单节电池驱动高亮LED灯电路图
- 格式:doc
- 大小:103.50 KB
- 文档页数:3
三款电子节能灯电路图详解220V市电经整流后变成300V左右的直流电,再由开关电路来回振荡和升压,转化为高频脉冲电压,即可直接点亮日光灯管。
由于开关电路本身功耗低,输出功率大,功率因数可以做得很高,若配上高效灯管,节能效果更佳。
采用ZSC3038构成的电子节能灯电路图1-18所示为由ZSC3038构成的电子节能灯电路,该电路具有很强的抗干扰能力,它既可以防止市电电源中的干扰窜入电路,也可防止节能灯电路产生的干扰信号窜入电网。
该电路中设置有软启动(灯丝预热)电路,可延长灯管寿命,多用于护目灯和外销灯具中。
该节能灯电路主要由以L1、VT1、VT2、VD6、T1等为核心的元器件构成。
其中,L1是一种电磁滤波器,VT1、VT2的型号均为ZSC3038,VD6是一种双向触发二极管,T1为高频振荡升压变压器。
该电路主要由抗干扰电路和高频振荡电路两个部分组成。
(1)抗干扰电路在正常情况下,220V交流电压经电感L1、VD1~VD4、C1整流滤波后输出300V左右的直流电压。
由于L1采用共模绕制方式(即两组线圈匝数相等,绕向相反),故能有效抑制中、高频信号干扰电网。
(2)高频振荡电路开关型高频振荡电路由R1、C2、VD5、VD6、VT1、VT2和T1组成。
双向触发二极管VD6的击穿电压是16V,在每次接通电源时,电容C2充电。
当C2上的电压超过击穿电压时,VD6导通,此时VT2也导通。
由于变压器T1的正反馈作用,VT1与VT2轮流导通,使电路产生自激振荡,经L2、C6提供给日光灯丝预热电流。
C7、C8上取得高电平,在2s内启辉点亮灯管。
L2采用空心线圈,如配用不同功率的灯管,调试时应适当增减匝数。
采用BU406构成的电子节能灯电路图1-19所示为由晶体管BU406构成的电子节能灯电路,目前许多成品电子节能灯的电路都与此相同或相似。
该电路主要由功率推换管VT1、VT2(型号为BU406)以及振荡变压器T1、双向触发二极管VD6等组成。
LED手电筒驱动电路及原理图介绍
市场上出现一种廉价的LED手电筒,这种手电前端为5~8个高亮度发光管,使用1~2节电池。
由于使用超高亮度发光管的原因,发光效率很高,工作电流比较小,实测使用一节五号电池5头电筒,电流只有1 00 mA左右。
非常省电。
如果使用大容量充电电池,可以连续使用十几个小时,笔者就买了一个。
从前端
拆开后,根据实物绘制了电路图,如图1所示。
图1 LED手电驱动电路原理图
工作原理:
接通电源后,VT1因R1接负极,而c1两端电压不能突变。
VT1(b)极电位低于e极,VT1导通,VT2(b)极有电流流入,VT2也导通,电流从电源正极经L、VT2(c)极到e极,流回电源负极,电源对L充电,L 储存能量,L上的自感电动势为左正右负。
经c1的反馈作用,VT1基极电位比发射极电位更低,VT1进入深度饱和状态,同时VT2也进入深度饱和状态,即Ib>Ic/β(β为放大倍数)。
随着电源对c1的充电,C1两端电压逐渐升高,即VTI(b)极电位逐渐上升,Ib1逐渐减小,当Ib1<=Ic1/β时,VT1退出饱和区,VT2也退出饱和区,对L的充电电流减小。
此时.L上的自感电动势变为左负右正,经c1反馈作用。
VT1基极电位进一步上升,VT1迅速截止,VT2也截止,L上储存的能量释放,发光管上的电源电压加到L上产生了自感电动势,达到升压的目的。
此电压足以使LED发光。
LED射灯驱动电路原理图如下所示:监控照明是全球节能的主流,而大功率LED 照明更是今后世界的照明发光系统的主流趋势。
大功率LED具有亮度高、节能环保、安全性和稳定性高等特点,比传统光源节电60% ~ 70%.传统的声光控延时控制器能很好地实现对灯的控制,在光线黑暗时或晚上来临时,能有效地实现“人来灯亮,人去灯熄”,但由于其开关用的是继电器之类的机械控制器,所以在人流量多的地方由于频繁的开关,较容易损坏。
LED射灯驱动电路V IN 上电时,电感( L )和电流采样电阻( RS )的初始电流为零,LED 输出电流也为零(见图2 )。
这时候,内部功率开关导通,SW 的电位为低。
电流通过电感(L )、电流采样电阻( RS )、LED 和内部功率开关从V IN 流到地,电流上升的斜率由V IN、电感(L )和LED 压降决定,在RS 上产生一个压差VCSN,当为 115 mV 时,内部功率开关关断,电流以另一个斜率流过电感( L )、电流采样电阻(R S )、LED和肖特基二极管( D ); 当( V IN-VCSN )为85mV时,功率开关重新打开,这样使得在LED 上的平均电流为IOUT = ( 0. 085+ 0. 015) /2 RS = 0. 1 /R S.如果不使用调光功能,可使DIM 引脚悬空,这时可输出设定的最大电流。
基于AT89C2051的智能控制器电路如图4所示,其主要由传感器单元、A D 转换单元、控制器单元组成。
AT89C2051芯片用于对来自声控和光控传感器检测到的信号经过整形以后的信号数据做处理,进而控制LED 驱动器。
该电路中AT89C2051的p3. 0 和p3. 1端口用作输入信号检测,剩下的13 个端口可选择输出控制。
软件流程图如图5所示。
图4 智能控制器电路图设计的LED射灯智能驱动系统,能有效地LED、检测周围环境的变化,及时关闭、开启灯源以及调光。
该系统与传统的声光控延时开关照明系统相比,不仅能大量节省电能,而且其特有的调光模块使用电效率大大提高。
高亮度LED驱动动态及电路集锦关键词:LED,LED驱动电路,光电器件,无源元件,PWM,摘要: 高亮度LED是经过特殊处理的PN结半导体器件,正向偏置时可发出白光、红光、绿光或蓝光(也可能产生其它颜色光). 近几年,高亮度LED(HB LED)在各种照明系统中作为光源日益受到青睐, 在汽车照明、公共标示与信号标志以及建筑照明中得到普遍应用。
本文讨论了多种能够调节高亮度LED的驱动电流的电路.1. 为照明系统中高亮度LED提供高效电流驱动本文讨论的简单电路能够调节高亮度LED的驱动电流,该电路采用非定制、高度集成的降压型开关调节器(MAX5035),能够准确地控制流过LED的电流。
MAX5035 DC/DC转换器在6.5V至76V宽输入电压范围内保持125kHz固定工作频率,是汽车应用的理想之选。
亮度控制可以通过模拟(线性调节)或低频占空比(PWM)方式实现。
高亮度LED发展背景近几年,高亮度LED(HB LED)在各种照明系统中作为光源日益受到青睐,这是由于高亮度LED具有高度的可靠性,使用寿命可以达到几十甚至几万小时,比传统的白炽灯或卤素灯的使用寿命高出几个数量级。
基于这一优势,高亮度LED在汽车照明、公共标示与信号标志以及建筑照明中得到普遍应用。
高亮度LED是经过特殊处理的PN结半导体器件,正向偏置时可发出白光、红光、绿光或蓝光(也可能产生其它颜色光)。
作为PN结它们表现出类似于传统二极管的V-I特性,但具有较高的结压降。
在正向电压达到VF (从红光LED的2.5V到蓝光LED的4.5V),流过LED的电流很小;一旦正向电压达到VF,电流将迅速上升(与传统二极管相同)。
因此,必须采用限流措施限制电流的上升,以防LED损坏。
目前有三种基本的限流方式,表1对这三种方式进行了对比:高亮度LED开关电源图1是基于固定频率、高集成度PWM开关转换器MAX5035的高亮度LED电源原理图,输出电流可达1A。
LED节能灯电路图--不需要外部开关的大功率LED灯具驱动电路图随着新一代的新LED实现了较高的功率和效率,这些设备的应用逐渐扩展到了新的领域,如手电筒或车辆应用等。
大功率LED与白炽灯泡及荧光灯管等共同应用于环境照明中。
电流源是对LED供电的最佳方式。
由于多数的能源,包括电池、发电机及工业主电源,越来越像电压源而不是像电流源,LED需要在其与电源之间插入某些电子电路。
这种电路可以很简单,如同串联电阻器。
但考虑到能源效率及其它因素,最好的是高效的电压馈入式电流源。
对于电流大于0.35A的LED,感应式开关稳压通常是最佳选择。
本设计实例提供了一系列基于单电源集成电路开关稳压器电路,主要是为了提高效率和减小体积。
电路设计师为了实现此目标,尽量减少使用较大的元件,如外接功率晶体管、开关、大电容、电流检测电阻,并采用持续的大密度光源尽可能扩展光照范围来维持电路正常运行。
图1、2、3中的电路适合采用三、四个碱性电池、镍氢电池(NiMH)或镉镍电池(Ni Cd)组成的电源供电。
图4和图5中的电路可用于汽车,其配电系统的标称线路电压为12V、24V或42V。
图4、5中的电路也可用于包括24V配电线路进行控制的工业系统和应急子系统及电信应用,其系统电源为–48V线路电压。
图一这些电路的设计者们采用相同的概念:全面集成的单芯IC开关稳压器和微功耗运算放大器。
运算放大器驱动IC上的1.25V反馈端子。
尽管该节点针对的是标准电压稳压器的拓扑结构,运算放大器将其与小得多的电流检测电压及略有差异的电流调节器拓扑结构相匹配。
这些电路都不需要使用外部电源开关。
由于不需要平滑处理LED电流中的高频纹波,这种设计避免了开关稳压器中常用的较大值的滤波电容。
所有电路的共同点是可以选择变暗功能,方法是在运算放大器的输入端引入可由电阻和电位器调节的偏置来实现。
根据IC的不同,电阻及电位器可由内部稳压器的VD或CVL端子来供电。
图二采用一个高频开关稳压器为基本的LED稳压电路供电(图1)。
超级省电家用LED手电筒驱动电路原理图
工作原理:
接通电源后,VT1因R1接负极,而c1两端电压不能突变。
VT1(b)极电位低于e极,VT1导通,VT2(b)极有电流流入,VT2也导通,电流从电源正极经L、VT2(c)极到e极,流回电源负极,电源对L充电,L储存能量,L上的自感电动势为左正右负。
经c1的反馈作用,VT1基极电位比发射极电位更低,VT1进入深度饱和状态,同时VT2也进入深度饱和状态,即Ib>Ic/β(β为放大倍数)。
随着电源对c1的充电,C1两端电压逐渐升高,即VTI(b)极电位逐渐上升,Ib1逐渐减小,当Ib1<=Ic1/β时,VT1退出饱和区,VT2也退出饱和区,对L的充电电流减小。
此时.L上的自感电动势变为左负右正,经c1反馈作用。
VT1基极电位进一步上升,VT1迅速截止,VT2也截止,L上储存的能量释放,发光管上的电源电压加到L上产生了自感电动势,达到升压的目的。
此电压足以使LED发光。
使用1~2节电池。
由于使用超高亮度发光管的原因,发光效率很高,工作电流比较小,实测使用一节五号电池5头电筒,电流只有100 mA左右。
非常省电。
如果使用大容量充电电池,可以连续使用十几个小时。
led灯驱动电源电路图大全(六款模拟电路设计原理图详解)led灯驱动电源电路图(一)电路工作原理LED楼道灯的电路如下图所示。
电路由电容降压电路、整流电路、LED发光电路和光电控制电路等部分组成。
220V交流电经电容C1、R1降压限流后在A、B两点的交流电压约为15V,由VD1~VD4.进行整流,在C2上得到约14V的直流电压作为高亮度发光二极管VD5~VD8的工作电压,发光二极管的工作电流约为14mA。
由于电容C1不消耗有功功率,泄放电阻消耗的功率可忽略不计,因此整个电路的功耗约为15&TImes;0.014≈0-2(W)。
为了进一步节省电能和延长高亮度发光二极管的使用寿命,电路中加入了由光敏电阻R2、电阻R3和三极管VT1等组成的光电控制电路,在夜晚光敏电阻R2的阻值可达100K以上,这时C2两端的电压经R2、R3分压后提供给VT1基极的直流偏置电压很小,VT1截止,对发光二极管的工作没有任何影响;白天时,由于光电效应的作用,R2的阻值可减小到1OK以下,这时VT1导通并接近饱和,由于通过C1的电流最大只能达到15mA,由于VTl的分流,C2上的电压可下降到4V以下。
led灯驱动电源电路图(二)LED驱动电源的具体要求LED是低压发光器件,具有长寿命、高光效、安全环保、方便使用等优点。
对于市电交流输入电源驱动,隔离输出是基于安全规范的要求。
LED驱动电源的效率越高,则越能发挥LED高光效,节能的优势。
同时高开关工作频率,高效率使得整个LED驱动电源容易安装在设计紧凑的LED灯具中。
高恒流精度保证了大批量使用LED照明时的亮度和光色一致性。
10W以下功率LED灯杯应用方案目前10W以下功率LED应用广泛,众多一体式产品面世,即LED 驱动电源与LED灯整合在一个灯具中,方便了用户直接使用。
典型的灯具规格有GU10、E27、PAR30等。
针对这一应用,我们设计了如下方案(见图1)图1:基于AP3766的LED驱动电路原理图该方案特点如下:1.基于最新的LED专用驱动芯片AP3766,采用原边控制方式,无须光耦和副边电流控制电路,实现隔离恒流输出,电路结构简单。
LED节能灯的驱动电源电路图LED电源电路大多是由开关电源电路+反馈电路这样的形式构成,反馈电路从负载处取样后对开关电路进行脉冲的占空比调整或频率调整,以达到控制开关电路输出的目的。
LED手电筒驱动电路原理图市场上出现一种廉价的LED手电筒,这种手电前端为5~8个高亮度发光管,使用1~2节电池。
由于使用超高亮度发光管的原因,发光效率很高,工作电流比较小,实测使用一节五号电池5头电筒,电流只有100mA左右。
非常省电。
如果使用大容量充电电池,可以连续使用十几个小时,笔者就买了一个。
从前端拆开后,根据实物绘制了电路图,如图所示。
LED手电筒驱动电路工作原理:接通电源后,VT1因R1接负极,而c1两端电压不能突变。
VT1(b)极电位低于e极,VT1导通,VT2(b)极有电流流入,VT2也导通,电流从电源正极经L、VT2(c)极到e极,流回电源负极,电源对L充电,L储存能量,L上的自感电动势为左正右负。
经c1的反馈作用,VT1基极电位比发射极电位更低,VT1进入深度饱和状态,同时VT2也进入深度饱和状态,即Ib>Ic/β(β为放大倍数)。
随着电源对c1的充电,C1两端电压逐渐升高,即V TI(b)极电位逐渐上升,Ib1逐渐减小,当I b1<=Ic1/β时,VT1退出饱和区,VT2也退出饱和区,对L的充电电流减小。
此时.L上的自感电动势变为左负右正,经c1反馈作用。
VT1基极电位进一步上升,VT1迅速截止,VT2也截止,L上储存的能量释放,发光管上的电源电压加到L上产生了自感电动势,达到升压的目的。
此电压足以使LED发光。
LED:是一种能够将电能转化为可见光的固态的半导体器件。
通常叫发光二极管,英文名Light Emitting Diode,简称LED。
LED节能灯电路原理电路图LED节能灯电路原理电路图8 W LED 驱动应用电路示意图(输入电压为85 至264 V)图1 显示的是NCP1015 在隔离型1 W-8 W 范围AC-DC LED照明应用的电路示意图。
LED节能灯的工作原理及原理图LED节能灯是一种高效、节能的照明设备,其工作原理基于LED(Light Emitting Diode)发光二极管技术。
LED节能灯通过将电能转化为光能来发出可见光,相比传统的白炽灯和荧光灯,LED节能灯具有更高的能效和更长的使用寿命。
1. 工作原理LED节能灯的工作原理是基于半导体材料的光电效应。
LED芯片中的半导体材料经过电流的作用下,电子和空穴在P-N结附近复合,产生能量释放出光子,从而发出光线。
LED芯片中的半导体材料通常是砷化镓(GaAs)、砷化铝镓(AlGaAs)等。
LED节能灯的核心部件是LED芯片,LED芯片由多个发光二极管组成。
发光二极管由两个半导体材料构成,其中一个为P型半导体,另一个为N型半导体,两者之间形成P-N结。
当外加正向电压时,电子从N型半导体向P型半导体流动,空穴从P型半导体向N型半导体流动,电子和空穴在P-N结附近复合时释放出光子,从而产生可见光。
2. 原理图LED节能灯的原理图主要包括电源电路、驱动电路和LED芯片。
下面是一种常见的LED节能灯的原理图示例:电源电路:LED节能灯需要一个稳定的直流电源来提供电能。
电源电路主要由交流电输入端、整流电路和滤波电路组成。
交流电输入端接收来自电网的交流电,经过整流电路将交流电转换为直流电,然后通过滤波电路去除电流中的杂波,最终得到稳定的直流电。
驱动电路:LED节能灯的驱动电路主要用于控制LED芯片的电流和电压,以确保LED芯片正常工作。
驱动电路普通由恒流驱动电路和恒压驱动电路组成。
恒流驱动电路可以保持LED芯片的电流恒定,避免电流过大或者过小而导致LED芯片损坏。
恒压驱动电路可以保持LED芯片的电压恒定,避免电压过高或者过低而影响LED芯片的亮度和寿命。
LED芯片:LED节能灯中的LED芯片是发光二极管,由多个发光二极管组成。
LED芯片的数量和罗列方式决定了LED节能灯的亮度和光照分布。
LED芯片通常由金属基板、P型半导体、N型半导体和透明封装材料组成。
LED节能灯的驱动电路LED灯的参数1、单颗电压/电流:红.黄光1W的电压:2.2-2.3V电流:350MA红.黄光3W的电压:2.3-2.5V电流:600-700MA蓝.绿.白光1W:电压:3.2-3.4V电流:350MA蓝.绿.白光3W:电压:3.4-3.6V电流:600-700MA2、集成电压/电流:电压:蓝.绿.白光3.4V*串数红.黄光2.4V*串数电流:350MA*并数然而这些都没有特定的。
制作LED灯只需考虑电流方面就好了。
电压只要知道个范围,通过控制电流做成恒流电路就可以了。
确切的说是没有电压要求。
LED都是要求恒流,0.02A/颗。
所以接一般的电压都要串一个电阻来分压电阻大了,整个线路电流就小了。
一般情况下尽量少串电阻,所以尽量选作适当的电压如:5,12,24V 电压只是为了能使其点亮的基础,超过其门槛电压,二极管就会发光而电流就是觉得其发光亮度,所以二进管一般都是用恒流源来驱动的。
(1)电压:LED 使用低压电源,供电电压在6-24V 之间,根据产品不同而异,所以它是一个比使用高压LED光源电源更安全的电源,特别适用于公共场所。
(2)颜色:改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿兰橙多色发光。
如小电流时为红色的LED ,随着电流的增加,可以依次变为橙色,黄色,最后为绿色。
1、降低电压根据法拉第的电磁感应定律制定的变压器可以降低交流电的电压(电磁感应定律:电路中感应电动势的大小与穿过这一电路的磁通量变化率∆φ/∆ t成正比。
公式:E=K(∆φ/∆ t))(1)制作变压器(采用EI铁芯制作,矽钢片材料)计算变压器的功率变压器功率= 输出电压X 输出电流计算变压器的铁芯截面积变压器功率X 1.44 = Y ,Y开根X 1.06 = 铁芯截面积计算变压器铁芯叠厚铁芯叠后= 铁芯截面积/ 矽钢片舌宽骨架的选用铁芯为E40 X 55计算线圈匝数45 / 铁芯截面积(平方厘米)X 220V = 初级匝数,初级匝数/ 220 X 次级电压= 次级匝数计算绕制的漆包线线径电流(开根)X 0.7 = 线径注意事项:变压器的功率设计和漆包线的线径计算还跟电路有很大的关系,不同的电路设计会有区别将变压器联入电路中便可降低交流电的电压,如下图:2、化交流电为直流电(1)恒流因为交流电的电流方向和大小是随着时间改变的,所以我们要完成两步:1)先使电流的方向变得恒定;2)使电流的大小变成定值。
最简1.2V驱动LED照明电路同时使用电荷泵和电感器的一些发光二极管驱动器将从单核和双镍氢电池(镍-金属氢化物)电池提取的有效的电压从1.2V提高到2.4v,也可以达到白色LED的需求的3.6v。
然而,如max1595这样的大部分这些线路,要求最低输入电压约为2.5v来正常运作。
该工程max1595的输入电压2.4v并不能保证有足够的输出,直到输入电压达到约3v才可以。
此外,由于电池电压降低到阈值水平,输出变得不稳定。
图1的电路用触发器在一个感应器里生成通量,这个感应器随后在共同的推进配置下装载电容器。
美国专利4,068,14 9在申请经营安全白炽灯灯泡的闪光的情况下描述了触发器的运行(参考1 )。
在图1里,R1提供了一条起动电流通过Q1和Q2的发射极-基极结的路径。
Q2从而开启,并在这样做时打开Q1,迅速迫使两个晶体管进入饱和状态。
不过,C1通过R2加压到Q1的基极-发射极电压降的电池电压负极和Q2的饱和集电极-发射极,最终导致Q2的关闭同样的也一起关闭了Q2。
C1随后通过r1和r2放电并且正向偏置q 2的基极-集电极结。
R2 C1的时间常数决定了接通时间,而(R1+R2)(C2)决定关闭时间。
当Q2关 闭并且提供了对于电源d2充分的提供了一个恒定电压的时候,C2对于一个通过了L1的电流充当了电容输入过滤器的角色。
输出电压和电池电压成正比。
运用图1的元件值和l1 coilcraft mss7341 - 104mlb ,运行频率大约为60kHz。
用从2个镍氢电池获得的2.36v的电池电压,通过LED的电流大约为20MA.同时测试驱动两个LED,每个都有自己的限流电阻 R3,在这个电池电压的电路的能量转化效率约为80%。
用略多于1v的电池电压继续运作,传输过去的电流减小了但是仍然可以提供可用的照明。
如何用一节电池点亮超高亮LED一、电路设计一节镍氢电池的电压只有1.2V,而超高亮LED 需要3.3V 以上的工作电压才能保证足够的亮度。
因此。
必须设法将电压升高,常见的升压电路一般有二种形式,即高频振荡电路和电磁感应升压电路。
对于升压电路,有两种电路可选择。
如图1 和图2 所示。
图1 的电路使用一个脉冲小变压器,功率管VT3 将高频振荡信号放大,加在L1 通过变压器T 直接升压。
图2 是利用电感的自感高压来实现对电压的提升。
当振荡信号输入VT3 的基极时,VT3 将周期性地饱和、截止。
当饱和时,电感L 通电,电能转化为磁能储存在L 中,此时二极管截止,靠C3 储存的能量向负载供电;当VT3 截止时。
电感将产生下正上负的自感电动势。
二极管VD 导通,该自感电动势与电源电动势叠加,向电容C3 充电和负载供电,由于两个电动势正串。
可以得到比电源还要高的电压,具体大小主要由负载和VT3 饱和时电感L 通过的电流之比确定。
这两种电路都可以将1.2V 升高到3.3V 以上,第一种电路如果在变压器上加绕正反馈线圈。
可以免去振荡电路。
使电路更加简洁。
但使用这种电路计算较复杂。
输出功率较难调节,变压器的绕制也有些麻烦。
第二种只需一个小电感。
电感量也没有较大的要求,调节电感的驱动电流,就能方便地调节输出电压。
在此采用第二种电路。
振荡电路采用图3 所示的电路,虽然能在1.2V 电压下正常工作的振荡电路有不少,但经实践证明,图3 的电路制作容易,计算简单。
成功率高。
振荡频率也容易确定。
而且。
调节R4 的大小,就能在不影响信号频率的前提下调节信号的幅度,因此采用这种电路产生一个高频方波脉冲为升压电路做准备。
这样一来,电路设计完成,由图2 和图3 共同组成。
二、计算参数关于电路参数计算,关键在于功率。
电感通电后,储存的电能为E=LI2/2,设f 为方波的频率,1a 内开关管将导通f 次,这样。
电感每秒。
高亮度LED照明的驱动电路—电路图天天读(32)高亮度LED 在照明应用中的使用越来越广泛。
在这里将介绍一种简单的“气氛照明灯”,其仅使用了少量的组件。
所有这三种LED 均由使用开关调节器的恒定电流来供电,同时亮度控制由能够产生三种PWM 信号的MSP430 微控制器来完成。
可以用磨砂玻璃外壳将印刷电路板安装到台灯中,或者也可以和LED 聚光灯一起使用来进行间接照明。
无论其功耗有多大,现在的LED 通常都使用一个恒定电流源来驱动。
这是因为以流明为单位的光输出量和电流量成正比例关系。
因此,所有的LED 厂商都规定了诸如光输出、可视角度和波长等参数,作为正向电流IF 的函数,而非像人们所期望的那样作为正向电压VF 的函数。
所以,我们在电路中使用了适当的恒定电流调节器。
用于高亮度LED 的恒定电流市场上大多数开关调节器都被配置为恒定电压源,而非恒定电流源。
将恒定电压调节器转换为恒定电流运行必须要对电路进行简单、稍微的改动。
我们使用了一个压降被调节了的电流感应电阻器,而非通常用于设定输出电压的分压器。
图1 一个开关调节器既可以被配置为一个电压源也可被配置为一个电流源LED 亮度调节LED 亮度调节的方法主要有两种。
第一种也是最为简单的一种方法便是利用模拟控制直接控制流经LED 的电流:通过降低流经LED 的电流带来降低其亮度。
然而不幸的是,这种方法存在两个严重的缺点。
首先,LED 的亮度并非严格地和电流成正比例关系,其次,当电流的变化超过LED 额定值时发光的波长(以及由此带来的颜色变化)可能会随着电流变化而发生变化。
这两种现象通常是我们不希望看到的。
稍微复杂一点的控制方法是使用能够提供LED 额定工作电流的恒定电流源。
这样,附加电路就可以利用给定脉冲间隔比(mark -space ratio)快速地将LED 开启和关闭,从而平均发出更少的光,感觉就像是光的强度降低了。
通过脉冲间隔比,我们可以较轻松地对LED 的感知亮度进行调节。
LED节能灯驱动电路图介绍时间:2010-05-23 14:14来源:未知作者:admin 点击:216次驱动电路的输出特性,白光LED闪光灯的驱动电路可分为恒压型和恒流型;按电路工作原理,可以分为电感升压电路和电荷泵电路。
白光LED是电流驱动型器件,其亮度与电流成比例关系。
在恒压型驱动电路中,往往有一个电阻与白光LED串联,用来设置产生预期白光LED正驱动电路的输出特性,白光LED闪光灯的驱动电路可分为恒压型和恒流型;按电路工作原理,可以分为电感升压电路和电荷泵电路。
白光LED 是电流驱动型器件,其亮度与电流成比例关系。
在恒压型驱动电路中,往往有一个电阻与白光LED串联,用来设置产生预期白光LED正向电流所需的电压。
这种方式有一个缺点,即白光LED正向电压的任何变化都会导致白光LED电流的变化,从而无法保证流过白光LED的电流等于预设置值,也就无法确保白光LED的亮度恒定。
而在恒流型驱动电路中,是通过检测串联在白光LED回路电阻的电压来保证流过白光LED的电流恒定的。
这种方式可以消除由正向电压变化而产生的电流变化,因此白光LED可产生相对恒定的亮度。
由于移动电话的锂离子电池的工作电压范围一般为3.*.2V,而白光LED的正向电压一般为3~4V,且白光LED闪光灯一般为多个白光LED 串、并联在一起,以提供闪光功能所需的光通量,所以在低电压输入、高电压输出的时候,必须采用升压电路将电压升高以驱动白光LED。
驱动白光LED闪光灯时一般采用两种方式升压,一种是采用以电感为储能元件的升压式变换器,另一种是采用以电容为储能元件的电荷泵。
采用以电感为储能元件的升压变换器的优点是效率相对较高。
现在的白光LED闪光灯驱动控制器都集成了控制电路和升压开关管,但是电感和用于续流的肖特基二极管还是外接的,这增加了电路的复杂性、成本和PCB面积。
此外,由于闪光灯驱功电路、LED闪光灯显示屏、移动电话的天线一般位于移动电话上端,与移动电话的射频电路靠得很近,所以有效防止驱动电路电感的EMI干扰也是很重要的问题。
led灯电路图原理图解LED灯电路图原理图解。
LED灯是一种常见的照明设备,具有节能、高亮度、寿命长等特点,因此在家庭、商业和工业领域得到了广泛应用。
在LED灯的制作过程中,电路图起着至关重要的作用,它能够清晰地展示LED灯的工作原理和连接方式。
本文将通过图解的方式,详细介绍LED灯的电路图原理,帮助读者更好地理解LED灯的工作原理和制作过程。
首先,我们来看一张典型的LED灯电路图。
在这张电路图中,LED灯的连接方式一目了然,包括LED灯、电阻、电源等元件的连接方式。
通过这张电路图,我们可以清晰地了解LED灯的工作原理和各个元件之间的连接关系。
LED灯的电路图中,最重要的元件之一就是LED灯。
LED灯是一种半导体发光器件,具有正负极,工作时需要接入电路中。
在电路图中,LED灯通常用一个三角形表示,其中一条较长的线表示LED的正极,一条较短的线表示LED的负极。
理解LED灯的正负极对于正确连接LED灯至关重要,否则LED灯将无法正常工作。
另一个重要元件是电阻。
电阻在LED灯电路中起着限流保护的作用,能够避免电流过大损坏LED灯。
在电路图中,电阻通常用一个波浪形符号表示,通过电阻的数值和颜色环来识别电阻的阻值。
正确选择合适的电阻对LED灯的亮度和寿命都有着重要的影响。
此外,电源也是LED灯电路中不可或缺的元件。
电源为LED灯提供工作所需的电压和电流,保证LED灯正常工作。
在电路图中,电源通常用一个波浪形符号表示,通过电源的标识和参数来确定电源的工作电压和电流。
通过以上对LED灯电路图中各个元件的介绍,我们可以清晰地了解LED灯的工作原理和连接方式。
在实际制作LED灯时,我们需要根据电路图正确连接LED灯、电阻和电源,确保LED灯正常工作。
同时,根据实际需要选择合适的电源和电阻,以确保LED灯的亮度和寿命。
总的来说,LED灯的电路图原理图解对于理解LED灯的工作原理和制作过程至关重要。
通过仔细观察电路图,我们可以清晰地了解LED灯的连接方式和各个元件的作用,从而更好地制作和维护LED灯。
单节电池驱动高亮LED灯电路图
一、电路设计
一节镍氢电池的电压只有1.2V,而超高亮LED需要3.3V以上的工作电压才能保证足够的亮度。
因此。
必须设法将电压升高,常见的升压电路一般有二种形式,即高频振荡电路和电磁感应升压电路。
对于升压电路,有两种电路可选择。
如图1和图2所示。
图1的电路使用一个脉冲小变压器,功率管VT3将高频振荡信号放大,加在L1通过变压器T直接升压。
图2是利用电感的自感高压来实现对电压的提升。
当振荡信号输入VT3的基极时,VT3将周期性地饱和、截止。
当饱和时,电感L通电,电能转化为磁能储存在L中,此时二极管截止,靠C3储存的能量向负载供电;当VT3截止时。
电感将产生下正上负的自感电动势。
二极管VD导通,该自感电动势与电源电动势叠加,向电容C3充电和负载供电,由于两个电动势正串。
可以得到比电源还要高的电压,具体大小主要由负载和VT3饱和时电感L通过的电流之比确定。
这两种电路都可以将1.2V升高到3.3V以上,第一种电路如果在变压器上加绕正反馈线圈。
可以免去振荡电路。
使电路更加简洁。
但使用这种电路计算较复杂。
输出功率较难调节,变压器的绕制也有些麻烦。
第二种只需一个小电感。
电感量也没有较大的要求,调节电感的驱动电流,就能方便地调节输出电压。
在此采用第二种电路。
振荡电路采用图3所示的电路,虽然能在1.2V电压下正常工作的振荡电路有不少,但经实践证明,图3的电路制作容易,计算简单。
成功率高。
振荡频率也容易确定。
而且。
调节R4的大小,就能在不影响信号频率的前提下调节信号的幅度,因此采用这种电路产生一个高频方波脉冲为升压电路做准备。
这样一来,电路设计完成,由图2和图3共同组成。
二、计算参数
关于电路参数计算,关键在于功率。
电感通电后,储存的电能为E=LI2/2,设f为方波的频率,1a内开关管将导通f次,这样。
电感每秒储存的电能为W=f×E,设这些能量转化向负载的效率为η,那么输出功率为P=η×W+Po,Po为电源直接向负载供电的功率(因为电源与自感高压叠加。
必须考虑这一点)。
现进行估算。
驱动一个LED约要100mW。
电源的Po约为20mW。
为了保证供给,按
P=100mW计算。
取η=80%,再随便找一个几百uH的电感,如500 uH:另一方面,根据能量守恒。
3.3V约为1.2V的3倍。
再由于效率问题。
电感的驱动电流差不多要LED 工作电流的3-4倍,就取为120mA,这样一来。
便可算出振荡频率为34kHz左右,这样,取R=2kΩ,C=0.01 uF便能达到要求。
确定参数时。
频率可高不可低,电感宁大勿小,这样才能保证输出功率足够大,才能有足够的调节空间。
元件表
三、制作
由于电路简单。
元件在2×2cm的板上。
只要操作无误,接通电源电路就能工作。
先不要接
上LED,用万用表测出输出电压,这时候,调节R4的大小,R4越大,输出电压越小。
反之亦然,当输出电压在3.2V左右时,可接上LED,再调节R4的大小,使其足够亮,注意,不可让LED两端的电压超过3.6V,否则有可能烧毁LED。
这样一来,电路便调试完成。