机电一体化
- 格式:docx
- 大小:1.01 MB
- 文档页数:26
单元一机电一体化概述1. 1. 1机电一体化的定义“机电一体化是在机械主功能、动力功能、信息功能和控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成系统的总称。
”“机电一体化”是将机械技术、微电子技术、信息技术等多门技术学科在系统工程的基础上相互渗透、有机结合而形成和发展起来的一门新的边缘技术学科。
1. 1. 3机电一体化的内容机电一体化包含了技术和产品两方面的内容,首先是指机电一体化技术,其次是指机电一体化产品。
1. 1. 4机电一体化的特点机电一体化产品的显著特点是多功能、高效率、高智能、高可靠性,同时又具有轻、薄、细、小、巧的优点,其目的是不断满足人们生产生活的多样性和省时、省力、方便的需求。
1. 2机电一体化系统的基本组成1. 2. 1机电一体化系统的功能组成传统的机械产品主要是解决物质流和能量流的问题,而机电一体化产品除了解决物质流和能量流以外,还要解决信息流的问题。
机电一体化系统的主要功能就是对输入的物质、能量与信息(即所谓工业三大要素)按照要求进行处理,输出具有所需特性的物质、能量与信息。
机电一体化系统的主功能包括变换(加工、处理)、传递(移动、输送)、储存(保持、积蓄、记录)三个目的功能。
主功能也称为执行功能,是系统的主要特征部分,完成对物质、能量、信息的交换、传递和储存。
机电一体化系统还应具备动力功能、检测功能、控制功能、构造功能等其他功能。
加工机是以物料搬运、加工为主,输入物质(原料、毛坯等)、能量(电能、液能、气能等)和信息(操作及控制指令等),经过加工处理,主要输出改变了位置和形态的物质的系统(或产品)。
动力机,其中输出机械能的为原动机,是以能量转换为主,输入能量(或物质)和信息,输出不同能量(或物质)的系统(或产品)。
信息机是以信息处理为主,输入信息和能量,主要输出某种信息(如数据、图像、文字、声音等)的系统(或产品)。
1. 2. 2机电一体化系统的构成要素机电一体化系统一般由机械本体、传感检测、执行机构、控制及信息处理、动力系统等五部分组成,各部分之间通过接口相联系。
机电一体化概论第一章机电一体化概述2•机电一体化的发展趋势:智能化,模块化,网络化,微型化,绿色化,系统化.3•机电一体化的基本含义:机电一体化乃是在机械的主功能、动力功能、信息功能和控制功能上引进徽电子技术,并将机核装置与电子设备以及相关软件有机结合而构成的系统总称。
5•机电一体化的相关技术:机械技术、传感检测技术、信息处理技术、自动控制技术、伺服驱动技术、系统总体技术。
6.机电一体化系统的基本要素及其功能:8•机电一体化一词最早于1971年出现在日本。
它是取机械学的前半部和电子学的后半部拼合而成,但是,机电一体化并非机械技术和电子技术的简单叠加,而是有着自身体系的新型学科。
第二章机电一体化的相关技术L机电一体化系统中的机械系统:传动部分、导向机构、执行机构、轴系、机座或机架。
2.机电一体化中机械系统的基本要求:高精度、小惯量、大刚度、快速响应性、良好的稳定性。
9•传感器的定义:传感器是一种能感受规定的被测量,并按照一定的规律转换成可用的输出信号的器件或装置。
13•常见的接近开关及其应用:电涡式接近开关(金属)、电容式接近开关(导体和非导体)、霍尔接近开关(磁性物件)、光电开关:透射型,反射型(统计产量,检测包装,精确定位等)。
16.在控制系统中根据系统信号相对于时间的连续性,通常分为连续时间系统和离散时间系统(连续系统和离散系统)。
18•计算机控制系统的类型及计算机担当的角色:操作指导控制系统(助手)、宜接数字控制系统(DDC,决策者,操作者)、监督计算机控制系统(SCC, 操作指导系统与DDC系统的综合与发展,决策人)、分级控制系统、集散控制系统(DCS)、工厂自动化(FA)系统。
25•接口的分类(1)根据接口的变换和调整功能特征:零接口、被动接口、主动接口、智能接口。
(2)根据接口的输入\输出功能的性质:信息接口、机械接口、物理接口、环境接口。
(3)按照所联系的子系统不同:人机接口、机电接口。
1、机电一体化的概念:机电一体化又称机械电子学,它是从系统的观点出发,将机械技术、微电子技术、计算机信息技术、自动控制技术等在系统工程的基础上有机地加以综合,实现整个机械系统最优化而建立起来的一门的科学技术。
机电一体化包括机电一体化技术和机电一体化系统两方面的内容。
典型的机电一体化系统有数控机床、工业机器人、汽车等。
2、机和电的关系:在机电一体化系统中,“机”指机械部分,包括结构、执行机构、传感器机构等。
“电”指电子部分,包括控制电路和电气连线等。
二者关系是,“机”是基础,“电”是核心。
机电系统在电的控制下,协调各机械部件(传感器、电机、结构等)完成各种指令及功能。
3、机电一体化的范畴:凡是由各种现代高新技术与机械和电子技术相互结合而形成的各种技术、产品以及系统都属于机电一体化的范畴4、机电一体化的发展趋势:1)性能上,向高精度、高效率、高性能、智能化的方向发展。
2)功能上,向小型化、轻型化、多功能化方向发展。
3)层次上,向系统化、复合集成化的方向发展。
系统结构采用采用开放式和模式化的总线结构,并具有强大的通讯功能,如RS232、RS485、CAN等。
4)机电一体化单元向模块化方向发展,利用标准模块解决系统集成中的不匹配、不兼容问题。
5)机电一体化产品向网络化方向发展,基于网络的各种远程控制和监视意义重大。
6、机电一体技术的主要特征1)整体结构最优化。
在设计机电一体化系统时,综合运用机械、电子、硬件、软件等各种知识和理论,实现系统优化。
2)系统控制智能化。
机电一体化系统具有自动控制、自动检测、自动信息处理、自动诊断、自动记录、自动显示等功能。
3)操作性能柔性化。
通过软件和程序实现对系统机构的控制和协调。
操作流程通过软件设定,灵活、方便。
7、机电一体化的目的功能:任何一种机电一体化产品或系统都是为满足人们某种需要而开发生产的,都具有相应的目的功能。
概括起来必须具有三大目的功能:1)变换(加工、处理)功能;2)传递(移动、输送)功能;3)存储(保存、记录)功能。
1、机电一体化概念:机电一体化乃是在机械的主功能、动力功能、信息功能和控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成系统的总结。
2、机电一体化设计与传统系统设计比较特点|:(1)系统工程;(2)以计算机为工具,利用计算机辅助设计,优化设计,有限元分析等工具提高产品的设计效率和质量;(3)硬件与软件设计并重。
3、机电一体化系统应具备五种内部功能:主功能(变换、传递、储存)、动力功能、计测功能、控制功能、结构功能4、组成要素:动力源、机械本体、执行机构、检测与传感器装置、控制与信息处理装置5、共性的关键技术:机械技术、计算机与信息处理技术、传感与检测技术、自动控制技术、伺服传动技术、系统的总体技术6、应用的主要形式:功能附加、功能替代、机电融合7、机电一体化发展趋势:(1)性质上:高精度、高效率、智能化;(2)功能上:小型化、轻型化多功能化;(3)层次上:系统化、复合集成化8、机电一体化机械部分的要求:(1)高精度:机械部分的高精度是为了满足系统能完成其预定的机械操作(2)高刚度:采用高刚度的支承或架体,以减小产品本体的振动,降低噪声;为高精度的执行机构提供良好的支承,保证执行精度(3)低摩擦:导向和转动支承部分采用低摩擦阻力部件,以降低机械部分的阻力,提高系统的快速响应性(4)良好的稳定性:机械部分受外界环境变化的影响小,抗干扰能力强。
措施:(1)采用低摩擦阻力的传动部件和导向支承部件(2)缩短传动链,提高传动与支承的刚度,提高安全性(3)选择最佳传动比(4)缩小反向死区误差(5)改进支承机构以提高刚性9、消除回差的方法:偏心套(轴)调整法、轴向垫片调整法、双片薄齿轮错齿调整法、斜齿轮垫片调整法、斜齿轮轴向压簧调整法、锥齿轮传动轴向压簧调整法、锥齿轮传动周向弹簧调整法10、滚动螺旋传动的特点:传动效率高、运动平稳、能够预紧、工作寿命长、定位精度和重复定位精度高、同步性好、可靠性高、不自锁、成本较高11、预紧方式:单螺母变位导程预紧(B)、单螺母增大钢球直径预紧(Z)、双螺母垫片预紧(D)、双螺母螺纹预紧(L)、双螺母齿差预紧(C)12、同步带传动的特点:(1)传动比准确,传动效率高;(2)工作平稳,能吸收振动;(3)不需润滑,耐油、水、高温、腐蚀,维护保养方便;(4)中心距要求严格,安装精度要求高(5)制造工艺复杂,成本高。
机电一体化专业简介机电一体化是一门综合性的学科,它融合了机械工程、电子工程和控制工程等多个领域的知识,旨在研究和开发集机械、电子、计算机、通信等技术于一体的智能化产品和系统。
本文将从机电一体化的概念、发展历程、应用领域和前景等方面进行介绍。
一、机电一体化的概念机电一体化是指将机械、电子和控制技术有机地结合在一起,形成一种新的综合性技术体系。
它通过运用现代科学技术,将机械系统与电子技术、计算机技术和通信技术相结合,实现机械和电子之间的信息交互和能量转换,从而提高产品性能、降低成本、提高生产效率。
二、机电一体化的发展历程机电一体化的概念最早出现在20世纪60年代,当时是为了满足航空航天领域对复杂系统的需求。
随着计算机技术和通信技术的发展,机电一体化得到了更广泛的应用。
在制造业中,机电一体化已经成为提高产品质量和生产效率的重要手段。
目前,机电一体化已经广泛应用于汽车制造、机床制造、航空航天、智能家居等领域。
三、机电一体化的应用领域1. 汽车制造:机电一体化在汽车制造中起着重要作用。
通过将传感器、控制器和执行器等设备与汽车的机械系统相连接,实现对汽车行驶状态的监测和控制,从而提高汽车的性能和安全性。
2. 机床制造:机电一体化在机床制造中的应用也非常广泛。
通过将传感器、伺服电机和数控系统等设备集成在一起,实现对机床运动的精确控制,从而提高加工精度和生产效率。
3. 航空航天:机电一体化在航空航天领域的应用非常重要。
通过将传感器、执行器和自动控制系统等设备与飞机的机械系统相连接,实现对飞机的自动导航、自动驾驶和自动控制,从而提高飞机的飞行性能和安全性。
4. 智能家居:机电一体化在智能家居领域的应用也越来越广泛。
通过将传感器、执行器和智能控制系统等设备集成在一起,实现对家居环境的智能控制,从而提高家居的舒适性和安全性。
四、机电一体化的前景随着科技的不断进步和市场的不断需求,机电一体化的前景非常广阔。
未来,机电一体化将越来越广泛地应用于各个领域,成为推动制造业高质量发展的重要驱动力。
机电一体化1、机电一体化的概念:机电一体化是以机械、电子技术和计算机科学为主的多门学科相互渗透、相互结合的过程逐渐形成和发展得一门新兴边缘技术学科。
机电一体化又称机械电子学它是由机械学的前半部分与电子学的后半部分组成的。
2、变量施肥的过程:获取土壤的信息,通过农业专家决策,指定变量施肥处方图并将变量数据输入到施肥变量播种机控制系统中实现变量施肥。
不同变量施肥系统包括:步进电机驱动、电控无级变速器驱动、电控液压马达驱动。
3、伺服系统的组成:输出各部分的作用:(1)控制器:控制器的功能是根据输入信号和反馈信号比较的结果,决定控制方式。
常用的控制有PID 控制和最优控制等。
控制器一般都是电子线路或计算机组成等。
(2)功率放大器:控制器输出的信号通常都很微弱,需经功率放大器放大后,才能驱动执行机构动作。
功率放大器主要由电子器件组成。
(3)执行机构:执行机构直接与被控对象打交道,最后执行控制器的指令,完成某种特定的动作。
执行机构要准确,迅速,精准,可靠地实现对被控对象的调整和控制。
执行机构主要由各种执行元件和机械传动装置等组成。
(4)检测装置:为了提高工作精度和抗干扰能力,伺服系统一般采用闭环控制。
检测装置是系统反馈环节,通过检测装置的测量,将执行机构的输出信号反馈到伺服系统输入端,实现反馈控制。
反馈信号一般为位置反馈信号、速度反馈信号和电流反馈信号,要经过多种传感元件进行检测。
用来检测位置信号的装置有自整角机、旋转变压器、光电编码器等;用来检测速度信号的装置有测速发电机、旋转变压器、光电编码器等;用来检测电流信号的装置有取样电阻霍尔集成电路传感器等,可检测的装置要求是精度高、线性度好、可靠性高、响应快。
4、采样定理:为了保证在采样过程中不丢失原来信号中所包含的信息,采样频率必须按照香侬采样原理来确定,即要求; f≥fmax(L被来原信号f(t)的最高有效频率)在实际应用中,fn≥(5-10)fmax5、采样/保持电路的作用由于采样信号f※(t)在函数轴上仍是连续变化的模拟量,因此还需要A/D转换器将其转换成数字量。
1.机电一体化乃是在机械的主功能、动力功能、信息功能和控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成系统的总称。
2.机电一体化组成:机械系统,信息处理系统,动力系统,传感检测系统,执行元件系统机械系统:起支承和联接作用;动力系统:提供动力输入;传感检测系统:将机械模块的状态和性能参数转换为电的信号,并进行必要的信息处理后送计算机;执行系统:根据控制系统的指令完成相应的动作;信息处理系统:对来自传感器与检测部分的信息进行理,使之符合控制要求。
3.广义的接口功能有两种,一种是输入/输出;另一种是变换、调整。
1)零接口:不进行任何变换和调整、输出即为输入等,仅起连接作用的接口,称为零接口。
例如输送管、接插头、接插座、接线柱、传动轴、导线、电缆等。
2)无源接口:只用无源要素进行变换、调整的接口,称为无源接口。
例如齿轮减速器、进给丝杠、变压器、可变电阻器以及透镜等。
3)有源接口:含有有源要素、主动进行匹配的接口,称为有源接口。
例如电磁离合器、放大器、光电耦合器、D/A转换器、A/D转换器以及力矩变换器等。
4)智能接口:含有微处理器,可进行程序编制或可适应性地改变接口条件的接口,称为智能接口。
例如自动变速装置,通用输入/输出LSI(8255等通用I/O)、GP-IB总线、STD总线等。
根据接口的输入/输出功能,可将接口分成以下四种:1)机械接口:根据输入/输出部位的形状、尺寸精度、配合、规格等进行机械联接,如联轴节、管接头、法兰盘、万能插口、接线柱等。
2)物理接口:受通过接口部位的物质、能量与信息的具体形态和物理条件约束,如受电压、频率、电容、电流等约束的接口。
3)信息接口:受规格、标准、法律、语音、符号等逻辑、软件的约束,如GB、ISO、C++、VB等。
4)环境接口:对周围环境条件(温度、湿度、磁场、火、振动、放射能、水)有保护作用和隔绝作用,如防尘过滤器、防水连接器、防爆开关等。
机电一体化1. 机电一体化的定义:在机械的主功能、动力功能、信息功能、控制功能基础上引入微电子技术,并将机械装置与电子装置用相关软件有机地结合所构成系统的总称。
2. 机电一体化一般包含:机电一体化产品(系统)和机电一体化技术两层含义。
3. 机电一体化产品的分类:按机电结合程度分类:✍机械电子化产品✍机械与电子融合的产品。
4. 机电一体化系统的构成:机械本体、检测传感部分、电子控制单元、执行器、动力源。
5. 执行元件:实现机电一体化系统主功能(三个目的功能):变换、传递、储存。
6. 机械本体(构造功能):机械本体包括机架、机械连接、机械传动等,它是机电一体化的基础,起着支撑系统中其他功能单元、传递运动和动力的作用。
7. 动力源(动力功能):是机电一体化产品的能量供应部分,其作用是按照系统控制要求,为系统提供能量和动力,使系统正常运行。
提供能量的方式包括电能、气能和液压能,以电能为主。
8. 传感检测单元(计测功能):对系统运行中所需要的本身和外界环境的各种参数及状态进行检测。
9. 共性关键技术:机械技术、传感检测技术、信息处理技术、自动控制技术、伺服驱动技术、系统总体技术。
10. 广义的接口功能有两种:一种是输入/输出;另一种是变换、调整。
11. 机电一体化系统(产品)的常用设计方法(三种)的区别:✍取代法(机电互补法):取代法就是用电气控制取代原系统中的机械控制机构。
✍整体设计法(融合法):将各构成要素有机结合为一体构成专用或者通用的功能部件(子系统),要素间的机电参数匹配比较充分。
✍组合法:选用各种标准功能模块组合设计成机电一体化系统。
12. 开发性设计、变异性设计、适应性设计有何异同:✍开发性设计:没有参照产品的设计,仅仅是根据抽象的设计原理和要求,设计出质量和性能方面满足目的要求的系统。
✍适应性设计(改进):是在总的方案原理基本保持不变的情况下,对现有产品进行局部更改,或用微电子技术代替原有的机械结构,或为了微电子控制进行局部适应性设计,以提高产品的性能和质量。
第一章机电一体化概述一、机电一体化定义及特征机电一体化是指在机构得主功能、动力功能、信息处理功能和控制功能上引进电子技术,将机械装置与电子化设计及软件结合起来所构成的系统的总称。
机电一体化发展至今也已成为一门有着自身体系的新型学科,随着科学技术的不但发展,还将被赋予新的内容。
但其基本特征可概括为:机电一体化是从系统的观点出发,综合运用机械技术、微电子技术、自动控制技术、计算机技术、信息技术、传感测控技术、电力电子技术、接口技术、信息变换技术以及软件编程技术等群体技术,根据系统功能目标和优化组织目标,合理配置与布局各功能单元,在多功能、高质量、高可靠性、低能耗的意义上实现特定功能价值,并使整个系统最优化的系统工程技术。
由此而产生的功能系统,则成为一个机电一体化系统或机电一体化产品。
二、.机电与机械电气的区别:机电一体化发展至今也已成为一门有着自身体系的新型学科,随着科学技术的不但发展,还将被赋予新的内容。
机电一体化从系统的观点出发,综合运用机械技术、微电子技术、自动控制技术、计算机技术、信息技术、传感测控技术、电力电子技术、接口技术、信息变换技术以及软件编程技术等群体技术,根据系统功能目标和优化组织目标,合理配置与布局各功能单元,在多功能、高质量、高可靠性、低能耗的意义上实现特定功能价值,并使整个系统最优化的系统工程技术。
由此而产生的功能系统,则成为一个机电一体化系统或机电一体化产品。
“机电一体化”涵盖“技术”和“产品”两个方面。
机电一体化技术是基于上述群体技术有机融合的一种综合技术,而不是机械技术、微电子技术以及其它新技术的简单组合、拼凑。
机电一体化发展至今也已成为一门有着自身体系的新型学科,随着科学技术的不但发展,还将被赋予新的内容。
这是机电一体化与机械加电气所形成的机械电气化在概念上的根本区别。
机械工程技术有纯技术发展到机械电气化,仍属传统机械,其主要功能依然是代替和放大的体力。
但是发展到机电一体化后,其中的微电子装置除可取代某些机械部件的原有功能外,还能赋予许多新的功能,如自动检测、自动处理信息、自动显示记录、自动调节与控制自动诊断与保护等。
1、机电一体化的概念:机电一体化又称机械电子学,它是从系统的观点出发,将机械技术、微电子技术、计算机信息技术、自动控制技术等在系统工程的基础上有机地加以综合,实现整个机械系统最优化而建立起来的一门的科学技术。
机电一体化包括机电一体化技术和机电一体化系统两方面的内容。
典型的机电一体化系统有数控机床、工业机器人、汽车等。
2、机和电的关系:在机电一体化系统中,“机”指机械部分,包括结构、执行机构、传感器机构等。
“电”指电子部分,包括控制电路和电气连线等。
二者关系是,“机”是基础,“电”是核心。
机电系统在电的控制下,协调各机械部件(传感器、电机、结构等)完成各种指令及功能。
3、机电一体化的范畴:凡是由各种现代高新技术与机械和电子技术相互结合而形成的各种技术、产品以及系统都属于机电一体化的范畴4、机电一体化的发展趋势:1)性能上,向高精度、高效率、高性能、智能化的方向发展。
2)功能上,向小型化、轻型化、多功能化方向发展。
3)层次上,向系统化、复合集成化的方向发展。
系统结构采用采用开放式和模式化的总线结构,并具有强大的通讯功能,如RS232、RS485、CAN等。
4)机电一体化单元向模块化方向发展,利用标准模块解决系统集成中的不匹配、不兼容问题。
5)机电一体化产品向网络化方向发展,基于网络的各种远程控制和监视意义重大。
6、机电一体技术的主要特征1)整体结构最优化。
在设计机电一体化系统时,综合运用机械、电子、硬件、软件等各种知识和理论,实现系统优化。
2)系统控制智能化。
机电一体化系统具有自动控制、自动检测、自动信息处理、自动诊断、自动记录、自动显示等功能。
3)操作性能柔性化。
通过软件和程序实现对系统机构的控制和协调。
操作流程通过软件设定,灵活、方便。
7、机电一体化的目的功能:任何一种机电一体化产品或系统都是为满足人们某种需要而开发生产的,都具有相应的目的功能。
概括起来必须具有三大目的功能:1)变换(加工、处理)功能;2)传递(移动、输送)功能;3)存储(保存、记录)功能。
机电一体化一、机电一体化概念机电一体化技术又称机械电子技术,是机械技术、电子技术和信息技术有机结合的产物。
机电一体化在国外被称为Mechatronics,是日本人在20 世纪70 年代初提出来的,它是用英文Mechanics 的前半部分和Electronics 的后半部分结合在一起构成的一个新词,意思是机械技术和电子技术的有机结合,现已得到包括我国在内的世界各国的承认。
我国的工程技术人员习惯上把它译为机电一体化技术。
机械技术是一门古老的学科,它发展到今天经历了一个漫长的历史时期。
机械是现代工业的物质基础,国民经济的各个部门都离不开机械。
机械种类繁多,功能各异,不论哪一种机械,从诞生以来都经历了使用—改进—再使用—再改进,不断革新和逐步完善的过程。
对于某一种形式的机械,一般来说都有一定的局限性,或者说都有一定的适用范围、存在某些固有的缺点,这就迫使人们寻找新的工作原理,发明新型的机械.从而使得具有同一用途的机械具有不同的种类。
机械本身的发展也是无止境的,但是这种发展却是缓慢的。
各种机械发展到今天.单从机械角度对它们进行改进是越来越不容易了。
随着科学技术的发展,一个比较年轻的学科——电子技术正在蓬勃发展,从分立电子元件到集成电路(IC),从集成电路到大规模集成电路和超大规模集成电路,特别是微型计算机的出现,使电子技术与信息技术相结合并向其他学科渗透,把人类带人了一个神化般的世界。
信息技术(3C 技术)的主体包括计算机技术、控制技术和通信技术。
电子技术与计算机技术同机械技术相互交叉,相互渗透,使古老的机械技术焕发了青春。
在原有机械基础上引入电子计算机高性能的控制机能,并实现整体最优化,就使原来的机械产品产生了质的飞跃,变成功能更强、性能更好的新一代的机械产品或系统,这正是机电一体化的意义所在。
机电一体化技术是现代科学技术发展的必然结果。
由于大规模集成电路和超大规模集成电路的出现,特别是微型电子计算机的空前发展,促进了机械技术和电子技术相互交叉和相互渗透,并使机械技术和电子技术在系统论、信息论和控制论的基础上有机地结合起来.形成今天的机电一体化技术。
机电一体化一、名词解释1、机电一体化:机电一体化技术综合应用了机械技术、微电子技术、信息处理技术、自动控制技术、检测技术、电力电子技术、接口技术及系统总体技术等群体技术,实现多种技术功能复合的最佳功能价值的系统工程技术。
2、柔性制造系统:柔性制造系统(Flexible Manufacturing System)是由两台或两台以上加工中心或数控机床组成,并在加工自动化的基础上实现物料流和信息流的自动化。
3、传感器:传感器是机电一体化系统中不可缺少的组成部分,能把各种不同的非电量转换成电量,对系统运行中所需的自身和外界环境参数及状态进行检测,将其变成系统可识别的电信号,传递给控制单元。
4、伺服电动机:伺服电动机又称控制电机,其起动停止、转速或转角随输入电压信号的大小及相位的改变而改变。
输入的电压信号又称控制信号或控制电压,改变控制信号可以改变电动机的转速及转向,驱动工作机构完成所要求的各种动作。
5、感应同步器: 感应同步器是一种应用电磁感应原理制造的高精度检测元件,有直线和圆盘式两种,分别用作检测直线位移和转角。
6、人机接口:人机接口(HMI)是操作者与机电系统(主要是控制微机)之间进行信息交换的接口,主要完成输入和输出两方面的工作。
7、PLC:可编程控制器(Programmable Logical Controller)简称PLC.是一种在继电器控制和计算机控制的基础上开发出来,并逐渐发展成为以微处理器为核心,把自动化技术、计算机技术、通信技术融为一体的新型工业自动控制装置,广泛应用在各种生产机械和生产过程的自动控制中。
8、变频器:变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置,能实现对交流异步电机的软起动、变频调速、提高运转精度、改变功率因素以及过流/过压/过载保护等功能。
9、通信协议:通信协议是指通信双方就如何交换信息所建立的一些规定和过程,包括逻辑电平的定义、应用何种物理传输介质、数据帧的格式、通信站地址的确定、数据传输方式等。
一、机电一体化起源与定义:在机械的主功能、动力功能、信息功能、控制功能基础上引入微电子技术,并将机械装置与电子装置用相关软件有机地结合所构成系统的总称。
机电一体化一般包含机电一体化产品(系统)和机电一体化技术两层含义。
典型的机电一体化产品(系统)有:数控机床、机器人、工程机械、汽车、智能化仪器仪表、CAD/CAM系统等。
P26间隙的影响三、机电一体化的目的〔功能〕使系统〔产品〕高附加值化,即多功能化、高效率化、高可靠性化、省材料化、省能源化,并使产品结构向轻、薄、短、小巧化方向发展,不断满足人们生活和生产的多样化需要和生产的省力化、自动化需要。
四、机电一体化发展概况“萌芽阶段”“蓬勃发展阶段”“智能化阶段”1 智能化、2 模块化、3 网络化、4 微型化、5、绿色化、6、人格化五、机电一体化系统的构成1、执行元件〔主功能〕实现机电一体化系统主功能。
主功能是系统的主要特征部分,完成对物质、能量、信息的交换、传递和储存。
主功能包括三个目的功能:〔1〕变换〔加工、处理〕功能;〔2〕传递〔移动、输送〕功能;〔3〕储存〔保存、存储、记录〕功能2、机械本体〔构造功能〕机械本体包括机架、机械连接、机械传动等,它是机电一体化的基础,起着支撑系统中其他功能单元、传递运动和动力的作用。
3、动力源(动力功能)是机电一体化产品的能量供给部分,其作用是按照系统控制要求,为系统提供能量和动力,使系统正常运行。
4、传感检测单元〔计测功能〕对系统运行中所需要的本身和外界环境的各种参数及状态进行检测。
要求:体积小、精度高、抗干扰5、控制与信息处理单元〔控制功能〕将来自各传感器的检测信息和外部输入命令进行集中、储存、分析、加工,根据信息处理结果,按照一定的程序和节奏发出相应的指令,控制整个系统有目的地运行。
要求:高可靠性、处理速度快、智能化6、接口将各组成单元或子系统连接成一有机的整体。
各要素或子系统之间能顺利进行物质、能量和信息的传递和交换。
机械手机电一体化设计摘要:当今的自动化技术发展迅速,正处于一个快速变革的时代。
从半导体到消费类电子产品、再到汽车和航空制造业、以及轻工业和物流行业等多种不同的工业领域都面临着日益激烈的全球竞争压力当今的自动化技术发展迅速,正处于一个快速变革的时代。
从半导体到消费类电子产品、再到汽车和航空制造业、以及轻工业和物流行业等多种不同的工业领域都面临着日益激烈的全球竞争压力,他们需要进一步降低成本、缩短产品生产周期,并能够迅速完成产品的更新换代。
采用最新的自动化技术才是解决这一系列问题的有效手段。
本次论文明确了机械手的功能需求和动作流程通过查找了大量资料,了解完成了布进电机和驱动器的选型。
通过对机械手制作流程的分析,确定采用PLC 为核心的控制系统。
在对机械手的分析设计部分梯形图及控制程序,完成PLC 的I/O点分配和硬件接线图。
关键词:机械手,步进电机,可编程序控制器目录第一章绪论 (1)工业机器人的发展现状 (1)1.1国外工业机械手的发展现状 (1)1.2国内工业机械手的发展现状 (4)第二章工业机械手的组成及分类 (5)2.1工业机械手的组成 (5)2.2工业机械手的分类 (5)第三章PLC控制机械手的系统设计 (10)3.1各电器设备的控制方式及控制要求 (10)3.1.1机械手的技能和特性 (10)3.1.2躯干和传动系统 (10)3.2电器元件、设备的选择 (11)第四章总结 (23)参考文献 (24)第一章绪论工业机器人的发展现状随着世界工业的发展和科技的不断进步,工业机器人的发展速度日益加快,其发展过程大致分为三个阶段,第一代工业机器人为当前应用最多的示教再现型机器人,它由机器手控制器与示教盒构成,机器人可以按预先引导的动作一一记录下信息,并根据记录的信息重复再现执行;第二代工业机器人为感知型机器人,这类机器人具有力觉、触觉和视觉等功能,同时它还具有反馈外界某些信息并进一步调整的能力,目前已进入应用阶段;第三代工业机器人为智能机器人,这类机器人具有感知外部环境、理解外部环境的能力,即使工作环境发生了改变,它也能够根据变化后的环境而成功地完成既定的任务,目前,这类机器人仍处于研究与开发阶段。
工业机器人是目前机器人领域中技术最成熟、应用最广泛的一类机器人。
工业机器人已广泛应用于汽车及汽车零部件制造业、机械加工行业、电子电器行业等领域。
在工业生产中,弧焊机器人、电焊机器人、装配机器人及搬运机器人等工业机器人都已被大量使用。
在制造业中,尤其是在汽车行业,如在毛坯制造、机械加工、焊接、热处理、表面涂覆、上下料、装配、检测等作业中,机器人己逐步取代人工作业。
汽车行业首先是代表高技术的领域,投入也是相当大,也是率先广泛应用工业机器人的领域;从汽车行业应用工业机器人的发展现状和趋势,可以看出整个工业机器人的发展前景是非常好的。
1.1国外工业机械手的发展现状目前,工业机械手广泛应用于各种制造行业中,如电器制造行业、汽车制造行业、塑料加工行业、通用机械制造行业、以及金属加工行业等都使用了工业机械手。
随着社会生产的进一步发展和科学技术的进步,工业机械手的功能和性能将进一步得到改善和提高,因此,工业机械手的应用领域将越来越广。
(1)工业机械手驱动方式发展现状现在的工业机械手驱动方式大多采用电机驱动。
电机驱动的工业机械手具有精度高、驱动力大、响应快等优点,同时采用电机驱动必须使用减速机构,因此采用电机驱动方式的机械手会大大高于其他方式驱动机械手的成本,因而大大的限制了电机驱动机械手的应用。
随着气动技术的高速发展,又由于气压驱动具有其他驱动方式没有的一些优点,如成本低、高性价比、无污染、结构简单、抗干扰能力强等,因而越来越多的工业机械手采用气动控制,因而气动技术也得到了迅速得发展。
(2)工业机械手定位精度发展现状在气动技术发展初期,由于技术的不成熟,利用气压驱动的工业机械手的定位精度很低,更无法实现在任意位置的起停,只能靠气缸两个终点位置来实现机械手的定位,或者采用多位气缸,而多位气缸的定位长度也已经由气缸的行程确定,同样无法实现机械手在任意位置得起停。
如果要多加一个定位位置,或者是要改变预先确定的两个定位位置之间的距离,则需要另外再设计一个多位气缸,这样就会导致气缸的滑块导向机构更加复杂,所以早期的气动工业机械手不能实现任意位置的定位,因此大大限制气动工业机械手的发展。
伺服技术的出现实现了气缸在任意位置定位,世界上各国都相继开发出了可在任意位置实现起停的气动工业机械手,且定位精度可以达到±0.5mm,如日本SMC公司、德国FESTO 公司等。
气动伺服技术的出现,大大提高了气动机械手的定位精度,实现了气动机械手在任意位置的定位,扩大了气动机械手在自动化领域的应用范围。
现代气动工业机械手的发展方向为集成化、模块化。
因此现代气动工业机械手普遍集成了电气接口和气管的导向系统装置,这样就使得机械手的运动更加协调,更具稳定性,同时现代气动工业机械手的传动部件大多采用量身设计的滚珠轴承,这使得工业气动机械手具有更高的刚性、更高的强度、更好的精度和更好的导向精度。
因此现代气动工业机械手更重要的一个特点就是具有优良的定位精度。
德国FESTO公司研制了一整套模块化气动工业机械手,由于采用了模块化的组装结构,因此可以组成很多种类型的气动工业机械手,如滑块型气动机械手、立柱型气动机械手、门架型气动机械手及其他类型的工业机械手,如图1.1所示。
因此模块化的工业机械手使得工业气动机械手组装更加方便、动作更加灵活、定位精度更高,主要用于一般的工业送取料自动线上。
另外,欧洲的德国和英国开发的应用于各种工业传送系统上的气动机械手,如Bergerlahr公司研制的坐标式气动机械手、德国Bosch公司研制的Scara型气动机械手等,如图1.1所示。
1.2国内工业机械手的发展现状国内的一些机构和高校从20世纪90年代开始对工业机械手开始进行研究,比较具有代表性的是北京理工大学、哈尔滨工业大学、南京理工大学SMC气动技术中心和浙江大学的流体传动和控制重点实验室。
南京理工大学研制的气动自动化制造系统,这套系统由包装、装配、标贴、加工、成品存取等子系统构成。
在每个子系统自主工作的前提下实现了系统集成控制,同时实现了配置自动化物流,这套系统实现了从成品加工到成品存取的全部过程自动传输与自动装卸,这套系统中设计了一个关节型气动机械手,这个关节型气动机械手主要实现的功能是货物的搬运和货物的翻转,其中集成手部动作、腕部动作、臂部动作和腰部动作的四个自由度联合运动,可以模拟人的关节实现对目标货物的移动、翻转和抓取等动作。
北京理工大学自主研发的具有四个自由度的回转关节型气动机械手,该气动机械手由底板、腰、大臂、小臂、手腕组成。
哈尔滨工业大学研发了具有六个自由度的关节型气动机械手,这类机械手具有结构小巧、自由度多、柔顺性好等优点,但是该类机械手的抓取力相对来说比较小,因此该类型机械手可以用于抓取一些小型物品,可以用做教学使用,同时也可以用作实验使用。
浙江大学的国家级重点实验室-流体传动及控制实验室自主研发的拥有三个自由度的气动比例/伺服机械手,该机械手具有控制精度高、轨迹跟踪性能好等优点,该机械手成功的运用到气动书法机器人上。
但是该机械手也存在工作空间小,抓取力较小的缺点,因此限制了它的应用范围,只可用于如娱乐行业等行业,不可用于装卸货物使用等工业行业。
随着电子技术和电路集成技术的迅速发展,现代工业机械手将气动技术与电子技术紧密结合,气动机械手的实用性在工业自动化领域里越来越充分的体现了出来,特别是目前国内外一些专家学者正在努力尝试将现代控制理论与智能控制算法与气动工业机械手结合起来,并取得了一定的研究成果,这样无疑将使以后的气动工业机械手具有更高的精度、更加集成化、更加智能化,这就为气动工业机械手全面入住工业自动化领域铺平了道路。
第二章工业机械手的组成及分类2.1工业机械手的组成现代工业机械手一般由控制系统、驱动系统、位置检测系统及执行机构等组成。
其系统框图如图2.1所示。
控制系统是机械手系统的核心部分,它的主要作用是使得工业机械手能够按照预定的动作正确的完成每一个动作。
目前工业机械手的控制系统一般都包括主控系统与定位系统。
驱动系统是工业机械手的动力装置,它的主要作用是作为执行机构的驱动源,它由动力源和辅助装置组成。
当前市场上的绝大部分工业机械手采用的驱动方式为液压驱动、电力驱动、气压驱动和机械方式驱动。
执行机构是工业机械手的最终执行机构,它的作用是完成工件的取送工作,当前市场上大多数工业机械手的执行机构为手抓、夹钳和吸盘。
位置检测系统是实现工业机械手精确定位的装置,它的主要作用是实时检测机械手执行机构的具体位置并将机械手的位置信息实时反馈给控制系统,而控制系统根据反馈回来的机械手位置与给定机械手位置进行比较,及时的修正机械手的位置,实现精确定位。
2.2工业机械手的分类关于工业机械手的分类,在国际上尚无统一的分类,在国内暂时按驱动方式、手臂坐标、使用范围对工业机械手进行分类。
(1)按驱动方式分类1)液压传动机械手液压传动机械手是以液压的压力作为动力源来驱动执行机构运动的一类机械手。
这类机械手的特点是运行平稳、抓取力大、结构紧凑、动作灵敏。
但是这类机械手也存在一定的缺点,它对密封装置要求非常高,要求密封装置不能有一点的泄露,否则机械手的工作性能将大大的降低,同时该类型的机械手不宜在过高和温度过低的环境下作业。
如果该类型机械手采用电气和液压伺服驱动系统相结合的控制策略,则可以大大的提高机械手的整体性能,还可以实现连续轨迹控制,从而加大该类型机械手的通用性,但是电液伺服阀制造精度相对较高,而且油液过滤要求极其严格,成本也非常高,这就大大的限制了液压传动型机械手的应用。
2)气压传动机械手气压传动机械手是以空气的压力作为动力源来驱动执行机构运动的一种机械手。
这类机械手的主要特点是:动作迅速、成本较低、抓取力较小、结构简单、介质来源非常方便且无污染。
但是,由于空气具有可压缩性,导致该类型机械手的工作速度稳定性比较差,冲击较大,如果气源压力比较低,抓取力一般小于300N,相比之下,该类型的机械手比液压传动机械手的结构大,因此该类型机械手适用于高速度、小负载、高温度和高粉尘的工作环境中进行作业。
如图2.2所示。
3)电力传动机械手电力传动机械手是以电力作为驱动源来驱动执行机构的一类机械手,一般来说以直流电机、交流电机等各种电机作为驱动源,该类型的机械手的特点是运行速度快、易于控制、控制精度高、结构简单、维护与使用方便。
当前这类机械手使用还不是很广泛,但非常有发展前途。
4)机械传动机械手机械传动机械手即由机械传动机构(如凸轮、齿轮和齿条、连杆、间歇机构等)驱动执行机构的一类机械手。