (Oct. 1988)."In the event that you receive a request from any agency of the U.S. Government to provide Software with rights beyond those set forth above, you will notify DS SolidWorks of the scope of the request and DS SolidWorks will have five (5) business days to, in its sole discretion, accept or reject such request. Contractor/ Manufacturer: Dassault Systemes SolidWorks Corporation, 175 Wyman Street, Waltham, Massachusetts 02451 USA.Document Number: PMT2306-ENGContents IntroductionAbout This Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Using this Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2About the Training Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Training Templates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Accessing Training Templates in SOLIDWORKS . . . . . . . . . . . . 3Conventions Used in this Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Windows OS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Use of Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5More SOLIDWORKS Training Resources. . . . . . . . . . . . . . . . . . . . . . 5Local User Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Lesson 1:Basic Flange FeaturesWhat are Sheet Metal Parts?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Sheet Metal Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Unique Sheet Metal Items. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Flange Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Base Flange/Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Sheet Metal Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Sheet Metal Thickness and Bend Radius . . . . . . . . . . . . . . . . . . . . . . 14Bend Allowance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15K-Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Bend Allowance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Bend Deduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Specifying the Bend Allowance. . . . . . . . . . . . . . . . . . . . . . . . . . 17iContents SOLIDWORKSii Auto Relief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Editing Sheet Metal Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Sheet Metal Bend Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Flat-Pattern Feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Flatten and Exit Flatten. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Toggle Flat Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Additional Flange Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Edge Flanges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Edge Flange Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Editing the Flange Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Flange Profile Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Edge Flanges on Curved Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Miter Flanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Miter Flange Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Hem Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Hem Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Tab Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Cuts in Sheet Metal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Summary of Flange Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Exercise 1: Sheet Metal Bracket. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Exercise 2: Flange Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Exercise 3: Edit Flange Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Exercise 4: Sheet Metal Box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Exercise 5: Assorted Framing Hangers . . . . . . . . . . . . . . . . . . . . . . . 57Lesson 2:Working with the Flat PatternWorking with the Flat Pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Flat Pattern Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Features for Manufacture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Corner-Trim Feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Corner-Trim Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Corners in the Formed State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Closed Corner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67Closed Corner Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Corner Relief. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72Break Corner/Corner Trim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73Producing the Flat Pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74Sheet Metal Cut List Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74Accessing Cut List Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76Sheet Metal Drawings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Flat Pattern Drawing Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Flat Pattern View Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81Cut List Properties as a Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Exporting the Flat Pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Exercise 6: Flat Pattern Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85Exercise 7: Working with Corners . . . . . . . . . . . . . . . . . . . . . . . . . . . 91SOLIDWORKS Contents Lesson 3:Standardizing Sheet Metal DesignsStandardizing Gauge Numbers and Bend Radii. . . . . . . . . . . . . . . . 100Standardizing Bend Allowance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Topics for Standardizing Parameters . . . . . . . . . . . . . . . . . . . . . . . . 100Using Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101Gauge Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101Bend Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102Bend Allowance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Editing the Gauge Table Selection. . . . . . . . . . . . . . . . . . . . . . . 107Gauge Table Training Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107Defining Table File Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 107Custom Sheet Metal Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Sheet Metal Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Sheet Metal Part Document Properties. . . . . . . . . . . . . . . . . . . . 117Other Part Template Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Sensors for Sheet Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Sheet Metal Drawing Document Properties. . . . . . . . . . . . . . . . 125Sheet Metal Tables in Drawings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130Adding a Cut List Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130Adding a Bend Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132Mapping DXF Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134Options for Map File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137Exercise 8: Standardizing Sheet Metal Designs. . . . . . . . . . . . . . . . 140 Lesson 4:Additional Sheet Metal TechniquesAdditional Sheet Metal Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 142Designing from the Flat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142Sketched Bend Feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142Jog Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147Adding Features in an Unfolded State . . . . . . . . . . . . . . . . . . . . . . . 150Unfold and Fold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150Creating Cuts in the Flat Pattern. . . . . . . . . . . . . . . . . . . . . . . . . 153Swept Flange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153Swept Flange Flat Pattern Options. . . . . . . . . . . . . . . . . . . . . . . . . . 155Lofted Bends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157Bent Lofted Bends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157Bent Bend Region Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158Formed Lofted Bends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161Formed Bend Region Options . . . . . . . . . . . . . . . . . . . . . . . . . . 163Lofted Bends in the Design Library. . . . . . . . . . . . . . . . . . . . . . . . . 165Exercise 9: Sheet Metal from Flat . . . . . . . . . . . . . . . . . . . . . . . . . . 166Exercise 10: Jogs and Hems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169Exercise 11: Fold & Unfold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176iiiContents SOLIDWORKSiv Exercise 12: Conical Swept Flange . . . . . . . . . . . . . . . . . . . . . . . . . 179 Exercise 13: Lofted Bends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Exercise 14: Using Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Manual Relief Cut. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Sheet Metal Library Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 190Lesson 5:Converting to Sheet MetalSheet Metal Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194Insert Bends Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194Adding Rips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195Insert Bends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196Associated Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198Switching Between States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199Making Changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199Welded Corner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203Converting Cones and Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . 205Convert to Sheet Metal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210Convert to Sheet Metal Settings. . . . . . . . . . . . . . . . . . . . . . . . . 212Using Rip Sketches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216Exercise 15: Working with Imported Geometry. . . . . . . . . . . . . . . . 218Exercise 16: Unrolling a Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . 220Exercise 17: Convert to Sheet Metal Practice . . . . . . . . . . . . . . . . . 225Exercise 18: Convert with Rips . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226Exercise 19: Sheet Metal Hopper. . . . . . . . . . . . . . . . . . . . . . . . . . . 228 Lesson 6:Multibody Sheet Metal PartsMultibody Sheet Metal Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234Tools to Create Multibody Sheet Metal Parts. . . . . . . . . . . . . . . 235Multibodies with Base Flange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235Sheet Metal Parameters for Multibodies . . . . . . . . . . . . . . . . . . . . . 238Solid Body Feature History . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238Cut List Item Properties for Multibodies . . . . . . . . . . . . . . . . . . . . . 239Flat Pattern Drawing Views for Multibodies . . . . . . . . . . . . . . . . . . 240Cut List Balloon Annotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244Exporting to DXF/DWGs with Multibodies. . . . . . . . . . . . . . . . . . . 247Convert with Multibodies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248Hiding and Showing Bodies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250Hide and Show . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250Hide/Show Bodies Command. . . . . . . . . . . . . . . . . . . . . . . . . . . 250Isolate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250The Display Pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251Sensors for Multibody Parts. . . . . . . . . . . . . . . . . . . . . . . . . . . . 253SOLIDWORKS ContentsUsing Split with Sheet Metal Parts. . . . . . . . . . . . . . . . . . . . . . . . . . 255Patterning for Multibodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257Using Edge Flanges to Merge Bodies. . . . . . . . . . . . . . . . . . . . . . . . 260Interfering Bodies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261Combining Sheet Metal with Other Bodies . . . . . . . . . . . . . . . . . . . 263Assigning Materials to Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . 264Exercise 20: Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266Exercise 21: Mirroring and Merging Bodies . . . . . . . . . . . . . . . . . . 280Exercise 22: Sheet Metal Trailer . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 Lesson 7:Forming Tools and GussetsSheet Metal Forming Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300How They Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300Forming Tools in the Design Library . . . . . . . . . . . . . . . . . . . . . . . . 301The Forming Tools Folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301Using an Existing Forming Tool . . . . . . . . . . . . . . . . . . . . . . . . 303Form Tool Feature Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304Form Tool Features in the Flat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306Part Document Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306Custom Forming Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308Split Line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309Forming Tool Feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310Legacy Behavior for Forming Tools. . . . . . . . . . . . . . . . . . . . . . . . . 314Form Tools in Drawings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314Punch Tables and Punch ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314Sheet Metal Gusset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317Exercise 23: Customizing a Forming Tool. . . . . . . . . . . . . . . . . . . . 320Exercise 24: Sheet Metal Gusset . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 Lesson 8:Additional Sheet Metal FunctionsAdditional Sheet Metal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 332Cross-Breaks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332Cross Break Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333Cross Breaks in Drawings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334Vent Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336Fill Pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338Mirror Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340Tab and Slot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343Process Plans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348Exercise 25: Vent Cover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352vContents SOLIDWORKS Appendix A:Sheet Metal TablesTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358The Sample Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358Templates and Other Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . 358Customizing Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359K-Factor Ratio Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 vi。
SR24A-MP-5Communicative rotary actuator for rotary valves and butterfly valves• Torque motor 20 Nm• Nominal voltage AC/DC 24 V• Control modulating, communicative 2...10 V variable• Position feedback 2...10 V variable • Communication via Belimo MP-Bus • Conversion of sensor signalsTechnical dataElectrical dataNominal voltageAC/DC 24 V Nominal voltage frequency 50/60 HzNominal voltage rangeAC 19.2...28.8 V / DC 21.6...28.8 V Power consumption in operation 3.5 W Power consumption in rest position 1.25 W Power consumption for wire sizing 6 VAConnection supply / control Cable 1 m, 4x 0.75 mm²Parallel operationYes (note the performance data)Data bus communicationCommunicative control MP-Bus Number of nodesMP-Bus max. 8Functional dataTorque motor 20 Nm Operating range Y 2...10 V Input impedance100 kΩOperating range Y variable Start point 0.5...30 V End point 2.5...32 V Operating modes optionalOpen/close3-point (AC only)Modulating (DC 0...32 V)Position feedback U 2...10 V Position feedback U note Max. 0.5 mA Position feedback U variable Start point 0.5...8 V End point 2.5...10 V Position accuracy ±5%Manual override with push-button, can be locked Running time motor 90 s / 90°Running time motor variable 90...350 sAdaptation setting range manual (automatic on first power-up)Adaptation setting range variableNo actionAdaptation when switched onAdaptation after pushing the manual override buttonOverride controlMAX (maximum position) = 100%MIN (minimum position) = 0%ZS (intermediate position, AC only) = 50%Override control variableMAX = (MIN + 33%)...100%MIN = 0%...(MAX – 33%)ZS = MIN...MAX Sound power level, motor 45 dB(A)Position indicationMechanical, integrated, two-section Safety dataProtection class IEC/ENIII, Safety Extra-Low Voltage (SELV)Safety dataPower source ULClass 2 Supply Degree of protection IEC/EN IP54Degree of protection NEMA/UL NEMA 2Enclosure UL Enclosure Type 2EMCCE according to 2014/30/EUCertification IEC/EN IEC/EN 60730-1 and IEC/EN 60730-2-14UL ApprovalcULus according to UL60730-1A, UL60730-2-14 and CAN/CSA E60730-1The UL marking on the actuator depends on the production site, the device is UL-compliant in any case Type of actionType 1Rated impulse voltage supply / control 0.8 kV Pollution degree 3Ambient humidity Max. 95% RH, non-condensing Ambient temperature -30...50°C [-22...122°F]Storage temperature -40...80°C [-40...176°F]Servicingmaintenance-free Mechanical dataConnection flange F05WeightWeight 1.0 kg•••••••Safety notesThis device has been designed for use in stationary heating, ventilation and air-conditioning systems and must not be used outside the specified field of application, especially in aircraft or in any other airborne means of transport.Outdoor application: only possible in case that no (sea) water, snow, ice, insolation or aggressive gases interfere directly with the device and that it is ensured that the ambient conditions remain within the thresholds according to the data sheet at any time.Only authorised specialists may carry out installation. All applicable legal or institutional installation regulations must be complied with during installation.The switch for changing the direction of rotation may only be operated by authorisedspecialists. The direction of rotation must not in particular be reversed in a frost protection circuit.The device may only be opened at the manufacturer's site. It does not contain any parts that can be replaced or repaired by the user.Cables must not be removed from the device.The device contains electrical and electronic components and must not be disposed of as household refuse. All locally valid regulations and requirements must be observed.Product featuresOperating modeConventional operation:The actuator is connected with a standard control signal of 0...10 V and drives to the position defined by the control signal. The measuring voltage U serves for the electrical display of the actuator position 0.5...100% and as control signal for other actuators.Operation on Bus:The actuator receives its digital control signal from the higher level controller via the MP-Bus and drives to the position defined. Connection U serves as communication interface and does not supply an analogue measuring voltage.Converter for sensors Connection option for a sensor (passive or active sensor or switching contact). The MPactuator serves as an analogue/digital converter for the transmission of the sensor signal viaMP-Bus to the higher level system.Parametrisable actuators The factory settings cover the most common applications. Single parameters can be modifiedwith the Belimo service tools MFT-P or ZTH EU.Simple direct mounting Simple direct mounting on the rotary valve or butterfly valve with mounting flange. Themounting orientation in relation to the fitting can be selected in 90° steps.Manual override Manual override with push-button possible (the gear train is disengaged for as long as thebutton is pressed or remains locked).Adjustable angle of rotation Adjustable angle of rotation with mechanical end stops.High functional reliability The actuator is overload protected, requires no limit switches and automatically stops whenthe end stop is reached.Home position The first time the supply voltage is switched on, i.e. at the time of commissioning, the actuatorcarries out an adaptation, which is when the operating range and position feedback adjustthemselves to the mechanical setting range.The actuator then moves into the position defined by the control signal.Factory setting: Y2 (counter-clockwise rotation).Adaptation and synchronisation An adaptation can be triggered manually by pressing the "Adaptation" button or with the PC-Tool. Both mechanical end stops are detected during the adaptation (entire setting range).Automatic synchronisation after pressing the manual override button is configured. Thesynchronisation is in the home position (0%).The actuator then moves into the position defined by the control signal.A range of settings can be adapted using the PC-Tool (see MFT-P documentation) AccessoriesGateways Description TypeGateway MP to BACnet MS/TP UK24BACGateway MP to Modbus RTU UK24MOD Electrical accessories Description TypeAuxiliary switch 1x SPDT add-on S1AAuxiliary switch 2x SPDT add-on S2AFeedback potentiometer 140 Ω add-on P140AFeedback potentiometer 1 kΩ add-on P1000AFeedback potentiometer 10 kΩ add-on P10000AMP-Bus power supply for MP actuators ZN230-24MPTools Description TypeService tool, with ZIP-USB function, for parametrisable andcommunicative Belimo actuators, VAV controller and HVAC performancedevicesZTH EUBelimo PC-Tool, Software for adjustments and diagnostics MFT-PAdapter for Service-Tool ZTH MFT-CConnecting cable 5 m, A: RJ11 6/4 ZTH EU, B: 6-pin for connection to service socket ZK1-GENConnecting cable 5 m, A: RJ11 6/4 ZTH EU, B: free wire end forconnection to MP/PP terminalZK2-GENSR24A-MP-5Wire colours:1 = black 2 = red 3 = white 5 = orangeElectrical installationSupply from isolating transformer.Parallel connection of other actuators possible. Observe the performance data.Direction of rotation switch is covered. Factory setting: Direction of rotation Y2.Wiring diagrams MP-BusAC/DC 24 V, modulatingFunctionsFunctions with basic values (conventional mode)Override control with AC 24 V with relay contactsOverride control with AC 24 V with rotary switch Control remotely 0...100% withpositioner SG..Functions with basic values (conventional mode)Minimum limit with positioner SG..Primary/secondary operation (position-dependent)Control with 4...20 mA via external resistorCaution:The operating range must be setto DC 2...10 V.The 500 Ohm resistor convertsthe 4...20 mA current signal to avoltage signal DC 2...10 V.Functional checkProcedure1. Connect 24 V to connections 1and 22. Disconnect connection 3:– with direction of rotation L:Actuator rotates to the left– with direction of rotation R:Actuator rotates to the right3. Short-circuit connections 2and 3:– Actuator runs in oppositedirection•••••Functions with specific parameters (Parametrisation necessary)Connection on the MP-Bus MP-Bus Network topologyMax. 8 MP-Bus nodes There are no restrictions for the network topology (star, ring, tree or mixed forms are permitted).Supply and communication in one and the same 3-wire cable • no shielding or twisting necessary• no terminating resistors requiredConnection of active sensorsConnection of external switching contactSupply AC/DC 24 VOutput signal 0...10 V (max.0...32 V)Resolution 30 mVSwitching current 16 mA @ 24VStart point of the operatingrange must be parametrised onthe MP actuator as ≥0.5 VConnection of passive sensors1) Depending on the type2) Resolution 1 OhmCompensation of the measuredvalue is recommendedSR24A-MP-5Functions with specific parameters (Parametrisation necessary)Override control and limiting with AC 24 V with relay contactsControl open/closeOverride control and limiting with AC 24 V with rotary switchCaution:The "Close" function is only guaranteed if the start point of the operating range is defined as min. 0.5 V.Control 3-point with AC 24 VPosition control: 90° = 100s Flow control: Vmax = 100sFunctionsSR24A-MP-5 Operating controls and indicators1Direction of rotation switchSwitch over:Direction of rotation changes2Push-button and LED display greenOff:No power supply or malfunctionOn:In operationPress button:Triggers angle of rotation adaptation, followed by standard mode3Push-button and LED display yellowOff:Standard modeOn:Adaptation or synchronisation process activeFlickering:MP-Bus communication activeFlashing:Request for addressing from MP clientPress button:Confirmation of the addressing4Manual override buttonPress button:Gear train disengages, motor stops, manual override possibleRelease button:Gear train engages, standard mode5Service plugFor connecting parametrisation and service toolsCheck power supply connection2 Off and3 On Possible wiring error in power supplyServiceTool connection The actuator can be parametrised by ZTH EU via the service socket.For an extended parametrisation the PC tool can be connected.Connection ZTH EU / PC-ToolSR24A-MP-5 DimensionsFurther documentation• Overview MP Cooperation Partners• Tool connections• Introduction to MP-Bus Technology• The complete product range for water applications• Data sheets for ball valves• Installation instructions for actuators and/or ball valves• General notes for project planning。
Ruben Chaer (IEEE-Senior Member)Gerente de Técnica y Despacho Nacional de Cargas - ADME.Prof.Agr. Instituto de Ingeniería Eléctrica - FING - UdelaR.Uruguay - September2020Optimal Energy Dispatch of Power Systems with high integration of VariableRenewable Energies.SimSEE●This tutorial is about the optimal operation of power systems with high variability in their resources.●We will see the tools developed for modeling such variabilities and for the assimilation of theirforecasts.Each system has its peculiarities. The optimal solution is surely differentfor each country.A measure of the difficulty of handling a variability energy resource is the averaging-time needed to obtain the expected value with a 10% error with 90% confidence. Characterization of the variability in Uruguay.16 yearsWS 2 months water inflowswind & solarSource: The risk images are from the IIE studies carried out in 2010 and 2018 respectively .Demand of 2011HydrobiomassprobabilityGW hpetroleumdray yearsrainy yearsSystem of 2011Source: The risk images are from the IIE studies carried out in 2010 and 2018 respectively .System of 2018dray yearsrainy years2018-012018-022018-032018-042018-052018-062018-072018-082018-092018-102018-112018-120,00,20,40,60,81,01,21,41,61,8Uruguay 2018.Wind and Solar installed capacity compared with daily Demand.Daily_Min(Dem)Daily_Average(Dem)Daily_Max(Dem)Wind+Solar Capacity0.4*Wind+0.2*Solar Expected mean[p .u . o f t h e a n n u a l a v e r a g e o f t h e D e m a n d ]The installed capacity of solar plus wind power exceeds the daily peak of La Demand in 70% of the days of the year.Network Codes.All generators under controlSCADAOperatorsCotrol Modes:●Active Power Control●Reactive Power Control●Voltage ControlAdditional tools●Authomatic Generation Control (AGC)●Dynamic Line Rating (DLR)●Remedial Action Scheme (RAS)Any 72 hours of January 2020 of the dispatch just as an exampleExportsSource: https://.uyIn the end, it wasn't that difficult. The ten-minutevariations of the Net-Demand are only the double of those of the True-Demand.The Uruguayan system then only needs an additional 25 MW of rotating reserve.Mission of the System Operator●Centralized Dispatch.●Only Variable Costs.●Contracts are of paper(in the sense that they should not interfere in the Dispatch).Provide energy with acceptable reliabilityand quality at the minimum cost.Platform for simulation of optimal operation of the energy dispatch.100% OOPActors PlayroomDynamic parameters MonitorsFree & OpenSourceSimSEEhttps://Temporary linking of decisions.The use of stored resources (water) in thepresent produces an increase in futureoperating costs. The postponement ofthe use of a stored resource produces anincrease in the costs of the present.The Optimal Policy is the one thatbalances the cost impact betweenpresent and future.The System, The Operator and The Operation PolicyX = Stater = Non-controllable inputsu = Controllable Inputsu=P(X,r,t)FCP (Xahora)=⟨∫nowfuture+∞oc(X,r,u,t)dt⟩Operation Policy:Instant operating cost:oc(X,r,u,t)Future Cost:Time-Step used for simulation.Big time step / implicit inertiaSmall time step / more state variablesbalance restrictionsoverestimate filtering capacityneed of availability models to representfail/repair inertiaBellman's curse of dimensionality.u =P (X ,r ,t )Operation Policy:Dim (u )×N X 1×N X 2...×N XDim (X )×N r 1×N r 2...×N rDim (r )×N tTime-Bands (Patamares)defined by the Monotonous Load Curve ... Makes sense?Only an example, 4 days of july-2018-UruguaySource: ADME - SCADA ten-minute time series035710121417192124262831333538404244474951545658616365687072757780828487899194965001000150020002500Térmica Hydro Biomass Wind SolarhoursM WSource: ADME - SCADA ten-minute time series036811141619222427303235384043454851535659616467697275788083868891945001000150020002500Demand Demand-VREhoursM WTime-Bands (Patamares)defined by the Monotonous Load Curve ... Makes sense?better use Net-Demand instead of Demandtime band 1time band 3time band 2Sources of randomness Stochastic processes●Demand and temperature●Flows of water contributions●Wind speed●Solar radiation●Price of interconnected markets ●Fuel prices●Availability of fuels●Availability of generating plants ●Availability of transport linesEquipment availability(independent booleans) El Niño, Hydro, Wind, Solar, Demand, T emperature. (correlated processes)Representation of uncertainty.We are managing faster dynamics,therefore, the correlation between thedifferent resources has greaterimportance.We need models of variability thatcorrectly represent the correlationbetween resources and the correlationwith the past.That is, we have to represent theinertia behind the stochastic variables.UnavailableAvailability of generators, powertransmission lines, etc.AvailableI f we do not represent the state of the availability when simulating with small time-steps, the consequences of the inertia ofthe fault-repair process are underestimated.Each generator, transmission line, etc. adds a Boolean state variable to the system.FailRepairWind, Solar and Demand correlations.WindSolarW i n dS o l a rDem an dGaussian WorldReal World ModelGaussian World:Multi-variable linear systemfed withGaussian independent white noiseCEGH modeling.X k +1=∑h =0h =n −1A h X k −h +∑h =0h =m −1B h R k −hNLTNLT NLT NLT NLTNLT •reproduces the amplitude histograms of the original processes.•reproduces the spatial and temporal correlations in a gaussian space.Accept state space reductions.Accept forecast information.PRONOS2016-2017https://.uyhttps://.uy/svg/Weather ForecastReal time status informationPower plants modelsLoad, Wind and Solar powerForecastADME_Data y ADME_WindSimOperator without forecastsOperator with forecastsTreatment of forecasts in CEGH modeling. GaussianizationP50P90P10tx1x2P 50P 90P 10Real WorldGaussian SpaceEase integration of FORECASTS in CEGH modeling.The biases (S) change the 50% probability guide and the attenuation factors (F)regulate the noise injection, allowing to go from a Deterministic Forecast (F = 0 = null noise) to the disappearance of the forecast (S = 0; F = 1 =historical noise).X k +1=∑h =0h =n r −1A h X k −h +S k +F k∑h =0h =m −1B h R k −hS k =[s 1,k...s n ,k]biases:F k =[f 1,k 0...00f 2,k 00...0f n ,k]attenuators:Treatment of forecasts in Gaussian space with reduction in CEGH modeling.u =PO z (z,r,t )z =M R X RA X =M A (t )z +B A (t )wP50P90P10tx1x2P50P90P10tProgramming the enegy dispatch withoutwindpower forecasts.σ=0Programming the enegy dispatch with 72h ofwindpower forecasts.ForecastDemand Stochastic Model Eng. ElianaCornalinoFor more information see: https://youtu.be/SvidemGQdG4Hydrological modelingEng. Alejandra de VeraFor more information see: https://youtu.be/DYvZLeotxEkAssimilation of Forecast Ensembles in CEGH Models. Eng. Guillermo FliellerFor more information see: https://youtu.be/glheJY9PPc4Considering the ENSO ForecastsModeling Wind and Solar Power Forecasts usingMixture Density NetworksEng. Damián Vallejo.For more information see: https://youtu.be/ZDUhUMfI-7oContinuous forecast of the next 168 VATEShours of optimal operation.Expected generation by source. (Example from ADME’s WEB)Next 168 h, System Load forecast. (Example from ADME’s WEB)Next 168 h, Windpower forecast. (Example from ADME’s WEB)Next 168 h, Spot Price forecast. (Example from ADME’s WEB)Determination of Exportable Energy BlocksEng. Felipe PalacioFor more information see: https://youtu.be/F7h43i3sxU0What we are working on now for the future.Combined Cycle Model. Eng. Vanina Camacho2 State variables for each group TG+Boiler.●Timer_TGtoCC_ (Purge 4h, Full Load 2h)●Boiler_temperature (startup type:, warm, hot, cold)For more information see: https://youtu.be/_EcEf4w8yn4Optimal dispatch with network representation in SimSEE.Eng. Ignacio Reyes FlucarSimSEEi t er a t i o n For more information see: https://youtu.be/jHRlAaL5mq4Bellman's curse of dimensionality.u =P (X ,r ,t )Operation Policy:SimSEE Self-Learning a pesudo-optimal Operation Policy to Combat Bellman's Curse of DimensionalityANII_FSE_1_2017_1_144926 (2018-2020)IIE-FING-UdelaRRuben Chaer, Ignacio Ramirez, XimenaCaporale, Pablo Soubes, Damián Vallejo,Felipe Palacio, Sergio Tagliafico.N01 N02 N03 N04N11N12N13N14Lin N15N17N18N19EntradaSalida ⏟Capas ocultasMAXTemporal ParsimonyEng. Ximena CaporaleFor more information see: https://youtu.be/4P4yriSpSBk。
网优中心题库一、填空题:1、信号在无线空间的衰减分为两种:路径衰落和阴影衰落;多径衰落包括瑞利衰落和时间色散。
2、MSTXPWR的设置主要是为了控制邻区间的干扰。
MSTXPWR过大会增加邻区间的干扰;而MSTXPWR过小可能导致话音质量的下降,甚至产生不良的切换动作。
3、四种突发脉冲序列:普通突发脉冲序列、频率校正突发脉冲序列、同步突发脉冲序列、接入突发脉冲序列。
4、在GSM系统中,传输方式有普通和不连续传输(DTX)两种摸式,目的是降低空中的总的干扰电平,节省无线发射机电源的耗电量。
5、基站天线的类型:全向天线、定向天线、特殊天线、多天线系统。
6、设置小区重选滞后(CRH)目的是:要求邻区(位置区与本区不同)信号电平必须比本区信号电平大,且其差值必须大于小区重选滞后规定的值,移动台才启动小区重选。
7、误码率(BER)的定义:检测到接收信号中不正确的bit数占总的bit数的百分数。
为了减少长序列的bit误码,GSM编码技术中采用了交织技术。
8、业务信道的种类:全速率业务信道(FR)、半速率业务信道(HR)、增强型全速率业务信道(EFR)。
9、访问用户位置寄存器(VLR)是服务于其控制区域内移动用户的,存储着进入其控制区域内已登记的移动用户相关信息,为已登记的移动用户提供建立呼叫接续的必要条件。
10、当话务分担功能打开时,在一个小区内,如果空闲的全速率业务信道小于等于参数CLSLEVEL时,则会发生因话务分担而产生切换。
11、MRR 的功能:统计上下行信号的强度、统计上下行话音质量、时间提前量、上下行路径损耗、MS的功率电平和BTS的功率减少量。
12、R XQUAL表示话音质量,当RXQUAL=0时表示质量最好,当RXQUAL=7时表示质量最差。
13、S GSN与BSC之间的接口为Gb,该接口的协议标准是帧中继。
14、T RU的主要功能是:信号处理、无线接收、无线发送、功率放大。
15、小区规划要考虑几个方面:population distribution ,coverage requirements(indoor/outdoor), penetrationrate for mobile telephony service,traffic per subscriber ,traffic per subscriber ,available frequency band, grade of service on the air interface(GOS) ,co_channel interference (C/I), topography and terrain type, output power restrictions , maximum antenna height。
CHAPTER 1TEACHING NOTESYou have substantial latitude about what to emphasize in Chapter 1.I find it useful to talk about the economics of crime example (Example and the wage example (Example so that students see, at the outset, that econometrics is linked to economic reasoning, even if the economics is not complicated theory.I like to familiarize students with the important data structures that empirical economists use, focusing primarily on cross-sectional and time series data sets, as these are what I cover in a first-semester course. It is probably a good idea to mention the growing importance of data sets that have both a cross-sectional and time dimension.I spend almost an entire lecture talking about the problems inherent in drawing causal inferences in the social sciences. I do this mostly through the agricultural yield, return to education, and crime examples. These examples also contrast experimental and nonexperimental (observational) data. Students studying business and finance tend to find the term structure of interest rates example more relevant, although the issue there is testing the implication of a simple theory, as opposed to inferring causality. I have found that spending time talking about these examples, in place of a formal review of probability and statistics, is more successful (and more enjoyable for the students and me).CHAPTER 2TEACHING NOTESThis is the chapter where I expect students to follow most, if not all, of the algebraic derivations. In class I like to derive at least the unbiasedness of the OLS slope coefficient, and usually I derive the variance. At a minimum, I talk about the factors affecting the variance. To simplify the notation, after I emphasize the assumptions in the population model, and assume random sampling, I just condition on the values of the explanatory variables in the sample. Technically, this is justified by random sampling because, for example, E(u i|x1,x2,…,x n) =E(u i|x i) by independent sampling. I find that students are able to focus on the key assumption and subsequently take my word about how conditioning on the independent variables in the sample is harmless. (If you prefer, the appendix to Chapter 3 does the conditioning argument carefully.) Because statistical inference is no more difficult in multiple regression than in simple regression, I postpone inference until Chapter 4. (This reduces redundancy and allows you to focus on the interpretive differences between simple and multiple regression.)You might notice how, compared with most other texts, I use relatively few assumptions to derive the unbiasedness of the OLS slope estimator, followed by the formula for its variance. This is because I do not introduce redundant or unnecessary assumptions. For example,once is assumed, nothing further about the relationship between u and x is needed to obtain the unbiasedness of OLS under random sampling.CHAPTER 3TEACHING NOTESFor undergraduates, I do not work through most of the derivations in this chapter, at least not in detail. Rather, I focus on interpreting the assumptions, which mostly concern the population. Other than random sampling, the only assumption that involves more than population considerations is the assumption about no perfect collinearity, where the possibility of perfect collinearity in the sample (even if it does not occur in the population) should be touched on. The more important issue is perfect collinearity in the population, but this is fairly easy to dispense with via examples. These come from my experiences with the kinds of model specification issues that beginners have trouble with.The comparison of simple and multiple regression estimates – based on the particular sample at hand, as opposed to their statistical properties – usually makes a strong impression. Sometimes I do not bother with the “partialling out” interpretation of multiple regression.As far as statistical properties, notice how I treat the problem of including an irrelevant variable: no separate derivation is needed, as the result follows form Theorem .I do like to derive the omitted variable bias in the simple case. This is not much more difficult than showing unbiasedness of OLS in the simple regression case under the first four Gauss-Markov assumptions. It is important to get the students thinking about this problem early on, and before too many additional (unnecessary) assumptions have been introduced.I have intentionally kept the discussion of multicollinearity to a minimum. This partly indicates my bias, but it also reflects reality. It is, of course, very important for students to understand the potential consequences of having highly correlated independent variables. But this is often beyond our control, except that we can ask less of our multiple regression analysis. If two or more explanatory variables are highly correlated in the sample, we should not expect to precisely estimate their ceteris paribus effects in the population.I find extensive treatments of multicollinearity, where one “tests” or somehow “solves” t he multicollinearity problem, to be misleading, at best. Even the organization of some texts gives the impression that imperfect multicollinearity is somehow a violation of the Gauss-Markov assumptions: they include multicollinearity in a chapter or part of the book devoted to “violation of the basic assumptions,” or something like that. I have noticed that master’s students who have had some undergraduate econometrics are often confused on the multicollinearityissue. It is very important that students not confuse multicollinearity among the included explanatory variables in a regression model with the bias caused by omitting an important variable.I do not prove the Gauss-Markov theorem. Instead, I emphasize its implications. Sometimes, and certainly for advanced beginners, I put a special case of Problem on a midterm exam, where I make a particular choice for the function g(x). Rather than have the students directly compare the variances, they should appeal to the Gauss-Markov theorem for the superiority of OLS over any other linear, unbiased estimator.CHAPTER 4TEACHING NOTESAt the start of this chapter is good time to remind students that a specific error distribution played no role in the results of Chapter 3. That is because only the first two moments were derived under the full set of Gauss-Markov assumptions. Nevertheless, normality is needed to obtain exact normal sampling distributions (conditional on the explanatory variables). I emphasize that the full set of CLM assumptions are used in this chapter, but that in Chapter 5 we relax the normality assumption and still perform approximately valid inference. One could argue that the classical linear model results could be skipped entirely, and that only large-sample analysis is needed. But, from a practicalperspective, students still need to know where the t distribution comes from because virtually all regression packages report t statistics and obtain p-values off of the t distribution. I then find it very easy to cover Chapter 5 quickly, by just saying we can drop normality and still use t statistics and the associated p-values as being approximately valid. Besides, occasionally students will have to analyze smaller data sets, especially if they do their own small surveys for a term project.It is crucial to emphasize that we test hypotheses about unknown population parameters. I tell my students that they will be punished ifˆ = 0 on an exam or, even worse, H0: .632 they write something like H0:1= 0.One useful feature of Chapter 4 is its illustration of how to rewrite a population model so that it contains the parameter of interest in testing a single restriction. I find this is easier, both theoretically and practically, than computing variances that can, in some cases, depend on numerous covariance terms. The example of testing equality of the return to two- and four-year colleges illustrates the basic method, and shows that the respecified model can have a useful interpretation. Of course, some statistical packages now provide a standard error for linear combinations of estimates with a simple command, and that should be taught, too.One can use an F test for single linear restrictions on multiple parameters, but this is less transparent than a t test and does notimmediately produce the standard error needed for a confidence interval or for testing a one-sided alternative. The trick of rewriting the population model is useful in several instances, including obtaining confidence intervals for predictions in Chapter 6, as well as for obtaining confidence intervals for marginal effects in models with interactions (also in Chapter 6).The major league baseball player salary example illustrates the difference between individual and joint significance when explanatory variables (rbisyr and hrunsyr in this case) are highly correlated. I tend to emphasize the R-squared form of the F statistic because, in practice, it is applicable a large percentage of the time, and it is much more readily computed. I do regret that this example is biased toward students in countries where baseball is played. Still, it is one of the better examples of multicollinearity that I have come across, and students of all backgrounds seem to get the point.CHAPTER 5TEACHING NOTESChapter 5 is short, but it is conceptually more difficult than the earlier chapters, primarily because it requires some knowledge of asymptotic properties of estimators. In class, I give a brief, heuristic description of consistency and asymptotic normality before stating the consistency and asymptotic normality of OLS. (Conveniently, the sameassumptions that work for finite sample analysis work for asymptotic analysis.) More advanced students can follow the proof of consistency of the slope coefficient in the bivariate regression case. Section contains a full matrix treatment of asymptotic analysis appropriate for a master’s level course.An explicit illustration of what happens to standard errors as the sample size grows emphasizes the importance of having a larger sample.I do not usually cover the LM statistic in a first-semester course, and I only briefly mention the asymptotic efficiency result. Without full use of matrix algebra combined with limit theorems for vectors and matrices, it is very difficult to prove asymptotic efficiency of OLS.I think the conclusions of this chapter are important for students to know, even though they may not fully grasp the details. On exams I usually include true-false type questions, with explanation, to test the stud ents’ understanding of asymptotics. [For example: “In large samples we do not have to worry about omitted variable bias.” (False). Or “Even if the error term is not normally distributed, in large samples we can still compute approximately valid confidence intervals under the Gauss-Markov assumptions.” (True).]CHAPTER6TEACHING NOTESI cover most of Chapter 6, but not all of the material in great detail.I use the example in Table to quickly run through the effects of data scaling on the important OLS statistics. (Students should already have a feel for the effects of data scaling on the coefficients, fitting values, and R-squared because it is covered in Chapter 2.) At most, I briefly mention beta coefficients; if students have a need for them, they can read this subsection.The functional form material is important, and I spend some time on more complicated models involving logarithms, quadratics, and interactions. An important point for models with quadratics, and especially interactions, is that we need to evaluate the partial effect at interesting values of the explanatory variables. Often, zero is not an interesting value for an explanatory variable and is well outside the range in the sample. Using the methods from Chapter 4, it is easy to obtain confidence intervals for the effects at interesting x values.As far as goodness-of-fit, I only introduce the adjusted R-squared, as I think using a slew of goodness-of-fit measures to choose a model can be confusing to novices (and does not reflect empirical practice). It is important to discuss how, if we fixate on a high R-squared, we may wind up with a model that has no interesting ceteris paribus interpretation.I often have students and colleagues ask if there is a simple way to predict y when log(y) has been used as the dependent variable, and to obtain a goodness-of-fit measure for the log(y) model that can be compared with the usual R-squared obtained when y is the dependent variable. The methods described in Section are easy to implement and, unlike other approaches, do not require normality.The section on prediction and residual analysis contains several important topics, including constructing prediction intervals. It is useful to see how much wider the prediction intervals are than the confidence interval for the conditional mean. I usually discuss some of the residual-analysis examples, as they have real-world applicability.CHAPTER 7TEACHING NOTESThis is a fairly standard chapter on using qualitative information in regression analysis, although I try to emphasize examples with policy relevance (and only cross-sectional applications are included.).In allowing for different slopes, it is important, as in Chapter 6, to appropriately interpret the parameters and to decide whether they are of direct interest. For example, in the wage equation where the return to education is allowed to depend on gender, the coefficient on the female dummy variable is the wage differential between women and men at zero years of education. It is not surprising that we cannot estimatethis very well, nor should we want to. In this particular example we would drop the interaction term because it is insignificant, but the issue of interpreting the parameters can arise in models where the interaction term is significant.In discussing the Chow test, I think it is important to discuss testing for differences in slope coefficients after allowing for an intercept difference. In many applications, a significant Chow statistic simply indicates intercept differences. (See the example in Section on student-athlete GPAs in the text.) From a practical perspective, it is important to know whether the partial effects differ across groups or whether a constant differential is sufficient.I admit that an unconventional feature of this chapter is its introduction of the linear probability model. I cover the LPM here for several reasons. First, the LPM is being used more and more because it is easier to interpret than probit or logit models. Plus, once the proper parameter scalings are done for probit and logit, the estimated effects are often similar to the LPM partial effects near the mean or median values of the explanatory variables. The theoretical drawbacks of the LPM are often of secondary importance in practice. Computer Exercise is a good one to illustrate that, even with over 9,000 observations, the LPM can deliver fitted values strictly between zero and one for all observations.If the LPM is not covered, many students will never know about using econometrics to explain qualitative outcomes. This would be especially unfortunate for students who might need to read an article where an LPM is used, or who might want to estimate an LPM for a term paper or senior thesis. Once they are introduced to purpose and interpretation of the LPM, along with its shortcomings, they can tackle nonlinear models on their own or in a subsequent course.A useful modification of the LPM estimated in equation is to drop kidsge6 (because it is not significant) and then define two dummy variables, one for kidslt6 equal to one and the other for kidslt6 at least two. These can be included in place of kidslt6 (with no young children being the base group). This allows a diminishing marginal effect in an LPM. I was a bit surprised when a diminishing effect did not materialize.CHAPTER 8TEACHING NOTESThis is a good place to remind students that homoskedasticity played no role in showing that OLS is unbiased for the parameters in the regression equation. In addition, you probably should mention that there is nothing wrong with the R-squared or adjusted R-squared as goodness-of-fit measures. The key is that these are estimates of the population R-squared, 1 – [Var(u)/Var(y)], where the variances are the unconditional variances in the population. The usual R-squared, andthe adjusted version, consistently estimate the population R-squared whether or not Var(u|x) = Var(y|x) depends on x. Of course, heteroskedasticity causes the usual standard errors, t statistics, and F statistics to be invalid, even in large samples, with or without normality.By explicitly stating the homoskedasticity assumption as conditional on the explanatory variables that appear in the conditional mean, it is clear that only heteroskedasticity that depends on the explanatory variables in the model affects the validity of standard errors and test statistics. The version of the Breusch-Pagan test in the text, and the White test, are ideally suited for detecting forms of heteroskedasticity that invalidate inference obtained under homoskedasticity. If heteroskedasticity depends on an exogenous variable that does not also appear in the mean equation, this can be exploited in weighted least squares for efficiency, but only rarely is such a variable available. One case where such a variable is available is when an individual-level equation has been aggregated. I discuss this case in the text but I rarely have time to teach it.As I mention in the text, other traditional tests for heteroskedasticity, such as the Park and Glejser tests, do not directly test what we want, or add too many assumptions under the null. The Goldfeld-Quandt test only works when there is a natural way to order thedata based on one independent variable. This is rare in practice, especially for cross-sectional applications.Some argue that weighted least squares estimation is a relic, and is no longer necessary given the availability of heteroskedasticity-robust standard errors and test statistics. While I am sympathetic to this argument, it presumes that we do not care much about efficiency. Even in large samples, the OLS estimates may not be precise enough to learn much about the population parameters. With substantial heteroskedasticity we might do better with weighted least squares, even if the weighting function is misspecified. As discussed in the text on pages 288-289, one can, and probably should, compute robust standard errors after weighted least squares. For asymptotic efficiency comparisons, these would be directly comparable to the heteroskedasiticity-robust standard errors for OLS.Weighted least squares estimation of the LPM is a nice example of feasible GLS, at least when all fitted values are in the unit interval. Interestingly, in the LPM examples in the text and the LPM computer exercises, the heteroskedasticity-robust standard errors often differ by only small amounts from the usual standard errors. However, in a couple of cases the differences are notable, as in Computer Exercise .CHAPTER 9TEACHING NOTESThe coverage of RESET in this chapter recognizes that it is a test for neglected nonlinearities, and it should not be expected to be more than that. (Formally, it can be shown that if an omitted variable has a conditional mean that is linear in the included explanatory variables, RESET has no ability to detect the omitted variable. Interested readers may consult my chapter in Companion to Theoretical Econometrics, 2001, edited by Badi Baltagi.) I just teach students the F statistic version of the test.The Davidson-MacKinnon test can be useful for detecting functional form misspecification, especially when one has in mind a specific alternative, nonnested model. It has the advantage of always being a one degree of freedom test.I think the proxy variable material is important, but the main points can be made with Examples and . The first shows that controlling for IQ can substantially change the estimated return to education, and the omitted ability bias is in the expected direction. Interestingly, education and ability do not appear to have an interactive effect. Example is a nice example of how controlling for a previous value of the dependent variable – something that is often possible with survey and nonsurvey data – can greatly affect a policy conclusion. Computer Exercise is also a good illustration of this method.I rarely get to teach the measurement error material, although the attenuation bias result for classical errors-in-variables is worth mentioning.The result on exogenous sample selection is easy to discuss, with more details given in Chapter 17. The effects of outliers can be illustrated using the examples. I think the infant mortality example, Example , is useful for illustrating how a single influential observation can have a large effect on the OLS estimates.With the growing importance of least absolute deviations, it makes sense to at least discuss the merits of LAD, at least in more advanced courses. Computer Exercise is a good example to show how mean and median effects can be very different, even though there may not be “outliers” in the usual sense.CHAPTER 10TEACHING NOTESBecause of its realism and its care in stating assumptions, this chapter puts a somewhat heavier burden on the instructor and student than traditional treatments of time series regression. Nevertheless, I think it is worth it. It is important that students learn that there are potential pitfalls inherent in using regression with time series data that are not present for cross-sectional applications. Trends, seasonality, and high persistence are ubiquitous in time series data. By this time,students should have a firm grasp of multiple regression mechanics and inference, and so you can focus on those features that make time series applications different from cross-sectional ones.I think it is useful to discuss static and finite distributed lag models at the same time, as these at least have a shot at satisfying theGauss-Markov assumptions. Many interesting examples have distributed lag dynamics. In discussing the time series versions of the CLM assumptions, I rely mostly on intuition. The notion of strict exogeneity is easy to discuss in terms of feedback. It is also pretty apparent that, in many applications, there are likely to be some explanatory variables that are not strictly exogenous. What the student should know is that, to conclude that OLS is unbiased – as opposed to consistent – we need to assume a very strong form of exogeneity of the regressors. Chapter 11 shows that only contemporaneous exogeneity is needed for consistency.Although the text is careful in stating the assumptions, in class, after discussing strict exogeneity, I leave the conditioning on X implicit, especially when I discuss the no serial correlation assumption. As this is a new assumption I spend some time on it. (I also discuss why we did not need it for random sampling.)Once the unbiasedness of OLS, the Gauss-Markov theorem, and the sampling distributions under the classical linear model assumptions havebeen covered – which can be done rather quickly – I focus on applications. Fortunately, the students already know about logarithms and dummy variables. I treat index numbers in this chapter because they arise in many time series examples.A novel feature of the text is the discussion of how to compute goodness-of-fit measures with a trending or seasonal dependent variable. While detrending or deseasonalizing y is hardly perfect (and does not work with integrated processes), it is better than simply reporting the very high R-squareds that often come with time series regressions with trending variables.CHAPTER 11TEACHING NOTESMuch of the material in this chapter is usually postponed, or not covered at all, in an introductory course. However, as Chapter 10 indicates, the set of time series applications that satisfy all of the classical linear model assumptions might be very small. In my experience, spurious time series regressions are the hallmark of many student projects that use time series data. Therefore, students need to be alerted to the dangers of using highly persistent processes in time series regression equations. (Spurious regression problem and the notion of cointegration are covered in detail in Chapter 18.)It is fairly easy to heuristically describe the difference between a weakly dependent process and an integrated process. Using the MA(1) and the stable AR(1) examples is usually sufficient.When the data are weakly dependent and the explanatory variables are contemporaneously exogenous, OLS is consistent. This result has many applications, including the stable AR(1) regression model. When we add the appropriate homoskedasticity and no serial correlation assumptions, the usual test statistics are asymptotically valid.The random walk process is a good example of a unit root (highly persistent) process. In a one-semester course, the issue comes down to whether or not to first difference the data before specifying the linear model. While unit root tests are covered in Chapter 18, just computing the first-order autocorrelation is often sufficient, perhaps after detrending. The examples in Section illustrate how differentfirst-difference results can be from estimating equations in levels.Section is novel in an introductory text, and simply points out that, if a model is dynamically complete in a well-defined sense, it should not have serial correlation. Therefore, we need not worry about serial correlation when, say, we test the efficient market hypothesis. Section further investigates the homoskedasticity assumption, and, in a time series context, emphasizes that what is contained in the explanatory variables determines what kind of heteroskedasticity is ruled out by theusual OLS inference. These two sections could be skipped without loss of continuity.CHAPTER 12TEACHING NOTESMost of this chapter deals with serial correlation, but it also explicitly considers heteroskedasticity in time series regressions. The first section allows a review of what assumptions were needed to obtain both finite sample and asymptotic results. Just as with heteroskedasticity, serial correlation itself does not invalidate R-squared. In fact, if the data are stationary and weakly dependent, R-squared and adjusted R-squared consistently estimate the population R-squared (which is well-defined under stationarity).Equation is useful for explaining why the usual OLS standard errors are not generally valid with AR(1) serial correlation. It also provides a good starting point for discussing serial correlation-robust standard errors in Section . The subsection on serial correlation with lagged dependent variables is included to debunk the myth that OLS is always inconsistent with lagged dependent variables and serial correlation. I do not teach it to undergraduates, but I do to master’s students.Section is somewhat untraditional in that it begins with an asymptotic t test for AR(1) serial correlation (under strict exogeneity of the regressors). It may seem heretical not to give the Durbin-Watsonstatistic its usual prominence, but I do believe the DW test is less useful than the t test. With nonstrictly exogenous regressors I cover only the regression form of Durbin’s test, as the h statistic is asymptotically equivalent and not always computable.Section , on GLS and FGLS estimation, is fairly standard, although I try to show how comparing OLS estimates and FGLS estimates is not so straightforward. Unfortunately, at the beginning level (and even beyond), it is difficult to choose a course of action when they are very different.I do not usually cover Section in a first-semester course, but, because some econometrics packages routinely compute fully robust standard errors, students can be pointed to Section if they need to learn something about what the corrections do. I do cover Section for a master’s level course in applied econometrics (after the first-semester course).I also do not cover Section in class; again, this is more to serve as a reference for more advanced students, particularly those with interests in finance. One important point is that ARCH is heteroskedasticity and not serial correlation, something that is confusing in many texts. If a model contains no serial correlation, the usual heteroskedasticity-robust statistics are valid. I have a brief subsection on correcting for a known。
User Manual Rechargeable Lithium Ion Battery SystemLynx Home U SeriesV 1.3-2022-08-30User Manual V1.3-2022-08-30DisclaimerDisclaimer• All the information in this document is the property of the manufacturer. No part of this document could be reproduced in any way for business use. Internal use is allowed.• The manufacturer makes no representations or warranties express or implied, with respect to this document or any of the equipment and/or software it may describe, including(with no limitation) any implied warranties of utility, merchantability, or fitness for any particular purpose.All such representations or warranties are expressly disclaimed. Neither the manufacturer nor its distributors or dealers shall be liable for any indirect, incidental, or consequential damages under any circumstances.• The exclusion of implied warranties may not apply in all cases under some statutes, and thus the above exclusion may not apply.• Specifications are subject to change without notice. Every effort has been made to make this document complete, accurate, and up-to-date. However, the manufacturer may need to make some improvements under certain circumstances without advance notice. The manufacturer shall not be responsible for any loss caused by this document including, but not limited to omission errors, typographical errors, arithmetical errors, or listing errors in this documents.Limitation of LiabilityThe manufacturer shall not be liable for any consequences like battery damage or property loss under the following circumstances:• Modify, alter, or replace parts of the battery system without official authorization from the manufacturer.• Anyone except technicians from the manufacturer changes or erases the serial number.• Establish a battery system that does not meet the criteria, safety regulations, and otherrelated requirements.• Non-observance to the User Manual.• Improper use or misuse of the battery.• Inadequate ventilation.• The maintenance routine does not follow accepted standards.• Force majeure like earthquakes, storms, thunders, over voltage, or fire hazards, etc.• Any external factors.UpdatesThe latest document contains all the updates made in earlier issues.V1.0 2021-03-30• First release.V1.1 2021-07-19• Updated 5.3System Installation.V1.2 2022-03-15• Updated 2.2 Symbol Description.V1.3 2022-08-30• Updated 5.3.3 Cable Connection.• Updated 6.2 Power On.• Updated 6.5 Power Off.• Updated 07 Technical Parameters.User Manual V1.3-2022-08-30Content TABLE OF CONTENTS 01 Safety Precaution .......................................................................0102 Product Introduction .. (03)2.1 Product Description (03)2.2 Symbol Description (03)03 Battery Introduction (04)3.1 Appearance (04)3.2 Dimensions (04)04 Storage and Package (05)4.1 Storage Environment (05)4.2 Packing List (05)05 System Installation (06)5.1 Installation Environment (06)5.2 Space Requirements (06)5.3 System Installation (08)5.3.1 Floor Mounting (08)5.3.2 Wall Mounting (09)5.3.3 Cable Connection (10)5.3.4 Install the Wire Harness Fix Bar (13)06 System Operation (14)6.1 Check Before Power On (14)6.2 Power On (14)6.3 Battery Parameter Settings (16)6.4 Indicator Status(LX U5.4-L) (16)6.4.1 Normal State (17)6.4.2 Alerting (17)6.4.3 Faulty (18)6.5 Indicator Status(LX U5.4-20) (19)6.5.1 Normal State (19)6.5.2 Alerting (19)6.5.3 Faulty (20)6.6 Power Off (21)6.7 Install the Plastic Cover (21)07 Technical Parameters (22)08 Maintenance (24)Remove the Plastic Cover (24)User Manual V1.3-2022-08-3001 Safety Precaution 01 Safety Precaution01 Safety Precaution User Manual V1.3-2022-08-30The Battery sold in the European market meets the following directives and requirements:• Electromagnetic compatibility Directive 2014/30/EU (EMC)• Electrical Apparatus Low Voltage Directive 2014/35/EU (LVD)• Restrictions of Hazardous Substances Directive 2011/65/EU and (EU) 2015/863 (RoHS)• Waste Electrical and Electronic Equipment 2012/19/EU• Registration, Evaluation, Authorization and Restriction of Chemicals (EC) No 1907/2006 (REACH)You can download the EU Declaration of Conformity on https://.02 Product Introduction User Manual V1.3-2022-08-302.1 Product Description2.2 Symbol Description02 Product Introduction Goodwe Inverter• This manual introduces Lynx Home U Series(LV) Battery System (hereinafter referred to as the Battery System), including the product introduction, application, installation, commission, and technical parameters, etc.• At most 6 batteries can be connected in this Battery System.• The battery system can be compatible with the following inverter series:03 Battery Introduction User Manual V1.3-2022-08-30 03 Battery Introduction3.1 Appearance3.2 Dimensions04 Storage and PackageUser Manual V1.3-2022-08-304.2 Packing List• Check outer packing for damage and model before unpacking it. If you find any damage or the model is not what you requested, do not unpack the product and contact the after-sales service as soon as possible. • Check whether the deliverables are intact and complete first after unpacking the battery.If anything wrong, contact the after-sales service as soon as possible.4.1 Storage Environment04 Storage and PackageIf the equipment is not to be installed or used immediately, please ensure that the storage environment meets the following requirements:• Pack the equipment using a packing box and put some desiccant in the box before sealing.• Put the equipment back to the packing box if it is not to be installed in 3 days after unpacking.• Storage SOC: 25%~50%SOC. Charge and discharge the battery every 3 months.• Recommended storage temperature: -20℃~40℃(less than one month) or 0℃~35℃(less than one year). • Recommended storage humidity: 0%~95%RH(no condensation). Do not install the battery if any moist or condensation is found.• Place the quipment in a cool place where away from direct sunlight.• Keep the equipment away from inflammable, explosive, and corrosive matters.•Keep the equipment away from the rain.05 System Installation User Manual V1.3-2022-08-305.1 Installation Environment5.2 Space Requirements05 System Installation• Install the Battery System on the ground with sufficient bearing capacity and flatness. Increase the bearing capacity and flatness of the ground by laying the foundation, adding bearing plates and so on. • The optimal temperature for the battery is 20~40℃.• Avoid exposing the equipment to direct sunlight or rain.• Install the equipment away from heat/cold source.• Do not install the equipment in the place where the temperature changes extremely.• Install the equipment away from strong interferences to ensure its regular work.• Keep children away from the equipment.• Do not install the equipment in places prone to accumulate water.•Do not put inflammable or explosive matters near the equipment.Keep the equipment away from children.05 System InstallationUser Manual V1.3-2022-08-30Installation Angle Requirements• Install the equipment vertically, no tilt or upside down.Mounting Support Requirements• The mounting support shall be nonflammable and fireproof.• Install the equipment on a surface that is solid enough to bear the product weight.• Put the battery system near the wall and install the locking brackets to prevent the battery from falling down5.3.1 Floor MountingStep1 Screw the anti-dumping bracke on the battery.Step2 Align the battery and the wall, then put the anti-dumping bracket close to the wall. Mark the drilling position and remove the battery.Step3 Drill a hole on the wall using the driller. Hole diameter 10mm and depth 80mm.Step4 Fix the expansion bolts, tightening torque: 10N·m.5.3.2 Wall MountingStep1 Place the wall mounting plate close to the wall firmly, mark the drilling position and remove the wall mounting plate.Step2 Drill a hole on the wall using the driller. Hole diameter 13mm and depth 65mm.Step3 Fix the M10 expansion bolts, tightening torque: 10N·m.Step4Install the battery on the mounting plate.5.3.3 Cable ConnectionOverview of the cable connectionStep1 Prepare PE cable.Step2 Crimp the PE cable.Step3 Install the Heat shrink tube.Step1 Prepare Power cable.Step2 Disassemble the Power connector.Step3 Insert the Power Cable into the Power connector.Step4 Plug the Power connector into the Power Cable Port.RJ45 Registered JackCAN COM Port Step1 Remove the waterproof module.06 System Operation6.1 Check Before Power OnStep1 (Optional) Turn on the breaker between the inverter and the battery system.Step2 (Optional) Turn on the breaker between the batteries (For parallized batteries).Step3 Turn on the inverter in the system following the instructions in the user manual of the inverter.Step4 Turn on the Circuit-Breaker.Step5 Press the switch button of all batteries in 30s, otherwise the equipment will start alarming.Step1 (Optional) Turn on the breaker between the inverter and the battery system.Step2 (Optional) Turn on the breaker between the batteries (For parallized batteries).Step3 Turn on the Circuit-Breaker.Step4 Press the battery buttons. (Only press one battery's button when batteries are in parallized connection.)Step5 Turn on the inverter in the system following the instructions in the user manual of the inverter.LX U5.4-LLX U5.4-20Select the right options on PV Master after connecting the battery and the inverter.Select “LX U5.4-L or LX U5.4-20” on PV Master.Select the battery model on PV Master:6.3 Battery Parameter Settings"Battery Selection Abnormal" will be displayed if you select 6.4 Indicator Status(LX U5.4-L)SOC IndicatorButton Indicator06 System Operation User Manual V1.3-2022-08-3006 System OperationUser Manual V1.3-2022-08-30SOC IndicatorButton Indicator6.5 Indicator Status(LX U5.4-20)06 System Operation User Manual V1.3-2022-08-30 6.5.3 Faulty06 System OperationUser Manual V1.3-2022-08-30Please follow the steps to power off the Battery System, otherwise, the System may be damaged.6.6 Power OffStep1 Disconnect the circuit breakers of all batteries.Step2 Make sure that the SOC indicator of the battery is off.Step1 Press the switch button for at least 5s until the indicator lights off. Press the button of any one battey if multi batteries are connected.Step2 Turn off the Circuit-Breaker.Step3Make sure that the SOC indicator of the battery is off.LX U5.4-LLX U5.4-2007 Technical Parameters User Manual V1.3-2022-08-30 07 Technical Parameters07 Technical ParametersUser Manual V1.3-2022-08-3008 MaintenanceUser Manual V1.3-2022-08-30GoodWe Technologies Co., Ltd.No. 90 Zijin Rd., New District, Suzhou, 215011, China******************Local Contacts。
第9章需求1.假设偏好是相似的,证明:Suppose preferences are homothetic. Show that证明:相似偏好的效用函数有如下形式:()()=⎡⎤u x g f x⎣⎦这里()g是单增函数,()f是一次齐次函数。
特别的,由于效用函数的单调变换不改变它表示的偏好,所以一般情况下,可以直接假设()u x是一次齐次函数。
相似偏好的间接效用函数可以写成()(),,根据罗伊恒等式就有:v p m A p m=从而:比较上面两个式子可知:2.某个特殊物品的需求函数是x a bp =+,求相关的直接和间接效用函数。
The demand function for a particular good is x a bp =+. What are the associated direct and indirect utility functions?解:这是一个可积性问题。
将除x 物品外的其他所有物品统称为z 物品,p 是物品x 与物品z 的相对价格,即将物品z 的价格正规化为1。
令m 为收入,因此消费者预算约束可以写成:px z m +=。
可积性方程为:边界条件为:()p q m m μ =;,求解微分方程可以得到:C 是一个常整数,其中()p q m m μ =;,是以货币度量的间接效用函数。
由()p q m m μ =;,可得:22bq C m aq =--,代入上式得:货币度量的效用函数形式上是一个当p固定不变时关于q和m的间接效用函数。
因此,与已知的需求函数相一致的间接效用函数是:由于p不变,所以可以去掉p。
下面使用罗伊恒等式来检验这一间接效用函数与需求函数是一致的。
因此根据罗伊恒等式,有:=+x a bq所以这一间接效用函数是与需求函数相对应的。
根据消费者理论的对称性,可以求相应的直接需求函数:将预算约束线带入目标函数得到关于q的最优值:因此直接效用函数为:这是一个拟线性效用函数。
系统消息解析1 MIB (Master Information Block)解析MIB主要包含系统带宽、PHICH配置信息、系统帧号。
(下图为实测信令)➢DL_Bandwidth系统带宽,范围enumerate(1.4M(6RB,0),3M(15RB,1),5M(25RB,2),10M(50RB,3),15M(75RB,4),20M(100RB,5)),上图为n100,对应的系统带宽为20M(100RB,带宽索引号为5)。
➢Phich_Duration当该参数设置为normal时,PDCCH占用的OFDM符号数可以自适应调整;当该参数设置为extended时,若带宽为1.4M,则PDCCH占用的OFDM符号数可以取3或4,对于其他系统带宽下,PDCCH占用的符号数只能为3。
➢PHICH-Resource该参数用于计算小区PHICH信道的资源;➢SystemFrameNumber系统帧号。
系统帧号,用于UE获取系统时钟。
实际SFN位长为10bit,也就是取值从0-1023循环。
在PBCH的MIB广播中只广播前8位,剩下的两位根据该帧在PBCH 40ms周期窗口的位置确定,第一个10ms帧为00,第二帧为01,第三帧为10,第四帧为11。
PBCH 的40ms窗口手机可以通过盲检确定。
➢Spare:预留的,暂时未用2 SIB1 (System Information Block Type1)解析SIB1上主要传输评估UE能否接入小区的相关信息及其他系统消息的调度信息。
主要包括4部分:➢小区接入相关信息(cell Access Related Info)➢小区选择信息(cell Selection Info)➢调度信息(scheduling Info List)➢TDD配置信息(tdd-Config)SIB1消息解析(UE侧):RRC-MSG..msg....struBCCH-DL-SCH-Message......struBCCH-DL-SCH-Message........message..........c1............systemInformationBlockType1..............cellAccessRelatedInfo//小区接入相关信息................plmn-IdentityList//PLMN标识列表..................PLMN-IdentityInfo....................plmn-Identity ......................mcc//460 ........................MCC-MNC-Digit:0x4 (4) ........................MCC-MNC-Digit:0x6 (6) ........................MCC-MNC-Digit:0x0 (0) ......................mnc//00 ........................MCC-MNC-Digit:0x0 (0) ........................MCC-MNC-Digit:0x0 (0) ....................cellReservedForOperatorUse:notReserved (1) ................trackingAreaCode:11100(890C)//TAC跟踪区(890C)为16进制数,转换成十进制为35084,查TAC在该消息中可以查到,此条信元重要。
2-Wire DC NAMURDifferential Travel (Hysteresis). . . . . . . . . . . . . . . . . . .1-10% (5% typical)Nominal Voltage. . . . . . . . . . . . . . . . . . . . . . . . . .8.2 VDC (EN60947-5-6)Resistance Change fromNonactivated to Activated Condition. . . . . . . . . . . . . . . .typical <1.0 to >8.0 kΩResulting Current Change. . . . . . . . . . . . . . . . . . . . .≥2.2 mA to≤1.0 mARecommended Switching Point forRemote Amplifier. . . . . . . . . . . . . . . . . . . . . . . . .>1.2 to <2.1 mA, typ. 1.55 mA ON/1.75 mA OFF Power-On Effect. . . . . . . . . . . . . . . . . . . . . . . . . .Realized in AmplifierReverse Polarity Protection. . . . . . . . . . . . . . . . . . . . .IncorporatedWire-Break Protection. . . . . . . . . . . . . . . . . . . . . . .Realized in AmplifierTransient Protection. . . . . . . . . . . . . . . . . . . . . . . .Realized in AmplifierShock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 g, 11 msVibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 Hz, 1 mm Amplitude in all 3 Planes Repeatability. . . . . . . . . . . . . . . . . . . . . . . . . . . .≤2% of Rated Operating Distance2-Wire DCRipple. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .≤10%Differential Travel (Hysteresis). . . . . . . . . . . . . . . . . . .3-15% (5% typical)Voltage Drop Across Conducting Sensor. . . . . . . . . . . . . .Non-polarized (AD) <5.0 VPolarized (AG) <4.0 VTrigger Current for Overload Protection. . . . . . . . . . . . . .≥120 mAMinimum Load Current. . . . . . . . . . . . . . . . . . . . . .≥3.0 mAOff-State (Leakage) Current. . . . . . . . . . . . . . . . . . . .≤0.8 mAPower-On Effect. . . . . . . . . . . . . . . . . . . . . . . . . .Per IEC 947-5-2Transient Protection. . . . . . . . . . . . . . . . . . . . . . . .Per EN 60947-5-2Shock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 g, 11 msVibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 Hz, 1 mm Amplitude in all 3 Planes Repeatability. . . . . . . . . . . . . . . . . . . . . . . . . . . .≤2% of Rated Operating DistanceREED (AC) and (DC)Ripple. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .≤10%Differential Travel (Hysteresis). . . . . . . . . . . . . . . . . . .≤1 mm (Depends on magnet)Maximum Switching Capacity. . . . . . . . . . . . . . . . . . .10 WNo-Load Current. . . . . . . . . . . . . . . . . . . . . . . . . .0 mAMaximum Approach Velocity. . . . . . . . . . . . . . . . . . .≤10 m/sPower-On Effect. . . . . . . . . . . . . . . . . . . . . . . . . .Per IEC 947-5-2Transient Protection. . . . . . . . . . . . . . . . . . . . . . . .Per EN 60947-5-2Shock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 g, 11 msVibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 Hz,1 mm Amplitude in all 3 Planes Repeatability. . . . . . . . . . . . . . . . . . . . . . . . . . . .≥ ±0.1 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(constant temperature & voltage)Temperature Drift. . . . . . . . . . . . . . . . . . . . . . . . .≤0.1 mmVoltage Drop. . . . . . . . . . . . . . . . . . . . . . . . . . . .≤0.5 VoltsS p e csRipple. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .≤10%Differential Travel (Hysteresis). . . . . . . . . . . . . . . . . . . .3-15% (5% typical)Voltage Drop Across Conducting Sensor. . . . . . . . . . . . . . .≤1.8 V- Si...K08/K10(AP71, AN7).≤0.7 V - Bi/Ni../S34. . . . . . . .≤1.8 V - Bi 2-Q8SE-AP/AN... . . .≤2.5 V Trigger Current for Overload Protection. . . . . . . . . . . . . . .≥220 mA on 200 mA Load Current ≥170 mA on 150 mA Load Current ≥120 mA on 100 mA Load Current Off-State (Leakage) Current . . . . . . . . . . . . . . . . . . . . .<100μANo-Load Current . . . . . . . . . . . . . . . . . . . . . . . . . .<10 mA (Uprox ≤15 mA)Time Delay Before Availability . . . . . . . . . . . . . . . . . . .≤8 msPower-On Effect . . . . . . . . . . . . . . . . . . . . . . . . . .Per IEC 947-5-2Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . .Incorporated Wire-Break Protection . . . . . . . . . . . . . . . . . . . . . . .IncorporatedTransient Protection. . . . . . . . . . . . . . . . . . . . . . . . .Per EN 60947-5-2Shock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 g, 11 msVibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 Hz, 1 mm Amplitude in all 3 Planes Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . .≤2% of Rated Operating DistanceBi 2-Q8SE-AP/AN..≤5% of Rated Operating DistanceRipple. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .≤10%Differential Travel (Hysteresis). . . . . . . . . . . . . . . . . . . .3-15% (5% typical)Voltage Drop Across Conducting Sensor. . . . . . . . . . . . . . .≤1.8 V at 200 mATrigger Current for Overload Protection. . . . . . . . . . . . . . .≥220 mA on 200 mA Load Current ≥170 mA on 150 mA Load Current ≥120 mA on 100 mA Load Current Off-State (Leakage) Current . . . . . . . . . . . . . . . . . . . . .<100μANo-Load Current . . . . . . . . . . . . . . . . . . . . . . . . . .<10 mA (Uprox ≤15 mA)Power-On Effect . . . . . . . . . . . . . . . . . . . . . . . . . .Per IEC 947-5-2Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . .Incorporated Wire-Break Protection . . . . . . . . . . . . . . . . . . . . . . .IncorporatedTransient Protection. . . . . . . . . . . . . . . . . . . . . . . . .Per EN 60947-5-2Shock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 g, 11 msVibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 Hz, 1 mm Amplitude in all 3 Planes Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . .≤2% of Rated Operating Distance4-Wire DC3-Wire DC2-Wire AC w/o Short-Circuit ProtectionLine Frequency. . . . . . . . . . . . . . . . . . . . . . . . . . .40-60 HzDifferential Travel (Hysteresis). . . . . . . . . . . . . . . . . . .3-15% (5% typical)Voltage Drop Across Conducting Sensor. . . . . . . . . . . . . .≤6.0 V at 400 mA8 and 12 mm≤6.0 V at 100 mAContinuous Load Current. . . . . . . . . . . . . . . . . . . . .≤400 mA8 and 12 mm≤100 mAOff-State (Leakage) Current. . . . . . . . . . . . . . . . . . . .≤1.7 mAMinimum Load Current. . . . . . . . . . . . . . . . . . . . . .≥5.0 mAInrush Current. . . . . . . . . . . . . . . . . . . . . . . . . . .≤8.0 A (≤10 ms, 5% Duty Cycle)Power-On Effect. . . . . . . . . . . . . . . . . . . . . . . . . .Per IEC 947-5-2Transient Protection. . . . . . . . . . . . . . . . . . . . . . . .Per EN 60947-5-2Shock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 g, 11 msVibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 Hz, 1 mm Amplitude in all 3 Planes2-Wire DC AS-InterfaceRipple. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .≤10%Differential Travel (Hysteresis). . . . . . . . . . . . . . . . . . .3-15% (5% typical)Voltage Drop Across Conducting Sensor. . . . . . . . . . . . . .≤1.8 V at 200 mAOff-State (Leakage) Current. . . . . . . . . . . . . . . . . . . .<100μANo-Load Current. . . . . . . . . . . . . . . . . . . . . . . . . .<30 mATime Delay Before Availability. . . . . . . . . . . . . . . . . . .≤8msPower-On Effect. . . . . . . . . . . . . . . . . . . . . . . . . .Per IEC 947-5-2Transient Protection. . . . . . . . . . . . . . . . . . . . . . . .Per EN 60947-5-2Shock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 g, 11 msVibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 Hz, 1 mm Amplitude in all 3 Planes Repeatability. . . . . . . . . . . . . . . . . . . . . . . . . . . .£2% of Rated Operating DistanceBi 2-Q8SE-Ap/AN..£5% of Rated Operating Distance E/A Configuration. . . . . . . . . . . . . . . . . . . . . . . . .(HEX)/ID-Code (HEX) 1/1I/O Matrix Input. . . . . . . . . . . . . . . . . . . . . . . . . .0=Switching Signal1-3= Not Used0-3-3= Not Used2-Wire AC/DC w/Short-Circuit ProtectionLine Frequency. . . . . . . . . . . . . . . . . . . . . . . . . . .40-60 HzDifferential Travel (Hysteresis). . . . . . . . . . . . . . . . . . .3-15% (5% typical)Voltage Drop Across Conducting Sensor. . . . . . . . . . . . . .≤6.0 V at 400 mA8 and 12 mm≤6.0 V at 100 mATrigger Current for Overload Protection. . . . . . . . . . . . . .AC:≥440 mA; DC:≥330 mA8 and 12 mm AC:≥120 mA; DC:≥120 mA Continuous Load Current. . . . . . . . . . . . . . . . . . . . .AC:≤400 mA; DC:≤300 mA8 and 12 mm AC:≥100 mA; DC:≥100 mAOff-State (Leakage) Current. . . . . . . . . . . . . . . . . . . .≤1.7 mA (AC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .≤1.5 mA (DC)Minimum Load Current. . . . . . . . . . . . . . . . . . . . . .≥3.0 mAInrush Current. . . . . . . . . . . . . . . . . . . . . . . . . . . 4.0 A (≤20 ms, 10% Duty Cycle)Power-On Effect. . . . . . . . . . . . . . . . . . . . . . . . . .Per IEC 947-5-2Transient Protection. . . . . . . . . . . . . . . . . . . . . . . .Per EN 60947-5-2Shock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 g, 11 msVibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 Hz, 1 mm Amplitude in all 3 Planes Repeatability. . . . . . . . . . . . . . . . . . . . . . . . . . . .≤2% of Rated Operating DistanceS p e cs Ripple. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .≤10%Differential Travel (Hysteresis). . . . . . . . . . . . . . . . . . . .2-20 (5% typical)Voltage Drop Across Conducting Sensor. . . . . . . . . . . . . . .≤1.8 V at 200 mA Trigger Current for Overload Protection. . . . . . . . . . . . . . .≥220 mA Leakage (Off-State) Current . . . . . . . . . . . . . . . . . . . . .<100μA No-Load Current . . . . . . . . . . . . . . . . . . . . . . . . . .≤15 mAPower-On Effect . . . . . . . . . . . . . . . . . . . . . . . . . .Per IEC 947-5-2Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . .Incorporated Wire-Break Protection . . . . . . . . . . . . . . . . . . . . . . .IncorporatedTransient Protection. . . . . . . . . . . . . . . . . . . . . . . . .Per EN 60947-5-2Shock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 g, 11 msVibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 Hz, 1 mm Amplitude in all 3 Planes Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . .≤2% of Rated Operating Distance Temperature Drift. . . . . . . . . . . . . . . . . . . . . . . . . .<±20% of Rated Operating Distance4-Wire DC CapacitiveRipple. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .≤10%Differential Travel (Hysteresis). . . . . . . . . . . . . . . . . . . .2-20% (5% typical)Voltage Drop Across Conducting Sensor. . . . . . . . . . . . . . .≤1.8 V at 200 mA Trigger Current for Overload Protection. . . . . . . . . . . . . . .≥220 mA Off-State (Leakage) Current . . . . . . . . . . . . . . . . . . . . .<100μA No-Load Current . . . . . . . . . . . . . . . . . . . . . . . . . .≤15 mAPower-On Effect . . . . . . . . . . . . . . . . . . . . . . . . . .Per IEC 947-5-2Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . .Yes Wire-Break Protection . . . . . . . . . . . . . . . . . . . . . . .YesTransient Protection. . . . . . . . . . . . . . . . . . . . . . . . .Per EN 60947-5-2Shock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 g, 11 msVibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 Hz, 1 mm Amplitude in all 3 Planes Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . .≤2% of Rated Operating Distance Temperature Drift. . . . . . . . . . . . . . . . . . . . . . . . . .<±20% of Rated Operating DistanceLine Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . .50-60 HzHysteresis (Differential Travel). . . . . . . . . . . . . . . . . . . .2-20% (5% typical)Voltage Drop Across Conducting Sensor. . . . . . . . . . . . . . .≤7.0 V at 500 mA Off-State (Leakage) Current . . . . . . . . . . . . . . . . . . . . .≤1.7 mA Minimum Load Current. . . . . . . . . . . . . . . . . . . . . . .≥5.0 mAInrush Current . . . . . . . . . . . . . . . . . . . . . . . . . . .≤8.0 A (≤10 ms, 5% Duty Cycle)Power-On Effect . . . . . . . . . . . . . . . . . . . . . . . . . .Per IEC 947-5-2Transient Protection. . . . . . . . . . . . . . . . . . . . . . . . .Per EN 60947-5-2Shock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 g, 11 msVibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 Hz, 1 mm Amplitude in all 3 Planes Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . .≤2% of Rated Operating Distance Temperature Drift. . . . . . . . . . . . . . . . . . . . . . . . . .<±20% of Rated Operating Distance2-Wire AC Capacitive3-Wire DC CapacitiveRipple. . . . . . . . . . . . . .≤10%No-Load Current . . . . . . . .≤8.0 mA Frequency Output. . . . . . . .1-10 kHzLinearity Tolerance . . . . . . .±5% of full scale Temperature Tolerance . . . . .±0.06% / °C Reverse Polarity Protection . . .Incorporated Wire-Break Protection. . . . . .IncorporatedTransient Protection. . . . . . .Per EN 60947-5-2Shock . . . . . . . . . . . . . .30 g, 11 msVibration . . . . . . . . . . . .55 Hz, 1 mm Amplitude,in all 3 planes Repeatability . . . . . . . . . .≤1%(0.5% after 30 min. warm up)3-Wire DC LF10 AnalogLF = Linear frequency (1-10 kHz) output.Ripple. . . . . . . . . . . . . .≤10%No-Load Current . . . . . . . .≤8.0 mACurrent Output . . . . . . . . .4-20 mA/R L ≤500ΩLinearity Tolerance . . . . . . .±3% of full scale Temperature Drift. . . . . . . .±0.06% / °C Reverse Polarity Protection . . .IncorporatedWire-Break Protection. . . . . .IncorporatedTransient Protection. . . . . . .Per EN 60947-5-2Shock . . . . . . . . . . . . . .30 g, 11 msVibration . . . . . . . . . . . .55 Hz, 1 mm Amplitude,in all 3 planes Repeatability . . . . . . . . . .≤1%(0.5% after 30 min. warm up)3-Wire DC LI2 AnalogLI = indicates current output only.2 = Indicates a variance to standard which is 0-20 mA.Ripple. . . . . . . . . . . . . .≤10%No-Load Current . . . . . . . .≤8.0 mAVoltage Output . . . . . . . . .0-10 V/R L ≥4.7 k ΩLinearity Tolerance . . . . . . .±5% of full scale Temperature Tolerance . . . . .±0.06% / °C Reverse Polarity Protection . . .Incorporated Wire-Break Protection. . . . . .IncorporatedTransient Protection. . . . . . .Per EN 60947-5-2Shock . . . . . . . . . . . . . .30 g, 11 ms Off-State (Leakage) Current . . .<100 mAVoltage Drop Across Conducting Sensor . . . . . . .≤1.8 V Trigger Current forOverload Protection. . . . . . .≥220 mA on200 mA load current No-Load Current . . . . . . . .<10 mAVibration . . . . . . . . . . . .55 Hz, 1 mm Amplitude,in all 3 planes Repeatability . . . . . . . . . .≤1%(0.5% after 30 min. warm up)4-Wire DC LUAP6X AnalogRipple. . . . . . . . . . . . . .≤10%No-Load Current . . . . . . . .≤8.0 mAVoltage Output . . . . . . . . .0-10 V/R L ≥4.7 k ΩCurrent Output . . . . . . . . .0-20 mA/R L ≤500ΩLinearity Tolerance . . . . . . .±3% of full scale Temperature Tolerance . . . . .±0.06% / °C Reverse Polarity Protection . . .IncorporatedWire-Break Protection. . . . . .IncorporatedTransient Protection. . . . . . .Per EN 60947-5-2Shock . . . . . . . . . . . . . .30 g, 11 msVibration . . . . . . . . . . . .55 Hz, 1 mm Amplitude,in all 3 planes Repeatability . . . . . . . . . .≤1%(0.5% after 30 min. warm up)4-Wire DC LIU AnalogS p e csRipple . . . . . . . . . . . . . .≤10%No-Load Current. . . . . . . . .≤8.0 mAVoltage Output. . . . . . . . . .0-10 V/R L ≥4.7 k ΩCurrent Output . . . . . . . . .4-20 mA/R L ≤500ΩLinearity Tolerance. . . . . . . .±3% of full scale Temperature Drift . . . . . . . .±0.06% / °C Reverse Polarity Protection. . . .IncorporatedWire-Break Protection . . . . . .IncorporatedTransient Protection . . . . . . .Per EN 60947-5-2Shock . . . . . . . . . . . . . .30 g, 11 msVibration. . . . . . . . . . . . .55 Hz, 1 mm Amplitude,in all 3 planes Repeatability. . . . . . . . . . .≤1%(0.5% after 30 min. warm up)4-Wire DC LIU5 AnalogLIU = Linear voltage or current output.5 = Indicates 4-20 mA and 0-10 V output.Linearity Tolerance. . . . . . . .≤5% of final value Nominal Voltage . . . . . . . . .8.2 VDC (EN 50227)Current Output . . . . . . . . .4-20 mAPower-On Effect . . . . . . . . .Realized in Amplifier Reverse Polarity Protection. . . .IncorporatedWire-Break Protection . . . . . .Realized in Amplifier Transient Protection . . . . . . .Realized in AmplifierTemperature Drift . . . . . . . .≤±0.06% per °C Shock . . . . . . . . . . . . . .30 g, 11 msVibration. . . . . . . . . . . . .55 Hz, 1 mm Amplitude,in all 3 Planes Repeatability. . . . . . . . . . .≤1%(0.5% after 30 min. warm up)2-Wire DC NAMUR AnalogRipple . . . . . . . . . . . . . .≤10%No-Load Current. . . . . . . . .≤8.0 mAVoltage Output. . . . . . . . . .0-10 V/R L ≥4.7 k ΩLinearity Tolerance. . . . . . . .±3% of full scale Temperature Tolerance . . . . .±0.06% / °C Reverse Polarity Protection. . . .Incorporated Wire-Break Protection . . . . . .IncorporatedTransient Protection . . . . . . .Per EN 60947-5-2Shock . . . . . . . . . . . . . .30 g, 11 msVibration. . . . . . . . . . . . .55 Hz, 1 mm Amplitude,in all 3 planes Repeatability. . . . . . . . . . .≤1%(0.5% after 30 min. warm up)Variations:No Load CurrentWIM 40-Q20L60. . . . . . . .≤23.0 mA WIM 70-Q20L100. . . . . . . .≤23.0 mA WIM 40-NTL/STL . . . . . . . .≤23.0 mA Linearity ToleranceWIM 40-Q20L60. . . . . . . .≤2%WIM 70-Q20L100. . . . . . . .≤8%WIM 40-NTL/STL . . . . . . . .≤2%Relative Temp. DriftWIM 40-Q20L60. . . . . . . .≤±0.06% °C WIM 70-Q20L100. . . . . . . .≤±0.06% °C WIM 40-NTL/STL . . . . . . . .≤±0.06% °C3-Wire DC LU Analog。
1981Agilent Technologies8510C Network AnalyzerOn-Site Service ManualSerial NumbersThis manual applies directly to instruments withthis serial prefix number or above: 3031A.Part Number:08510-90282Printed in USAMay 2012Supersedes: July 2003© Copyright Agilent Technologies 1994, 2001, 2003, 2012NoticeThe information contained in this document is subject to change without notice.Agilent Technologies makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.Agilent Technologies assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Agilent Technologies.This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without prior written consent of Agilent Technologies.Restricted Rights LegendUse, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 for DOD agencies, and subparagraphs (c)(1) and (c)(2) of the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 for other agencies.Documentation WarrantyTHE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED “AS IS,” AND IS SUBJECT TO BEING CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, AGILENT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED WITH REGARD TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. AGI-LENT SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CON-NECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR ANY INFORMATION CONTAINED HEREIN. SHOULD AGILENT AND THE USER HAVE A SEPARATE WRITTEN AGREEMENT WITH WARRANTY TERMS COVERING THE MATERIAL IN THIS DOCUMENT THAT CONFLICT WITH THESE TERMS, THE WARRANTY TERMS IN THE SEPARATE AGREEMENT WILL CONTROL.Windows is a registered trademark of Microsoft Corporation.ii8510C On-Site Service Manua l8510C On-Site Service Manua l iiiContacting AgilentAny adjustment, maintenance, or repair of this product must be performed by qualified personnel. Contact Agilent by internet, phone, or fax to get assistance with all your test and measurement needs. Hewlett-Packard to Agilent Technologies TransitionThis manual may contain references to HP or Hewlett-Packard. Please note thatHewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. To reduce potential confusion, the only change to product numbers and names has been in the company name prefix: where a product number/name was HP XXXX the current name/number is now Agilent XXXX. For example, model number HP478A is now model number Agilent 478A.Safety and Regulatory InformationReview this product and related documentation to familiarize yourself with safety markings and instructions Online assistance: /find/assistUnited States(tel)180****4844,or1 800 593-6635 for on-siteservice of systemsLatin America (tel) (305) 269 7500(fax) (305) 269 7599Canada (tel)187****4414(fax) (905) 282-6495Europe (tel) (+31) 20 547 2323(fax) (+31) 20 547 2390New Zealand(tel) 0 800 738 378(fax) (+64) 4 495 8950Japan (tel) (+81) 426 56 7832(fax) (+81) 426 56 7840Australia (tel) 1 800 629 485(fax) (+61) 3 9210 5947Singapore (tel)180****8100(fax) (65) 836 0252Malaysia(tel) 1 800 828 848(fax) 1 800 801 664Philippines (tel) (632) 8426802(tel) (PLDT subscriber only):1 800 16510170(fax) (632) 8426809(fax) (PLDT subscriber only):1 800 16510288Thailand (tel) outside Bangkok:(088) 226 008(tel) within Bangkok:(662) 661 3999(fax) (66) 1 661 3714Hong Kong (tel) 800 930 871(fax) (852) 2506 9233Taiwan (tel) 0800-047-866(fax) (886) 2 25456723People’s Republic of China(tel) (preferred): 800-810-0189(tel) (alternate):10800-650-0021(fax) 10800-650-0121India (tel) 1-600-11-2929(fax) 000-800-650-1101iv 8510C On-Site Service Manua lbefore you operate the instrument. This product has been designed and tested in accordance with international standards.WARNING The WARNING notice denotes a hazard. It calls attention to a procedure, practice,or the like, that, if not correctly performed or adhered to, could result in personal injury. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.CAUTIONThe CAUTION notice denotes a hazard. It calls attention to an operating procedure,practice, or the like, which, if not correctly performed or adhered to, could result indamage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.Instrument MarkingsWhen you see this symbol on your instrument, you should refer to the instrument's instructionmanual for important information.This symbol indicates hazardous voltages.The C-tick is a registered trademark of the Australian Spectrum Management Agency.This symbol indicates that the instrument requires alternating current (ac) input.The CE mark is a registered trademark of the European Community. If it is accompanied by ayear, it indicates the year the design was proven.The CSA mark is a registered trademark of the Canadian Standards Association.ICES/NMB-001This ISM device complies with Canadian ICES-001.Cet appareil ISM est conforme a la norme NMB-001 du Canada.1SM1-A This text indicates that the instrument is an Industrial Scientific and Medical Group 1 Class Aproduct (CISPER 11, Clause 4).This symbol indicates that the power line switch is ON.This symbol indicates that the power line switch is OFF or in STANDBY position.Safety Earth GroundThis is a Safety Class I product (provided with a protective earthing terminal). An uninterruptible safety earth ground must be provided from the main power source to the product input wiring terminals, power cord, or supplied power cord set. Whenever it is likely that the protection has been impaired, the product must be made inoperative and secured against any unintended operation.Before Applying PowerVerify that the product is configured to match the available main power source as described in the input power configuration instructions in this manual. If this product is to be powered by autotransformer, make sure the common terminal is connected to the neutral (grounded) side of the ac power supply.Battery InformationThe 8510C uses a lithium poly carbon monoflouride battery to power the instrument clock. The battery is located on the A7 I/O board of the 85101C display/processor. This battery is not field replaceable. Replace the A7 I/O board if the battery requires replacement.WARNING Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended. Discard used batteries according tomanufacturer’s instructions.8510C On-Site Service Manua l vTypeface ConventionsItalics•Used to emphasize important information:Use this software only with the Agilent Technologies xxxxxX system.•Used for the title of a publication:Refer to the Agilent Technologies xxxxxX System-Level User's Guide.•Used to indicate a variable:Type LOAD BIN filename.Instrument Display•Used to show on-screen prompts and messages that you will see on the display of an instrument: The Agilent Technologies xxxxxX will display the message CAL1SAVED.Keycap•Used for labeled keys on the front panel of an instrument or on acomputer keyboard:Press Return.[Softkey]•Used for simulated keys that appear on an instrument display:Press [Prior Menu].User Entry•Used to indicate text that you will enter using the computer keyboard; text shown in this typeface must be typed exactly as printed:Type LOAD PARMFILE•Used for examples of programming code:#endif//ifndef NO_CLASSPath name•Used for a subdirectory name or file path:Edit the file usr/local/bin/sample.txtComputer Display•Used to show messages, prompts, and window labels that appear on a computer monitor: The Edit Parameters window will appear on the screen.•Used for menus, lists, dialog boxes, and button boxes on a computer monitor from which you make selections using the mouse or keyboard:Double-click EXIT to quit the program.vi8510C On-Site Service Manua l1Service and EquipmentOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-2 On-Site Service Manual Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-3 Service and Equipment Overview (Chapter 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-3 Safety/Licensing (Chapter 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-3 Theory of Operation (Chapter 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-3 Main Troubleshooting Procedure (Chapter 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-3 Replaceable Parts (Chapter 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-4 Replacement Procedures (Chapter 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-4 Adjustments (Chapter 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-4 Specifications and Performance Verification (Chapter 8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-4 Installation (Chapter 9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-5 Preventive Maintenance (Chapter 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-5 Definition of an 8510 System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-5 Service Tools Available. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-5 Table of Service Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-6 2Safety/Licensing8510 Safety Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-3 Hazardous Instrument Areas with Power On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-3 Compliance with German FTZ Emissions Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-6 Compliance with Canadian EMC Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-6 3Theory of OperationOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-2 The Base System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-3 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-4 Synthesized Sweepers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-4 Sweep Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-4 Test Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-5 Sampler-Based Test Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-5 Mixer-Based Test Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-5 8511 Frequency Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-5 Test Set Control Path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-6 Test Set Power-On Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-6 Test Set Typical RF Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-6 85102 IF/Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-8 Signal Path Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-8 Control Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-9 Phase Lock Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-9 Miscellaneous Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-9 85101 Display/Processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-10 Processor Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-10 Display Assemblies (CRT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-10 Display Assemblies (LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-11 Input/Output Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-11 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-12 8510 Typical System Measurement Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-15 8510C On-Site Service ManualContents-1System Phase Lock Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-16 Pretune Phase Lock Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-16 Pretune IF Count Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-18 Main Phase Lock Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-19 Monitoring Phase Lock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-19 Monitoring the VTO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-20 Phase Lock Learn Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-20 Phase Lock Cycle Summary (Including Running Error Messages) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-21 4Main Troubleshooting ProcedureOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-2 Troubleshooting Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-3 What’s Wrong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-4Self Test Failures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-4Running Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-6Unratioed Power Failures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-6Other Obvious Failure Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-6 Control, Configuration, and Cabling Pre-Operational Checks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-8Front and Rear Panel Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-8Cabling Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-8Firmware Revisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-12 No Obvious Failure Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-20Verify the 85101C Display/Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-20Verify the 85102 IF/Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-20 Hardware Emulator Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-22Test Set Emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-22Source Emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-22Other Tests for the Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-22 8510C System-Level Troubleshooting Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-25 8510C System-Level Troubleshooting Block Diagram (LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-27 8510C Display/Processor Overall Block Diagram (CRT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-29 85101C Display/Processor Overall Block Diagram (LCD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-31 85102C IF/Detector Overall Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-33 8510C Phase Lock Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-35 85101C A8 Motherboard Wiring Diagram (CRT) (1 of 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-37 85101C A8 Motherboard Wiring Diagram (CRT) (2 of 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-38 85101C A8 Motherboard Wiring Diagram (LCD) (1 of 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-39 85101C A8 Motherboard Wiring Diagram (LCD) (2 of 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-40 85102C A8 Motherboard Wiring Diagram (1 of 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-41 85102C A8 Motherboard Wiring Diagram (2 of 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-42 LCD Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-43 A14 GSP Display Interface Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-44 A15 LCD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-46Troubleshooting Image Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-46A16 Backlight Inverter Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-49 Self Test Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-51 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-51 Self Tests and Other Failures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-52What to Do If an Instrument Error Occurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-52 Contents-28510C On-Site Service ManualWhat to Do If the R-L-T-S-8-4-2-1 LEDs Stay Lit (Default Test 15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-53Self Test Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-53How to Identify a Self Test Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-55How to Troubleshoot a Self Test Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-58How to Access the Test Menu and Run a Self Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-58Self Test Failures and Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-60 System, Disc, and Service Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-65System Command 15: Run Main Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-65System Command 16: Memory Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-65System Command 17: Rerun Self Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-65System Command 18: Repeat Test Loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-65Disc Command 19: Load Program Disc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-65Disc Command 20: Record Program Disc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-66Disc Command 21: Initialize Disc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-66Service Command 22: Run Service Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-66Service Command 23: Diagnose a Failure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-66 How to Reload the Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-67 Running Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-69 Running Error Messages as Built-In Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-69 Different Types of Running Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-69 Error Message Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-70Caution Type Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-70Prompt Type Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-70Tell Type Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-70Error Type Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-70 Things to Remember about Running Error Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-71 Categories of Caution Running Error Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-71Phase Lock Running Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-71IF/Detector ADC Running Error Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-71Source Sweep Running Error Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-71GPIB (HP-IB) Running Error Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-71 Running Error Message Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-72System-Level Troubleshooting Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-72Helpful Troubleshooting Hints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-72 Alphabetical List of Caution Running Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-73ADC Cal Failed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-73ADC Not Responding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-73Autorange Cal Failed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-74Caution: Optional Function Not Installed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-74Disc Communication Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-74Disc Hardware Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-74Disc Read or Write Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-74Disc Media Wearing Out - Replace Soon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-75Failure - Check System Bus Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-75Failure - Fault Indicator On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-75Failure - Overmodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-75Failure - RF Unlocked . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-75Failure - Self Test Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-75IF Cal Failed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-758510C On-Site Service ManualContents-3。
ViewSonic®VA1903wm/VA1903wb/VA1903wmbLCD DisplayModel No. : VS11618内容TCO信息 (i)电磁相容信息 (1)重要的安全指示 (2)中国电子信息产品污染控制标识要求 (3)版权信息 (4)产品注册 (4)开始包装内容 (5)注意事项 (5)快速安装 (6)墙壁安装(可选) (7)使用LCD显示器设置定时模式 (8)菜单和电源按键锁定设置 (8)调整屏幕图像 (9)主菜单控件 (11)其它信息技术规格 (14)故障诊断 (15)客户支持 (16)如何清洁LCD显示器 (17)有限担保 (18)TCO 信息Congratulations!The display you have just purchased carries the TCO’03 Displayslabel. This means that your display is designed, manufactured andtested according to some of the strictest quality and environmentalrequirements in the world. This makes for a high performanceproduct, designed with the user in focus that also minimizes theimpact on our natural environment.Some of the features of the TCO’03 Display requirements:ErgonomicsGood visual ergonomics and image quality in order to improve the working environment for the user and to reduce sight and strain problems. Important parameters are luminance, contrast, resolution, reflectance, colour rendition and image stability.Energy•Energy-saving mode after a certain time - beneficial both for the user and the environment •Electrical safetyEmissions•Electromagnetic fields•Noise emissionsEcology•The product must be prepared for recycling and the manufacturer must have a certified environmental management system such as EMAS or ISO 14000•Restrictions ona.chlorinated and brominated flame retardants and polymersb.heavy metals such as cadmium, mercury and lead.The requirements included in this label have been developed by TCO Development in co-operation with scientists, experts, users as well as manufacturers all over the world. Since the end of the 1980s TCO has been involved in influencing the development of IT equipment in a more user-friendly direction. Our labelling system started with displays in 1992 and is now requested by users and IT-manufacturers all over the world.For more information, please visit电磁相容信息FCC声明本设备符合 FCC 规则第 15 部分的规定。
Advanced菜单里的项目确实非常多,写了两页才算把重点都提了一下。
下面我们再来看一下Power菜单中的一些重点项目。
Power菜单里第一项是挂起模式,对于PC机来说,建议选择S3 only或者Auto,而对于POS机来说,则建议选择S1。
其他几个项目可以都保持默认值,但是笔者在这里要提一下ACPI APIC Support这一项。
很多人都遇到过,在Windows里点关机之后,电脑虽然注销了,但还并没有关机,必须要再次按一下电源开关,计算机才会关闭。
如果你遇到这种情况的话,那么80%以上都是因为没有开启ACPI APIC Support这一项,所以本项一定要开启。
P.S. ACPI是高级电源管理的意思。
●APM Configuration很多朋友都遇到过这样的问题,就是只要一插上电源线,电脑就会自动开机,对于菜鸟来说,要解决这个问题看起来很难,实则不然。
在BIOS的Power中,有Restore on AC power loss这一项,实际上这里就可以修复上面的问题。
我们来看看Restore on AC Power loss的中文意思,可以理解为当断开的AC电源恢复时代状态。
这里的主要功能就是,当电脑非正常断电之后,电流再次恢复时,计算机要处在什么状态。
有三个选项:Power Off(当电流恢复时,计算机处在关机状态)Power On(当电流恢复时,计算机处在开机状态)Last state(最近一次的状态,也就是断电时的状态)如果真正理解了Restore on AC Power loss的朋友,相信已经明白为什么一插上电源线电脑就会自动开机了,原来是因为这里选择了Power ON,当然你Last State也可能导致这种情况出现。
如果你还在被这个问题所困扰的话,那么你现在就可以去解决了。
下面几个项目都是一些开机的方法设置,比如定时开机,远程Modem控制开机,PCI设备控制开机,键盘开机、鼠标开机等。
The information in this document is subject to change without notice and does not represent a commitment on the part of Native Instruments GmbH. The software described by this docu-ment is subject to a License Agreement and may not be copied to other media. No part of this publication may be copied, reproduced or otherwise transmitted or recorded, for any purpose, without prior written permission by Native Instruments GmbH, hereinafter referred to as Native Instruments.“Native Instruments”, “NI” and associated logos are (registered) trademarks of Native Instru-ments GmbH.ASIO, VST, HALion and Cubase are registered trademarks of Steinberg Media Technologies GmbH.All other product and company names are trademarks™ or registered® trademarks of their re-spective holders. Use of them does not imply any affiliation with or endorsement by them.Document authored by: David Gover and Nico Sidi.Software version: 2.8 (02/2019)Hardware version: MASCHINE MIKRO MK3Special thanks to the Beta Test Team, who were invaluable not just in tracking down bugs, but in making this a better product.NATIVE INSTRUMENTS GmbH Schlesische Str. 29-30D-10997 Berlin Germanywww.native-instruments.de NATIVE INSTRUMENTS North America, Inc. 6725 Sunset Boulevard5th FloorLos Angeles, CA 90028USANATIVE INSTRUMENTS K.K.YO Building 3FJingumae 6-7-15, Shibuya-ku, Tokyo 150-0001Japanwww.native-instruments.co.jp NATIVE INSTRUMENTS UK Limited 18 Phipp StreetLondon EC2A 4NUUKNATIVE INSTRUMENTS FRANCE SARL 113 Rue Saint-Maur75011 ParisFrance SHENZHEN NATIVE INSTRUMENTS COMPANY Limited 5F, Shenzhen Zimao Center111 Taizi Road, Nanshan District, Shenzhen, GuangdongChina© NATIVE INSTRUMENTS GmbH, 2019. All rights reserved.Table of Contents1Welcome to MASCHINE (23)1.1MASCHINE Documentation (24)1.2Document Conventions (25)1.3New Features in MASCHINE 2.8 (26)1.4New Features in MASCHINE 2.7.10 (28)1.5New Features in MASCHINE 2.7.8 (29)1.6New Features in MASCHINE 2.7.7 (29)1.7New Features in MASCHINE 2.7.4 (31)1.8New Features in MASCHINE 2.7.3 (33)2Quick Reference (35)2.1MASCHINE Project Overview (35)2.1.1Sound Content (35)2.1.2Arrangement (37)2.2MASCHINE Hardware Overview (40)2.2.1MASCHINE MIKRO Hardware Overview (40)2.2.1.1Browser Section (41)2.2.1.2Edit Section (42)2.2.1.3Performance Section (43)2.2.1.4Transport Section (45)2.2.1.5Pad Section (46)2.2.1.6Rear Panel (50)2.3MASCHINE Software Overview (51)2.3.1Header (52)2.3.2Browser (54)2.3.3Arranger (56)2.3.4Control Area (59)2.3.5Pattern Editor (60)3Basic Concepts (62)3.1Important Names and Concepts (62)3.2Adjusting the MASCHINE User Interface (65)3.2.1Adjusting the Size of the Interface (65)3.2.2Switching between Ideas View and Song View (66)3.2.3Showing/Hiding the Browser (67)3.2.4Showing/Hiding the Control Lane (67)3.3Common Operations (68)3.3.1Adjusting Volume, Swing, and Tempo (68)3.3.2Undo/Redo (71)3.3.3Focusing on a Group or a Sound (73)3.3.4Switching Between the Master, Group, and Sound Level (77)3.3.5Navigating Channel Properties, Plug-ins, and Parameter Pages in the Control Area.773.3.6Navigating the Software Using the Controller (82)3.3.7Using Two or More Hardware Controllers (82)3.3.8Loading a Recent Project from the Controller (84)3.4Native Kontrol Standard (85)3.5Stand-Alone and Plug-in Mode (86)3.5.1Differences between Stand-Alone and Plug-in Mode (86)3.5.2Switching Instances (88)3.6Preferences (88)3.6.1Preferences – General Page (89)3.6.2Preferences – Audio Page (93)3.6.3Preferences – MIDI Page (95)3.6.4Preferences – Default Page (97)3.6.5Preferences – Library Page (101)3.6.6Preferences – Plug-ins Page (109)3.6.7Preferences – Hardware Page (114)3.6.8Preferences – Colors Page (114)3.7Integrating MASCHINE into a MIDI Setup (117)3.7.1Connecting External MIDI Equipment (117)3.7.2Sync to External MIDI Clock (117)3.7.3Send MIDI Clock (118)3.7.4Using MIDI Mode (119)3.8Syncing MASCHINE using Ableton Link (120)3.8.1Connecting to a Network (121)3.8.2Joining and Leaving a Link Session (121)4Browser (123)4.1Browser Basics (123)4.1.1The MASCHINE Library (123)4.1.2Browsing the Library vs. Browsing Your Hard Disks (124)4.2Searching and Loading Files from the Library (125)4.2.1Overview of the Library Pane (125)4.2.2Selecting or Loading a Product and Selecting a Bank from the Browser (128)4.2.3Selecting a Product Category, a Product, a Bank, and a Sub-Bank (133)4.2.3.1Selecting a Product Category, a Product, a Bank, and a Sub-Bank on theController (137)4.2.4Selecting a File Type (137)4.2.5Choosing Between Factory and User Content (138)4.2.6Selecting Type and Character Tags (138)4.2.7Performing a Text Search (142)4.2.8Loading a File from the Result List (143)4.3Additional Browsing Tools (148)4.3.1Loading the Selected Files Automatically (148)4.3.2Auditioning Instrument Presets (149)4.3.3Auditioning Samples (150)4.3.4Loading Groups with Patterns (150)4.3.5Loading Groups with Routing (151)4.3.6Displaying File Information (151)4.4Using Favorites in the Browser (152)4.5Editing the Files’ Tags and Properties (155)4.5.1Attribute Editor Basics (155)4.5.2The Bank Page (157)4.5.3The Types and Characters Pages (157)4.5.4The Properties Page (160)4.6Loading and Importing Files from Your File System (161)4.6.1Overview of the FILES Pane (161)4.6.2Using Favorites (163)4.6.3Using the Location Bar (164)4.6.4Navigating to Recent Locations (165)4.6.5Using the Result List (166)4.6.6Importing Files to the MASCHINE Library (169)4.7Locating Missing Samples (171)4.8Using Quick Browse (173)5Managing Sounds, Groups, and Your Project (175)5.1Overview of the Sounds, Groups, and Master (175)5.1.1The Sound, Group, and Master Channels (176)5.1.2Similarities and Differences in Handling Sounds and Groups (177)5.1.3Selecting Multiple Sounds or Groups (178)5.2Managing Sounds (181)5.2.1Loading Sounds (183)5.2.2Pre-listening to Sounds (184)5.2.3Renaming Sound Slots (185)5.2.4Changing the Sound’s Color (186)5.2.5Saving Sounds (187)5.2.6Copying and Pasting Sounds (189)5.2.7Moving Sounds (192)5.2.8Resetting Sound Slots (193)5.3Managing Groups (194)5.3.1Creating Groups (196)5.3.2Loading Groups (197)5.3.3Renaming Groups (198)5.3.4Changing the Group’s Color (199)5.3.5Saving Groups (200)5.3.6Copying and Pasting Groups (202)5.3.7Reordering Groups (206)5.3.8Deleting Groups (207)5.4Exporting MASCHINE Objects and Audio (208)5.4.1Saving a Group with its Samples (208)5.4.2Saving a Project with its Samples (210)5.4.3Exporting Audio (212)5.5Importing Third-Party File Formats (218)5.5.1Loading REX Files into Sound Slots (218)5.5.2Importing MPC Programs to Groups (219)6Playing on the Controller (223)6.1Adjusting the Pads (223)6.1.1The Pad View in the Software (223)6.1.2Choosing a Pad Input Mode (225)6.1.3Adjusting the Base Key (226)6.2Adjusting the Key, Choke, and Link Parameters for Multiple Sounds (227)6.3Playing Tools (229)6.3.1Mute and Solo (229)6.3.2Choke All Notes (233)6.3.3Groove (233)6.3.4Level, Tempo, Tune, and Groove Shortcuts on Your Controller (235)6.3.5Tap Tempo (235)6.4Performance Features (236)6.4.1Overview of the Perform Features (236)6.4.2Selecting a Scale and Creating Chords (239)6.4.3Scale and Chord Parameters (240)6.4.4Creating Arpeggios and Repeated Notes (253)6.4.5Swing on Note Repeat / Arp Output (257)6.5Using Lock Snapshots (257)6.5.1Creating a Lock Snapshot (257)7Working with Plug-ins (259)7.1Plug-in Overview (259)7.1.1Plug-in Basics (259)7.1.2First Plug-in Slot of Sounds: Choosing the Sound’s Role (263)7.1.3Loading, Removing, and Replacing a Plug-in (264)7.1.4Adjusting the Plug-in Parameters (270)7.1.5Bypassing Plug-in Slots (270)7.1.6Using Side-Chain (272)7.1.7Moving Plug-ins (272)7.1.8Alternative: the Plug-in Strip (273)7.1.9Saving and Recalling Plug-in Presets (273)7.1.9.1Saving Plug-in Presets (274)7.1.9.2Recalling Plug-in Presets (275)7.1.9.3Removing a Default Plug-in Preset (276)7.2The Sampler Plug-in (277)7.2.1Page 1: Voice Settings / Engine (279)7.2.2Page 2: Pitch / Envelope (281)7.2.3Page 3: FX / Filter (283)7.2.4Page 4: Modulation (285)7.2.5Page 5: LFO (286)7.2.6Page 6: Velocity / Modwheel (288)7.3Using Native Instruments and External Plug-ins (289)7.3.1Opening/Closing Plug-in Windows (289)7.3.2Using the VST/AU Plug-in Parameters (292)7.3.3Setting Up Your Own Parameter Pages (293)7.3.4Using VST/AU Plug-in Presets (298)7.3.5Multiple-Output Plug-ins and Multitimbral Plug-ins (300)8Using the Audio Plug-in (302)8.1Loading a Loop into the Audio Plug-in (306)8.2Editing Audio in the Audio Plug-in (307)8.3Using Loop Mode (308)8.4Using Gate Mode (310)9Using the Drumsynths (312)9.1Drumsynths – General Handling (313)9.1.1Engines: Many Different Drums per Drumsynth (313)9.1.2Common Parameter Organization (313)9.1.3Shared Parameters (316)9.1.4Various Velocity Responses (316)9.1.5Pitch Range, Tuning, and MIDI Notes (316)9.2The Kicks (317)9.2.1Kick – Sub (319)9.2.2Kick – Tronic (321)9.2.3Kick – Dusty (324)9.2.4Kick – Grit (325)9.2.5Kick – Rasper (328)9.2.6Kick – Snappy (329)9.2.7Kick – Bold (331)9.2.8Kick – Maple (333)9.2.9Kick – Push (334)9.3The Snares (336)9.3.1Snare – Volt (338)9.3.2Snare – Bit (340)9.3.3Snare – Pow (342)9.3.4Snare – Sharp (343)9.3.5Snare – Airy (345)9.3.6Snare – Vintage (347)9.3.7Snare – Chrome (349)9.3.8Snare – Iron (351)9.3.9Snare – Clap (353)9.3.10Snare – Breaker (355)9.4The Hi-hats (357)9.4.1Hi-hat – Silver (358)9.4.2Hi-hat – Circuit (360)9.4.3Hi-hat – Memory (362)9.4.4Hi-hat – Hybrid (364)9.4.5Creating a Pattern with Closed and Open Hi-hats (366)9.5The Toms (367)9.5.1Tom – Tronic (369)9.5.2Tom – Fractal (371)9.5.3Tom – Floor (375)9.5.4Tom – High (377)9.6The Percussions (378)9.6.1Percussion – Fractal (380)9.6.2Percussion – Kettle (383)9.6.3Percussion – Shaker (385)9.7The Cymbals (389)9.7.1Cymbal – Crash (391)9.7.2Cymbal – Ride (393)10Using the Bass Synth (396)10.1Bass Synth – General Handling (397)10.1.1Parameter Organization (397)10.1.2Bass Synth Parameters (399)11Working with Patterns (401)11.1Pattern Basics (401)11.1.1Pattern Editor Overview (402)11.1.2Navigating the Event Area (404)11.1.3Following the Playback Position in the Pattern (406)11.1.4Jumping to Another Playback Position in the Pattern (407)11.1.5Group View and Keyboard View (408)11.1.6Adjusting the Arrange Grid and the Pattern Length (410)11.1.7Adjusting the Step Grid and the Nudge Grid (413)11.2Recording Patterns in Real Time (416)11.2.1Recording Your Patterns Live (417)11.2.2Using the Metronome (419)11.2.3Recording with Count-in (420)11.3Recording Patterns with the Step Sequencer (422)11.3.1Step Mode Basics (422)11.3.2Editing Events in Step Mode (424)11.4Editing Events (425)11.4.1Editing Events with the Mouse: an Overview (425)11.4.2Creating Events/Notes (428)11.4.3Selecting Events/Notes (429)11.4.4Editing Selected Events/Notes (431)11.4.5Deleting Events/Notes (434)11.4.6Cut, Copy, and Paste Events/Notes (436)11.4.7Quantizing Events/Notes (439)11.4.8Quantization While Playing (441)11.4.9Doubling a Pattern (442)11.4.10Adding Variation to Patterns (442)11.5Recording and Editing Modulation (443)11.5.1Which Parameters Are Modulatable? (444)11.5.2Recording Modulation (446)11.5.3Creating and Editing Modulation in the Control Lane (447)11.6Creating MIDI Tracks from Scratch in MASCHINE (452)11.7Managing Patterns (454)11.7.1The Pattern Manager and Pattern Mode (455)11.7.2Selecting Patterns and Pattern Banks (456)11.7.3Creating Patterns (459)11.7.4Deleting Patterns (460)11.7.5Creating and Deleting Pattern Banks (461)11.7.6Naming Patterns (463)11.7.7Changing the Pattern’s Color (465)11.7.8Duplicating, Copying, and Pasting Patterns (466)11.7.9Moving Patterns (469)11.8Importing/Exporting Audio and MIDI to/from Patterns (470)11.8.1Exporting Audio from Patterns (470)11.8.2Exporting MIDI from Patterns (472)11.8.3Importing MIDI to Patterns (474)12Audio Routing, Remote Control, and Macro Controls (483)12.1Audio Routing in MASCHINE (484)12.1.1Sending External Audio to Sounds (485)12.1.2Configuring the Main Output of Sounds and Groups (489)12.1.3Setting Up Auxiliary Outputs for Sounds and Groups (494)12.1.4Configuring the Master and Cue Outputs of MASCHINE (497)12.1.5Mono Audio Inputs (502)12.1.5.1Configuring External Inputs for Sounds in Mix View (503)12.2Using MIDI Control and Host Automation (506)12.2.1Triggering Sounds via MIDI Notes (507)12.2.2Triggering Scenes via MIDI (513)12.2.3Controlling Parameters via MIDI and Host Automation (514)12.2.4Selecting VST/AU Plug-in Presets via MIDI Program Change (522)12.2.5Sending MIDI from Sounds (523)12.3Creating Custom Sets of Parameters with the Macro Controls (527)12.3.1Macro Control Overview (527)12.3.2Assigning Macro Controls Using the Software (528)13Controlling Your Mix (535)13.1Mix View Basics (535)13.1.1Switching between Arrange View and Mix View (535)13.1.2Mix View Elements (536)13.2The Mixer (537)13.2.1Displaying Groups vs. Displaying Sounds (539)13.2.2Adjusting the Mixer Layout (541)13.2.3Selecting Channel Strips (542)13.2.4Managing Your Channels in the Mixer (543)13.2.5Adjusting Settings in the Channel Strips (545)13.2.6Using the Cue Bus (549)13.3The Plug-in Chain (551)13.4The Plug-in Strip (552)13.4.1The Plug-in Header (554)13.4.2Panels for Drumsynths and Internal Effects (556)13.4.3Panel for the Sampler (557)13.4.4Custom Panels for Native Instruments Plug-ins (560)13.4.5Undocking a Plug-in Panel (Native Instruments and External Plug-ins Only) (564)14Using Effects (567)14.1Applying Effects to a Sound, a Group or the Master (567)14.1.1Adding an Effect (567)14.1.2Other Operations on Effects (574)14.1.3Using the Side-Chain Input (575)14.2Applying Effects to External Audio (578)14.2.1Step 1: Configure MASCHINE Audio Inputs (578)14.2.2Step 2: Set up a Sound to Receive the External Input (579)14.2.3Step 3: Load an Effect to Process an Input (579)14.3Creating a Send Effect (580)14.3.1Step 1: Set Up a Sound or Group as Send Effect (581)14.3.2Step 2: Route Audio to the Send Effect (583)14.3.3 A Few Notes on Send Effects (583)14.4Creating Multi-Effects (584)15Effect Reference (587)15.1Dynamics (588)15.1.1Compressor (588)15.1.2Gate (591)15.1.3Transient Master (594)15.1.4Limiter (596)15.1.5Maximizer (600)15.2Filtering Effects (603)15.2.1EQ (603)15.2.2Filter (605)15.2.3Cabinet (609)15.3Modulation Effects (611)15.3.1Chorus (611)15.3.2Flanger (612)15.3.3FM (613)15.3.4Freq Shifter (615)15.3.5Phaser (616)15.4Spatial and Reverb Effects (617)15.4.1Ice (617)15.4.2Metaverb (619)15.4.3Reflex (620)15.4.4Reverb (Legacy) (621)15.4.5Reverb (623)15.4.5.1Reverb Room (623)15.4.5.2Reverb Hall (626)15.4.5.3Plate Reverb (629)15.5Delays (630)15.5.1Beat Delay (630)15.5.2Grain Delay (632)15.5.3Grain Stretch (634)15.5.4Resochord (636)15.6Distortion Effects (638)15.6.1Distortion (638)15.6.2Lofi (640)15.6.3Saturator (641)15.7Perform FX (645)15.7.1Filter (646)15.7.2Flanger (648)15.7.3Burst Echo (650)15.7.4Reso Echo (653)15.7.5Ring (656)15.7.6Stutter (658)15.7.7Tremolo (661)15.7.8Scratcher (664)16Working with the Arranger (667)16.1Arranger Basics (667)16.1.1Navigating Song View (670)16.1.2Following the Playback Position in Your Project (672)16.1.3Performing with Scenes and Sections using the Pads (673)16.2Using Ideas View (677)16.2.1Scene Overview (677)16.2.2Creating Scenes (679)16.2.3Assigning and Removing Patterns (679)16.2.4Selecting Scenes (682)16.2.5Deleting Scenes (684)16.2.6Creating and Deleting Scene Banks (685)16.2.7Clearing Scenes (685)16.2.8Duplicating Scenes (685)16.2.9Reordering Scenes (687)16.2.10Making Scenes Unique (688)16.2.11Appending Scenes to Arrangement (689)16.2.12Naming Scenes (689)16.2.13Changing the Color of a Scene (690)16.3Using Song View (692)16.3.1Section Management Overview (692)16.3.2Creating Sections (694)16.3.3Assigning a Scene to a Section (695)16.3.4Selecting Sections and Section Banks (696)16.3.5Reorganizing Sections (700)16.3.6Adjusting the Length of a Section (702)16.3.6.1Adjusting the Length of a Section Using the Software (703)16.3.6.2Adjusting the Length of a Section Using the Controller (705)16.3.7Clearing a Pattern in Song View (705)16.3.8Duplicating Sections (705)16.3.8.1Making Sections Unique (707)16.3.9Removing Sections (707)16.3.10Renaming Scenes (708)16.3.11Clearing Sections (710)16.3.12Creating and Deleting Section Banks (710)16.3.13Working with Patterns in Song view (710)16.3.13.1Creating a Pattern in Song View (711)16.3.13.2Selecting a Pattern in Song View (711)16.3.13.3Clearing a Pattern in Song View (711)16.3.13.4Renaming a Pattern in Song View (711)16.3.13.5Coloring a Pattern in Song View (712)16.3.13.6Removing a Pattern in Song View (712)16.3.13.7Duplicating a Pattern in Song View (712)16.3.14Enabling Auto Length (713)16.3.15Looping (714)16.3.15.1Setting the Loop Range in the Software (714)16.3.15.2Activating or Deactivating a Loop Using the Controller (715)16.4Playing with Sections (715)16.4.1Jumping to another Playback Position in Your Project (716)16.5Triggering Sections or Scenes via MIDI (717)16.6The Arrange Grid (719)16.7Quick Grid (720)17Sampling and Sample Mapping (722)17.1Opening the Sample Editor (722)17.2Recording Audio (724)17.2.1Opening the Record Page (724)17.2.2Selecting the Source and the Recording Mode (725)17.2.3Arming, Starting, and Stopping the Recording (729)17.2.5Checking Your Recordings (731)17.2.6Location and Name of Your Recorded Samples (734)17.3Editing a Sample (735)17.3.1Using the Edit Page (735)17.3.2Audio Editing Functions (739)17.4Slicing a Sample (743)17.4.1Opening the Slice Page (743)17.4.2Adjusting the Slicing Settings (744)17.4.3Manually Adjusting Your Slices (746)17.4.4Applying the Slicing (750)17.5Mapping Samples to Zones (754)17.5.1Opening the Zone Page (754)17.5.2Zone Page Overview (755)17.5.3Selecting and Managing Zones in the Zone List (756)17.5.4Selecting and Editing Zones in the Map View (761)17.5.5Editing Zones in the Sample View (765)17.5.6Adjusting the Zone Settings (767)17.5.7Adding Samples to the Sample Map (770)18Appendix: Tips for Playing Live (772)18.1Preparations (772)18.1.1Focus on the Hardware (772)18.1.2Customize the Pads of the Hardware (772)18.1.3Check Your CPU Power Before Playing (772)18.1.4Name and Color Your Groups, Patterns, Sounds and Scenes (773)18.1.5Consider Using a Limiter on Your Master (773)18.1.6Hook Up Your Other Gear and Sync It with MIDI Clock (773)18.1.7Improvise (773)18.2Basic Techniques (773)18.2.1Use Mute and Solo (773)18.2.2Create Variations of Your Drum Patterns in the Step Sequencer (774)18.2.3Use Note Repeat (774)18.2.4Set Up Your Own Multi-effect Groups and Automate Them (774)18.3Special Tricks (774)18.3.1Changing Pattern Length for Variation (774)18.3.2Using Loops to Cycle Through Samples (775)18.3.3Load Long Audio Files and Play with the Start Point (775)19Troubleshooting (776)19.1Knowledge Base (776)19.2Technical Support (776)19.3Registration Support (777)19.4User Forum (777)20Glossary (778)Index (786)1Welcome to MASCHINEThank you for buying MASCHINE!MASCHINE is a groove production studio that implements the familiar working style of classi-cal groove boxes along with the advantages of a computer based system. MASCHINE is ideal for making music live, as well as in the studio. It’s the hands-on aspect of a dedicated instru-ment, the MASCHINE hardware controller, united with the advanced editing features of the MASCHINE software.Creating beats is often not very intuitive with a computer, but using the MASCHINE hardware controller to do it makes it easy and fun. You can tap in freely with the pads or use Note Re-peat to jam along. Alternatively, build your beats using the step sequencer just as in classic drum machines.Patterns can be intuitively combined and rearranged on the fly to form larger ideas. You can try out several different versions of a song without ever having to stop the music.Since you can integrate it into any sequencer that supports VST, AU, or AAX plug-ins, you can reap the benefits in almost any software setup, or use it as a stand-alone application. You can sample your own material, slice loops and rearrange them easily.However, MASCHINE is a lot more than an ordinary groovebox or sampler: it comes with an inspiring 7-gigabyte library, and a sophisticated, yet easy to use tag-based Browser to give you instant access to the sounds you are looking for.What’s more, MASCHINE provides lots of options for manipulating your sounds via internal ef-fects and other sound-shaping possibilities. You can also control external MIDI hardware and 3rd-party software with the MASCHINE hardware controller, while customizing the functions of the pads, knobs and buttons according to your needs utilizing the included Controller Editor application. We hope you enjoy this fantastic instrument as much as we do. Now let’s get go-ing!—The MASCHINE team at Native Instruments.MASCHINE Documentation1.1MASCHINE DocumentationNative Instruments provide many information sources regarding MASCHINE. The main docu-ments should be read in the following sequence:1.MASCHINE MIKRO Quick Start Guide: This animated online guide provides a practical ap-proach to help you learn the basic of MASCHINE MIKRO. The guide is available from theNative Instruments website: https:///maschine-mikro-quick-start/2.MASCHINE Manual (this document): The MASCHINE Manual provides you with a compre-hensive description of all MASCHINE software and hardware features.Additional documentation sources provide you with details on more specific topics:►Online Support Videos: You can find a number of support videos on The Official Native In-struments Support Channel under the following URL: https:///NIsupport-EN. We recommend that you follow along with these instructions while the respective ap-plication is running on your computer.Other Online Resources:If you are experiencing problems related to your Native Instruments product that the supplied documentation does not cover, there are several ways of getting help:▪Knowledge Base▪User Forum▪Technical Support▪Registration SupportYou will find more information on these subjects in the chapter Troubleshooting.Document Conventions1.2Document ConventionsThis section introduces you to the signage and text highlighting used in this manual. This man-ual uses particular formatting to point out special facts and to warn you of potential issues.The icons introducing these notes let you see what kind of information is to be expected:This document uses particular formatting to point out special facts and to warn you of poten-tial issues. The icons introducing the following notes let you see what kind of information canbe expected:Furthermore, the following formatting is used:▪Text appearing in (drop-down) menus (such as Open…, Save as… etc.) in the software andpaths to locations on your hard disk or other storage devices is printed in italics.▪Text appearing elsewhere (labels of buttons, controls, text next to checkboxes etc.) in thesoftware is printed in blue. Whenever you see this formatting applied, you will find thesame text appearing somewhere on the screen.▪Text appearing on the displays of the controller is printed in light grey. Whenever you seethis formatting applied, you will find the same text on a controller display.▪Text appearing on labels of the hardware controller is printed in orange. Whenever you seethis formatting applied, you will find the same text on the controller.▪Important names and concepts are printed in bold.▪References to keys on your computer’s keyboard you’ll find put in square brackets (e.g.,“Press [Shift] + [Enter]”).►Single instructions are introduced by this play button type arrow.→Results of actions are introduced by this smaller arrow.Naming ConventionThroughout the documentation we will refer to MASCHINE controller (or just controller) as the hardware controller and MASCHINE software as the software installed on your computer.The term “effect” will sometimes be abbreviated as “FX” when referring to elements in the MA-SCHINE software and hardware. These terms have the same meaning.Button Combinations and Shortcuts on Your ControllerMost instructions will use the “+” sign to indicate buttons (or buttons and pads) that must be pressed simultaneously, starting with the button indicated first. E.g., an instruction such as:“Press SHIFT + PLAY”means:1.Press and hold SHIFT.2.While holding SHIFT, press PLAY and release it.3.Release SHIFT.1.3New Features in MASCHINE2.8The following new features have been added to MASCHINE: Integration▪Browse on , create your own collections of loops and one-shots and send them directly to the MASCHINE browser.Improvements to the Browser▪Samples are now cataloged in separate Loops and One-shots tabs in the Browser.▪Previews of loops selected in the Browser will be played in sync with the current project.When a loop is selected with Prehear turned on, it will begin playing immediately in-sync with the project if transport is running. If a loop preview starts part-way through the loop, the loop will play once more for its full length to ensure you get to hear the entire loop once in context with your project.▪Filters and product selections will be remembered when switching between content types and Factory/User Libraries in the Browser.▪Browser content synchronization between multiple running instances. When running multi-ple instances of MASCHINE, either as Standalone and/or as a plug-in, updates to the Li-brary will be synced across the instances. For example, if you delete a sample from your User Library in one instance, the sample will no longer be present in the other instances.Similarly, if you save a preset in one instance, that preset will then be available in the oth-er instances, too.▪Edits made to samples in the Factory Libraries will be saved to the Standard User Directo-ry.For more information on these new features, refer to the following chapter ↑4, Browser. Improvements to the MASCHINE MIKRO MK3 Controller▪You can now set sample Start and End points using the controller. For more information refer to ↑17.3.1, Using the Edit Page.Improved Support for A-Series Keyboards▪When Browsing with A-Series keyboards, you can now jump quickly to the results list by holding SHIFT and pushing right on the 4D Encoder.▪When Browsing with A-Series keyboards, you can fast scroll through the Browser results list by holding SHIFT and twisting the 4D Encoder.▪Mute and Solo Sounds and Groups from A-Series keyboards. Sounds are muted in TRACK mode while Groups are muted in IDEAS.。
3GPP TS 36.521-1 V14.4.0 (2017-09)Technical Specification3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA);User Equipment (UE) conformance specification;Radio transmission and reception;Part 1: Conformance Testing(Release 14)The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.KeywordsUMTS LTE3GPPPostal address3GPP support office address650 Route des Lucioles - Sophia AntipolisValbonne - FRANCETel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16InternetCopyright NotificationNo part may be reproduced except as authorized by written permission.The copyright and the foregoing restriction extend to reproduction in all media.© 2017, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).All rights reserved.UMTS™ is a Trade Mark of ETSI registered for the benefit of its members3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners LTE™ is a Trade Mark of ETSI registered for the benefit of its Members a nd of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM AssociationContentsForeword (92)Introduction (92)1Scope (93)2References (94)3Definitions, symbols and abbreviations (96)3.1Definitions (96)3.2Symbols (98)3.3Abbreviations (100)4General (103)4.1Categorization of test requirements in CA, UL-MIMO, ProSe, Dual Connectivity, UE category 0, UEcategory M1, UE category 1bis, UE category NB1 and V2X Communication (104)4.2RF requirements in later releases (105)5Frequency bands and channel arrangement (106)5.1General (106)5.2Operating bands (106)5.2A Operating bands for CA (108)5.2B Operating bands for UL-MIMO (116)5.2C Operating bands for Dual Connectivity (116)5.2D Operating bands for ProSe (117)5.2E Operating bands for UE category 0 and UE category M1 (118)5.2F Operating bands for UE category NB1 (118)5.2G Operating bands for V2X Communication (118)5.3TX–RX frequency separation (119)5.3A TX–RX frequency separation for CA (120)5.4Channel arrangement (120)5.4.1Channel spacing (120)5.4.1A Channel spacing for CA (121)5.4.1F Channel spacing for UE category NB1 (121)5.4.2Channel bandwidth (121)5.4.2.1Channel bandwidths per operating band (122)5.4.2A Channel bandwidth for CA (124)5.4.2A.1Channel bandwidths per operating band for CA (126)5.4.2B Channel bandwidth for UL-MIMO (171)5.4.2B.1Channel bandwidths per operating band for UL- MIMO (171)5.4.2C Channel bandwidth for Dual Connectivity (171)5.4.2D Channel bandwidth for ProSe (171)5.4.2D.1Channel bandwidths per operating band for ProSe (171)5.4.2F Channel bandwidth for category NB1 (172)5.4.2G Channel bandwidth for V2X Communication (173)5.4.2G.1Channel bandwidths per operating band for V2X Communication (173)5.4.3Channel raster (174)5.4.3A Channel raster for CA (175)5.4.3F Channel raster for UE category NB1 (175)5.4.4Carrier frequency and EARFCN (175)5.4.4F Carrier frequency and EARFCN for category NB1 (177)6Transmitter Characteristics (179)6.1General (179)6.2Transmit power (180)6.2.1Void (180)6.2.2UE Maximum Output Power (180)6.2.2.1Test purpose (180)6.2.2.4Test description (182)6.2.2.4.1Initial condition (182)6.2.2.4.2Test procedure (183)6.2.2.4.3Message contents (183)6.2.2.5Test requirements (183)6.2.2_1Maximum Output Power for HPUE (185)6.2.2_1.1Test purpose (185)6.2.2_1.2Test applicability (185)6.2.2_1.3Minimum conformance requirements (185)6.2.2_1.4Test description (185)6.2.2_1.5Test requirements (186)6.2.2A UE Maximum Output Power for CA (187)6.2.2A.0Minimum conformance requirements (187)6.2.2A.1UE Maximum Output Power for CA (intra-band contiguous DL CA and UL CA) (189)6.2.2A.1.1Test purpose (189)6.2.2A.1.2Test applicability (189)6.2.2A.1.3Minimum conformance requirements (189)6.2.2A.1.4Test description (189)6.2.2A.1.5Test Requirements (191)6.2.2A.2UE Maximum Output Power for CA (inter-band DL CA and UL CA) (192)6.2.2A.2.1Test purpose (192)6.2.2A.2.2Test applicability (192)6.2.2A.2.3Minimum conformance requirements (192)6.2.2A.2.4Test description (192)6.2.2A.2.5Test Requirements (194)6.2.2A.3UE Maximum Output Power for CA (intra-band non-contiguous DL CA and UL CA) (196)6.2.2A.4.1UE Maximum Output Power for CA (intra-band contiguous 3DL CA and 3UL CA) (196)6.2.2A.4.1.1Test purpose (196)6.2.2A.4.1.2Test applicability (196)6.2.2A.4.1.3Minimum conformance requirements (196)6.2.2A.4.1.4Test description (196)6.2.2A.4.1.5Test Requirements (198)6.2.2A.4.2UE Maximum Output Power for CA (inter-band 3DL CA and 3UL CA) (198)6.2.2A.4.2.1Test purpose (199)6.2.2A.4.2.2Test applicability (199)6.2.2A.4.2.3Minimum conformance requirements (199)6.2.2A.4.2.4Test description (199)6.2.2A.4.2.5Test Requirements (201)6.2.2B UE Maximum Output Power for UL-MIMO (201)6.2.2B.1Test purpose (201)6.2.2B.2Test applicability (202)6.2.2B.3Minimum conformance requirements (202)6.2.2B.4Test description (204)6.2.2B.4.1Initial condition (204)6.2.2B.4.2Test procedure (205)6.2.2B.4.3Message contents (205)6.2.2B.5Test requirements (205)6.2.2B_1HPUE Maximum Output Power for UL-MIMO (207)6.2.2B_1.1Test purpose (207)6.2.2B_1.2Test applicability (207)6.2.2B_1.3Minimum conformance requirements (207)6.2.2B_1.4Test description (207)6.2.2B_1.5Test requirements (208)6.2.2C 2096.2.2D UE Maximum Output Power for ProSe (209)6.2.2D.0Minimum conformance requirements (209)6.2.2D.1UE Maximum Output Power for ProSe Discovery (209)6.2.2D.1.1Test purpose (209)6.2.2D.1.2Test applicability (209)6.2.2D.1.3Minimum Conformance requirements (209)6.2.2D.2UE Maximum Output Power for ProSe Direct Communication (211)6.2.2D.2.1Test purpose (211)6.2.2D.2.2Test applicability (211)6.2.2D.2.3Minimum conformance requirements (211)6.2.2D.2.4Test description (211)6.2.2E UE Maximum Output Power for UE category 0 (212)6.2.2E.1Test purpose (212)6.2.2E.2Test applicability (212)6.2.2E.3Minimum conformance requirements (212)6.2.2E.4Test description (212)6.2.2E.4.3Message contents (213)6.2.2E.5Test requirements (213)6.2.2EA UE Maximum Output Power for UE category M1 (215)6.2.2EA.1Test purpose (215)6.2.2EA.2Test applicability (215)6.2.2EA.3Minimum conformance requirements (215)6.2.2EA.4Test description (216)6.2.2EA.4.3Message contents (217)6.2.2EA.5Test requirements (217)6.2.2F UE Maximum Output Power for category NB1 (218)6.2.2F.1Test purpose (218)6.2.2F.2Test applicability (218)6.2.2F.3Minimum conformance requirements (218)6.2.2F.4Test description (219)6.2.2F.4.1Initial condition (219)6.2.2F.4.2Test procedure (220)6.2.2F.4.3Message contents (220)6.2.2F.5Test requirements (220)6.2.2G UE Maximum Output Power for V2X Communication (221)6.2.2G.1UE Maximum Output Power for V2X Communication / Non-concurrent with E-UTRA uplinktransmission (221)6.2.2G.1.1Test purpose (221)6.2.2G.1.2Test applicability (221)6.2.2G.1.3Minimum conformance requirements (221)6.2.2G.1.4Test description (222)6.2.2G.1.4.1Initial conditions (222)6.2.2G.1.4.2Test procedure (222)6.2.2G.1.4.3Message contents (222)6.2.2G.1.5Test requirements (223)6.2.2G.2UE Maximum Output Power for V2X Communication / Simultaneous E-UTRA V2X sidelinkand E-UTRA uplink transmission (223)6.2.2G.2.1Test purpose (223)6.2.2G.2.2Test applicability (223)6.2.2G.2.3Minimum conformance requirements (223)6.2.2G.2.4Test description (224)6.2.2G.2.4.1Initial conditions (224)6.2.2G.2.4.2Test procedure (225)6.2.2G.2.4.3Message contents (226)6.2.2G.2.5Test requirements (226)6.2.3Maximum Power Reduction (MPR) (226)6.2.3.1Test purpose (226)6.2.3.2Test applicability (226)6.2.3.3Minimum conformance requirements (227)6.2.3.4Test description (227)6.2.3.4.1Initial condition (227)6.2.3.4.2Test procedure (228)6.2.3.4.3Message contents (228)6.2.3.5Test requirements (229)6.2.3_1Maximum Power Reduction (MPR) for HPUE (231)6.2.3_1.1Test purpose (231)6.2.3_1.4Test description (232)6.2.3_1.5Test requirements (232)6.2.3_2Maximum Power Reduction (MPR) for Multi-Cluster PUSCH (232)6.2.3_2.1Test purpose (232)6.2.3_2.2Test applicability (232)6.2.3_2.3Minimum conformance requirements (233)6.2.3_2.4Test description (233)6.2.3_2.4.1Initial condition (233)6.2.3_2.4.2Test procedure (234)6.2.3_2.4.3Message contents (234)6.2.3_2.5Test requirements (234)6.2.3_3Maximum Power Reduction (MPR) for UL 64QAM (235)6.2.3_3.1Test purpose (236)6.2.3_3.2Test applicability (236)6.2.3_3.3Minimum conformance requirements (236)6.2.3_3.4Test description (236)6.2.3_3.4.1Initial condition (236)6.2.3_3.4.2Test procedure (237)6.2.3_3.4.3Message contents (237)6.2.3_3.5Test requirements (238)6.2.3_4Maximum Power Reduction (MPR) for Multi-Cluster PUSCH with UL 64QAM (240)6.2.3_4.1Test purpose (240)6.2.3_4.2Test applicability (240)6.2.3_4.3Minimum conformance requirements (240)6.2.3_4.4Test description (241)6.2.3_4.4.1Initial condition (241)6.2.3_4.4.2Test procedure (242)6.2.3_4.4.3Message contents (242)6.2.3_4.5Test requirements (242)6.2.3A Maximum Power Reduction (MPR) for CA (243)6.2.3A.1Maximum Power Reduction (MPR) for CA (intra-band contiguous DL CA and UL CA) (243)6.2.3A.1.1Test purpose (243)6.2.3A.1.2Test applicability (243)6.2.3A.1.3Minimum conformance requirements (244)6.2.3A.1.4Test description (245)6.2.3A.1.5Test Requirements (248)6.2.3A.1_1Maximum Power Reduction (MPR) for CA (intra-band contiguous DL CA and UL CA) for UL64QAM (250)6.2.3A.1_1.1Test purpose (251)6.2.3A.1_1.2Test applicability (251)6.2.3A.1_1.3Minimum conformance requirements (251)6.2.3A.1_1.4Test description (252)6.2.3A.1_1.5Test requirement (254)6.2.3A.2Maximum Power Reduction (MPR) for CA (inter-band DL CA and UL CA) (255)6.2.3A.2.1Test purpose (255)6.2.3A.2.2Test applicability (255)6.2.3A.2.3Minimum conformance requirements (255)6.2.3A.2.4Test description (256)6.2.3A.2.5Test Requirements (260)6.2.3A.2_1Maximum Power Reduction (MPR) for CA (inter-band DL CA and UL CA) for UL 64QAM (263)6.2.3A.2_1.1Test purpose (263)6.2.3A.2_1.2Test applicability (263)6.2.3A.2_1.3Minimum conformance requirements (263)6.2.3A.2_1.4Test description (264)6.2.3A.2_1.5Test Requirements (266)6.2.3A.3Maximum Power Reduction (MPR) for CA (intra-band non-contiguous DL CA and UL CA) (267)6.2.3A.3.1Test purpose (267)6.2.3A.3.2Test applicability (267)6.2.3A.3.3Minimum conformance requirements (268)6.2.3A.3.4Test description (268)6.2.3A.3_1Maximum Power Reduction (MPR) for CA (intra-band non-contiguous DL CA and UL CA) forUL 64QAM (270)6.2.3A.3_1.1Test purpose (270)6.2.3A.3_1.2Test applicability (270)6.2.3A.3_1.3Minimum conformance requirements (270)6.2.3A.3_1.4Test description (271)6.2.3A.3_1.5Test Requirements (272)6.2.3B Maximum Power Reduction (MPR) for UL-MIMO (272)6.2.3B.1Test purpose (272)6.2.3B.2Test applicability (272)6.2.3B.3Minimum conformance requirements (273)6.2.3B.4Test description (273)6.2.3B.4.1Initial condition (273)6.2.3B.4.2Test procedure (274)6.2.3B.4.3Message contents (275)6.2.3B.5Test requirements (275)6.2.3D UE Maximum Output Power for ProSe (277)6.2.3D.0Minimum conformance requirements (277)6.2.3D.1Maximum Power Reduction (MPR) for ProSe Discovery (278)6.2.3D.1.1Test purpose (278)6.2.3D.1.2Test applicability (278)6.2.3D.1.3Minimum conformance requirements (278)6.2.3D.1.4Test description (278)6.2.3D.1.4.1Initial condition (278)6.2.3D.1.4.2Test procedure (279)6.2.3D.1.4.3Message contents (279)6.2.3D.1.5Test requirements (280)6.2.3D.2Maximum Power Reduction (MPR) ProSe Direct Communication (281)6.2.3D.2.1Test purpose (282)6.2.3D.2.2Test applicability (282)6.2.3D.2.3Minimum conformance requirements (282)6.2.3D.2.4Test description (282)6.2.3D.2.4.1Initial conditions (282)6.2.3D.2.4.2Test procedure (282)6.2.3D.2.4.3Message contents (282)6.2.3D.2.5Test requirements (282)6.2.3E Maximum Power Reduction (MPR) for UE category 0 (282)6.2.3E.1Test purpose (282)6.2.3E.2Test applicability (282)6.2.3E.3Minimum conformance requirements (282)6.2.3E.4Test description (282)6.2.3E.4.1Initial condition (282)6.2.3E.4.2Test procedure (283)6.2.3E.4.3Message contents (283)6.2.3E.5Test requirements (283)6.2.3EA Maximum Power Reduction (MPR) for UE category M1 (284)6.2.3EA.1Test purpose (284)6.2.3EA.2Test applicability (284)6.2.3EA.3Minimum conformance requirements (284)6.2.3EA.4Test description (285)6.2.3EA.4.1Initial condition (285)6.2.3EA.4.2Test procedure (287)6.2.3EA.4.3Message contents (287)6.2.3EA.5Test requirements (287)6.2.3F Maximum Power Reduction (MPR) for category NB1 (290)6.2.3F.1Test purpose (290)6.2.3F.2Test applicability (290)6.2.3F.3Minimum conformance requirements (290)6.2.3F.4Test description (291)6.2.3F.4.1Initial condition (291)6.2.3F.5Test requirements (292)6.2.3G Maximum Power Reduction (MPR) for V2X communication (292)6.2.3G.1Maximum Power Reduction (MPR) for V2X Communication / Power class 3 (293)6.2.3G.1.1Maximum Power Reduction (MPR) for V2X Communication / Power class 3 / Contiguousallocation of PSCCH and PSSCH (293)6.2.3G.1.1.1Test purpose (293)6.2.3G.1.1.2Test applicability (293)6.2.3G.1.1.3Minimum conformance requirements (293)6.2.3G.1.1.4Test description (293)6.2.3G.1.1.4.1Initial condition (293)6.2.3G.1.1.4.2Test procedure (294)6.2.3G.1.1.4.3Message contents (294)6.2.3G.1.1.5Test Requirements (294)6.2.3G.1.2 2956.2.3G.1.3Maximum Power Reduction (MPR) for V2X Communication / Power class 3 / SimultaneousE-UTRA V2X sidelink and E-UTRA uplink transmission (295)6.2.3G.1.3.1Test purpose (295)6.2.3G.1.3.2Test applicability (295)6.2.3G.1.3.3Minimum conformance requirements (295)6.2.3G.1.3.4Test description (295)6.2.3G.1.3.4.1Initial conditions (295)6.2.3G.1.3.4.2Test procedure (296)6.2.3G.1.3.4.3Message contents (297)6.2.3G.1.3.5Test requirements (297)6.2.4Additional Maximum Power Reduction (A-MPR) (297)6.2.4.1Test purpose (297)6.2.4.2Test applicability (297)6.2.4.3Minimum conformance requirements (298)6.2.4.4Test description (310)6.2.4.4.1Initial condition (310)6.2.4.4.2Test procedure (339)6.2.4.4.3Message contents (339)6.2.4.5Test requirements (344)6.2.4_1Additional Maximum Power Reduction (A-MPR) for HPUE (373)6.2.4_1.2Test applicability (374)6.2.4_1.3Minimum conformance requirements (374)6.2.4_1.4Test description (375)6.2.4_1.5Test requirements (376)6.2.4_2Additional Maximum Power Reduction (A-MPR) for UL 64QAM (378)6.2.4_2.1Test purpose (378)6.2.4_2.2Test applicability (378)6.2.4_2.3Minimum conformance requirements (378)6.2.4_2.4Test description (378)6.2.4_2.4.1Initial condition (378)6.2.4_2.4.2Test procedure (392)6.2.4_2.4.3Message contents (392)6.2.4_2.5Test requirements (392)6.2.4_3Additional Maximum Power Reduction (A-MPR) with PUSCH frequency hopping (404)6.2.4_3.1Test purpose (404)6.2.4_3.2Test applicability (404)6.2.4_3.3Minimum conformance requirements (405)6.2.4_3.4Test description (405)6.2.4_3.5Test requirements (406)6.2.4A Additional Maximum Power Reduction (A-MPR) for CA (407)6.2.4A.1Additional Maximum Power Reduction (A-MPR) for CA (intra-band contiguous DL CA and ULCA) (407)6.2.4A.1.1Test purpose (407)6.2.4A.1.2Test applicability (407)6.2.4A.1.3Minimum conformance requirements (407)6.2.4A.1.3.5A-MPR for CA_NS_05 for CA_38C (411)6.2.4A.1.4Test description (413)6.2.4A.1.5Test requirements (419)6.2.4A.1_1Additional Maximum Power Reduction (A-MPR) for CA (intra-band contiguous DL CA and ULCA) for UL 64QAM (425)6.2.4A.1_1.1Test purpose (425)6.2.4A.1_1.2Test applicability (425)6.2.4A.1_1.3Minimum conformance requirements (426)6.2.4A.1_1.3.5A-MPR for CA_NS_05 for CA_38C (429)6.2.4A.1_1.3.6A-MPR for CA_NS_06 for CA_7C (430)6.2.4A.1_1.3.7A-MPR for CA_NS_07 for CA_39C (431)6.2.4A.1_1.3.8A-MPR for CA_NS_08 for CA_42C (432)6.2.4A.1_1.4Test description (432)6.2.4A.1_1.5Test requirements (437)6.2.4A.2Additional Maximum Power Reduction (A-MPR) for CA (inter-band DL CA and UL CA) (443)6.2.4A.2.1Test purpose (443)6.2.4A.2.2Test applicability (444)6.2.4A.2.3Minimum conformance requirements (444)6.2.4A.2.4Test description (444)6.2.4A.2.4.1Initial conditions (444)6.2.4A.2.4.2Test procedure (457)6.2.4A.2.4.3Message contents (458)6.2.4A.2.5Test requirements (461)6.2.4A.3Additional Maximum Power Reduction (A-MPR) for CA (intra-band non-contiguous DL CAand UL CA) (466)6.2.4A.3.1Minimum conformance requirements (466)6.2.4A.2_1Additional Maximum Power Reduction (A-MPR) for CA (inter-band DL CA and UL CA) forUL 64QAM (466)6.2.4A.2_1.1Test purpose (466)6.2.4A.2_1.2Test applicability (466)6.2.4A.2_1.3Minimum conformance requirements (467)6.2.4A.2_1.4Test description (467)6.2.4A.2_1.4.1Initial conditions (467)6.2.4A.2_1.4.2Test procedure (479)6.2.4A.2_1.4.3Message contents (480)6.2.4A.2_1.5Test requirements (480)6.2.4B Additional Maximum Power Reduction (A-MPR) for UL-MIMO (484)6.2.4B.1Test purpose (484)6.2.4B.2Test applicability (485)6.2.4B.3Minimum conformance requirements (485)6.2.4B.4Test description (485)6.2.4B.4.1Initial condition (485)6.2.4B.4.2Test procedure (508)6.2.4B.4.3Message contents (508)6.2.4B.5Test requirements (508)6.2.4E Additional Maximum Power Reduction (A-MPR) for UE category 0 (530)6.2.4E.1Test purpose (530)6.2.4E.2Test applicability (531)6.2.4E.3Minimum conformance requirements (531)6.2.4E.4Test description (531)6.2.4E.4.1Initial condition (531)6.2.4E.4.2Test procedure (535)6.2.4E.4.3Message contents (535)6.2.4E.5Test requirements (536)6.2.4EA Additional Maximum Power Reduction (A-MPR) for UE category M1 (542)6.2.4EA.1Test purpose (542)6.2.4EA.2Test applicability (542)6.2.4EA.3Minimum conformance requirements (543)6.2.4EA.4Test description (544)6.2.4EA.4.1Initial condition (544)6.2.4EA.4.2Test procedure (552)6.2.4G Additional Maximum Power Reduction (A-MPR) for V2X Communication (562)6.2.4G.1Additional Maximum Power Reduction (A-MPR) for V2X Communication / Non-concurrentwith E-UTRA uplink transmissions (562)6.2.4G.1.1Test purpose (562)6.2.4G.1.2Test applicability (562)6.2.4G.1.3Minimum conformance requirements (563)6.2.4G.1.4Test description (563)6.2.4G.1.4.1Initial condition (563)6.2.4G.1.4.2Test procedure (564)6.2.4G.1.4.3Message contents (564)6.2.4G.1.5Test Requirements (564)6.2.5Configured UE transmitted Output Power (564)6.2.5.1Test purpose (564)6.2.5.2Test applicability (564)6.2.5.3Minimum conformance requirements (564)6.2.5.4Test description (594)6.2.5.4.1Initial conditions (594)6.2.5.4.2Test procedure (595)6.2.5.4.3Message contents (595)6.2.5.5Test requirement (596)6.2.5_1Configured UE transmitted Output Power for HPUE (596)6.2.5_1.1Test purpose (596)6.2.5_1.2Test applicability (597)6.2.5_1.3Minimum conformance requirements (597)6.2.5_1.4Test description (597)6.2.5_1.4.1Initial conditions (597)6.2.5_1.4.2Test procedure (597)6.2.5_1.4.3Message contents (597)6.2.5_1.5Test requirement (598)6.2.5A Configured transmitted power for CA (599)6.2.5A.1Configured UE transmitted Output Power for CA (intra-band contiguous DL CA and UL CA) (599)6.2.5A.1.1Test purpose (599)6.2.5A.1.2Test applicability (599)6.2.5A.1.3Minimum conformance requirements (599)6.2.5A.1.4Test description (601)6.2.5A.1.5Test requirement (602)6.2.5A.2Void (603)6.2.5A.3Configured UE transmitted Output Power for CA (inter-band DL CA and UL CA) (603)6.2.5A.3.1Test purpose (603)6.2.5A.3.2Test applicability (603)6.2.5A.3.3Minimum conformance requirements (603)6.2.5A.3.4Test description (605)6.2.5A.3.5Test requirement (606)6.2.5A.4Configured UE transmitted Output Power for CA (intra-band non-contiguous DL CA and ULCA) (607)6.2.5A.4.1Test purpose (607)6.2.5A.4.2Test applicability (607)6.2.5A.4.3Minimum conformance requirements (607)6.2.5A.4.4Test description (608)6.2.5A.4.5Test requirement (610)6.2.5B Configured UE transmitted Output Power for UL-MIMO (611)6.2.5B.1Test purpose (611)6.2.5B.2Test applicability (611)6.2.5B.3Minimum conformance requirements (611)6.2.5B.4Test description (612)6.2.5B.4.1Initial conditions (612)6.2.5B.4.2Test procedure (612)6.2.5B.4.3Message contents (613)6.2.5B.5Test requirement (613)6.2.5E Configured UE transmitted Output Power for UE category 0 (614)6.2.5E.4.1Initial conditions (614)6.2.5E.4.2Test procedure (614)6.2.5E.4.3Message contents (614)6.2.5E.5Test requirement (615)6.2.5EA Configured UE transmitted Power for UE category M1 (615)6.2.5EA.1Test purpose (615)6.2.5EA.2Test applicability (615)6.2.5EA.3Minimum conformance requirements (615)6.2.5EA.4Test description (616)6.2.5EA.4.1Initial condition (616)6.2.5EA.4.2Test procedure (617)6.2.5EA.4.3Message contents (617)6.2.5EA.5Test requirements (617)6.2.5F Configured UE transmitted Output Power for UE category NB1 (618)6.2.5F.1Test purpose (618)6.2.5F.2Test applicability (618)6.2.5F.3Minimum conformance requirements (618)6.2.5F.4Test description (619)6.2.5F.4.1Initial conditions (619)6.2.5F.4.2Test procedure (620)6.2.5F.4.3Message contents (620)6.2.5F.5Test requirement (620)6.2.5G Configured UE transmitted Output Power for V2X Communication (620)6.2.5G.1Configured UE transmitted Output Power for V2X Communication / Non-concurrent with E-UTRA uplink transmission (621)6.2.5G.1.1Test purpose (621)6.2.5G.1.2Test applicability (621)6.2.5G.1.3Minimum conformance requirements (621)6.2.5G.1.4Test description (622)6.2.5G.1.4.1Initial conditions (622)6.2.5G.1.4.2Test procedure (622)6.2.5G.1.4.3Message contents (622)6.2.5G.1.5Test requirements (622)6.2.5G.2Configured UE transmitted Output Power for V2X Communication / Simultaneous E-UTRAV2X sidelink and E-UTRA uplink transmission (622)6.2.5G.2.1Test purpose (623)6.2.5G.2.2Test applicability (623)6.2.5G.2.3Minimum conformance requirements (623)6.2.5G.2.4Test description (625)6.2.5G.2.4.1Initial conditions (625)6.2.5G.2.4.2Test procedure (626)6.2.5G.2.4.3Message contents (626)6.2.5G.2.5Test requirements (626)6.3Output Power Dynamics (627)6.3.1Void (627)6.3.2Minimum Output Power (627)6.3.2.1Test purpose (627)6.3.2.2Test applicability (627)6.3.2.3Minimum conformance requirements (627)6.3.2.4Test description (627)6.3.2.4.1Initial conditions (627)6.3.2.4.2Test procedure (628)6.3.2.4.3Message contents (628)6.3.2.5Test requirement (628)6.3.2A Minimum Output Power for CA (629)6.3.2A.0Minimum conformance requirements (629)6.3.2A.1Minimum Output Power for CA (intra-band contiguous DL CA and UL CA) (629)6.3.2A.1.1Test purpose (629)6.3.2A.1.4.2Test procedure (631)6.3.2A.1.4.3Message contents (631)6.3.2A.1.5Test requirements (631)6.3.2A.2Minimum Output Power for CA (inter-band DL CA and UL CA) (631)6.3.2A.2.1Test purpose (631)6.3.2A.2.2Test applicability (632)6.3.2A.2.3Minimum conformance requirements (632)6.3.2A.2.4Test description (632)6.3.2A.2.4.1Initial conditions (632)6.3.2A.2.4.2Test procedure (633)6.3.2A.2.4.3Message contents (633)6.3.2A.2.5Test requirements (633)6.3.2A.3Minimum Output Power for CA (intra-band non-contiguous DL CA and UL CA) (634)6.3.2A.3.1Test purpose (634)6.3.2A.3.2Test applicability (634)6.3.2A.3.3Minimum conformance requirements (634)6.3.2A.3.4Test description (634)6.3.2A.3.4.1Initial conditions (634)6.3.2A.3.4.2Test procedure (635)6.3.2A.3.4.3Message contents (635)6.3.2A.3.5Test requirements (635)6.3.2B Minimum Output Power for UL-MIMO (636)6.3.2B.1Test purpose (636)6.3.2B.2Test applicability (636)6.3.2B.3Minimum conformance requirements (636)6.3.2B.4Test description (636)6.3.2B.4.1Initial conditions (636)6.3.2B.4.2Test procedure (637)6.3.2B.4.3Message contents (637)6.3.2B.5Test requirement (637)6.3.2E Minimum Output Power for UE category 0 (638)6.3.2E.1Test purpose (638)6.3.2E.2Test applicability (638)6.3.2E.3Minimum conformance requirements (638)6.3.2E.4Test description (638)6.3.2E.4.1Initial conditions (638)6.3.2E.4.2Test procedure (639)6.3.2E.4.3Message contents (639)6.3.2E.5Test requirement (639)6.3.2EA Minimum Output Power for UE category M1 (639)6.3.2EA.1Test purpose (639)6.3.2EA.2Test applicability (640)6.3.2EA.3Minimum conformance requirements (640)6.3.2EA.4Test description (640)6.3.2EA.4.1Initial condition (640)6.3.2EA.4.2Test procedure (641)6.3.2EA.4.3Message contents (641)6.3.2EA.5Test requirements (641)6.3.2F Minimum Output Power for category NB1 (641)6.3.2F.1Test purpose (641)6.3.2F.2Test applicability (641)6.3.2F.3Minimum conformance requirements (642)6.3.2F.4Test description (642)6.3.2F.4.1Initial conditions (642)6.3.2F.4.2Test procedure (643)6.3.2F.4.3Message contents (643)6.3.2F.5Test requirements (643)6.3.3Transmit OFF power (643)6.3.3.5Test requirement (644)6.3.3A UE Transmit OFF power for CA (644)6.3.3A.0Minimum conformance requirements (644)6.3.3A.1UE Transmit OFF power for CA (intra-band contiguous DL CA and UL CA) (645)6.3.3A.1.1Test purpose (645)6.3.3A.1.2Test applicability (645)6.3.3A.1.3Minimum conformance requirements (645)6.3.3A.1.4Test description (645)6.3.3A.1.5Test Requirements (645)6.3.3A.2UE Transmit OFF power for CA (inter-band DL CA and UL CA) (646)6.3.3A.2.1Test purpose (646)6.3.3A.2.2Test applicability (646)6.3.3A.2.3Minimum conformance requirements (646)6.3.3A.2.4Test description (646)6.3.3A.2.5Test Requirements (646)6.3.3A.3UE Transmit OFF power for CA (intra-band non-contiguous DL CA and UL CA) (646)6.3.3A.3.1Test purpose (646)6.3.3A.3.2Test applicability (646)6.3.3A.3.3Minimum conformance requirements (647)6.3.3A.3.4Test description (647)6.3.3A.3.5Test Requirements (647)6.3.3B UE Transmit OFF power for UL-MIMO (647)6.3.3B.1Test purpose (647)6.3.3B.2Test applicability (647)6.3.3B.3Minimum conformance requirement (647)6.3.3B.4Test description (647)6.3.3B.5Test requirement (648)6.3.3C 6486.3.3D UE Transmit OFF power for ProSe (648)6.3.3D.0Minimum conformance requirements (648)6.3.3D.1UE Transmit OFF power for ProSe Direct Discovery (648)6.3.3D.1.1Test purpose (649)6.3.3D.1.2Test applicability (649)6.3.3D.1.3Minimum Conformance requirements (649)6.3.3D.1.4Test description (649)6.3.3D.1.5Test requirements (650)6.3.3E UE Transmit OFF power for UE category 0 (650)6.3.3E.1Test purpose (650)6.3.3E.2Test applicability (650)6.3.3E.3Minimum conformance requirement (650)6.3.3E.4Test description (651)6.3.3E.5Test requirement (651)6.3.3EA UE Transmit OFF power for UE category M1 (651)6.3.3EA.1Test purpose (651)6.3.3EA.2Test applicability (651)6.3.3EA.3Minimum conformance requirements (651)6.3.3EA.4Test description (651)6.3.3EA.5Test requirements (652)6.3.3F Transmit OFF power for category NB1 (652)6.3.3F.1Test purpose (652)6.3.3F.2Test applicability (652)6.3.3F.3Minimum conformance requirement (652)6.3.3F.4Test description (652)6.3.3F.5Test requirement (652)6.3.4ON/OFF time mask (652)6.3.4.1General ON/OFF time mask (652)6.3.4.1.1Test purpose (652)6.3.4.1.2Test applicability (653)。
A Parallel-Strip Ring Power Divider WithHigh Isolation and ArbitraryPower-Dividing RatioAbstract—In this paper, a new power divider concept, which provides high flexibility of transmission line characteristic impedance and port impedance, is proposed. This power divider is implemented on a parallel-strip line, which is a balanced transmission line. By implementing the advantages and uniqueness ofthe parallel-strip line, the divider outperforms the conventional divider in terms of isolation bandwidths. A swap structure of the two lines of the parallel-strip line is employed in this design, which is critical for the isolation enhancements. A lumped-circuit model of the parallel-strip swap including all parasitic effects has been analyzed. An equal power divider with center frequency of 2 GHz was designed to demonstrate the idea. The experimental results show that the equal power divider has 96.5%—10-dB impedance bandwidth with more than 25-dB isolation and less than 0.7-dB insertion loss. In order to generalize the concept with an arbitrary power ratio, we also realize unequal power dividers with the same isolation characteristics. The impedance bandwidth of the proposed power divider will increase with the dividing ratio, which is opposite to the conventional Wilkinson power divider. Unequal dividers with dividing ratios of 1 : 2 and 1 : 12 are designed and measured. Additionally, a frequency independent 1800 power divider has been realized with less than 20 phase errors.Index Terms—Arbitrary power-dividing ratio, parallel-strip line, ring structure, unequal power divider.I. INTRODUCTIONTHE WIKINSON power divider is one of the conventional and fundamental components in microwave engineering and exists in many microwave circuits. Both distributed and lumped Wilkinson power dividers have been applied in microwave integrated circuits and monolithic microwave integrated circuits [1]. Recently, extensive studies have been made to enhance the performances of the Wilkinson power divider, including size reductions by capacitive loading [2], folded circuitry [3] and resonating structure [4], [5], multiband operation [6], [7], unequal power dividing/combining [8], and active device [9] and waveguide implementations [10]. The power dividers discussed in this paper are focused on the isolation enhancement. The proposed divider is realized in the parallel-strip transmission line. Some parallel-strip circuits were reported with performance enhancement [11], [12]. The parallel-strip line provides more design flexibility than a micro-strip line, especially in realization of a high-impedance line and transitions.Many balanced circuits such as push–pull amplifiers, balanced mixers, frequency multipliers, and antenna arrays employ the Wilkinson power divider because of its simple design with high port-to-port isolation. Isolation is one of the important issuesin the design of the power divider and directional coupler. High isolation implies the minimization of unwanted coupling between active devices, as well as the elimination of unexpected distortions and oscillations. It is because it may provide a positivefeedback path for other frequencies, e.g., in Fig. 1, as unwanted oscillation at f1 may be set up outside of the operation frequency f0. Therefore, a wideband isolation operation is always preferred to suppress the coupling in other frequency bands.Fig. 1. Balanced circuit at frequency f0 and unwanted feedback at f1.The parallel-strip line belongs to a family of balanced transmission line. The conventional printed circuit board (PCB) fabrication technique is able to easily realize parallel-strip lines. It is a simple structure of a dielectric substrate sandwiched between two strip conductors. The signals flowing on the upper and lower strip conductors are always equal in magnitude and 1800out-of-phase. The quasi-TEM mode electric and magnetic fields distributions are closed to the micro-strip line. In this paper, a parallel-strip swap is employed to enhance isolation performance of the power divider. The swap is a passive microwave component. It forms a compact realization of 1800 phase shift by interchanging the connection of two conductors in the balanced transmission line. Various swaps were proposed for performance enhancement in a 1800 hybrid coupler [13]–[15].A new equal power divider, which is realized on a parallel-strip line with a ring-like structure, was first demonstrated in [16]. The four arms and two shunt resistors in the divider provide a high degree of freedom for choosing the circuit parameters. In this paper, the proposed concept is generalized to be arbitrary power dividing without an increase in design complexity. It shows a frequency-independent isolation characteristic, arbitrary power-dividing ratio without an external matching network, avoidance of a very thin strip line for achieving high characteristic impedance, and ease of realizing wideband 1800 dividing. While the conventional Wilkinson powerdivider exhibits limited isolation bandwidth, unequal Wilkinson power dividing relies on an external quarter-wave transformer for realizing unequal power dividing for the same port impedances.High characteristics impedance transmission lines are required for the unequal power divider. The unequal divider has been used with strict restrictions in design and fabrication because it requires a transmission line with very high impedance [8]. On the other hand, the very thin transmission line limits the power handling of the devices. To overcome this limitation in realizing characteristic impedance, the upper and lower strip lines of the parallel-strip line are offset so that it will be easier to highly increase the characteristic impedance. Three power dividers with power-dividing ratios of 1 : 1, 1 : 2, and 1 : 12 were designed, fabricated, and tested.Fig. 2. Schematic diagram of proposed power divider with four arms, a swap, and two shunt resistors.II. THEORETICAL ANALYSISThe structure of the proposed divider is illustrated in Fig. 2.In [13], the equal power divider has been analyzed using even and odd-mode analysis because of symmetry of the divider. For the same reason, the circuit parameters, such as port impedance and line impedances, should be the same as their corresponding parameters Z A=Z C, Z B=Z D, and Z2=Z3. In this paper, we try to generalize the analysis to an unequal power divider with an arbitrary dividing ratio.It consists of an 1800 swap, four quarter-wave-long arms (with characteristic impedances Z A, Z B, Z C, and Z D) and two shunt resistors with resistance . These five parameters determine the input impedances, isolation, and dividing ratio of the divider. In order to determine the arm characteristic impedances and resistor values, several parameters should be known, including port impedances Z1, Z2, and Z3 and power ratio K.Firstly, the impedance matching is considered. To achieve maximum power transfer, all the ports should be matched. The input impedance at port 1 is determined by Z A and Z C and port impedances Z2 and Z3.As illustrated in Fig. 3, it is assumed thata signal is injected to port 1 and will only pass through ports 2 and 3. There is no net current flowing from ports 2 to 3 due to port isolation between ports in the shaded region. Arms B and D with characteristic impedances Z B and Z D , respectively, the two shunt resistors, and the swap can thus be replaced by an open circuit in analysis. The two arms are connected in shunt; the input impedance at port 1 can be expressed as(1)The signal injected to port 2 can be divided into two parts, one flowing to port 1 and the other being absorbed by shunt resistors as shown in Fig. 4. Obviously, there is no net current flowing from arm to arm and port 3 in the shaded region, which can be replaced by an open circuit in analysis. The input impedance at port 2 can be given as(2)Similarly, the input impedance at port 3 can be expressed as(3)For the unequal power dividing and assuming the power ratio of ports 2 and 3 to be K, the power ratio can be determined by the ratio of input impedance of the arms A and C, as shown in Fig. 3, as follows:(4)123221)(-+=C A Z Z Z Z Z 12212)2(-+=B A Z R Z Z Z 12213)2(-+=D C Z R Z Z Z 32222232Z Z Z Z Z Z Z Z k A C A C ==By solving (1), (2), and (4), Z A and Z C are determined and are expressed in (5) and(6), respectively.Solving (4) and (1),(5)Solving (4) and (2),(6)Hence, the ratio of the square of Z B and Z D and shunt resistor can be determined by solving (2), (3), (5), and (6).Solving (5) and (2),(7)Solving (6) and (3),(8)There are four conditions, but five unknown parameters Z A , Z B, Z C , Z D , and R. Therefore, the solutions are singular, which implies there is no unique solution. The 31)1(Z Z k Z C +=21)11(Z Z k Z A +=)11(232kZ R Z D +=)1(222k Z R Z B +=infinite number of solutions provide a high degree of freedom when the divider is designed. For example, the divider can not only be designed for any port impedance without external matching circuits, but also provides unequal power dividing with equal port impedance.Isolation is a very important design issue. The symmetrical structure and the swap provide the possibility of frequency-independent isolation characteristics. Signals flowing through paths A –C and B –D should be equal in magnitude, but 1800 out-of -phase. In order to provide frequency-independent isolation, the phase difference between paths A –C and B –D should be frequency independent at 1800 out-of-phase and with equal amplitude, which is provided by the swap, and the characteristic impedance should be the sameZ A = Z D and Z B = Z C (9)Equation (9) represents the fifth condition for designing a divider with frequency-independent isolation and arbitrary power ratio. After combining the previous conditions, the parameters Z A , Z B, Z C , Z D , and R become unique. The design formulas can be summarized asR=2Z1 (10a)(10b)(10c)31)1(Z Z k Z Z C B +==21)11(Z Z k Z Z D A +==Fig. 5. Geometries of parallel-strip swap and parallel-strip line with equal physical length.III. PARALLEL SWAP AND DISCONTINUITYThe swap is the interchange between the two signal lines in the balance transmission line so that the signal is said to be ―reversed,‖ therefore, it provides 1800 phase shift without the existence of a delay line. It can be easily realized in some of the nonmicrostrip transmission lines such as a coplanar waveguide, coplanar strip line, and parallel-strip line. Fig. 5 shows the geometry of the parallel-strip swap. The upper and lower strip lines are connected by two vertical metical vias. The sections of the swap and parallel-strip line are simulated using Ansoft’s High Frequency Structure Simulator (HFSS). Within the entire simulation band, less than 0.5-dB extra insertion loss is introduced and 1800 phase shift is provided with less than 2 phase error, as shown in Fig. 6. The swap introduces discontinuity for the divider and always degrades the circuit performance. It is necessary to develop proper analysis models. The structure of parallel- strip swap with two shunt resistors used in the proposed divider is shown in Fig. 7. Two resistors are soldered across the two gaps at the upper and lower strip lines. These resistors are used to absorb the signal. They are necessary to provide proper impedance matching and port-to-port isolation, similar to the resistor in the Wilkinson power divider.Extra insertion loss and phase delay are introduced by the vertical via, which can be analyzed by a lumped-circuit model. The lump-circuit model of the swap with two shunt resistors (R S) is illustrated in Fig. 8. The parasitic capacitance (C S) is used to model the edge couplings between strips with different layers. The parasitic capacitance (C C) is used to model the total effect due to edge couplings between strips with the same layers and coupling between the vias. The parasitic inductance (L V) and resistance (R V) are introduced by vertical conductor in via-holes and soldering. Theparasitic components can be extracted from full-wave simulations so that the lumped model of the swap was done.The Z-parameter of the lumped equivalent model of the core in Fig. 8 is given by(11)Fig. 6. Simulated frequency responses of insertion loss and phase difference of a section of parallel-strip swap and line with same physical length.⎪⎪⎭⎫ ⎝⎛+--+=⎪⎪⎭⎫ ⎝⎛212121212221121121Z Z Z Z Z Z Z Z Z Z Z ZFig. 7. 3-D view of parallel-strip swap with two shunt resistors.Fig. 8. Lump equivalent model of parallel-strip line swap.where Z 1= R V + jwL V and Z 2= (1/ R S +1/jwC C )-1 Hence, the S-parameter converted from Z-parameters of the core is determined as follows:(12)(13) ))((020*********Z Z Z Z Z Z Z S S +++==))(()(020********Z Z Z Z Z Z Z S S ++-==The structure shown in Fig. 7 is simulated by the full-wave electromagnetic (EM) simulator HFSS, determining the optimum design of the vias on the substrate dielectric constant of 2.65 and thickness of 1.5 mm where all the gapwidthsFig. 9. Simulated S-parameters of the parallel-strip line swap using lumped model and full-wave EM simulation. (a) Magnitude response. (b) Phase response.are 0.2 mm and the radius of the metallic via is 0.55 mm. Deembedding of the parameters has been performed by utilizing the microwave circuit simulator, Agilent Technologies’s Advanced Design System (ADS). Both EM and circuit simulationsof the parallel-strip swaps with 70.71- terminations are shown in Fig. 9. Good agreement of both the magnitudes and phases responses are achieved within the frequency band of interest. The values of parasitic elements are L V =2.181 nH,C S=0.2939 pF, C C=0.3878 pF, and R V =0.2624Ω. The model circuit is analyzed and, hence, the scattering matrix representing the parallel-strip swap with shunt resistor (R S) is, therefore, obtained, and the entire circuit can thus be easily modeled in the circuit simulation.IV. RESULTS OF SIMULATION AND EXPERIMENTA. Equal Power DividerThe power dividers are fabricated in a conventional printed circuit technique and the dividers designed for demonstration are built on a substrate with a dielectric constant of 2.65 and a thickness of 1.5 mm, as shown in Fig. 10. The derivation in Section II is based on an ideal transmission line model. This analysis provides initial design parameters. Discontinuities or parasitic elements such as T-junctions and steps will be introduced. EM optimization is required to determine all circuit parameters with the best performance.Fig. 10. Implementation of proposed equal power divider on PCB. (a) Upper layer. (b) Bottom layer. are built on a substrate with a dielectric constant of 2.65 and a thickness of 1.5 mm, as shown in Fig. 10. The derivation in Section II is based on an ideal transmission line model. This analysis provides initial design parameters. Discontinuities or parasiticelements such as T-junctions and steps will be introduced. EM optimization isrequired to determine all circuit parameters with the best performance.All the port impedances are designed at 50 , i.e., Z1=Z2=Z3=50Ω The designparameters of an equal power divider are Z A=Z B=Z C= Z D = 70.71Ωand R=100Ω.By removing portion of the ground of a micro-strip line, the parabolic tapered transition between the parallel-strip line and micro-strip line [11] was employed for connecting the coaxial connector for measurement purposes with less than 0.1-dB insertion loss within the entire tested frequency band. However, an approximate 0.5-dB extra insertion loss will be introduced if a subminiature A (SMA) connector is directly connected to the SMA connector. Fig. 11 shows both simulated and measured results of the equal power divider. The EM simulation tool is Ansoft’s HFSS. The measured insertion loss from ports 1 to 2 and 3 are less than 3.7 dB within the operation frequency band, as shown in Fig. 11(a). Some mismatches come from an inaccurate prediction of the vertical structure from the EM simulator and soldering. The mismatches in return losses shown in Fig. 11(b) are due to unexpected errors from soldering between the divider and SMA connectors. The ring-like structure implies similar input and output impedance characteristics, as shown in Fig. 10. The total usable impedance bandwidth is wider than that of the conventional Wilkinson power divider. Due to the imbalances of the two paths, e.g., electrical delay and insertion loss in the swap, the isolation has a finite value. Fortunately, the isolation can still provide great improvement over the conventional divider.The impedance bandwidths of return loss lower than 10 dB of the proposed divider is measured at 96.5%, as observed in Fig. 11(b). In Fig. 11(c), the proposed divider demonstrates more than 25 dB in the entire frequency band in the measurement, while a conventional Wilkinson power divider shows approximately 33% isolation bandwidth of more than 20-dB isolation. Good agreement between experimental and simulated results can be observed.B. Unequal Power DividersApart from the equal power divider, two unequal power dividers with ratios of 1 : 2 and 1 : 12 are realized. The impedance bandwidth is usually reduced with the dividing ratio in the conventional Wilkinson power divider; however, the bandwidth of the proposed divider is increased with a power ratio of . The relation is shown in Fig. 12. Figs. 13 and 14 show the frequency responses of -parameters and the dividing ratio of the 1 : 2 power divider. The design parameters are Z A=Z D=61.24Ω, ZB=ZC= 86.61Ω, and R=100Ω. Measured results agree withEMsimulation.Within the 125% operation bandwidth with lower than 10-dB return loss, more than 26-dB port-to-port isolation is achieved and the average divider ratio is approximately 2.07.Fig. 11. Simulated and measured results of proposed equal power divider.(a) Insertion losses. (b) Return losses. (c) Isolation.A high dividing ratio implies the existence of some high characteristicimpedance transmission lines. The implementation ofhigh characteristic impedance remains challenge because of theFig. 15. Cross section and 3-D view of offset parallel-strip line.Fig. 16. Relationship of characteristics impedance and normalized offset distance with different normalized strip width, where z denotes characteristics impedance, w denotes width of the strip line, d denotes offset distance, and h denotes substrate thickness.technique of extremely thin micro-strip line fabrication. The realization of the unequal power divider may be limited by fabrication of the thin strip line and low power-handling capacity of the divider.In order to easily realize a high-impedance transmission line, a micro-strip defected ground structure was proposed for the 1 : 4 unequal divider [8]. In [17], thecharacteristics impedance parallel- strip line was increased by offsetting the upper and lower strip lines in the finite ground micro-strip line for stopband enhancement. Similarly, the characteristics impedance of a parallel-strip line can be increased by offsetting the strip lines, as shown in Fig. 15. Fig. 16 shows the relationship between characteristics impedances and normalized circuit parameters on the same substrate. It is obvious that the characteristics impedance (z) increases with offset distance (d) without use of very narrow strip lines. A high characteristic impedance parallel-strip line can be realized by offsetting the upper and lower strip lines andit does not need a very narrow line.In the 1 : 12 power divider, two arms with high characteristic impedance are realized by offsetting the parallel-strip line. Figs. 17 and 18 show its -parameters and the dividing ratio varied with frequency. The design parameters are Z A=Z D=50.04Ω, Z B=Z D=180.27Ω, and R=100Ω. Good agreement of both simulated and measured results are obtained. Within the 150% operation bandwidth with lower than 10-dBreturn loss, more than 24-dB port-to-port isolation is achieved and the average divider ratio is approximately 12.68.Fig. 17. Simulated and measured S-parameters of 1 : 12 proposed divider.Fig. 18. Simulated and measured dividing ratio of 1 : 12 proposed divider.C. Frequency-Independent 180 Power DividerConventionally, the symmetric power divider is used for in-phase powerdividing/combining. A power divider with wideband 1800 out-of-phase operation is needed for many balanced circuit such as a push–pull amplifier and balanced mixer. The 1800 hybrid or the power divider with a 1800 delay line is used for such purpose.A 1800 divider can be easily realized by adding an extra section of delay line. However, a delay line limits the bandwidth of phase balances. The conventional 1800 hybrid coupler or Wilkinson power divider with a delay line may not fulfill actual application demands and may degrade system performance. With a similar approach to [12], the frequency-independent 1800 differential phase between ports 2 and 3 is realized by tapering the lower line in port 2 and the upper line in port 3, the parallel-strip line-to-micro-strip line transition, which is used for measurement, is formed as shownin Fig. 19. All circuit parameters are the same as the equal power divider in Section IV. The magnitudes of simulated and measured -parameters are close to that of the equal power divider, as shown in Fig. 11. A frequency-independent 1800 phase difference is observed, as shown in Fig. 20. A small phase error within 2 is introduced due to the thickness of the substrate of the PCB, while it can be minimized by using a thinner substrate with a lower dielectric constant. Similarly, the 1800 unequal power divider with an arbitrary dividing ratio can be realized via the same technique.Fig. 19. Implementation of proposed 1800 equal power divider on PCB. (a) Upper layer. (b) Bottom layer.Fig. 20. Phase response of 1800 equal power divider.V. CONCLUSIONA novel power divider with better isolation than the conventional Wilkinson power divider has been presented. Design formulas for the proposed divider have been proven analytically. The ring-like structure provides design flexibility such as unequal power dividing without extra impedance matching networks. The equal and unequal power dividers were designed and tested with out-performed isolation characteristics. Additionally, a 1800 equal power divider was realized by making use of the balanced structure of the parallel-strip line. Similarly, a 1800unequal power divider can be designed. The proposed design leads to realization of a new geometrical configuration for a high-performance power-divider concept.R EFERENCES[1] L. H. Lu, P. Bhattacharya, L. P. B. Katehi, and G. E. Ponchak, ―X-band and K-band lumped Wilkinson power dividers with a micromachined technology,‖ in IEEE MTT-S Int. Microw. Symp. Dig., 2000, pp. 287–290.[2] K. Hettak, G. A. Morin, and M. G. Stubbs, ―Compact MMIC CPW and asymmetric CPS branch-line couplers and Wilkinson dividers using shunt and seri es stub loading,‖ IEEE Trans. Microw. Theory Tech., vol. 53, no. 5, pp. 1624–1635, May 2005.[3] L. Chiu, T. Y. Yum, Q. Xue, and C. H. Chan, ―The folded hybrid ring and its applications in balance devices,‖ in IEEE Eur. Microw. Conf., 2005, pp. 1–4.[4] K. M. Shum, Q. Xue, and C. H. Chan, ―Curved PBG cell and its applications,‖in Asia–Pacific Microw. Conf., 2001, pp. 767–770.[5] D. J. Woo and T. K. Lee, ―Suppression of harmonics in Wilkinson power divider using dual-band rejection by asymmetric DGS,‖ IEEE Trans. Microw. Theory Tech., vol. 53, no. 6, pp. 2139–2144, Jun. 2005.[6] L. Wu, Z. Sun, H. Yilmaz, and M. Berroth, ―A dual-frequency Wilkinson power divider,‖ IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 278–284, Jan. 2006.[7] M. Chongcheawchamnan, S. Patisang, M. Krairiksh, and I. D. Robertson, ―Tri-band Wilkinson power divider using a three-section transmission-line transformer,‖ IEEE Microw. Wireless Compon. Lett.,to be published.[8] J. S. Lim, S. W. Lee, C. S. Kim, J. S. Park, D. Ahn, and S. W. Nam, ―A 4 : 1 unequal Wilkinson power divider,‖ IEEE Microw. Wireless Compon. Lett., vol. 11, no. 3, pp. 124–126, Mar. 2001.[9] L. H. Lu, Y. T. Liao, and C. R. Wu, ―A miniaturized Wilkinson power divider withCMOSactive inductors,‖ IEEE Microw.Wireless Compon. Lett., vol. 15, no. 11, pp. 775–777, Nov. 2005.[10] X. Xu, R. G. Bosisio, and K. Wu, ―A new six-port junction based on substrate integrated waveguide technology,‖ IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2267–2273, Jul. 2006.[11] S. G. Kim and K. Chang, ―Ultrawide-band transitions and new microwave components using double-sided parallel-strip lines,‖ IEEE Trans. Microw. Theory Tech., vol. 52, no. 9, pp. 2148–2152, Sep. 2004.[12] L. Chiu, T. Y. Yum, Q. Xue, and C. H. Chan, ―A wide band compact parallel-strip 180_ Wilkinson power divider for push-pull circuitries,‖ IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 49–51, Jan. 2006.[13] C. W. Kao and C. H. Chen, ―Novel uniplanar 180 hybrid-ring couplers with spiral-type phase inverters,‖ IEEE Microw. Guided Wave Lett., vol. 10, no. 10, pp. 412–414, Oct. 2000.[14] B. R. Heimer, L. Fan, and K. Chang, ―Uniplanar hybrid couplers using asymmetrical coplanar striplines,‖ IEEE Trans. Microw. Theory Tech., vol. 45, no. 12, pp. 2234–2240, Dec. 1997.[15] T. Q. Wang and K. Wu, ―Size-reduction and band-broadening design technique of uniplanar hybrid ring coupler using phase inverter for M(H)MIC’s,‖ IEEE Trans. Microw. Theory Tech., vol. 47, no. 2, pp.198–206, Feb. 1999.[16] L. Chiu and Q. Xue, ―A new parallel-strip power divider with enhanced isolation performance,‖ in Proc. Asia–Pacific Microw. Conf., Dec. 2006, pp. 411–416.[17] S. Sun and L. Zhu, ―Stopband-enhanced and size-miniaturized lowpass filters using high-impedance property of offset finite-ground microstrip line,‖ IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp.2844–2850, Sep. 2005.具有高隔离度和任意功分比的平行带状功分器摘要:在这篇文章中,提出了一种新型的功率分配器概念,并提及传输线特性阻抗和端口阻抗的高弹性。
Release Note 20-COMM-H RS485 HVAC Adapter Firmware Revision 2.009This release note describes major revision 2, minor revision 9 of firmware for 20-COMM-H RS485 HV AC adapters.IntroductionThe following information is included in this document: EnhancementsThis section describes enhancements provided in this revision of firmware.•Added support for PowerFlex 750-Series drives (PowerFlex 753 and PowerFlex 755) in all three modes of operation (Modbus RTU, FLN P1, and Metasys N2) with the following limitations: –Does not support Chinese, Japanese, and Korean languages.–Cannot access drive DPI port 7 and higher.•Added support for PowerFlex 700VC drives in all three modes of operation (Modbus RTU, FLN P1, and Metasys N2).•Added new Parameter 33 - [RTU Memory Map]. This parameter sets the register mapping that the adapter uses when the adapter operates in the ‘Modbus RTU’ mode. The settings for this parameter are:–‘0’ (Legacy), the default setting, which provides Modbus register mapping that conforms to the Modbus standard specification, which is typically used by PowerFlex 7-Class drives.–‘1’ (PF4-Class) which provides Modbus register mapping that matches the register mapping used by PowerFlex 4-Class drives. This mapping reduces the programming time required for PowerFlex 7-Class drives when they are used on a network consisting mainly of PowerFlex 4-Class. For details of this register mapping, see Appendix C in the PowerFlex 4 Drive User Manual, publication 22A-UM001.Important:The register mapping provided with setting ‘1’ does not pass configured Datalinks through the adapter. Therefore, they are ignored.Topic Page Enhancements 1Corrected Anomalies 2Determining Firmware Revision 2Updating the Firmware 4Restrictions 7Compatible Revisions 8Rockwell Automation Support 8Product Satisfaction Return 8220-COMM-H RS485 HVAC Adapter Firmware Revision 2.009Corrected Anomalies There are no anomalies corrected in this revision of firmware.Determining Firmware Revision This section describes procedures to determine the firmware revision of your 20-COMM-H RS485 HV AC adapter.Using the LCD HIMUsing DriveExplorer Lite/Full Softwareunch DriveExplorer software.ing a 1203-USB or 1203-SSS converter, go online with the drive thatis connected to the adapter.3.In the DriveExplorer treeview, select the 20-COMM-H Modbus RTUadapter (see Figure 1).4.Click the information icon to display the adapter Properties screen.5.The ‘Revision’ field shows the present revision of the adapter firmware(for example, 2.008).TIP: When selecting the 20-COMM-H adapter using DriveExplorer Lite or Full software, version 5.01 or later, the adapter firmware revision is also shown in the right pane of the DriveExplorer window.20-COMM-H RS485 HVAC Adapter Firmware Revision 2.0093Figure 1 DriveExplorer Window with Information Icon and Device Properties Using DriveExecutive Softwareunch DriveExecutive software.ing a 1203-USB or 1203-SSS converter, go online with the drive thatis connected to the adapter.3.In the DriveExecutive treeview, select the 20-COMM-H adapter (see Figure 2).4.Click the information iconto display the adapter Properties screen.5.The ‘Revision’ field shows the present revision of the adapter firmware(for example, 2.008).Figure 2 DriveExecutive Window with Information Icon and Device Properties420-COMM-H RS485 HVAC Adapter Firmware Revision 2.009Updating the Firmware This section describes procedures to update the adapter firmware. Flash kitsfor drives, communication adapters, and peripherals are provided on the Allen-Bradley Web Updates site at /support/abdrives/webupdate . Updating can be performed using a 1203-USB or 1203-SSS converter. For information about how to connect to your drive, see their respective User Manual. They can be viewed/downloaded on the Literature Library website at .Installing the Flash Kit1.Go to the Allen-Bradley Web Updates site at /support/abdrives/webupdate and install the flash kit for the20-COMM-H adapter, which also automatically installs theControlFLASH software on your computer.2.You are now ready to use DriveExplorer, DriveExecutive,ControlFLASH or HyperTerminal software to update the adapter. See the respective section below and follow the ing DriveExplorer Lite/Full Software to Update Firmware1.With the Flash Kit installed (see Installing the Flash Kit ), launchDriveExplorer software.ing a 1203-USB or 1203-SSS converter, go online with the drive thatis connected to the adapter.3.In the DriveExplorer treeview, select the 20-COMM-H adapter.4.Click the information icon(see Figure 1) to display the adapterProperties screen.5.On the 20-COMM-H Properties screen, click the Details tab.Important:This update may cause the adapter parameters to revert totheir default values. You may want to save yourconfiguration using DriveExplorer software or the HIMCopyCat feature before updating.6.Click Flash Update to start the update.7.Select ‘2.009.xx’ from the list of available updates.8.Click Next >.9.Follow the remaining screen prompts until the update procedurecompletes and displays the new firmware revision 2.009.ATTENTION: Risk of permanent equipment damage exists. Once an update has been started, do not remove power from the drive until after the download has completed and the adapter MOD status indicator startsflashing green. If power is removed before this occurs, the adapter may be permanently damaged. An adapter that has been damaged in this way cannot be repaired.20-COMM-H RS485 HVAC Adapter Firmware Revision 2.0095Using DriveExecutive Software to Update Firmware1.With the Flash Kit installed (see Installing the Flash Kit), launchDriveExecutive software.ing a 1203-USB or 1203-SSS converter, go online with the drive thatis connected to the adapter.3.In the DriveExecutive treeview, select the 20-COMM-H adapter.4.Click the information icon(see Figure 2) to display the adapterProperties screen.5.On the 20-COMM-H Properties screen, click the Component Detailstab.Important:This update may cause the adapter parameters to revert to their default values. You may want to save yourconfiguration using DriveExecutive software or the HIMCopyCat feature before updating.6.Click Flash Update to start the update.7.Select the 20-COMM-H from the list of available devices.8.Click Next >.9.Select ‘2.009.xx’ from the list of available updates.10.Click Next >.11.Follow the remaining screen prompts until the update procedurecompletes and displays the new firmware revision 2.009.Using ControlFLASH Software to Update Firmware1.With the Flash Kit installed (see Installing the Flash Kit on page4),choose Start > (All) Programs > Flash Programming Tools >ControlFLASH to launch the ControlFLASH software.2.On the ControlFLASH Welcome screen, click Next >.3.Choose the appropriate 20-COMM-H update from the list of availableupdates for the mode (RTU, N2 or FLN P1) in which the adapter is set.4.Click Next >.Important:This update may cause the adapter parameters to revert to their default values. You may want to save yourconfiguration using the HIM CopyCat feature, orDriveExplorer or DriveExecutive software before updating.5.Expand the treeview for the communication path you are using, andselect the drive icon that represents the drive with the 20-COMM-H adapter you are updating.6.Click OK.7.If the Multiple Assemblies Found window appears, select‘Port X - 20-COMM-H’ from the list and click OK. If this window does620-COMM-H RS485 HVAC Adapter Firmware Revision 2.0098.With the Firmware Revision window displayed, select ‘2.009.xx’ fromthe list of available updates.9.Click Next >.10.Follow the remaining screen prompts until the update procedurecompletes and displays the new firmware revision 2.009.Using HyperTerminal Software to Update Firmware1.With the Flash Kit installed (see Installing the Flash Kit on page 4),launch HyperTerminal software.ing a 1203-USB or 1203-SSS converter, go online with the drive thatis connected to the adapter.3.Set the adapter network protocol rotary switch to either the ‘N2’ or ‘P1’position before proceeding.Important:If the ‘N2’ or ‘P1’ setting is different from what the adapterswitch was previous set to, you must power cycle the drive.4.Press Enter until the main menu appears.5.In the main menu, press ‘3’ to flash upgrade.6.Press the number key that corresponds to the ‘20-COMM-H’ in the list.7.Press ‘Y’ (for Yes) to update the firmware.The terminal program will start displaying the letter ‘C’. This signals the Xmodem protocol that the download may proceed. You then have one minute to start the transfer.8.From the Transfer menu, choose Send File to display the Send Filescreen.a.Click Browse.b.Navigate to the flash file located in C:\Program Files\ControlFLASH\0001\0078\1F00.Main Menu - Enter Number for Selection1> Display Setup Parameters2> Display Event Queue3> Flash Upgrade ATTENTION: Risk of injury or equipment damage exists. When youperform an update, the drive will fault if it is receiving control I/O from the adapter. Verify that the drive has stopped safely or is receiving control I/O from an alternate source before beginning an update.20-COMM-H RS485 HVAC Adapter Firmware Revision 2.0097c.In the Select File to Send window list, select the‘20-COMM-H_2_009_03_AppV2_N2P1_NewHdr.bin’ file.d.Click Open.This file name now appears in the Filename box in the Send Filescreen.e.From the Protocol pull-down menu, choose ‘Xmodem’.f.Click Send.A dialog box appears and reports the update progress. Whencomplete, a ‘Flash Complete’ message appears. Press any key tocontinue.Important:Keep the adapter powered for 15 seconds after theoperation has completed or until the adapter MOD statusindicator starts flashing green.TIP: To cancel the flash update at any time, press Ctrl-X.9.Repeat steps 4 through 8 for the‘20-COMM-H_2_009_05_ComboNewHdr.bin’ file.10.Repeat steps 4 through 8 for the‘20-COMM-H_2_001_02_BootNewHdrV2.bin’ file.11.After the firmware update successfully completes, set the adapternetwork protocol rotary switch to the desired mode (RTU, N2 or P1) inwhich you want to operate the adapter.Important:Changing to a new rotary switch position requires you topower cycle the drive.12.Press Enter to return to the main menu.Restrictions For PowerFlex 753 and PowerFlex 755 Drives, these restrictions apply:•The Reference and Feedback words are internally scaled 1:32 to allow arange of 0 to 650.00 Hz.•32-bit floating point parameters are mapped as follows:–Datalinks are mapped as Little Endian (that is, Low/High wordordering).–User In/Out registers are mapped as Big Endian (that is, High/Lowword ordering).–Direct DPI parameters are mapped as Big Endian (that is, High/Lowword ordering).–This mapping structure also applies to PowerFlex 700VC driveswhich use 32-bit Datalinks.U.S.Allen-BradleyDrivesTechnicalSupport-Tel:(1)262.512.8176,Fax:(1)262.512.2222,Email:*****************,Online:/support/abdrivesCompatible Revisions To use this revision of firmware, update your tools and devices as needed.Rockwell AutomationSupport Rockwell Automation provides technical information on the web to assist you in using our products. At , youcan find technical manuals, a knowledge base of Frequently AskedQuestions (FAQs), technical and application notes, sample code and links to software service packs, and a MySupport feature that you can customize to make the best use of these tools.Rockwell Automation also provides complimentary phone support for drives, communication adapters, and peripherals. If you experience a problem with a device, please see the information in its User Manual. For further help in getting your device operational, contact a Customer Support representative.For an additional level of technical phone support for installation, configuration, and troubleshooting, TechConnect Support programs are available. For more information, contact your local distributor, a Rockwell Automation representative, or visit . Product Satisfaction Return Rockwell Automation tests all products to ensure that they are fully operational when shipped from the manufacturing facility. However, if your product is not functioning and needs to be returned, follow the steps below. Tool/DeviceVersion Required DriveExplorer Lite/Full software4.01 or later DriveExecutive software3.01 or later PowerFlex 7-Class driveall versions compatible LCD HIMall versions compatible RSLinx Classic software 2.43 or laterUnited States (1) 262.512.8176Monday – Friday, 7am – 6pm CST Outside United States Please contact your local Rockwell Automation representative for any technical support issues.United States Contact your distributor. You must provide a Customer Support case number (see phone number above to obtain one) to your distributor to complete the return process.Outside United States Contact your local Rockwell Automation representative for the return procedure.。
SAFETY DATA SHEETSMARTPOWER MANUAL DETERGENTProduct name : SMARTPOWER MANUAL DETERGENTOther means of identification : Not applicableRecommended use : Manual Warewashing DetergentRestrictions on use : Reserved for industrial and professional use.Product dilution information : 0.0376 %Company : Ecolab Inc.1 Ecolab PlaceSt. Paul, Minnesota USA 55102 1-800-352-5326Emergency health information : 1-800-328-0026 (US/Canada), 1-651-222-5352 (outside US)Issuing date : 09/02/2022 GHS ClassificationProduct AS SOLD Eye irritation : Category 2BProduct AT USE DILUTIONNot a hazardous substance or mixture.GHS label elements Product AS SOLD Signal Word : WarningHazard Statements : Causes eye irritation.Precautionary Statements: Prevention:Wash skin thoroughly after handling. Response:IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists: Get medical advice/ attention. Product AT USE DILUTION Precautionary Statements: Prevention:Wash hands thoroughly after handling.Response:Get medical advice/ attention if you feel unwell. Storage:Store in accordance with local regulations.Product AS SOLD Other hazards : None known.Product AS SOLDPure substance/mixture : MixtureChemical name CAS-No. Concentration (%) Dodecylbenzenesulfonic acid, sodium salt 25155-30-0 30 - 60 acetic acid, sodium salt 127-09-3 10 - 30 Sodium poly(oxyethylene) dodecyl ether sulfate 68585-34-2 10 - 30 dodecanamide, n-(2-hydroxyethyl)- 142-78-9 5 - 10 amides, coco, n-(hydroxyethyl) 68140-00-1 1 - 5 Polyethylene Glycol 25322-68-3 1 - 5 C10-16 Polyglycoside 110615-47-9 1 - 5Product AT USE DILUTIONNo hazardous ingredients Product AS SOLD In case of eye contact : Rinse with plenty of water.In case of skin contact : Rinse with plenty of water.If swallowed : Rinse mouth. Get medical attention if symptoms occur.If inhaled : Get medical attention if symptoms occur.Protection of first-aiders : No special precautions are necessary for first aid responders.Notes to physician : Treat symptomatically.Most important symptoms and effects, both acute and delayed : See Section 11 for more detailed information on health effects and symptoms.Product AT USE DILUTION In case of eye contact :Rinse with plenty of water.In case of skin contact : Rinse with plenty of water.If swallowed : Rinse mouth. Get medical attention if symptoms occur.If inhaled : Get medical attention if symptoms occur. Product AS SOLDSuitable extinguishing media : Use extinguishing measures that are appropriate to localcircumstances and the surrounding environment.Unsuitable extinguishing media : None known.Specific hazards during fire fighting : Not flammable or combustible.Hazardous combustion : Decomposition products may include the following materials:products Carbon oxidesSpecial protective equipment for fire-fighters : Use personal protective equipment.Specific extinguishing methods: Collect contaminated fire extinguishing water separately. This must not be discharged into drains. Fire residues and contaminated fire extinguishing water must be disposed of in accordance with localregulations. In the event of fire and/or explosion do not breathe fumes.Product AS SOLD Personal precautions, protective equipment and emergency procedures : Ensure clean-up is conducted by trained personnel only. Refer to protective measures listed in sections 7 and 8.Environmental precautions : Do not allow contact with soil, surface or ground water.Methods and materials for containment and cleaning up : Sweep up and shovel into suitable containers for disposal.Product AT USE DILUTION Personal precautions, protective equipment and emergency procedures: Refer to protective measures listed in sections 7 and 8.Environmental precautions : No special environmental precautions required.Methods and materials for containment and cleaning up : Stop leak if safe to do so. Contain spillage, and then collect with non-combustible absorbent material, (e.g. sand, earth, diatomaceousearth, vermiculite) and place in container for disposal according to local / national regulations (see section 13). Flush away traces with water. For large spills, dike spilled material or otherwise contain material to ensure runoff does not reach a waterway.Product AS SOLDAdvice on safe handling : Wash hands thoroughly after handling. In case of mechanicalmalfunction, or if in contact with unknown dilution of product, wear full Personal Protective Equipment (PPE).Conditions for safe storage : Keep out of reach of children. Store in suitable labeled containers.Storage temperature : 0 °C to 50 °CProduct AT USE DILUTION Advice on safe handling : Wash hands after handling. In case of mechanical malfunction, or if incontact with unknown dilution of product, wear full Personal Protective Equipment (PPE). For personal protection see section 8.Conditions for safe storage : Keep out of reach of children. Store in suitable labeled containers. Product AS SOLDIngredients with workplace control parametersEngineering measures : Good general ventilation should be sufficient to control workerexposure to airborne contaminants.Personal protective equipmentEye protection : No special protective equipment required.Hand protection : No special protective equipment required.Skin protection : No special protective equipment required.Respiratory protection : No personal respiratory protective equipment normally required. Hygiene measures : Handle in accordance with good industrial hygiene and safetypractice.Product AT USE DILUTIONEngineering measures : Good general ventilation should be sufficient to control workerexposure to airborne contaminants.Personal protective equipmentEye protection : No special protective equipment required.Hand protection : No special protective equipment required.Skin protection : No special protective equipment required.Respiratory protection : No personal respiratory protective equipment normally required.Product AS SOLD Product AT USE DILUTION Appearance : Extruded solid.liquidColor : opaque, purple purpleOdor : citrus citruspH : 7.0 - 10.0, (1 %) 7.0 - 8.0Flash point : Not applicable, Does not sustain combustion.Odor Threshold : No data availableMelting point/freezing point : No data available: > 100 °CInitial boiling point andboiling rangeEvaporation rate : No data availableFlammability (solid, gas) : Not applicableUpper explosion limit : No data availableLower explosion limit : No data availableVapor pressure : No data availableRelative vapor density : No data availableRelative density : 1.15 - 1.37Water solubility : solubleSolubility in other solvents : No data availablePartition coefficient: n-octanol/water: No data availableAutoignition temperature : No data availableThermal decomposition : No data availableViscosity, kinematic : No data availableExplosive properties : No data availableOxidizing properties : The substance or mixture is not classified as oxidizing. Molecular weight : No data availableVOC : No data availableProduct AS SOLDReactivity : No dangerous reaction known under conditions of normal use. Chemical stability : Stable under normal conditions.Possibility of hazardousreactions: No dangerous reaction known under conditions of normal use. Conditions to avoid : None known.Incompatible materials : None known.Hazardous decomposition products : Decomposition products may include the following materials: Carbon oxidesInformation on likely routes ofexposure: Eye contact, Skin contactPotential Health EffectsProduct AS SOLDEyes : Causes eye irritation.Skin : Health injuries are not known or expected under normal use. Ingestion : Health injuries are not known or expected under normal use. Inhalation : Health injuries are not known or expected under normal use. Chronic Exposure : Health injuries are not known or expected under normal use. Product AT USE DILUTIONEyes : Health injuries are not known or expected under normal use.Skin : Health injuries are not known or expected under normal use. Ingestion : Health injuries are not known or expected under normal use. Inhalation : Health injuries are not known or expected under normal use. Chronic Exposure : Health injuries are not known or expected under normal use. Experience with human exposureProduct AS SOLDEye contact : Redness, IrritationSkin contact : No symptoms known or expected.Ingestion : No symptoms known or expected.Inhalation : No symptoms known or expected.Product AT USE DILUTIONEye contact : No symptoms known or expected.Skin contact : No symptoms known or expected.Ingestion : No symptoms known or expected.Inhalation : No symptoms known or expected.ToxicityProduct AS SOLDProductAcute oral toxicity : Acute toxicity estimate : 2,200 mg/kgAcute inhalation toxicity : 4 h Acute toxicity estimate : 40 mg/lTest atmosphere: dust/mistAcute dermal toxicity : Acute toxicity estimate: > 5,000 mg/kgSkin corrosion/irritation : No data availableSerious eye damage/eye: No data availableirritation: No data availableRespiratory or skinsensitizationCarcinogenicity : No data availableReproductive effects : No data availableGerm cell mutagenicity : No data availableTeratogenicity : No data availableSTOT-single exposure : No data availableSTOT-repeated exposure : No data availableAspiration toxicity : No data availableEcotoxicityProduct AS SOLDEnvironmental Effects : Toxic to aquatic life.Product AT USE DILUTIONEnvironmental Effects : This product has no known ecotoxicological effects. Product AS SOLDProductToxicity to fish : No data availableToxicity to daphnia and otheraquatic invertebrates: No data availableToxicity to algae : No data availableComponentsToxicity to fish : Dodecylbenzenesulfonic acid, sodium salt96 h LC50 Fish: 3.2 mg/lacetic acid, sodium salt96 h LC50 Fish: > 100 mg/lSodium poly(oxyethylene) dodecyl ether sulfate96 h LC50 Fish: 28 mg/ldodecanamide, n-(2-hydroxyethyl)-96 h LC50 Fish: > 100 mg/lPolyethylene Glycol96 h LC50 Fish: > 1,000 mg/lC10-16 Polyglycoside96 h LC50 Brachydanio rerio (zebrafish): 2.95 mg/l ComponentsToxicity to daphnia and other aquatic invertebrates : C10-16 Polyglycoside48 h EC50 Daphnia magna (Water flea): 7 mg/lComponentsToxicity to algae: amides, coco, n-(hydroxyethyl)72 h EC50: 1.07 mg/lC10-16 Polyglycoside72 h EC50 Desmodesmus subspicatus (green algae): 12.5 mg/l Persistence and degradabilityProduct AT USE DILUTIONReadily biodegradable.Bioaccumulative potentialNo data availableMobility in soilNo data availableOther adverse effectsNo data availableProduct AS SOLD Disposal methods : Do not contaminate ponds, waterways or ditches with chemical orused container. Where possible recycling is preferred to disposal or incineration. If recycling is not practicable, dispose of in compliance with local regulations. Dispose of wastes in an approved waste disposal facility.Disposal considerations : Dispose of as unused product. Empty containers should be taken toan approved waste handling site for recycling or disposal. Do not re-use empty containers. Dispose of in accordance with local, state, and federal regulations.Product AT USE DILUTION Disposal methods :Diluted product can be flushed to sanitary sewer.Disposal considerations : Dispose of in accordance with local, state, and federal regulations.Product AS SOLDThe shipper/consignor/sender is responsible to ensure that the packaging, labeling, and markings are in compliance with the selected mode of transport.Land transport (DOT) Not dangerous goodsSea transport (IMDG/IMO)Not dangerous goods Product AS SOLDEPCRA - Emergency Planning and Community Right-to-Know CERCLA Reportable QuantitySARA 304 Extremely Hazardous Substances Reportable QuantityThis material does not contain any components with a section 304 EHS RQ.SARA 311/312 Hazards : Serious eye damage or eye irritation SARA 302 : This material does not contain any components with a section 302EHS TPQ.SARA 313 : This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levelsestablished by SARA Title III, Section 313.California Prop. 65This product does not contain any chemicals known to the State of California to cause cancer, birth, or any other reproductive defects.California Cleaning Product Right to Know Act of 2017 (SB 258)The ingredients of this product are reported in the following inventories:United States TSCA Inventory :On the inventory, or in compliance with the inventoryCanadian Domestic Substances List (DSL) :This product contains one or several components that are not on the Canadian DSL nor NDSL. Australia. Australian Industrial Chemicals Introduction Scheme (AICIS) :On the inventory, or in compliance with the inventoryNew Zealand. Inventory of Chemical Substances :On the inventory, or in compliance with the inventoryJapan. ENCS - Existing and New Chemical Substances Inventory :not determinedKorea. Korean Existing Chemicals Inventory (KECI) :not determinedPhilippines Inventory of Chemicals and Chemical Substances (PICCS) :not determinedChina. Inventory of Existing Chemical Substances in China (IECSC) :not determinedTaiwan Chemical Substance Inventory (TCSI) :On the inventory, or in compliance with the inventoryProduct AS SOLD NFPA: HMIS III:Issuing date : 09/02/2022 Version : 1.0 Prepared by : Regulatory AffairsREVISED INFORMATION: Significant changes to regulatory or health information for this revision is indicated by a bar in the left-hand margin of the SDS.The information provided in this Safety Data Sheet is correct to the best of our knowledge,information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.Flammability H e a l t hInstabilitySpecial hazard。
IDCS-OBAPI Setup Guide Oracle Banking APIsRelease 20.1.0.0.0Part No. F30660-01May 2020IDCS-OBAPI Setup GuideMay 2020Oracle Financial Services Software LimitedOracle ParkOff Western Express HighwayGoregaon (East)Mumbai, Maharashtra 400 063IndiaWorldwide Inquiries:Phone: +91 22 6718 3000Fax:+91 22 6718 3001/financialservices/Copyright © 2006, 2020, Oracle and/or its affiliates. All rights reserved.Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer software” pursuant to the applicable F ederal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.This software or hardware and documentation may provide access to or information on content, products and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.Table of Contents1.Preface .............................................................................................................................................. 1–1 1.1Intended Audience ...................................................................................................................... 1–1 1.2Documentation Accessibility ....................................................................................................... 1–1 1.3Access to Oracle Support ........................................................................................................... 1–1 1.4Structure ..................................................................................................................................... 1–11.5Related Information Sources ...................................................................................................... 1–12.Create Users in IDCS ....................................................................................................................... 2–13.Create an OBAPI Client Application in IDCS Console ................................................................. 3–14.Database Scripts (to be executed after day0 scripts) .................................................................. 4–15.Installation of App Gateway ............................................................................................................ 5–1Preface1. Preface 1.1 Intended AudienceThis document is intended for the following audience:∙Customers∙Partners1.2 Documentation AccessibilityFor information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at /pls/topic/lookup?ctx=acc&id=docacc.1.3 Access to Oracle SupportOracle customers have access to electronic support through My Oracle Support. For information, visit/pls/topic/lookup?ctx=acc&id=info or visit/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.1.4 StructureThis manual is organized into the following categories:Preface gives information on the intended audience. It also describes the overall structure of the User Manual.The subsequent chapters describes following details:∙Introduction∙Preferences & Database∙Configuration / Installation.1.5 Related Information SourcesFor more information on Oracle Banking APIs Release 20.1.0.0.0, refer to the following documents: ∙Oracle Banking APIs Installation Manuals2. Create Users in IDCS 1. Access your Oracle Identity Cloud Service instance (for example: https://<tenant-base-url>/ui/v1/adminconsole) and log in with your Identity Domain Administrator credentials.Glossary of Parameters:2. Click on Add a user button on Dashboard screen as shown below.3. On the next screen, enter details of a new user ‘superadmin’ shown below.4. Click Finish.Repeat steps for other admin, retail & corporate users3. Create an OBAPI Client Application in IDCS Console1. Go to IDCS Admin Console → Enter Admin user name and Password.2. On Applications tab → Click on + sign →Enterprise Application3. Click Next, On OAuth Page Select Skip for Now and click Next4. Click Next. Click resources as shown below5.digx Form or Access Tokenall Public6. Click on Finish. Navigate back to the application and assign users to this applicationDatabase Scripts (to be executed after day0 scripts) 4. Database Scripts (to be executed after day0 scripts)In browser access the below URL, it should be redirected to IDCS Login pagehttps://<AppGatewayHost>:<AppGatewayPort>/index.htmlIn browser network requests, search below request and note the client_id its query paramshttps://<IDCS_HOST>:<IDCS_PORT>/oauth2/v1/authorizeUpdate DIGX_FW_ACCESSPOINT set CLIENT_ID = '<client_id >' where ID = 'APINTERNET';Restart OBAPI ServerHomeInstallation of App Gateway5. Installation of App Gateway https:///en/cloud/paas/identity-cloud/uaids/set-app-gateway.htmlHome。
a r X i v :a s t r o -p h /0001005v 1 2 J a n 2000Restrictions on parameters of power-law magnetic fielddecay for accreting isolated neutron starsS.B.Popov,M.E.ProkhorovSternberg Astronomical Institute,Moscow,Russia119899,Universitetskii pr.13polar@xray.sai.msu.su,mystery@sai.msu.suAbstractIn this short note we discuss the influence of power-law magnetic field decay on the evolution of old accreting isolated neutron stars.We show,that,contrary to exponential field decay (Popov &Prokhorov 2000),no additional restrictions can be made for the parameters of power-law decay from the statistics of isolated neutron star candidates in ROSAT observations.We also briefly discuss the fate of old magnetars with and without field decay,and describe parameters of old accreting magnetars.Key words:neutron stars –magnetic fields –stars:magnetic field –X-rays:stars –accretion 1Introduction Isolated neutron stars (INSs),which don’t show radio pulsar activity attract now much attention of astrophysicists due to recent observations of several candidates with the ROSAT sattelite (see Ne¨u hauser &Tr¨u mper 1999and a review in Treves et al.2000).As we discussed in our previous paper (Popov &Prokhorov 2000)INSs can be important for discussion of different models of magnetic field decay (MFD)in NSs in general.During its evolution an INS can pass through four phases:“ejector”,“propeller”,“accretor”and “georotator”.At the first stage the INS is spinning down according to the magneto-dipole formula till so-called ejector period is reached.At the second stage captured matter cannot penetrate down to the surface of the INS,and the star continue to spin down faster than at the stage of ejection.At last,so-called accretor period is reached,and matter can fall down:accretion starts.If the INS’s velocity (or magnetic field)is high enough,the star can appear as a georotator,where matter cannot be captured,as far as the magnetosphere radius is large than the radius of gravitational capture.Several models of MFD in NSs were suggested during the last 20-30years (see for example a recent brief review by Konar &Bhattacharya).Most of these models can be fitted by exponential or power-law decay,or by their combination with some set of parameters.INSs can be an important class of objects for verification of different theories of MFD,because in these sources accretion rate is negligible,so it is not necessary to take into account the influence of accretion onto MFD (Urpin et al.1996).Spin-up/spin-down rates on the stage of accretion are also relatively low in comparison with NSs in binary systems.It means,that in INSs MFD operates in the “purest”form (Popov &Konenkov 1998).That’s why these objects have a special importance,in our opinion,for investigations of observational appearance of different effects of MFD.Recently,Colpi et al.(2000)discussed power-law models of MFD in INSs and applied them to highly magnetized NSs,“magnetars”.Here we briefly discuss later stages of evolution of INSs with the power-law MFD,and estimate if it is possible for them to reach the stage of accretion,and if yes,what can be their properties at this stage.Our analysis follows the papers Popov &Prokhorov (2000),and Colpi et al.(2000).So,we just repeat calculations of Popov &Prokhorov (2000)but for the power-law decay,using some results of Colpi et al.(2000).And we refer to these papers for all details of terminology,calculations etc.2Power-law decayPower-law(as also exponential)MFD is a widely discussed variant of NSs’field evolution.Power-law is a goodfit for several different calculations of thefield evolution(Goldreich&Reisenegger1992, Geppert et al.2000).The power-law MFD can be described with the following simple formula(Colpi et al.2000):dBB0.155/4≈2.4·1010Gb2−α1010101010101010101010Time, yrs 108109101010111012M a g n e t i c f i e l d , G Figure 1:Power-law MFD.Model A:a =0.01,α=1.25;solid line with circles.Model B:a =0.15,α=1.25;dashed line with squares.Model C:a =10,α=1;long-dashed line with diamonds.Models were described in details in Colpi et al.(2000)(see also Table 1).0.00.20.40.60.8a 0.1110100P e r i o d , s Log B = 11 p_e; v=10 km/sp_infty; alpha=1p_e; v = 40 km/s 0.00.20.40.60.80.1110100P e r i o d , s Log B = 12p_e; v=10 km/sp_infty; alpha=1p_e; v=40 km/s 0.00.20.40.60.8a 0.1110100Log B = 14p_infty; alpha=1p_e; v=40 km/s 0.00.20.40.60.80.1110100Log B = 13p_e; v=10 km/s p_infty; alpha=1p_e; v=40 km/sFigure 2:Periods vs.parameter a for different values of the initial magnetic field:1011,1012,1013,1014G.123456789a 0.00.51.01.5a l p ha 1234567890.00.51.01.5a l p ha 123456789a 0.00.51.01.51234567890.000.501.001.50Figure 3:“Forbidden”regions for the initial field 1013G and different INS’s spatial velocities:40km/s,100km/s,200km/s and 400km/s.In the filled regions NSs never leave the ejector stage.in Popov&Prokhorov2000).In a forbidden region an INS for specified parameters cannot leave the stage of ejector even after1010years of evolution.If one also takes into account the stage of propeller(between ejector and accretor stages)it becomes clear,that“forbidden”’regions for an INS which cannot reach the stage of accretion is even larger.We note,that the propeller stage can be shorter(probably much shorter,especially for constantfield)than the stage of ejection(see Lipunov &Popov1995for detailed arguments),so the“forbidden”regions on Fig.3cannot become much larger if one also takes into account the stage of propeller.It is also important,that we take very low INS’s velocity and high ISM density.For most part of INSs all plotted“forbidden”regions should be larger.One can see,that for the most interesting cases(Models A,B,C from Colpi et al.2000)and v<200km/s INSs can reach the stage of accretion.It is an important point,that fraction of low velocity NSs is very small(Popov et al.2000)and most of them have velocities about200km/s.3Evolved magnetarsIn the last several years a new class of objects-highly magnetized NSs,“magnetars”(Duncan& Thompson1992)–became very popular in connection with softγ-repeaters(SGR)and anomalous X-ray pulsars(AXP)(see Mereghetti&Stella1995,Kouveliotou et al.1999,Mereghetti1999and recent theoretical works Alpar1999,Marsden et al.2000,Perna et al.2000).Magnetars come to the propeller stage with periods∼10–100s in the Models A,B,C(see Fig.2in Colpi et al.2000).Then their periods quickly increase,and NSs come to the stage of accretion with significantly longer periods,and at that stage they evolve to a so-called equilibrium period(Lipunov&Popov1995,Konenkov&Popov1997)due to accretion of the turbulent ISM:p eq∼2800B2/3I1/345n−2/3v13/310v−2/3t10M−8/31.4s(4)Here v t is a characteristic turbulent velocity,I–moment of inertia,M–INS’s mass.Isolated accretor can be observed both with positive and negative sign of˙p(Lipunov&Popov 1995).Spin periods of INSs can differ significantly from p eq contrary to NSs in disc-fed binaries, and similar to NSs in wide binaries,where accreted matter is captured from giant’s stellar wind.It happens because spin-up/spin-down moments are relatively small.As thefield is decaying the equilibrium period is decreasing,coming to28sec when thefield is equal to1010G(we note here recently discovered objects RX J0420.0-5022(Haberl et al.2000)with spin period∼22.7s).It is important to discuss the possibility,that evolved magnetar can appear as georotator(see Lipunov1992for detailed description or Popov et al.2000for short description of different INSs’stages).It happens if:v 300B−1/5n1/10km/s.(5) For all values of a andαthat we used(see Fig.3)NSs,at the end of their evolution(t=1010yrs), have magneticfields 1012G for wide range of initialfields,so they never appear as georotators if v<580km/s for n=1cm−3.But without MFD magnetars with B 1015G and velocities v 100km/s can appear as georotators.In Popov et al.(2000)it was shown,that georotator is a rare stage for INSs,because an INS can come to the georotator stage only from the propeller or accretor stage,but all these phases require relatively low velocities,and high velocity INSs spend most of their lives as ejectors.This situationis opposite to binary systems,where a lot of georotators are expected for fast stellar winds(wind velocity can be much faster than INS’s velocity relative to ISM).Without MFD magnetars also can appear as accreting sources.In that case they can have very long periods and very narrow accretion columns(that means high temperature).Such sources are not observed now.Absence of some specific sources associated with evolved magnetars(binary or isolated)can put some limits on their number and properties(dr.V.Gvaramadze drew our attention to this point).At the accretion part of INSs’evolution periods stay relatively close to p eq(but canfluctuate around this value),and INSs’magneticfields decay down to∼1010−1011G in several billion years for the Models A and B.It corresponds to the polar cap radius about0.15km and temperature about 250–260eV,higher than for the observed INS candidates with temperature about50–80eV.We calculate the polar cap radius,R cap=RAcknowledgmentsWe thank drs.Monica Colpi,Vasilii Gvaramadze and Roberto Turolla for discussions.S.P.thanks University of Milan,University of Padova and Astronomical Observatory of Brera for their hospitality. This work was supported by the RFRB,INTAS and NTP“Astronomy”grants. References[1]Alpar M.A.1999,astro-ph/9912228[2]Colpi M.,Geppert U.and Page D.2000,ApJL in press(astro-ph/9912066)[3]Duncan R.C.and Thompson C.1992,ApJ392,L9[4]Geppert U.,Page D.,Colpi M.and Zannias T.2000,to be published in the proceedings of the IAU Coll.177(astro-ph/9910563)[5]Goldreich P.and Reisenegger A.1992,ApJ395,250[6]Haberl F.,Pietsch W.and Motch C.2000,A&A in press(astro-ph/9911159)[7]Konar S.and Bhattacharya D.2000,to be published in the proceedings of NATO/ASI on’The Neutron Star-Black Hole Connection’(astro-ph/9911239)[8]Konenkov D.Yu.and Popov S.B.1997,PAZH23,569(astro-ph/9707318)[9]Kouveliotou C.et al.1999,ApJ510,L115(astro-ph/9809140)[10]Lipunov,V.M.1992,“Astrophysics of Neutron Stars”(NY:Springer&Verlag)[11]Lipunov V.M.,Popov S.B.1995,AZh72,711(astro-ph/9609185)[12]Marsden D.,Lingenfelter R.E.,Rothschild R.E.and Higdon J.C.2000,ApJ submitted(astro-ph/9912207)[13]Mereghetti S.and Stella L.1995,ApJ442,L17[14]Mereghetti S.1999,astro-ph/9911252[15]Ne¨u hauser R.,and Tr¨u mper J.E.1999,A&A,343,151[16]Perna R.,Hernquist L.and Narayan R.2000,ApJ submitted(astro-ph/9912297)[17]Popov S.B.,Colpi M.,Treves A.,Turolla R.,Lipunov V.M.and Prokhorov M.E.2000,ApJ530, in press(astro-ph/9910114)[18]Popov S.B.and Prokhorov M.E.,2000,A&A in press(astro-ph/9908282)[19]Popov S.E.and Konenkov D.Yu.,1998,Radiofizika41,28(astro-ph/9812482)[20]Schwope A.D.,Hasinger S.G.,Schwarz R.,Haberl R.and Schmidt M.1999,A&A341,L51 (astro-ph/9811326)[21]Treves A.,Turolla R.,Zane S.and Colpi M.2000,PASP in press(astro-ph/9911430)[22]Urpin V.A.,Geppert U.and Konenkov D.Yu.1996,A&A307,807。