机载激光雷达(LiDAR)测量技术在公路勘测设计中的应用
- 格式:pdf
- 大小:216.08 KB
- 文档页数:2
机载LIDAR系统在公路断面测量中的应用与精度分析摘要:机载LIDAR技术的发展为获取高时空分辨率的地球空间信息提供了全新的技术手段,使人们从传统的单点数据摄取变为连续自动数据获取,提高了观测的精度和速度,能够快速地摄取精确的高分辨率的数字地面模型以及地面物体的三维坐标,进而获取地表物体的垂直结构形态,同时配合地物的影像或红外成像结果,增强对地物的认识和识别能力,在公路测量测绘等领域具有广阔的发展前景和应用需求。
关键词:机载LIDAR系统;公路断面测量;精度Abstract: Airborne LIDAR technology to obtain high spatial and temporal resolution of geo-spatial information provides a new technical means, so that people from the traditional single-point data ingest becomes continuous automatic data acquisition, improve accuracy and speed of observation, can intake of fast accurate and high-resolution digital terrain model of the three-dimensional coordinates of objects on the ground, and then ground to obtain a vertical structure of the object shape, in conjunction with the feature of the image or infrared imaging result, enhance the awareness and the ability to identify the feature in the Highway Surveying mapping and other areas has broad prospects for development and application requirements.Keywords: airborne LIDAR system; road cross-section measurement; accuracy一引言机载激光扫描测量技术是激光测距技术、计算机技术、高精度动态载体姿态测量技术(INS)和高精度动态GPS差分定位技术迅速发展的集中体现。
阐述Lidar系统在二广高速某路段勘测中的应用摘要:激光雷达测量(Lidar)作为航测法的一种发展既继承了传统航测法的优点,又使测图精度得到了提高。
本文对激光雷达测图技术进行了简单阐述并对利用激光雷达在二广高速某路段所测1:2000地形图进行了精度分析。
关键词:Lidar系统、滤波、内插、精度。
1引言Lidar系统(Light detection and ranging)是一种集全球定位系统(GPS)、惯性导航系统(INS)、激光扫描仪、数码相机等光谱成像设备与一身的系统。
LIDAR 系统应用多光束返回采集高程,数据密度可达到常规摄影测量的三倍,其高程数据精度不受航高限制,比常规摄影测量更具优越性。
可提供理想的数字高程模型DEM。
激光雷达的应用使测图工作既节省了人力物力,也提高了效率。
2方法实施激光高程点处理过程可以将其归结为三个步骤:1、原始数据的获取;2、地面点三维数据的计算和转换;3、数据处理。
2.1原始数据获取在扫描过程中激光扫描仪发射激光脉冲,并接受到由探测目标反射回来的脉冲信号,从而得到探测目标的距离、坡度、粗糙度和反射率等信号。
数码相机对地面进行拍摄得到地面影像。
其扫描方式按照光束在地面上的形状和轨迹间隔可分为平行扫描方式、“之”字形扫描方式和近椭圆扫描方式,如图1。
平行扫描方式之字形扫描方式近椭圆扫描方式图1在激光扫描获取原始数据过程中,激光的扫描方式直接影响到激光数据的点云密度。
当方式合适其点云密度旁向可达0.3m以下,航向间距可达0.8m以下。
在实际操作中应根据情况选择适合的扫描方式和各项参数,这样在经过后期的滤波和内插计算之后,就可以得到足够密的点云数据。
与此同时,全球定位系统(GPS)、惯性导航系统(INS)就负责实时的获取扫描仪和数码相机的位置(X、Y、H)和方位(滚动角、俯仰角、航偏角)。
最终得到两类数据:一类就是有所得到的目标物的距离、坡度、粗糙度和反射率等信号以及拍摄的地面影像。
无人机机载LiDAR航测技术道路测绘应用效果分析摘要:随着无人机空中航测设备的不断完善,无人机航测技术也将广泛应用于各行各业。
目前的无人机航测主要包括使用配备高清镜头的无人机从多个角度生成高清图像,使用高清点云投影算法生成实景3D模型,用实景3D模型标记地形,设计布局计划,并进行实景模型测量。
这种传统的无人机航测技术通过高清镜头进行数据采集,对于测绘精度的要求,测绘面积相对较小,植被率较低,在技术应用领域相对较好,但对于相对较高的植被覆盖率,测绘精度满足线性工程师的要求,传统航测很难达到项目的精度要求。
因此,研究激光雷达技术如何以更高的航测精度,以完成测绘任务成为研究的重点。
关键词:无人机;机载雷达;道路测绘LIDAR技术是近二十年来摄影测量与遥感领域具有革命性的成就,随着空间数据的使用越来越多,对准确可靠的空间数据的需求也在增加。
由于生产周期长,成本高,数据采集密度低,传统的摄影测量无法满足现代信息社会的要求,LIDAR是一种快速准确的地面3D数据技术。
一、LIDAR系统概述激光雷达(LIDAR)是LIGHR DETECTION AND RANGING的缩写,即激光探测与测量系统。
它使用单个激光脉冲来测量从激光源到目标和返回激光接收器的时间,同时结合飞机传感器的定位和方位数据来精确测量(目标)的三维坐标。
1.系统工作原理。
机载LIDAR是一个激光测距,测量传感器到位置的距离,而高精度星座观测系统(IMU)测量主扫描轴的正空间参数。
全球定位系统(GPS)是一种高分辨率的数码相机,它捕获与地面相对应的彩色数字图像,以确定扫描中心的空间位置,从而产生正射影像。
2.测量原理。
包括单束窄带激光器和接收系统,它产生光脉冲,向物体发送,最终反射接收器接收的物体。
光接收器精确测量光脉冲和反射之间的时间。
由于光脉冲以光速传播,因此接收器始终接收先前反射的脉冲,直到下一次脉冲调整发生。
由于光速是已知的,因此运动时间可以转换为距离测量。
机载激光雷达(LiDAR)测量在公路三维测设中的应用探究机载激光雷达(LiDAR)测量技术融合了多种先进技术,在公路三维测设中发挥着更大的作用。
基于此,本文分析了机载激光雷达(LiDAR)测量的技术的使用优势,阐述了辅助地面控制测量、采集参数的选择、横断面的采集、DOM、DEM、DLG的制作这些机载激光雷达(LiDAR)测量技术在公路三维测设中的应用。
标签:机载激光雷达(LiDAR)测量;公路;三维测设作为一种新型的空间测量技术,机载激光雷达(LiDAR)测量技术融合了全球定位系统(GNSS)、激光扫描、摄影测量、惯性导航系统(IMU)等技术,能够更加准确的、快速的完成地表三维空间信息的收集。
可以说,机载激光雷达(LiDAR)测量技术是继GPS技术后的又一次三维测绘技术进步。
经过实践能够发现,机载激光雷达(LiDAR)测量技术能够更加高效的获取地面精密数字地面模型,在公路三维测设中发挥着重要的作用。
一、机载激光雷达(LiDAR)测量的技术分析(一)机载激光雷达(LiDAR)测量技术的使用优势分析对于机载激光雷达(LiDAR)测量技术来说,其融合的多种先进技术,在公路三维测设中有着更好的使用有优势。
机载激光雷达(LiDAR)测量技术主要有以下几种使用优势:第一,数据密度相对较高。
机载激光点云的采集间距相对较小,一般在0.8-1.2米之间。
结合实际的需求该间距可以更小。
在这样的采集条件下,数据密度显著提升,在真实地面高程模型的建立中有着极大的优势。
而在传统的DTM测量中,平均点的间距在25米左右。
可知,机载激光雷达(LiDAR)测量技术有着更高的数据密度。
第二,精确度相对较高。
对于机载激光点云数据来说,其获取都是激光测量直接完成的。
理论上,机载激光雷达(LiDAR)测量技术的高程精度可以达到0.1米;平面精度可以达到0.15米。
而在传统的航测中,理论上的高程精度为0.3-0.5米。
第三,空三定位更为先进。
关于LiDAR技术在山区道路勘察测量中的应用摘要:山区公路勘察过程中常规测量方法困难,利用lidar技术有效控制工期及测绘成果质量关键词:山区公路勘察常规测量方法困难 lidar技术1、前言在山区公路勘察过程中,线路所经范围大多由于地形复杂,测绘人员无法到达,给常规勘测方法和手段带来极大困难。
以重庆巫溪县至陕西镇平县高速公路为例,路线经过区域地貌以山地为主,山地占95%以上,个别路段山势陡峭;地形为南低北高,绝对高差达2000米,属典型的中深切割中山地形,按传统勘测方法,很难按时保质的要求完成前期基础资料测绘工作,尤其是设计用1:2000或更大比例尺地形成果图及路线和结构物纵横断面测绘。
为了解决上述问题,拟采用目前技术最先进国内较成熟的能实时获取地形表面三维空间信息和影像的航空遥感新技术即机载三维激光雷达扫描(简称lidar)勘测新技术。
与传统遥感技术相比较具有自动化程度高、受天气影响小、数据生产周期短、精度高等技术特点。
2 、lidar 技术原理lidar系统通常由以下部分组成:pos系统,传感器系统,采集管理系统,存储与控制系统。
其中pos系统由gps定位系统和imu 惯性导航系统组成。
gps定位系统通过差分精确测定传感器的空间位置,imu惯性导航系统精确记录飞行姿态,激光传感器通过计算激光回波时间,精确记录传感器与地物回波点之间的距离,由此可直接测量地面及地物各个点的三维坐标。
使用激光进行距离量测可大大提高了数据采集的可靠性和抗干扰能力。
当来自激光器的激光射到一个物体的表面时,其中一部分光会反射回去,被激光雷达所配备的接收器所接收。
当仪器计算出光由激光器射出到返回到接收器的时间为2t后,那么激光器到反射物体的距离d=光速(c)×时间(t),结合gps得到的激光器位置坐标信息, imu得到的激光方向信息,就可以准确地计算出每一个激光点的大地坐标 (x,y,z),大量的激光点聚集成激光点云,组成点云图像,这就是机载激光雷达的测高原理。
研究公路勘察设计中的机载激光雷达测量技术现代公路的范围越来越广泛,经常需要在复杂的地质环境中建设公路,这增加了公路勘查设计难度。
基于此,在公路勘查设计过程中,要加强对机载激光雷达技术的应用,从而提高公路勘查设计质量,从而提高公路的整体质量,为人们提供更加稳定、良好的交通环境。
标签:公路;勘察设计;机载激光雷达机载激光雷达(LIDAR)兴起于二十世纪九十年代,是一门新兴的遥感技术,其发展至今,已经约有30年历史。
近几年,我国相关学者对LIDAR技术进行了研究,并且加强了对相关设备的投入使用,从实际应用情况来看取得了不错的成绩,但是仍然存在一定问题,因此要加强对相应内容的研究与分析。
1、LIDAR技术特点LIDAR系统与机载GPS、惯性导航系统INS剂CCD合理结合,可以实现对空间的精准定位。
在具体测距过程中,采用激光方式,其与常规航空摄影测量相比,优点主要体现在以下几个方面:(1)在测量过程中,不会因为太阳角度和阴影温度对高程的精度造成不良影响,并且不会受航高限制。
(2)产品更加多样化,在具体作业中具有更多的选择性。
(3)通过测量可以获取更多的地面信息。
(4)外界作业量少,提高了工作效率。
机载LIDAR系统为综合航摄影响和空中数据定位而设计,因此在作业过程中,可以为工程应用和数字制图提供快速精准的地面模型数据和高分辨率数字的正摄影[1]。
一般来说,在作业过程中,应用LIDAR系统,获取数据的平均精准度可以能够达到0.5m,在高程方面的精准度能够达到0.3m,地面间采集点的间隔不超过1.5m。
2、LIDAR测量技术中的重点问题分析2.1 飞行设计飞行设计是激光雷达航测过程中的一项关键环节,做好该项设计是确保LIDAR技术在共公勘察设计中能够发挥出良好作用的基础,在整个作业过程中,要确保采集到的各项数据的准确性,保证数据成果精度能够达到要求标准。
飞行设计前应当本着经济、安全、高效等原则,将项目成果数据作为追求的主要目标,对地貌、地形等内容进行详细分析,结合LIDAR设备本身的特点,确定合理的飞行参数,从而确保能够获取高质量的数据。