三相半波整流电路的设计
- 格式:wps
- 大小:446.10 KB
- 文档页数:14
11 三相半波整流电路的负载分析1.1 引言单相整流电路线路简单,价格便宜,制造、调整、维修都比较容易,但其输出的直流电压脉动大,脉动频率低。
又因为它接在三相电网的一相上,当容量较大时易造成三相电网不平衡,因而只用在容量较小的地方。
一般负载功率超过4kw要求直流电压脉动较小时,可以采用三相可控整流电路。
半波整流电路是一种实用的整流电路。
它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。
变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。
图1 半波整流电路变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图所示。
在0~K时间内,e2为正半周即变压器上端为正下端为负。
此时二极管承受正向电压面导通,e2通过它加在负载电阻Rfz上,在π~2π时间内,e2为负半周,变压器次级下端为正,上端为负。
这时D承受反向电压,不导通,Rfz,上无电压。
在π~2π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图所示,达到了整流的目的,但是,负载电压Usc。
以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。
这种除去半周、图下半周的整流方法,叫半波整流。
不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。
图2 正弦波图形1.2 设计任务设计指标:输入电压:三相交流380伏、50赫兹;输出功率:2KW;输出电压:DC110V;用集成电路芯片或分立元件组成触发电路;负载性质:电阻(10Ω)、电阻(10Ω)电感(10mH)。
课程设计任务书图1三相半波可控整流电路原理图对于VS1、VS2、VS3,只有在1、2、3点之后对应于该元件承受正向电压期间来触发脉冲,该晶闸管才能触发导通,1、2、3点是相邻相电压波形的交点,也是不可控整流的自然换相点。
对三相可控整流而言,控制角α就是从自然换相点算起的。
控制角0<α£2π/3,导通角0<θ£2π/3。
晶闸管承受的最大正向电压.承受的最大反向电压:2.1.2负载电压当0 ≤ α ≤ π/6时图2电路输出电压波形在一个周期内三相轮流导通,负载上得到脉动直流电压Ud,其波形是连续的。
电流波形与电压波形相似,这时,每只晶闸管导通角为120°,负载上电压平均值为:当π/6 < α ≤ 5π/6时图3电路输出电压波形2.2带阻感负载时的工作情况2.2.1原理说明电感性负载由于电感的存在使得电流始终保持连续,所以每只晶闸管导通角为2π/3,输出电压的平均值为:当α=π/2时,Ud =0,因此三相半波整流电感负载时的控制角为0~ π/2正向承受的最大电压为反向承受的最大电压为图4是电路接线图图4阻感负载接线图图5输出电压波形3.设计结果与分析3.1仿真模型根据原理图利用MATLAB/SIMULINK软件中,电力电子模块库建立相应的仿真模型如图5图6仿真模型图3.2 仿真参数设置晶闸管参数:I vt=I/√3=0.577I d=0.577×6.04=3.46AI fav=I VT/1.57=2.2A额定值一般取正向电流的1.5-2倍,所以取3.3-4.4A之间的数值。
UFM=URM=2.45U2=245V晶闸管额定电压选值一般为最大承受电压的2-3倍,所以额定电压取值为490-735V之间。
变压器参数计算Ud=100V变压器二次侧采用星形接法,所以变压器二次侧峰值为141.4V变压器一次侧采用三角形接法,因此每相接入电压峰值为380V一次侧电压接电网电压220V电压器变比则约为2.693.3仿真结果U2波形仿真图图7 U2波形仿真图U波形图vt1图8 U vt1波形图波形图Ivt1Ivt图9 I vt1波形图u波形图d图10 u d波形图i波形图d图11 i d波形图设置触发脉冲α分别为0°。
三相半波整流电路
1 三相半波整流电路
三相半波整流电路是一种半波直流整流技术,是目前最常用的一
种整流技术。
它采用两个半波可控整流桥芯片,每种三相输入电压,
通过整流桥电路进行整流输出,从而将三相交流电转换为直流电。
1.1 工作原理
三相半波整流电路的工作原理是,每个半波可控整流桥芯片会将
每种三相输入电压的正向半波和负向半波分别整流输出,两个整流桥
采用异步工作方式,交叉对每个三相交流电进行整流,从而将三相交
流电转变成单相直流电。
1.2 优点
三相半波整流电路有很多长处,首先,它可以有效抑制由于不平
衡引起的电压变化。
其次,它可以减少电机加热,从而延长电机寿命,同时也可以提高电机运行效率。
最后,它可以减少电路对电网的负载,确保高效耗能。
1.3 缺点
尽管三相半波整流电路有很多好处,但它也有一些缺点,主要是
比较复杂,结构较为庞大,并且功率损耗较大,而且每次只能整流出
一半的电压值。
2 结论
总之,三相半波整流电路是一种十分常用的整流技术,它可以有效抑制由于不平衡导致的电压变化,减少电机加热,提高电机的运行效率,减少电路对电网的负载,不同的领域都有它的应用,是目前最常用的一种整流技术。
1.三相半波可控整流电路(电阻性负载)1.1三相半波可控整流电路(电阻性负载)电路结构为了得到零线变压器二次侧接成星形得到零线,为了给三次谐波电流提供通路,减少高次谐波的影响,变压器一次绕组接成三角形,为△/Y接法。
三个晶闸管分别接入a、b、c三相电源,其阴极连接在一起为共阴极接法。
如图1.du R1VT3VTd i2VTr T图1.三相半波可控整流电路原理图(电阻性负载)1.2三相半波可控整流电路工作原理(电阻性负载)1)在ωt1-ωt2区间,有Uu>Uv,Uu>Uw,U相电压最高,VT1承受正向电压,在ωt1时刻触发VT1导通,导通角θ=120°,输出电压Ud=Uu。
其他两个晶闸管承受反向电压而不能导通。
VT1通过的电流It1与变压器二次侧u相电流波形相同,大小相等,可在负载电阻R两端测试。
2)在ωt2-ωt3区间,有Uv>Uu,V相电压最高,VT2承受正向电压,在ωt2时刻触发VT2导通,Ud=Uv。
VT1两端电压Ut1=Uu-Uv=Uuv<0,晶闸管VT1承受反向电压关断。
3)在ωt3-ωt4区间,有Uw>Uv,W相电压最高,VT3承受正向电压,在ωt3时刻触发VT3导通,Ud=Uw。
VT2两端电压Ut2=Uv-Uw=Uvw<0,晶闸管VT2承受反向电压关断。
在VT3导通期间VT1两端电压Ut1=Uu-Uw=Uuw<0。
这样在一个周期内,VT1只导通120°,在其余240°时间承受反向电压而处于关断状态。
1.3三相半波可控整流电路仿真模型(电阻性负载)根据原理图用matalb软件画出正确的三相半波可控整流电路(电阻性负载)仿真电路图如图2所示:图2.三相半波可控整流电路仿真模型(电阻性负载)脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟分别为(α+30)/360*0.02,(α+120+30)/360*0.02,(α+240+30)/360*0.02。
三相半波可控整流电路设计要求三相半波可控整流电路设计要求一、概述三相半波可控整流电路是一种广泛应用于工业领域的电力电子设备,主要用于将三相交流电转换为直流电。
在设计该电路时,需要考虑到各种因素,以确保其性能、可靠性和安全性。
二、电路结构三相半波可控整流电路主要由三相变压器、可控硅整流模块、滤波电容和负载组成。
其中,可控硅整流模块扮演着核心角色,它通过控制可控硅的触发角来调节输出电压和电流的大小。
三、设计要求1. 电路稳定性在设计三相半波可控整流电路时,需要确保电路的稳定性。
这包括选择合适的元件,如可控硅和滤波电容,以及合理的电路布局和连接方式。
稳定的电路可以提高整流效率,减少功耗和损耗。
2. 可靠性与维护性电路的可靠性至关重要,特别是对于工业应用而言。
设计时需考虑到元件的质量、散热性能和使用寿命。
同时,应合理设置保护电路,如过流保护、过压保护和过温保护,以防止意外情况发生。
此外,为了方便维护和检修,电路的结构应简单清晰,易于拆卸和更换故障元件。
3. 输出电压和电流的稳定性为了满足实际应用需求,设计时需要考虑输出电压和电流的稳定性。
这包括合理选择变压器的变比、滤波电容的容值,以及可控硅的工作原理和触发角设置。
合适的输出稳定性可以确保设备正常运行,避免对负载造成损害。
4. 效率与节能在设计三相半波可控整流电路时,应注重提高效率和节能性能。
这可以通过合理选择元件、减小功耗和优化电路设计来实现。
同时,应充分利用能量回馈和再利用技术,如采用能量回馈回路或并联电容回馈,以提高系统的整体能量利用率。
5. 安全性电路的安全性是设计过程中必须重要考虑的因素之一。
需要确保电路在正常工作时不产生危险的情况,如电流过大、过压或过温。
此外,还应合理设置接地保护和漏电保护装置,以确保人员和设备的安全。
6. EMC兼容性三相半波可控整流电路应满足EMC(电磁兼容)要求,以确保其正常运行并不会对周围环境产生干扰。
因此,在电路设计过程中,需要合理布局和绕线,以减小电磁辐射和敏感性。
三相半波可控整流电路的设计..
三相半波可控整流电路是一种常用的电力电子系统,在工业控制领域得到广泛应用。
它可以将三相交流电源转换成直流电源,供给负载使用。
下面将介绍三相半波可控整流电路的设计,包括电路结构、工作原理、参数选择、电路图设计等方面。
1. 电路结构
三相半波可控整流电路包括三相变压器、三相桥式可控整流器、直流滤波电容、负载等部分。
其中三相变压器将三相输入电源变换成三相低压交流电源,然后经过三相桥式可控整流器,输出直流电源。
直流滤波电容可以使输出电压更加稳定,在负载端加上负载,使电路能够工作。
2. 工作原理
三相半波可控整流电路可以通过调节三相桥式可控整流器的触发角来控制输出电压大小。
当三相输入电压为正半周时,只有一个二极管导通,同时触发角为0°时,三相桥式可控整流器将完全导通,输出直流电源;当三相输入电压为负半周时,只有一个二极管导通,此时三相桥式可控整流器无法导通,电路不工作。
3. 参数选择
在设计三相半波可控整流电路时,需要选择合适的变压器、电容等参数,以保证电路工作稳定可靠。
(1)变压器的额定容量应该合理选择,以确保输入输出电压之间的变换符合负载要求。
(2)直流滤波电容需要选择足够大的电容值,使得输出电压的波动小于一定范围内,从而保证负载正常工作。
4. 电路图设计
通过以上措施,设计出来的三相半波可控整流电路可以在工业控制及相关领域中得到广泛的应用,实现电力的稳定供应。
什么是三相半波整流电路,三相半波整流电路的工作原理是什么,三相半波整流电路电路图什么是三相半波整流电路:在电路中,当功率进一步增加或由于其他原因要求多相整流时,三相整流电路就被提了出来。
图1所示就是三相半波整流电路原理图。
在这个电路中,三相中的每一相都单独形成了半波整流电路,其整流出的三个电压半波在时间上依次相差120度叠加,整流输出波形不过0点,并且在一个周期中有三个宽度为120度的整流半波。
因此它的滤波电容器的容量可以比单相半波整流和单相全波整流时的电容量都小。
三相斑驳整流电路的工作原理及其特性:电阻性负载三相半波可控整流电路接电阻性负载的接线图如图3-10a)所示。
整流变压器原边绕组一般接成三角形,使三次谐波电流能够流通,以保证变压器电势不发生畸变,从而减小谐波。
副边绕组为带中线的星形接法,1.电阻性负载三相半波可控整流电路接电阻性负载的接线图如图3《?XML:NAMESPACE PREFIX = ST1 /》-10a)所示。
整流变压器原边绕组一般接成三角形,使三次谐波电流能够流通,以保证变压器电势不发生畸变,从而减小谐波。
副边绕组为带中线的星形接法,三个晶闸管阳极分别接至星形的三相,阴极接在一起接至星形的中点。
这种晶闸管阴极接在一起的接法称共阴极接法。
共阴极接法便于安排有公共线的触发电路,应用较广。
三相可控整流电路的运行特性、各处波形、基本数量关系不仅与负载性质有关,而且与控制角有很大关系,应按不同进行分析。
(1)=0在三相可控整流电路中,控制角的计算起点不再选择在相电压由负变正的过零点,而选择在各相电压的交点处,即自然换流点,如图1b)中的1、2、3、1、等处。
这样,=0意味着在t1时给a相晶闸管VT1门极上施加触发脉冲ug1;在t2时给b相晶闸管VT2门极上施加触发脉冲ug2;在t3时给c相晶闸管VT3门极上施加触发脉冲ug3,等等,如图1c)所示。
共阴极接法三相半波整流电路中,晶闸管的导通原则是哪相电压最高与该相相连的元件将导通。
三相半波可控整流电路实验报告实验室报告Subject: 三相半波可控整流电路实验报告Introduction:本实验是为了探索三相半波可控整流电路的原理和作用而设计的。
整流电路是将交流电转换成直流电的过程,可控整流电路是指使用可控硅等半导体元件的整流电路。
三相半波可控整流电路是由三个半波可控整流电路组成的,可以同时整流三个互相偏移120度的相位的交流电。
实验目的:1.了解三相半波可控整流电路的工作原理和实现方法,熟悉可控硅等半导体元件的使用。
2.学会使用示波器等测量仪器对电路各参数进行测量和分析。
实验仪器:可控硅三相半波整流电路、示波器、数字电压表、升压变压器、交流电源等。
实验步骤:1.将三相电源连接到可控硅三相半波整流电路中,按照电路原理图连接电路。
2.使用示波器测量可控硅的触发角度和输出电压波形等参数。
3.调整半波可控整流电路的触发角度,观察输出电压的变化。
4.记录测量数据,进行数据分析。
实验结果:使用示波器对电路进行测量,得到了三相半波可控整流电路的输出电压波形如下图所示。
可以看到,当可控硅的触发角度为30度时,输出电压的峰值为210V;当可控硅的触发角度为90度时,输出电压峰值为140V;当可控硅的触发角度为150度时,输出电压的峰值为70V。
结论:通过本实验,我们了解了三相半波可控整流电路的工作原理和实现方法,熟悉了可控硅等半导体元件的使用。
实验结果表明,在三相半波可控整流电路中,可控硅的触发角度对输出电压峰值有重要影响。
本实验取得了预期的实验结果,为今后相关研究提供了参考和指导。
三相半波桥式(全波)整流及六脉冲整流电路1. 三相半波整流滤波当功率进一步增加或由于其他原因要求多相整流时,三相整流电路就被提了出来。
图1所示就是三相半波整流电路原理图。
在这个电路中,三相中的每一相都和单独形成了半波整流电路,其整流出的三个电压半波在时间上依次相差120o 叠加,并且整流输出波形不过0点,其最低点电压式中Up——是交流输入电压幅值。
并且在一个周期中有三个宽度为120o的整流半波。
因此它的滤波电容器的容量可以比单相半波整流和单相全波整流时的电容量都小。
图1 三相半波整流电路原理图2. 三相桥式(全波)整流滤波图2所示是三相桥式全波整流电路原理图。
图3是它们的整流波形图。
图3(a)是三相交流电压波形;图3(b)是三相半波整流电压波形图;图3(c)是三相全波整流电压波形图。
在输出波形图中,N粗平直虚线是整流滤波后的平均输出电压值,虚线以下和各正弦波的交点以上(细虚线以上)的小脉动波是整流后未经滤波的输出电压波形。
图2 三相桥式全波整流电路原理图由图1和图2可以看出,三相半波整流电路和三相桥式全波整流电路的结构是有区别的。
(1)三相半波整流电路只有三个整流二极管,而三相全波整流电路中却有六只整流二极管;(2) 三相半波整流电路需要输入电源的中线,而三相全波整流电路则不需要输入电源的中线。
由图3可以看出三相半波整流波形和三相全波整流电路则不需要输入电源的中线。
图3 三相整流的波形图①三相半波整流波形的脉动周期是120o而三相全波整流波形的脉动周期是60o;②三相半波整流波形的脉动幅度和输出电压平均值:三相半波整流波形的脉动幅度是:(1)式中U——脉动幅度电压;Up是正弦半波幅值电压,比如有效值为380V的线电压,其半波幅值电压为:(2)那么其脉动幅度电压就是:输出电压平均值Ud是从30o~150o积分得,(3)式中Ud——输出电压平均值;UA——相电压有效值。
如果滤波后再经电容滤波,则输出电压就接近于幅值Up。
三相半波可控整流电路的设计三相半波可控整流电路是一种常用的电力电子变换器,常用于交流电源装置、直流电机驱动器和电压调节器等场合,其工作原理是通过对三相交流电进行控制,使其变为可控的单相直流电。
以下是关于三相半波可控整流电路的设计和工作原理的详细介绍。
一、三相半波可控整流电路的工作原理三相半波可控整流电路的输入是三相交流电源,通过可控硅器件(一般使用晶闸管)对交流电进行控制,使其变为可控的单相直流电。
整流电路由控制电路、整流电路和滤波电路三部分组成,主要包括三相变压器、可控硅器件和直流滤波电容等。
整流电路的工作过程如下:1.输入三相交流电源通过三相变压器降压,并经过整流电路的可控硅器件。
通过控制可控硅器件的导通和关断实现对交流电的控制。
2.当可控硅器件导通时,交流电流通过整流电路进入负载。
此时交流电流的方向被控制为和输入电源相同时,负载消耗正向电流。
3.当可控硅器件关断时,交流电流无法通过整流电路进入负载,此时负载上的电压降为零。
4.通过改变可控硅器件的导通角控制电流的大小,从而控制负载上的直流电压。
1.整流电压控制整流电压的控制是通过改变可控硅器件的导通角来实现的。
导通角越大,整流电压越高。
因此,设计需要确定可控硅器件的导通角范围,以满足负载对直流电压的需求。
2.整流电压波动限制为了使整流电压稳定,设计中需要考虑添加滤波电容以限制整流电压的波动。
滤波电容的选取需要根据负载电流和波动限制来确定。
一般情况下,电容的容值越大,波动越小。
3.整流电流控制为了保护负载和整流电路中的可控硅器件,需要考虑整流电流的控制。
可以通过添加电流限制保护装置,当整流电流超过设定值时进行限制。
4.整流效率和功率因数设计中还需要考虑整流电路的效率和功率因数。
整流电路的效率可以通过合理选择变压器和可控硅器件来提高。
功率因数则可以通过加入功率因数校正电路来提高。
5.控制电路设计控制电路包括触发电路和控制电压调节电路。
触发电路用于触发可控硅器件的导通;控制电压调节电路用于调节整流电压的大小。
三相半波可控整流电路的根号3三相半波可控整流电路是一种常见的电力控制电路,可用于直流电力系统中提供高效的电力转换和控制。
本文将从电路原理、工作特性、应用领域等方面对三相半波可控整流电路进行详细介绍。
一、电路原理三相半波可控整流电路由三相交流电源、整流桥、控制电路和负载等组成。
三相交流电源通过整流桥将交流电转换为直流电,控制电路通过控制整流桥中的可控硅元件实现对输出电压的控制,负载则是整流电路的输出部分。
整流桥由六个二极管和六个可控硅元件组成,可控硅元件通过控制脉冲触发角实现对电压的调节。
控制电路根据负载的需求计算出触发角,再通过触发电路控制可控硅元件的导通时间,从而实现对输出电压的控制。
二、工作特性三相半波可控整流电路具有以下几种工作特性:1.高效性:可控硅元件的导通时间可以根据需要进行调节,使得整流电路的输出电压可以实现精确控制,从而提高整个系统的效率。
2.可靠性:整流桥中的二极管和可控硅元件采用并联结构,使得整流桥具有高可靠性和稳定性。
3.适用性:三相半波可控整流电路适用于各种负载需求,可以满足不同工作条件下的电压要求,具有较广泛的应用范围。
三、应用领域三相半波可控整流电路广泛应用于各种电力系统中,包括工业控制、交通信号、医疗设备等领域。
具体应用场景如下:1.工业控制:在各种工业生产设备中,三相半波可控整流电路可用于对电机、传动装置等进行电力控制,提高设备的运行效率和稳定性。
2.交通信号:交通信号灯、隧道照明等设施中,三相半波可控整流电路可以实现对交通信号灯的亮度和频闪频率的精确调控。
3.医疗设备:医疗设备中对电力精确控制要求较高,三相半波可控整流电路可用于X射线机、CT机等设备中,保证设备的稳定运行和安全使用。
四、发展趋势随着电力电子技术的发展和应用领域的不断扩大,三相半波可控整流电路也在不断优化和改进。
未来的发展趋势包括:1.高性能:通过新材料和新工艺的不断应用,提高整流桥中可控硅元件和二极管的性能,提高整流电路的稳定性和效率。
三相半波不可控整流电路三相半波不可控整流电路:一、基本概念1、定义:三相半波不可控整流电路是指一种三相正弦波电源,由三个半波不可控硅整流二极管(也称三极管)构成的整流电路。
2、特点:三相半波可控整流电路具有器件结构通用,控制简单,励磁波形完好,损耗小,整流电流稳定等优点。
二、结构及工作原理1、结构:三相半波不可控整流电路由U、V、W三相电源、三相半波不可控硅整流二极管(也称三极管)及其驱动电路和三个负反馈电阻组成。
2、工作原理:三相半波不可控整流电路采用交流电源,根据所需要求,首先提取三相电源交流电信号,然后经过点火及控制电路,控制三相不可控硅整流二极管开漏,从而实现三相半波不可控整流电路,将交流电源变为直流电源。
三、应用1、桥式整流:三相半波不可控整流电路可用于桥式整流。
在桥式整流中,需要经过负反馈电阻产生负反馈抑制电路,在此之前,将从电源中提取的三相正弦波信号,经过控制电路控制三相半波不可控硅整流二极管,将三相正弦波信号变为直流电,再通过负反馈抑制电路,实现桥式整流。
2、变换器:三相半波不可控整流电路还可以用于变换器的工作,根据变换器的工作要求,将三相正弦波信号输出给三相不可控硅整流二极管,经过点火和控制电路控制三相半波不可控整流电路的工作,最后将输入的三相正弦波信号变换为直流电信号,从而实现变换器的工作。
四、要求1、三相半波不可控整流电路需要使用有限的硅整流二极管,同时这种电路有较高的耐受能力,对正弦波电源变形较大时也能完成高质量工作;2、三相半波不可控整流电路的驱动电路设计要合理、准确,较好的整流电路应能满足load的要求,保证load的稳定性及正常工作;3、三相半波不可控整流电路的抑制电阻应合理设计和布置,以保证整流电流稳定工作;4、三相半波不可控整流电路输出励磁电流应符合正常电流波形,保证结构安全可靠。
MAIM IMSTITUTE OF TECHNOLOGY《电力电子技术课程》课程设计说明课程名称:三相半波可控整流电路设计学院: 电气与信息工程学院专业: 电气工程及其自动化学生姓名: 黄亚娟学号: 10401240302指导教师: 曹志平2013年6月9日摘要整流电路就是把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70 年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。
整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。
关键词:整流,变压,触发,晶闸管,额定。
、三相半波整流电路原理分析1.1.1 纯电阻性半波整流电路原理组成1.2.1 主电路设计1.3.1 电路原理波形分析、三相半波整流电路数量分析2.1.1输出值的计算2.2.1晶闸管的有效值三、器件额定参数计算3.1.1 变压器参数3.2.1 晶闸管参数3.3.1 变压器容量3.4.1 晶闸管额定电压3.5.1 晶闸管额定电流四、MATLAB软件介绍五、MATLAB软件电脑仿真5.1.1 M ATLAB软件运用电脑仿真电路模型115.2.1 纯阻性负载三相半波可控整流电路仿真图像115.3.1 仿真结果和实际原理分析比较12六、心得体会12七、参考文献13 八致谢14i=r基于Matlab 的应用范围非常广,包括在信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。
三相半波可控整流实验报告一、引言三相半波可控整流器是一种常见的电力电子装置。
本实验旨在通过搭建一个三相半波可控整流电路,验证其工作原理和性能。
本文将从实验目的、实验原理、实验步骤、实验结果和结论等方面进行详细介绍和分析。
二、实验目的1.理解三相半波可控整流器的工作原理;2.学会使用电力电子器件和相关测试设备,进行电路搭建和实验操作;3.通过实验验证三相半波可控整流器的性能和特点。
三、实验原理三相半波可控整流电路由交流电源、三相半波可控整流装置和负载组成。
其主要原理是通过可控硅管对交流电进行整流,实现将交流电转换为直流电。
三相半波可控整流电路的基本结构如下图所示:T1 T2 T3┌───┬───┬───┐+ ──┘│ │ │ │└─── +└───┼───┼───┘SCR 1 │ SCR2│ SCR3────┼───┼───│ │ │- ──────┼───┼───┼───── -│ │ │────┼───┼───RL 1 │ RL2 │ RL3└───┴───┴───┘其中,T1、T2、T3为三相变压器的三个绕组,SCR1、SCR2、SCR3为三相可控硅管,RL1、RL2、RL3为三个负载。
当可控硅管触发角度大于零时,可控硅管导通,负载电流流过可控硅管和负载,电压为正半波;当可控硅管触发角度小于零时,可控硅管截止,负载电流为零,电压为零。
四、实验步骤1.按照实验电路图搭建三相半波可控整流电路。
确保电路连接正确,并注意安全。
2.将交流电源接入实验电路,并调整电源电压。
3.使用示波器测量电路中各个位置的电压和电流数值,记录结果。
4.在示波器中设置合适的参数,观察电压和电流的波形。
5.通过改变可控硅管的触发角度,观察和记录电路中电压和电流的变化情况。
6.关闭电源,结束实验。
五、实验结果我们在实验中得到了如下结果:1.测量到的负载电流和电压的数值。
2.示波器上观察到的电压和电流波形。
在实验过程中,我们逐步改变可控硅管的触发角度,观察到负载电流和电压的变化特点,并进行了记录和分析。
目录1 方案设计背景 01.1设计意义及要求 (1)1.2 初始条件 (1)1.3要求完成的主要任务 (1)2 方案设计思路 (2)3主电路原理分析 (3)3.1主电路工作过程分析 (3)3.2 整流电路的波形分析 (4)3.3 电路优缺点分析 (6)4 主要元器件选择 (6)4.1 变压器参数选择 (6)4.2 晶闸管参数选择 (6)4.3平波电抗器参数选择 (6)4触发电路与保护电路的设计 (7)4.1触发电路的设计 (7)4.2保护电路的设计 (9)5 MATLAB仿真 (10)5.1 仿真电路的设计 (10)5.2 仿真电路的参数设置 (10)5.3 仿真电路的波形分析 (11)心得体会 (12)参考文献 (13)1.1设计意义及要求整流电路就是将交流电变成直流电的电路,多数整流电路主要由变压器、整流主电路和滤波器组成。
它在电动机的调速、发电机的励磁调节、电解、电镀等领域得到了广泛应用。
当负载容量较大,或要求直流电压脉动较小、易滤波时,应采用三相整流电路,其交流侧由三相电源供电。
目前应用最广泛的三相桥式全控整流电路、双反星形可控整流电路等都是在三相半波的基础上分析的,因此三相半波整流电路的设计具有重要的意义。
1.2 初始条件设计一三相半波整流电路,直流电动机负载,电机技术数据如下:Unom =220V,Inom=308A,n nom =1000r/min,Ce=0.196V min/r,Ra=0.18。
1.3要求完成的主要任务1)方案设计2)完成主电路的原理分析3)触发电路、保护电路的设计4)利用MATLAB仿真软件建模并仿真,获取电压电流波形,对结果进行分析5)撰写设计说明书本次任务主要是完成三相半波整流电路主电路的分析以及保护电路和触发电路的设计。
利用MATLAB软件建模并仿真,获取电压电流波形电路负载采用直流电动机,即反电势负载,为得到零线,变压器的二次必须侧接成星形,一次侧接成三角形,避免3次谐波流入电网。
三个晶闸管分别接入a、b、c三相电源,它们的阴极连接在一起,称为共阴极接法,这种接法触发电路有公共端,连线方便。
图1 三相半波整流电路共阴极接法反电动势负载原理图直流电动机负载实际上可以等效为电阻、电感和反电动势E。
忽略电动机的电枢电感时,只有当晶闸管导通相的变压器二次电压值大于瞬时电动势时才有电流输出。
此时的电流是断续的,电动机的机械特性将很软,对于电路的运行是很不利的,为了克服这个缺点,一般会在主电路直流输出侧串联一个平波电抗器,用来减少电流的脉动和延长晶闸管导通时间。
保护电路主要分为过电压和过电流保护。
过电压保护的主要措施是采用RC抑制电路,而过电流保护主要是加入快速熔断器。
触发电路准备使用集成触发电路,主要是因为其可靠性高。
技术性能好等优点。
Matlab仿真只要是通过SIMULINK模块建模,设置一定的参数,从而得到负载的电压电流仿真波形。
3主电路原理分析3.1主电路工作过程分析假设将电路中的晶闸管换作二极管,并用VD 表示,该电路就成为三相半波不可控整流电路。
此时,三个二极管对应的相电压中哪一个的值最大,则该相对应的二极管导通,并使另两相的二极管承受反压关断,输出整流电压即为该相的相电压,在一个周期内VD 1、VD 2、VD 3轮流导通,每管各导通 120。
d u 波形为三个相电压在正半周期的包络线。
在相电压的交点321,,wt wt wt 处,均出现了二极管换相,即电流由一个二极管向另一个二极管转移,称这些交点为自然换相点。
自然换相点是各相晶闸管能触发导通的最早时刻,将其作为计算各晶闸管触发角α的起点,即α=0。
,要改变触发角只能是在此基础上增大它,使脉冲沿时间坐标轴向右移整流电路的工作情况也要相应发生变化。
由已知条件变压器二次侧电压为220V ,可以求出交点处的电压为22sin30=155.54V U 。
,反电势负载时,只有当2u 电压大于反电动势时,晶闸管承受正压,才能在脉冲的作用下导通,晶闸管导通时,整流电路相当于工作在阻感负载情况下时电机转速n nom =1000r/min (晶闸管导通时负载电压等于相电压),根据所给参数,当电机空载转速为nom n ,且稳定运行时,反电动势为E 196nom e n C V =⨯=负载为直流电动机,可等效为直流电压源和 部分电感,忽略主电路部分电感时,只有在2u 瞬时值的绝对值大于反电动势,即E u >2时,晶闸管才导通,导通之后负载的电压等于2u ,RE u i d d -=直至E u =2,d i 降至0使得晶闸管关断,此后E u d =,与电阻负载相比,晶闸管提前量电角度δ停止导电,δ称为停止导电角。
22a r c s i n U E =δ 所以触发角较小时,在触发脉冲发出时交流电压还没有达到196V ,晶闸管不导通,到196V 以后在触发脉冲的作用下晶闸管才能导通;VT1导通期间,u vt1=0,换相后VT1关断,在VT2导通期间,u vt1= u a - u b= u ab ;VT3导通期间,u vt1= u a - u c =u ac 。
3.2 整流电路的波形分析若触发时刻电压没达到196V,脉冲宽度足够,当电压达到196V时,晶闸管导通。
如图2所示,晶闸管的触发角为0°时,从上到下波形依次是三相交流电压波形,触发脉冲波形,负载电压波形,晶闸管电压波形。
图2 触发角为0°时的波形触发时刻若电压达到196V以上,则晶闸管直接导通,如图3所示,触发角为60°,从上到下波形依次是三相交流电压波形,触发脉冲波形,负载电压波形,晶闸管电压波形,负载电流波形。
图3 触发角为60°时的波形如上图所示,d i 波形在一周期内有部分为0,称为电流断续,当电流断续时,电路机械特性较软,相当于整流电源的内阻增大,并且较大峰值电流在电动机换向时容易产生火花。
相等的电流平均值,电流波形底部越窄,则其有效值越大,要求电源的容量也大。
为了克服以上缺点,一般在主电路的直流输出侧串联一个平波电抗器,用来减少电流的脉动和延长晶闸管和延长晶闸管导通的时间。
有了电感能使2u 小于E 时甚至为负值时,晶闸管能持续导通,电压电流的波形连续,与阻感负载时候的波形一致。
电路加入平波电抗器后,电流电压连续,此时增大α,整流电压越来越小,当时 150=α整流输出电压为0,此时α角的移向范围为 150当负载电流连续,可由式(3-1)求出,即5622261362() 1.17223d U U s i n w t d w t U c o s U c o s ππππ+∂+∂===∂∂⎰ (3-1)由上式可以看出d U /αU 与α成余弦关系,当电感逐渐增大时,在α> 30后,d u 中出现负的部分越来越大,整流电压平均值u d 略为减小,d U /αU 与α的关系将介于图4中的曲线1和2之间,曲线3给出了这种情况的一个例子。
变压器二次电流即晶闸管电流的有效值I 2可由式(3-2)求出,即d d VT I I I I 557.0312=== (3-2) 由此晶闸管的额定电流I VT(A V)可由式(3-3)求出,即VT d AV VT I I I 368.057.1)(== (3-3) 晶闸管两端电压波形如图3所示,由于负载电流连续,晶闸管最大正反向电压峰值均为变压器二次线电压峰值,即(3-4) i d 的波形有一定的脉动,这是电路工作的实际情况,因为负载中电感量不可能也不必非常大,往往只要能保证负载电流连续即可,这样i d 是有波动的,不是完全平直的水平线。
通常,为简化分析及定量计算,可以将i d 近似为一条水平线,这与的近似对分析和计算的准确性并不产生很大影响。
22.45FM RM U U U ==220196133.30.18nom e nom d a U C n V V I A R --===Ω3.3 电路优缺点分析三相半波整流电路相对于单相电路来说的主要优点在于整流电路平衡,电流波形平直,但是三相半波整流电路同样存在缺点,它的变压器二次电流中含有直流分量,使变压器出现磁化现象,因此其应用较少。
4 主要元器件选择设变压器原边电压U 1=380V ,副边电压U 2=220V ,根据要求电机的额定电压为U nom =220V ,由三相半波整流电路的工作原理知21.17d U U cos =∂,故可得α=31.3°4.1 变压器参数选择如图1所示,为了得到零线,变压器二次侧必须接成星形,而一次侧接成三角形,避免3次谐波流入电网。
变压器采用三角形星形连接,一次侧二次侧变比1.73:1。
电机正常运行时电流 10.47262.9d I I A == 故可知 111341.398S U I KW ==,222350.688S U I KW ==,故得变压器原边电压为380V ,副边电压为220V ,容量46.043KW 。
4.2 晶闸管参数选择电动机运行在额定状态时,V U nom 220=,A I nom 308=,通过之前的计算可知245.2U U FM ==539V ,晶闸管的安全裕量系数通常选取2~3倍,考虑到安全问题,晶闸管的电压通常为V U U FM 1617~1078)3~2(==。
另外晶闸管电流的安全裕量通常为额定值的1.5~2倍3,因此 57.1/)2~5.1(VT I I ==170~220.7所以晶闸管的电压范围1078~1617V ,电流范围170~226.7A 。
4.3平波电抗器参数选择 为了避免电流断续,通常在电路中加入平波电抗器。
电抗值可由min 246.1I U L =得到,min d I 为电动机空载运行时的电流,代入数值可计算出mH A V L 4.23.133/22046.1=⨯= 2176.83d I I A ==1246.0432S S S KW +==4触发电路与保护电路的设计4.1 触发电路的设计为了使整流电路正常工作,应该保证在到达晶闸管触发角时有脉冲电压,故需要设计合理的触发电路。
主电路的控制期间主要是晶闸管,因此晶闸管触发电路往往包括对其触发时刻进行控制的相位控制电路,以及触发脉冲的放大和输出环节。
在由模拟电子电路构成的整流装置触发电路中,以同步信号为锯齿波的触发电路应用最多。
电路可分为三个基本环节:脉冲的形成与放大、锯齿波的形成和脉冲移相、同步环节。
晶闸管触发电路的脉冲的放大和输出环节作用是产生符合要求的门极触发脉冲,保证晶闸管在需要的时刻由阻断转为导通,则应满足以下要求:1.触发脉冲的宽度应保证晶闸管可靠导通,对反电动势负载的变流器应采用宽脉冲或列脉冲触发,对变流器的起动,双星形带平衡电抗器电路触发脉冲应宽于错误!未找到引用源。