2020版高考数学大一轮复习第五章平面向量5_2平面向量基本定理及坐标表示教师用书文北师大版
- 格式:doc
- 大小:95.50 KB
- 文档页数:13
5.2 平面向量的坐标运算一、平面向量的坐标运算 1.向量坐标的求法(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标. (2)设A (x 1,y 1),B (x 2,y 2),则AB =(x 2-x 1,y 2-y 1). 2.向量加法、减法、数乘向量及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 2+x 1,y 2+y 1),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1), |a |a +b 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0. 4.向量的夹角已知两个非零向量a 和b ,作OA =a ,OB =b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.如果向量a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b .考向一 坐标运算【例1】(1)已知点M (5,-6)和向量a =(1,-2),若MN →=-3a ,则点N 的坐标为.(2)已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,a =m b +n c (m ,n ∈R ),则m +n = 【答案】(1)(2,0) (2)-2【解析】(1) 设N (x ,y ),则(x -5,y +6)=(-3,6),∴x =2,y =0. (2)由已知得a =(5,-5),b =(-6,-3),c =(1,8).∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.∴m +n =-2.【举一反三】1.设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a+2b的最小值是( )A .2B .4C .6D .8【答案】 D【解析】 由题意可得,OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),所以AB →=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2).又∵A ,B ,C 三点共线,∴AB →∥AC →,即(a -1)×2-1×(-b -1)=0,∴2a +b =1,又∵a >0,b >0,∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b )=4+⎝ ⎛⎭⎪⎫b a +4a b ≥4+4=8,当且仅当b a =4a b时,取“=”.故选D.2.已知点P (-1,2),线段PQ 的中点M 的坐标为(1,-1).若向量PQ →与向量a =(λ,1)共线,则λ=________. 【答案】 -23【解析】 点P (-1,2),线段PQ 的中点M 的坐标为(1,-1), ∴向量PQ →=2PM →=2(1+1,-1-2)=(4,-6).又PQ →与向量a =(λ,1)共线,∴4×1+6λ=0,即λ=-23.3.已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( )A.⎝ ⎛⎭⎪⎫1,83 B.⎝ ⎛⎭⎪⎫-133,83 C.⎝⎛⎭⎪⎫133,43D.⎝ ⎛⎭⎪⎫-133,-43【解析】 由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4).所以c =⎝ ⎛⎭⎪⎫-133,-43.考向二 平面向量在几何中 的运用【例2】已知△ABC 的三个顶点的坐标为A (0,1),B (1,0),C (0,-2),O 为坐标原点,动点M 满足|CM →|=1,则|OA →+OB →+OM →|的最大值是( )A.2+1B.7+1C.2-1D.7-1 【答案】 A【解析】 设点M 的坐标是(x ,y ),∵C (0,-2),且|CM →|=1,∴x 2+(y +2)2=1,则x 2+(y +2)2=1, 即动点M 的轨迹是以C 为圆心、1为半径的圆, ∵A (0,1),B (1,0),∴OA →+OB →+OM →=(x +1,y +1),则|OA →+OB →+OM →|=(x +1)2+(y +1)2,几何意义表示:点M (x ,y )与点N (-1,-1)之间的距离,即圆C 上的点与点N (-1,-1)的距离,∵点N (-1,-1)在圆C 外部,∴|OA →+OB →+OM →|的最大值是|NC |+1=(0+1)2+(-2+1)2+1=2+1.故选A. 【举一反三】1.在平面直角坐标系中,为坐标原点,直线与圆相交于两点,.若点在圆上,则实数( )A .B .C .D .O :10l x ky -+=22:4C x y +=, A B OM OA OB =+M C k =2-1-01考向三 向量中的坐标【例3】给定两个长度为1的平面向量,OA OB ,它们的夹角为120.如图1所示,点C 在以O 为圆心的圆弧AB 上变动.若,OC xOA yOB =+其中,x y R ∈,则x y +的最大值是______. 【答案】2【解析】解法1( 考虑特值法) 当C 与A 重合时,10,OC OA OB =⨯+⨯1x y +=,当C 与B 重合时,01,OC OA OB =⨯+⨯1x y +=, 当C 从AB 的端点向圆弧内部运动时,1x y +>, 于是猜想当C 是AB 的中点时,x y +取到最大值.当C 是AB 的中点时,由平面几何知识OACB 是菱形, ∴,OC OA OB =+∴11 2.x y +=+= 猜想x y +的最大值是2.解法二(考虑坐标法)建立如图3,所示的平面直角坐标系,设AOC α∠=,则1(1,0),((cos ,sin )2A B C αα-.于是OC xOA yOB =+可化为:1(cos ,sin )(1,0)(,22x y αα=+-,∴1cos ,2sin .x y y αα⎧=-⎪⎪⎨⎪=⎪⎩(1)解法2 函数法求最值由方程组(1)得:cos ,.x y ααα⎧=+⎪⎪⎨⎪=⎪⎩∴cos 2sin(30)x y ααα+=+=+,又0120α≤≤, ∴当30α=时,max () 2.x y += 解法3 不等式法求最值由方程组(1)得:222221sin cos ()3x y xy x y xy αα=+=+-=+-,∴211()33xy x y =+-, 由0,0x y >>,及x y +≥2()4x y xy +≥, ∴2()4x y +≤,∴2x y +≤,当且仅当1x y ==时取等号. ∴max () 2.x y +=思考方向三 考虑向量的数量积的运算 解法4 两边点乘同一个向量∵,OC xOA yOB =+∴,.OC OA xOA OA yOB OA OC OB xOA OB yOB OB ⎧⋅=⋅+⋅⎪⎨⋅=⋅+⋅⎪⎩ 设AOC α∠=,则 120BOC α∠=-,又||||||1OC OA OB ===,∴1cos ,21cos(120).2x y x y αα⎧=-⎪⎪⎨⎪-=-+⎪⎩∴2[cos cos(120)]2sin(30)x y ααα+=+-=+, ∴当30α=时,max () 2.x y += 解法5 两边平方法∵,OC xOA yOB =+∴22(),OC xOA yOB =+∴2221()3x y xy x y xy =+-=+-222()()()344x y x y x y ++≥+-⋅=, ∴2x y +≤,当且仅当1x y ==时取等号, ∴max () 2.x y +=思考方向四 考虑平行四边形法则过C 作CM ∥OB 交OA 于M ,作CN ∥OA 交OB 于N ,则OM CN 是平行四边形,由向量加法的平行四边形法则得:OC OM ON =+,在OMC ∆中,设AOC α∠=,则 120BOC α∠=-, 且||,||.OM x MC y == 解法6 利用正弦定理sin sin sin OM MC OCOCM COM OMC==∠∠∠, 1sin(60)sin sin 60x y αα==+,由等比性值得:1sin(60)sin sin 60x y αα+=++,∴2sin(30)x y α+=+,∴当30α=时,max () 2.x y += 解法7 利用余弦定理222||||||2||||cos60,OC OM MC OM MC =+-⋅∴2221()3x y xy x y xy =+-=+-222()()()344x y x y x y ++≥+-⋅=,∴2x y +≤,当且仅当1x y ==时取等号, ∴max () 2.x y += 【举一反三】1.如图,已知平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=2 3.若OC →=λOA →+μOB →(λ,μ∈R ),求λ+μ的值.【答案】6【解析】 方法一 如图,作平行四边形OB 1CA 1,则OC →=OB 1→+OA 1→,因为OA →与OB →的夹角为120°,OA →与OC →的夹角为30°, 所以∠B 1OC =90°.在Rt △OB 1C 中,∠OCB 1=30°,|OC →|=23, 所以|OB 1→|=2,|B 1C →|=4,所以|OA 1→|=|B 1C →|=4, 所以OC →=4OA →+2OB →,所以λ=4,μ=2,所以λ+μ=6.方法二 以O 为原点,建立如图所示的平面直角坐标系,则A (1,0),B ⎝ ⎛⎭⎪⎫-12,32,C (3,3).由OC →=λOA →+μOB →,得⎩⎪⎨⎪⎧3=λ-12μ,3=32μ,解得⎩⎪⎨⎪⎧λ=4,μ=2.所以λ+μ=6.2.如图,四边形ABCD 是正方形,延长CD 至E ,使得DE =CD ,若点P 为CD 的中点,且AP →=λAB →+μAE →,则λ+μ=.【答案】 52【解析】 由题意,设正方形的边长为1,建立平面直角坐标系如图,则B (1,0),E (-1,1), ∴AB →=(1,0),AE →=(-1,1), ∵AP →=λAB →+μAE →=(λ-μ,μ), 又∵P 为CD 的中点,∴AP →=⎝ ⎛⎭⎪⎫12,1,∴⎩⎪⎨⎪⎧λ-μ=12,μ=1,∴λ=32,μ=1,∴λ+μ=52.1.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 【答案】 (-3,-5)【解析】 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1),∴BD →=AD →-AB →=BC →-AB →=(-3,-5).2.已知向量a =(3,1),b =(0,-1),c =(k ,3),若a -2b 与c 共线,则k =________. 【答案】 1【解析】 ∵a -2b =(3,3),且a -2b ∥c ,∴3×3-3k =0,解得k =1.3.线段AB 的端点为A (x,5),B (-2,y ),直线AB 上的点C (1,1),使|AC →|=2|BC →|,则x +y =. 【答案】 -2或6【解析】 由已知得AC →=(1-x ,-4),2BC →=2(3,1-y ).由|AC →|=2|BC →|,可得AC →=±2BC →,则当AC →=2BC →时,有⎩⎪⎨⎪⎧1-x =6,-4=2-2y ,解得⎩⎪⎨⎪⎧x =-5,y =3,此时x +y =-2;当AC →=-2BC →时,有⎩⎪⎨⎪⎧1-x =-6,-4=-2+2y ,解得⎩⎪⎨⎪⎧x =7,y =-1,此时x +y =6.综上可知,x +y =-2或6.4. 已知O 为坐标原点,点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为. 【答案】 (3,3)【解析】 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ).又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3).方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线,所以(x -4)×6-y ×(-2)=0,解得x =y =3,所以点P 的坐标为(3,3).5.已知向量a =⎝ ⎛⎭⎪⎫8,x 2,b =(x,1),其中x >0,若(a -2b )∥(2a +b ),则x =.【答案】 4【解析】 ∵向量a =⎝ ⎛⎭⎪⎫8,x 2,b =(x,1),∴a -2b =⎝ ⎛⎭⎪⎫8-2x ,x2-2,2a +b =(16+x ,x +1),∵(a -2b )∥(2a +b ),∴(8-2x )(x +1)-(16+x )⎝ ⎛⎭⎪⎫x2-2=0,即-52x 2+40=0,又∵x >0,∴x =4.6.在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为. 【答案】 3【解析】 建立如图所示的平面直角坐标系,则C 点坐标为(2,1).设BD 与圆C 切于点E ,连结CE ,则CE ⊥BD . ∵CD =1,BC =2, ∴BD =12+22=5,EC =BC ·CD BD =25=255,即圆C 的半径为255,∴P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0),则⎩⎪⎨⎪⎧x 0=2+255cos θ,y 0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0).∵AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ), ∴μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤3⎝ ⎛⎭⎪⎫其中sin φ=55,cos φ=255, 当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.7.在直角梯形ABCD 中,AB ⊥AD ,DC ∥AB ,AD =DC =2,AB =4,E ,F 分别为AB ,BC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DEM 上变动(如图所示).若AP →=λED →+μAF →,其中λ,μ∈R ,则2λ-μ的取值范围是.【答案】 ⎣⎢⎡⎦⎥⎤-22,12 【解析】 建立如图所示的平面直角坐标系,则A (0,0),E (2,0),D (0,2),F (3,1),P (cos α,sin α)⎝⎛⎭⎪⎫-π2≤α≤π2,即AP →=(cos α,sin α),ED →=(-2,2),AF →=(3,1). ∵AP →=λED →+μAF →,∴(cos α,sin α)=λ(-2,2)+μ(3,1), ∴cos α=-2λ+3μ,sin α=2λ+μ,∴λ=18(3sin α-cos α),μ=14(cos α+sin α),∴2λ-μ=12sin α-12cos α=22sin ⎝ ⎛⎭⎪⎫α-π4.∵-π2≤α≤π2,∴-3π4≤α-π4≤π4.∴-22≤22sin ⎝⎛⎭⎪⎫α-π4≤12.8.如图,在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1,圆心在线段CD (含端点)上运动,P 是圆Q 上及内部的动点,设向量AP →=mAB →+nAF →(m ,n 为实数),求m +n 的最大值.【答案】5【解析】如图所示,①设点O 为正六边形的中心, 则AO →=AB →+AF →.当动圆Q 的圆心经过点C 时,与边BC 交于点P ,点P 为边BC 的中点.连结OP , 则AP →=AO →+OP →, ∵OP →与FB →共线,∴存在实数t ,使得OP →=tFB →, 则AP →=AO →+tFB →=AB →+AF →+t (AB →-AF →) =(1+t )AB →+(1-t )AF →,∴此时m +n =1+t +1-t =2,取得最小值.②当动圆Q 的圆心经过点D 时,取AD 的延长线与圆Q 的交点为P ,则AP →=52AO →=52()AB →+AF →=52AB →+52AF →,此时m +n =5,为最大值.9.在△ABC 中,AB =3,AC =2,∠BAC =60°,点P 是△ABC 内一点(含边界),若AP →=23AB →+λAC →,则|AP →|的最大值为________. 【答案】2133【解析】 以A 为原点,以AB 所在的直线为x 轴,建立如图所示的坐标系,∵AB =3,AC =2,∠BAC =60°, ∴A (0,0),B (3,0),C (1,3),设点P 为(x ,y ),0≤x ≤3,0≤y ≤3, ∵AP →=23AB →+λAC →,∴(x ,y )=23(3,0)+λ(1,3)=(2+λ,3λ),∴⎩⎨⎧x =2+λ,y =3λ,∴y =3(x -2),① 直线BC 的方程为y =-32(x -3),② 联立①②,解得⎩⎪⎨⎪⎧x =73,y =33,此时|AP →|最大,∴|AP →|=499+13=2133. 10.已知三角形ABC 中,AB =AC ,BC =4,∠BAC =120°,BE →=3EC →,若点P 是BC 边上的动点,则AP →·AE →的取值范围是________.【答案】 ⎣⎢⎡⎦⎥⎤-23,103 【解析】 因为AB =AC ,BC =4,∠BAC =120°,所以∠ABC =30°,AB =433.因为BE →=3EC →,所以BE →=34BC →.设BP →=tBC →,则0≤t ≤1,所以AP →=AB →+BP →=AB →+tBC →,又AE →=AB →+BE →=AB →+34BC →,所以AP →·AE →=(AB →+tBC →)·⎝⎛⎭⎪⎫AB →+34BC →=AB →2+tBC →·AB →+34BC →·AB →+34tBC →2=163+t ×4×433cos150°+34×4×433cos150°+34t ×42=4t -23, 因为0≤t ≤1,所以-23≤4t -23≤103,即AP →·AE →的取值范围是⎣⎢⎡⎦⎥⎤-23,103.11在矩形ABCD 中,AB =5,BC =3,P 为矩形内一点,且AP =52,若AP →=λAB →+μAD →(λ,μ∈R ),则5λ+3μ的最大值为______. 【答案】102【解析】 建立如图所示的平面直角坐标系,设P (x ,y ),B (5,0),C (5,3),D (0,3).∵AP =52,∴x 2+y 2=54. 点P 满足的约束条件为 ⎩⎪⎨⎪⎧0≤x ≤5,0≤y ≤3,x 2+y 2=54,∵AP →=λAB →+μAD →(λ,μ∈R ), ∴(x ,y )=λ(5,0)+μ(0,3),∴⎩⎨⎧x =5λ,y =3μ,∴x +y =5λ+3μ.∵x +y ≤2(x 2+y 2)=2×54=102, 当且仅当x =y 时取等号, ∴5λ+3μ的最大值为102. 12.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.【答案】 (-1,0)【解析】 由题意得,OC →=kOD →(k <0), 又|k |=|OC →||OD →|<1,∴-1<k <0.又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →, ∴mOA →+nOB →=k λOA →+k (1-λ)OB →, ∴m =k λ,n =k (1-λ), ∴m +n =k ,从而m +n ∈(-1,0).。
【2019最新】精选高考数学一轮复习第五章平面向量5-2平面向量基本定理及坐标表示学案理考纲展示►1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.考点1 平面向量基本定理及其应用1.平面向量基本定理如果e1,e2是同一平面内的两个________向量,那么对于这一平面内的任意向量a,________一对实数λ1,λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组________.答案:不共线有且只有基底2.平面向量的正交分解把一个向量分解为两个________的向量,叫做把向量正交分解.答案:互相垂直向量相等的常见两种形式:用基底表示的向量相等;用坐标表示的向量相等.(1)已知向量a,b不共线,若λ1a+b=-a+μ1b,则λ1=__________,μ1=__________.答案:-1 1解析:根据平面向量基本定理,用一组基底表示一个向量,基底的系数是唯一的,则有λ1=-1,μ1=1.(2)已知向量a=(1,2),b=(2,3),c=(3,4),若c=λa+μb,则2λ+μ=__________.答案:0解析:由c=λa+μb,得(3,4)=λ(1,2)+μ(2,3)=(λ+2μ,2λ+3μ),∴ 解得故2λ+μ=0.向量易忽略的两个问题:向量的夹角;单位向量.(1)等边三角形ABC 中,若=a ,=b, 则a ,b 的夹角为__________.答案:120°解析:求两向量的夹角要求两向量的起点是同一点,因此a ,b 的夹角为120°.(2)已知A(1,3),B(4,-1),则与向量共线的单位向量为__________.答案:或⎝ ⎛⎭⎪⎫-35,45 解析:由已知得=(3,-4),所以||=5,因此与共线的单位向量为=或-=.[典题1] (1)如果e1,e2是平面α内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一组基底的是( )A .e1与e1+e2B .e1-2e2与e1+2e2C .e1+e2与e1-e2D .e1+3e2与6e2+2e1 [答案] D[解析] 选项A 中,设e1+e2=λe1,则无解;选项B 中,设e1-2e2=λ(e1+2e2),则无解;选项C 中,设e1+e2=λ(e1-e2),则无解;选项D 中,e1+3e2=(6e2+2e1),所以两向量是共线向量.(2)[2017·山东济南调研]如图,在△ABC 中,=,P 是BN 上的一点,若=m +,则实数m 的值为________.[答案] 311[解析] 设=k ,k∈R.因为=+=+k BN→=+k(-)=+k ⎝ ⎛⎭⎪⎫14AC →-AB → =(1-k)+,且=m +,所以解得⎩⎪⎨⎪⎧k =811,m =311. [点石成金] 用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.考点2 平面向量的坐标运算平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模设a =(x1,y1),b =(x2,y2),则a +b =________,a -b =________,λa =________,|a|=________.(2)向量坐标的求法①若向量的起点是坐标原点,则终点的坐标即为向量的坐标.②设A(x1,y1),B(x2,y2),则=________,||=________.答案:(1)(x1+x2,y1+y2) (x1-x2,y1-y2) (λx1,λy1) x21+y21(2)②(x2-x1,y2-y1)(1)[教材习题改编]已知A(-1,-1),B(1,3),C(2,λ),若A ,B ,C 三点共线,则λ=________.答案:5(2)[教材习题改编]设P 是线段P1P2上的一点,若P1(2,3),P2(4,7)且P 是P1P2的一个四等分点,则P 的坐标为________.答案:或⎝ ⎛⎭⎪⎫72,6 [典题2] (1)在平行四边形ABCD 中,AC 为一条对角线,若=(2,4),=(1,3),则=() A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4) [答案] B[解析] 由题意,得=-AB→=-=(-)-=-2AB→=(1,3)-2(2,4)=(-3,-5).(2)[2017·广东六校联考]已知A(-3,0),B(0,2),O 为坐标原点,点C 在∠AOB内,|OC|=2,且∠AOC=,设= λ+(λ∈R),则λ的值为() A .1B. C.D.23 [答案] D[解析] 过C 作CE⊥x 轴于点E.由∠AOC=知,|OE|=|CE|=2,所以=+=λ+,即=λ,所以(-2,0)=λ(-3,0),故λ=.[点石成金] 平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)来进行求解.考点3 平面向量共线的坐标表示平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),则a∥b⇔________.答案:x1y2-x2y1=0(1)[教材习题改编]已知a=(3,4),b=(sin β,cos β),且a∥b,则tan β=__________.答案:34解析:由a∥b,得b=λa,∴sin β=3λ,cos β=4λ(λ≠0),∴=,即tan β=. (2)[教材习题改编]已知e1,e2是平面向量的一组基底,且a=λ1e1+λ2e2.若a∥e2,则λ1=________;a和e1共线的条件是________.答案:0 λ2=0解析:若a∥e2,则设a=λe2(λ≠0),于是λe2=λ1e1+λ2e2,即(λ-λ2)e2=λ1e1.又e1,e2不共线,所以λ-λ2=0且λ1=0.同理a和e1共线有λ2=0. [考情聚焦] 平面向量共线的坐标表示是高考的常考内容,多以选择题或填空题的形式出现,难度较小,属容易题.主要有以下几个命题角度:角度一利用向量共线求参数或点的坐标[典题3] (1)已知向量a=(2,3),b=(-1,2),若ma+4b与a-2b共线,则m=________.[答案] -2[解析] ma +4b =(2m -4,3m +8),a -2b =(4,-1),由于ma +4b 与a -2b 共线,∴-(2m -4)=4(3m +8),解得m =-2.(2)已知梯形ABCD ,其中AB∥CD,且DC =2AB ,三个顶点A(1,2),B(2,1),C(4,2),则点D 的坐标为________.[答案] (2,4)[解析] ∵在梯形ABCD 中,DC =2AB ,AB∥CD,∴=2.设点D 的坐标为(x ,y),则=(4-x,2-y),=(1,-1),∴(4-x,2-y)=2(1,-1),即(4-x,2-y)=(2,-2),∴解得⎩⎪⎨⎪⎧x =2,y =4, 故点D 的坐标为(2,4).[点石成金] 1.利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,则利用“若a =(x1,y1),b =(x2,y2),则a∥b 的充要条件是x1y2=x2y1”解题比较方便.2.利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa(λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.角度二利用向量共线解决三点共线问题[典题4] 已知向量=(1,-3),=(2,-1),=(k +1,k -2),若A ,B ,C 三点不能构成三角形,则k =________.[答案] 1[解析] 若A ,B ,C 不能构成三角形,则向量,共线.∵=-=(2,-1)-(1,-3)=(1,2),AC →=-=(k +1,k -2)-(1,-3)=(k ,k +1),∴1×(k +1)-2k =0,解得k =1.[点石成金] 向量共线的充要条件用坐标可表示为x1y2-x2y1=0.[方法技巧] 1.两向量平行的充要条件若a =(x1,y1),b =(x2,y2),其中b≠0,则a∥b 的充要条件是a =λb ,这与x1y2-x2y1=0在本质上是没有差异的,只是形式上不同.2.三点共线的判断方法判断三点是否共线,先求由三点组成的任两个向量,然后再按两向量共线进行判定.3.若a 与b 不共线且λa +μb =0,则λ=μ=0.[易错防范] 1.若a ,b 为非零向量,当a∥b 时,a ,b 的夹角为0°或180°,求解时容易忽视其中一种情形而导致出错.2.若a =(x1,y1),b =(x2,y2),则a∥b 的充要条件不能表示成=,因为x2,y2有可能等于0,所以应表示为x1y2-x2y1=0.真题演练集训1.[2016·新课标全国卷Ⅱ]已知向量a =(1,m),b =(3,-2),且(a +b)⊥b,则m =( )A .-8B .-6C .6D .8 答案:D解析:由向量的坐标运算,得a +b =(4,m -2),由(a +b) ⊥b,得(a +b)·b=12-2(m -2)=0,解得m =8,故选D.2.[2015·四川卷]设向量a =(2,4)与向量b =(x,6)共线,则实数x =( )A .2B .3C .4D .6 答案:B解析:∵ a∥b,∴ 2×6-4x =0,解得x =3.3.[2014·福建卷]在下列向量组中,可以把向量a =(3,2)表示出来的是( )A .e1=(0,0),e2=(1,2)B .e1=(-1,2),e2=(5,-2)C .e1=(3,5),e2=(6,10)D .e1=(2,-3),e2=(-2,3)答案:B解析:解法一:若e1=(0,0),e2=(1,2),则e1∥e2,而a 不能由e1,e2表示,排除A ;若e1=(-1,2),e2=(5,-2),因为≠,所以e1,e2不共线,根据共面向量的基本定理,可以把向量a =(3,2)表示出来,故选B.解法二:因为a =(3,2),若e1=(0,0),e2=(1,2),不存在实数λ,μ,使得a =λe1+μe2,排除A ;若e1=(-1,2),e2=(5,-2),设存在实数λ,μ,使得a =λe1+μe2,则(3,2)=(-λ+5μ,2λ-2μ),所以解得所以a =2e1+e2,故选B.4.[2015·新课标全国卷Ⅱ]设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.答案:12解析:∵ λa +b 与a +2b 平行,∴ λa +b =t(a +2b), 即λa +b =ta +2tb ,∴ 解得⎩⎪⎨⎪⎧λ=12,t =12. 5.[2015·北京卷]在△ABC 中,点M ,N 满足=2,=.若=x +y ,则x =________,y =________. 答案: -16解析:∵ =2,∴ =.∵ =,∴ =(+),∴=-=(+)-23AC →=-.又=x+y,∴ x=,y=-.课外拓展阅读向量问题坐标化向量具有代数和几何的双重特征,比如向量运算的平行四边形法则、三角形法则、平面向量基本定理等都可以认为是从几何的角度来研究向量的特征.而引入坐标后,就可以通过代数运算来研究向量,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.在处理很多与向量有关的问题时,坐标化是一种常见的思路,利用坐标可以使许多问题的解决变得更加简捷.[典例1] 向量a,b,c在正方形网格中的位置如图所示.若c=λa+μb(λ,μ∈R),则=________. [解析] 设i,j分别为水平方向和竖直方向上的正向单位向量,则a=-i+j,b=6i+2j,c=-i-3j,所以-i-3j=λ(-i+j)+μ(6i+2j),根据平面向量基本定理得,λ=-2,μ=-,所以=4.[答案] 4[典例2] 给定两个长度为1的平面向量和,它们的夹角为.如图所示,点C在以O为圆心的圆弧上运动.若=x+y,其中x,y∈R,求x+y的最大值.[思路分析][解] 以O为坐标原点,所在的直线为x轴建立平面直角坐标系,如图所示,则A(1,0),B,设∠AOC=α,α∈,则C(cos α,sin α),由=x+y,得所以x=cos α+sin α,y=sin α,所以x+y=cos α+sin α=2sin,又α∈,所以当α=时,x+y取得最大值2.方法探究典例2首先通过建立平面直角坐标系,引入向量的坐标运算,然后用三角函数的知识求出x+y的最大值.引入向量的坐标运算使得本题比较容易解决,体现了坐标法解决问题的优势.。
第2讲 平面向量的基本定理及坐标表示基础知识整合1.平面向量的基本定理如果e 1,e 2是同一平面内的两个□01不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =□02λ1e 1+λ2e 2. 2.平面向量的坐标表示在直角坐标系内,分别取与□03x 轴、y 轴正方向相同的两个单位向量i ,j 作为基底,对任一向量a ,有唯一一对实数x ,y ,使得:a =x i +y j ,□04(x ,y )叫做向量a 的直角坐标,记作a =(x ,y ),显然i =□05(1,0),j =□06(0,1),0= □07(0,0).3.平面向量的坐标运算(1)设a =(x 1,y 1),b =(x 2,y 2), 则a +b =□08(x 1+x 2,y 1+y 2), a -b =□09(x 1-x 2,y 1-y 2), λa =□10(λx 1,λy 1). (2)设A (x 1,y 1),B (x 2,y 2), 则AB →=□11(x 2-x 1,y 2-y 1),|AB →|x 2-12+y 2-4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔a =λb (λ∈R )⇔□13x 1y 2-x 2y 1=0.1.平面向量一组基底是两个不共线向量,平面向量基底可以有无穷多组.2.当且仅当x 2y 2≠0时,a ∥b 与x 1x 2=y 1y 2等价,即两个不平行于坐标轴的共线向量的对应坐标成比例.1.(2019·郑州模拟)设向量a =(x,1),b =(4,x ),若a ,b 方向相反,则实数x 的值是( )A .0B .±2C .2D .-2答案 D解析 由题意可得a ∥b ,所以x 2=4,解得x =-2或2,又a ,b 方向相反,所以x =-2.故选D.2.(2019·桂林模拟)下列各组向量中,可以作为基底的是( ) A .e 1=(0,0),e 2=(1,-2) B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎝ ⎛⎭⎪⎫12,-34答案 B解析 两个不共线的非零向量构成一组基底,A 中向量e 1为零向量,C ,D 中两向量共线,B 中e 1≠0,e 2≠0,且e 1与e 2不共线.故选B.3.在△ABC 中,已知A (2,1),B (0,2),BC →=(1,-2),则向量AC →=( ) A .(0,0) B .(2,2) C .(-1,-1) D .(-3,-3)答案 C解析 因为A (2,1),B (0,2),所以AB →=(-2,1).又因为BC →=(1,-2),所以AC →=AB →+BC →=(-2,1)+(1,-2)=(-1,-1).故选C.4.(2019·德州模拟)如图,向量e 1,e 2,a 的起点与终点均在正方形网格的格点上,则向量a 可用基底e 1,e 2表示为( )A .e 1+e 2B .-2e 1+e 2C .2e 1-e 2D .2e 1+e 2答案 B解析 由题意可取e 1=(1,0),e 2=(-1,1),a =(-3,1),设a =x e 1+y e 2=x (1,0)+y (-1,1)=(x -y ,y ),即⎩⎪⎨⎪⎧x -y =-3,y =1,解得⎩⎪⎨⎪⎧x =-2,y =1,故a =-2e 1+e 2.5.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ等于________.答案 12解析 因为a +λb =(1+λ,2),c =(3,4),且(a +λb )∥c ,所以1+λ3=24,所以λ=12. 6.若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 答案 -54解析 AB →=(a -1,3),AC →=(-3,4),据题意知AB →∥AC →,∴4(a -1)=3×(-3),即4a=-5,∴a =-54.核心考向突破考向一 平面向量基本定理的应用例1 (1)(2019·四川模拟)已知A ,B ,C 三点不共线,且点O 满足OA →+OB →+OC →=0,则下列结论正确的是( )A.OA →=13AB →+23BC →B.OA →=23AB →+13BC →C.OA →=13AB →-23BC →D.OA →=-23AB →-13BC →答案 D解析 ∵OA →+OB →+OC →=0,∴O 为△ABC 的重心,∴OA →=-23×12(AB →+AC →)=-13(AB →+AC →)=-13(AB →+AB →+BC →)=-13(2AB →+BC →)=-23AB →-13BC →.故选D.(2)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫0,13C.⎝ ⎛⎭⎪⎫-12,0 D.⎝ ⎛⎭⎪⎫-13,0 答案 D解析 解法一:由已知有AC →+CO →=xAB →+AC →-xAC →,则CO →=x (AB →-AC →)=xCB →=-3xCD →,因为0<-3x <1,所以x ∈⎝ ⎛⎭⎪⎫-13,0. 解法二:设CO →=yBC →,因为AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →)=-yAB →+(1+y )AC →. 因为BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),所以y ∈⎝ ⎛⎭⎪⎫0,13.因为AO →=xAB →+(1-x )AC →,所以x =-y ,所以x ∈⎝ ⎛⎭⎪⎫-13,0.故选D. 触类旁通应用平面向量基本定理表示向量的方法应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加法、减法或数乘运算,基本方法有两种:运用向量的线性运算法则对待求向量不断进行化简,直至用基底表示为止. 将向量用含参数的基底表示,然后列方程或方程组,利用基底表示向量的唯一性求解.。
2018版高考数学大一轮复习 第五章 平面向量 5.2 平面向量基本定理及坐标表示教师用书 文 北师大版1.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,存在唯一一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫作表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔x 1y 2-x 2y 1=0. 【知识拓展】1.若a 与b 不共线,λa +μb =0,则λ=μ=0.2.设a =(x 1,y 1),b =(x 2,y 2),如果x 2≠0,y 2≠0,则a ∥b ⇔x 1x 2=y 1y 2. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( × )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( √ )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( × ) (5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ ) 1.设e 1,e 2是平面内一组基底,那么( )A .若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0B .空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数)C .对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内D .对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对 答案 A2.(教材改编)已知a 1+a 2+…+a n =0,且a n =(3,4),则a 1+a 2+…+a n -1的坐标为( ) A .(4,3) B .(-4,-3) C .(-3,-4) D .(-3,4)答案 C解析 a 1+a 2+…+a n -1=-a n =(-3,-4).3.(2015·课标全国Ⅰ)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →等于( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4) 答案 A解析 AB →=(3,1),AC →=(-4,-3),BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4).4.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn=________. 答案 -12解析 由已知条件可得m a +n b =(2m,3m )+(-n,2n )=(2m -n,3m +2n ),a -2b =(2,3)-(-2,4)=(4,-1).∵m a +n b 与a -2b 共线,∴2m -n 4=3m +2n -1,即n -2m =12m +8n ,∴m n =-12. 5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. 答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.题型一 平面向量基本定理的应用例1 在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →等于( ) A.14a +12b B.12a +14b C.23a +13b D.13a +23b 答案 C解析 ∵AC →=a ,BD →=b , ∴AD →=AO →+OD → =12AC →+12BD →=12a +12b . ∵E 是OD 的中点,∴DE EB =13,∴DF =13AB .∴DF →=13AB →=13(OB →-OA →)=13×[-12BD →-(-12AC →)] =16AC →-16BD →=16a -16b , ∴AF →=AD →+DF →=12a +12b +16a -16b=23a +13b , 故选C.思维升华 平面向量基本定理应用的实质和一般思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案311解析 设BP →=kBN →,k ∈R . 因为AP →=AB →+BP →=AB →+kBN → =AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( )A.⎝ ⎛⎭⎪⎫1,83 B.⎝ ⎛⎭⎪⎫-133,83 C.⎝⎛⎭⎪⎫133,43D.⎝ ⎛⎭⎪⎫-133,-43(2)已知向量a =(1,-2),b =(m,4),且a ∥b ,则2a -b 等于( ) A .(4,0) B .(0,4) C .(4,-8) D .(-4,8)答案 (1)D (2)C解析 (1)由已知3c =-a +2b=(-5,2)+(-8,-6)=(-13,-4). 所以c =⎝ ⎛⎭⎪⎫-133,-43.(2)因为向量a =(1,-2),b =(m,4),且a ∥b , 所以1×4+2m =0,即m =-2,所以2a -b =2×(1,-2)-(-2,4)=(4,-8).思维升华 向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.(1)(2016·北京东城区模拟)向量a ,b ,c在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=________. (2)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( ) A .(2,72)B .(2,-12)C .(3,2)D .(1,3)答案 (1)4 (2)A解析 (1)以向量a 和b 的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO →=(-1,1),b =OB →=(6,2),c =BC →=(-1,-3). ∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2),即⎩⎪⎨⎪⎧-λ+6μ=-1,λ+2μ=-3,解得λ=-2,μ=-12,∴λμ=4.(2)设D (x ,y ),AD →=(x ,y -2),BC →=(4,3),又BC →=2AD →,∴⎩⎪⎨⎪⎧4=2x ,3=2y -2,∴⎩⎪⎨⎪⎧x =2,y =72,故选A.题型三 向量共线的坐标表示命题点1 利用向量共线求向量或点的坐标例3 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ).又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3).方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3). 命题点2 利用向量共线求参数例4 (2016·郑州模拟)已知向量a =(1-sin θ,1),b =(12,1+sin θ),若a ∥b ,则锐角θ=________. 答案 45°解析 由a ∥b ,得(1-sin θ)(1+sin θ)=12,所以cos 2θ=12,∴cos θ=22或cos θ=-22,又θ为锐角,∴θ=45°.思维升华 平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa即可得到所求的向量.(1)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.(2)设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b的最小值为________.答案 (1)(2,4) (2)3+222解析 (1)∵在梯形ABCD 中,AB ∥CD ,DC =2AB , ∴DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x,2-y ), AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).(2)由已知得AB →=(-a +2,-2),AC →=(b +2,-4), 又AB →∥AC →,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λb +2,-2=-4λ,整理得2a +b =2,所以1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+ 222(当且仅当b =2a 时,等号成立).11.解析法(坐标法)在向量中的应用典例 (12分)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.思想方法指导 建立平面直角坐标系,将向量坐标化,将向量问题转化为函数问题更加凸显向量的代数特征. 规范解答解 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示, 则A (1,0),B (-12,32).[4分]设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得⎩⎪⎨⎪⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,[8分] 所以x +y =cos α+3sin α=2sin(α+π6),[10分]又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.[12分]1.(2016·江西玉山一中期考)如图,在平行四边形ABCD 中,M 为CD 的中点,若AC →=λAM →+μAB →,则μ的值为( )A.14B.13C.12 D .1 答案 C解析 ∵在平行四边形ABCD 中,M 为CD 的中点, ∴AM →=AD →+DM → =AD →+12AB →,∵AC →=λAM →+μAB →,∴AC →=λ(AD →+12AB →)+μAB →=λAD →+(12λ+μ)AB →,∵AC →=AD →+AB →,∴λ=1,12λ+μ=1,∴μ=12.2.已知点M (5,-6)和向量a =(1,-2),若MN →=-3a ,则点N 的坐标为( ) A .(2,0) B .(-3,6) C .(6,2) D .(-2,0)答案 A解析 设N (x ,y ),则(x -5,y +6)=(-3,6), ∴x =2,y =0.3.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ等于( ) A.14 B.12 C .1 D .2 答案 B解析 ∵a +λb =(1+λ,2),c =(3,4), 且(a +λb )∥c ,∴1+λ3=24,∴λ=12,故选B.4.已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于( ) A .-12a +32bB.12a -32b C .-32a -12bD .-32a +12b答案 B解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ,2=λ-μ,∴⎩⎪⎨⎪⎧λ=12,μ=-32,∴c =12a -32b .5.(2016·淮南一模)已知平行四边形ABCD 中,AD →=(3,7),AB →=(-2,3),对角线AC 与BD 交于点O ,则CO →的坐标为( ) A .(-12,5)B .(12,5)C .(12,-5)D .(-12,-5)答案 D解析 ∵AC →=AB →+AD →=(-2,3)+(3,7)=(1,10), ∴OC →=12AC →=(12,5),∴CO →=(-12,-5).6.在△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 等于( ) A.23 B.43 C .-3 D .0 答案 D解析 因为CD →=2DB →,所以CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝ ⎛⎭⎪⎫-23=0,故选D.7.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1), ∴BD →=AD →-AB →=BC →-AB →=(-3,-5).8.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.答案 12解析 ∵a ∥b ,∴sin 2θ×1-cos 2θ=0, ∴2sin θcos θ-cos 2θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=12.9.在平行四边形ABCD 中,E 和F 分别是CD 和BC 的中点.若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________. 答案 43解析 选择AB →,AD →作为平面向量的一组基底, 则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=(12λ+μ)AB →+(λ+12μ)AD →, 于是得⎩⎪⎨⎪⎧ 12λ+μ=1,λ+12μ=1,解得⎩⎪⎨⎪⎧ λ=23,μ=23,所以λ+μ=43. 10.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.答案 (-1,0)解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0. 又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).11.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解 (1)由已知得AB →=(2,-2),AC →=(a -1,b -1),∵A ,B ,C 三点共线,∴AB →∥AC →.∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC →=2AB →,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧ a =5,b =-3.∴点C 的坐标为(5,-3).12.已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ;(3)求M ,N 的坐标及向量MN →的坐标.解 (1)由已知得a =(5,-5),b =(-6,-3),c =(1,8).3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵m b +n c =(-6m +n ,-3m +8n )=(5,-5),∴⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5, 解得⎩⎪⎨⎪⎧ m =-1,n =-1.(3)设O 为坐标原点,∵CM →=OM →-OC →=3c ,∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20),∴M (0,20).又∵CN →=ON →-OC →=-2b ,∴ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2),∴N (9,2),∴MN →=(9,-18).13.如图所示,G 是△OAB 的重心,P ,Q 分别是边OA 、OB 上的动点,且P ,G ,Q 三点共线.(1)设PG →=λPQ →,将OG →用λ,OP →,OQ →表示;(2)设OP →=xOA →,OQ →=yOB →,证明:1x +1y是定值. (1)解 OG →=OP →+PG →=OP →+λPQ →=OP →+λ(OQ →-OP →)=(1-λ)OP →+λOQ →.(2)证明 一方面,由(1),得OG →=(1-λ)OP →+λOQ →=(1-λ)xOA →+λy OB →;①另一方面,∵G 是△OAB 的重心,∴OG →=23OM →=23×12(OA →+OB →) =13OA →+13OB →.② 由①②得⎩⎪⎨⎪⎧ 1-λx =13,λy =13.∴1x +1y =3(1-λ)+3λ=3(定值).。