初中数学八年级上册(北师大版) 5. 5应用二元一次方程组—里程碑上的数课件
- 格式:pptx
- 大小:3.05 MB
- 文档页数:25
5应用二元一次方程组——里程碑上的数典型例题题型一列二元一次方程组解决数字问题例1有一个两位数,个位上的数字比十位上的数字大5,如果把这两个数字的位置对换,那么所得的新数与原数的和是143,求这个两位数.分析:如果一个两位数十位上的数字为a,个位上的数字为b,这个两位数就表示为10a+b;如果一个三位数百位上的数字为a,十位上的数字为b,个位上的数字为c,这个三位数就表示为100a+10b+c.本题中的相等关系:①个位上的数字-十位上的数字=5,②原数+新数=143.解:设原来的两位数中,个位上的数字为x,十位上的数字为y,则原数为10y+x,把这两个数字的位置对换后,所得的新数为10x+y.根据题意,得5, 1010143, x yy x x y-=⎧⎨+++=⎩解得9,4. xy=⎧⎨=⎩所以这个两位数为10y+x=10×4+9=49.答:这个两位数为49.点拨:利用方程组解决数字问题时,一般不直接设这个数,而是设这个数的各数位上的数字,再利用数的表示方法表示出这个数.例2有一个三位数,现将最左边的数字移到最右边,则比原来的数小45,又知百位数字的9倍比十位和个位数字组成的两位数小3,求原三位数.分析:根据两个条件,可知不必设成三个未知数,只需把它看成一个百位数字x和一个由十位与个位数字组成的两位数y,则这个三位数就可看成100x+y;若将最左边的数字移到最右边,则x就变成了个位数字,y就扩大了10倍,新三位数可表示为10y+x.因此相等关系为:(1)百位数字×9=由十位与个位数字组成的两位数-3;(2)新三位数=原三位数-45.解:设原三位数的百位数字为x,由十位与个位数字组成的两位数为y.根据题意,得93, 1010045, x yy x x y=-⎧⎨+=+-⎩解得4,39.xy=⎧⎨=⎩则4×100+39=439.答:原三位数为439.点拨:此题通过灵活选设未知数,将一个三元问题转化成了二元问题.题型二列二元一次方程组解决行程问题例3某中学新建的塑胶操场环形跑道一圈长400 m,甲、乙两名同学从同一起点同时出发,相背而跑,40 s后首次相遇;若从同一起点同时同向而跑,200 s后甲首次追上乙,求甲、乙两名同学的速度.分析:在环形跑道上,同时同地出发,相背而跑,为相遇问题,首次相遇时,相等关系为:甲跑的路程+乙跑的路程=跑道一圈的长;若从同一地点同时同向而跑,甲首次追上乙为追及问题,相等关系为:甲跑的路程-乙跑的路程=跑道一圈的长.解:设甲同学的速度为x m/s,乙同学的速度为y m/s.根据题意,得()40400, 200200400, x yx y+⨯=⎧⎨-=⎩整理,得10,2,x yx y+=⎧⎨-=⎩解得6,4.xy=⎧⎨=⎩答:甲同学的速度为6 m/s,乙同学的速度为4 m/s.点拨:相遇问题中,(甲速+乙速)×时间=总路程;追及问题中,(甲速-乙速)×时间=甲、乙相距的路程.例4甲、乙两地相距160 km,一辆汽车和一辆拖拉机同时由甲、乙两地出发,相向而行,43h 相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1 h 后调转车头原速返回,在汽车再次出发12h 时追上了拖拉机.这时,汽车、拖拉机各自行驶了多少千米? 分析:画直线型示意图理解题意(如图1所示).图1这里有两个未知数:(1)汽车的行程;(2)拖拉机的行程.有两个相等关系:(1)相向而行:汽车43h 行驶的路程+拖拉机43h 行驶的路程=160 km ; (2)同向而行:汽车12h 行驶的路程=拖拉机112⎛⎫+ ⎪⎝⎭h 行驶的路程. 解:设汽车每小时行驶x km ,拖拉机每小时行驶y km. 根据题意,得4()160,3111,22x y x y ⎧⨯+=⎪⎪⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩解得90,30.x y =⎧⎨=⎩ 90×4132⎛⎫+ ⎪⎝⎭=165(km),30×4332⎛⎫+ ⎪⎝⎭=85(km). 答:汽车行驶了165 km ,拖拉机行驶了85 km.题型三 列二元一次方程组解决航速问题例5 一轮船从甲地到乙地顺流航行需4 h ,从乙地到甲地逆流航行需6 h ,那么一木筏从甲地漂流到乙地需多长时间?分析:对于航速问题,主要有如下两个公式:①顺速=静速+水(风)速;②逆速=静速-水(风)速.显然本题中所求的木筏由甲地漂流到乙地所需的时间,实际上就是水从甲地流到乙地需要的时间,木筏漂流的速度就是水流的速度,如果本题采用直接设法,则难以解决,故选用间接设法,设出轮船在静水中的速度和水流速度,为了解题更简单,可增设一个未知数,即甲、乙两地间的路程.解:设轮船在静水中的速度为x km/h ,水流速度为y km/h ,甲、乙两地间的路程为a km.根据题意,得4(),6(),x y a x y a +=⎧⎨-=⎩解这个方程组,得x =5y .把x =5y 代入①,得a =4×(5y +y )=24y . 所以木筏从甲地漂流到乙地所需时间为a y =24y y=24(h). 答:木筏从甲地漂流到乙地需24 h.点拨:本题中有三个未知数,但是却只有两个方程,所以在解题后是得不到具体数据的,不过我们可以把其中的一个未知数看作一个常数,如上面的y ,其他的未知数就可以用这个未知数来表示.a 的参与增加了方程组的可理解性,更能提供操作的可能性,便于解题.题型四列二元一次方程组解决年龄问题例6一名学生问老师:“您今年多大?”老师风趣地说:“我像你这样大时,你才出生;你到我这么大时,我已经36岁了.”请求出老师、学生今年的年龄.分析:本题的相等关系:①老师的年龄-学生的年龄=相差年龄(学生今年年龄);②增长的年龄+老师的年龄=36.解:设老师今年x岁,学生今年y岁.根据题意,得,36,x y yx y x-=⎧⎨-+=⎩解得24,12.xy=⎧⎨=⎩答:老师今年24岁,学生今年12岁.注意:人与人的年龄是同时增长的,所以老师与学生的年龄差是不变的.题型四开放拓展题例7如图2所示,在3×3的方格内,填写了一些代数式和数.图2(1)在图①中,各行、各列及对角线上三个数之和都相等,请求出x,y的值.(2)把满足(1)的其他6个数填入图2②中的方格中.分析:依题意可知图2①中有两个等式:2x+3+2=2+(-3)+4y,2x+3+2=2x+y+4y,由此可以列出二元一次方程组求解.解:(1)由已知条件可列出方程组2322(3)4, 23224,x yx x y y++=+-+⎧⎨++=++⎩整理,得2343,55,x yy+=-⎧⎨=⎩解得1,1.xy=-⎧⎨=⎩(2)由(1)可得如图3所示的方格.图3说明:本题列方程组时有不同的列法,具有一定的开放性,虽然所列的方程组可能不同,但结果是一样的.拓展资源经典有趣的行程问题1甲、乙两人分别从相距100 米的A、B两地出发,相向而行,其中甲的速度是2米/秒,乙的速度是3 米/秒.一只狗从A地出发,先以6米/秒的速度奔向乙,碰到乙后再掉头冲向甲,碰到甲之后再跑向乙,如此反复,直到甲、乙两人相遇.问在此过程中狗一共跑了多少米?这可以说是最经典的行程问题了.不用分析小狗具体跑过哪些路程,只需要注意到甲、乙两人从出发到相遇需要20 秒,在这20 秒的时间里小狗一直在跑,因此它跑过的路程就是120 米.2假设你站在甲、乙两地之间的某个位置,想乘坐出租车到乙地去.你看见一辆空车远远地从甲地驶来,而此时整条路上并没有别人与你争抢空车.我们假定车的行驶速度和人的步行速度都是固定不变的,并且车速大于人速.为了更快地到达目的地,你应该迎着车走过去,还是顺着车的方向往前走一点?在各种人多的场合下提出这个问题,此时大家的观点往往会立即分为鲜明的两派,并且各有各的道理.有人说,由于车速大于人速,我应该尽可能早地上车,充分利用汽车的速度优势,因此应该迎着空车走上去,提前与车相遇.另一派人则说,为了尽早到达目的地,我应该充分利用时间,马不停蹄地赶往目的地.因此,我应该自己先朝目的地走一段路,再让出租车载我走完剩下的路程.其实答案出人意料的简单,两种方案花费的时间显然是一样的.只要站在出租车的角度上想一想,问题就变得很显然了:不管人在哪儿上车,出租车反正都要驶完甲地到乙地的全部路程,因此你到达乙地的时间总等于出租车驶完全程的时间,加上途中接人上车可能耽误的时间.从省事儿的角度来讲,站在原地不动是最好的方案!不过不少人都找到了这个题的一个缺陷,那就是在某些极端情况下,顺着车的方向往前走可能会更好一些,因为你或许会直接走到终点,而此时出租车根本还没追上你!。