南昌大学数字信号处理实验报告2014级
- 格式:doc
- 大小:736.13 KB
- 文档页数:59
中南大学《数字信号处理》实验报告课程名称数字信号处理指导教师学院信息科学与工程学院专业班级姓名实验一 常见离散时间信号的产生和频谱分析实验内容及要求(1)复习常用离散时间信号的有关内容;(2) 用MATLAB 编程产生上述任意3种序列(长度可输入确定,对(d) (e) (f)中的参数可自行选择),并绘出其图形;1)单位阶跃序列: n=-20:20; xn=heaviside(n); xn(n==0)=1;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('单位阶跃序列');xlabel('n');ylabel('u(n)');box on2)单位抽样序列: n=-20:20;xn=heaviside(n)-heaviside(n+1); xn(n==0)=1;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('单位抽样序列');xlabel('n');ylabel('\delta(n)');box on-20-15-10-5051015200.20.40.60.81单位阶跃序列nu (n )3)矩阵序列: n=-20:20; N=5;xn=heaviside(n)-heaviside(n-N); xn(n==0)=1;xn(n==N)=0;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('矩阵序列');xlabel('n');ylabel('R_{N}(n)');box on-20-15-10-50510152000.20.40.60.81单位抽样序列n(n )-20-15-10-50510152000.20.40.60.81矩阵序列nR N (n )4)正弦序列:n=-40:40;A=2;w=pi/8;f=pi/4; xn=A*sin(w.*n+f);plot(n,xn);stem(n,xn);axis([-40 40 -4.2 4.2]) title('正弦序列');xlabel('n');ylabel('x(n)');box on(3) 混叠现象对连续信号01()sin(2***)x t pi f t =其中,01500f Hz =进行采样,分别取采样频率2000,1200,800s f Hz Hz Hz =,观察|)(|jw e X 的变化,并做记录(打印曲线),观察随着采样频率降低频谱混叠是否明显存在,说明原因。
一、实验名称:时域采样与频域采样二、实验目的: 时域采样理论与频域采样理论是数字信号处理中的重要理论。
要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
三、实验原理与方法:时域采样定理:a) 对模拟信号以间隔T进行时域等间隔理想采样,形成的采样信号的频谱是原模拟信号频谱以采样角频率()为周期进行周期延拓。
公式为:b) 采样频率必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。
C) 计算机进行实验的公式为:即理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用代替即可。
频域采样定理:a) 对信号x(n)的频谱函数X(ejω)在[0,2π]上等间隔采样N点,得到则N点IDFT[]得到的序列就是原序列x(n)以N为周期进行周期延拓后的主值区序列,公式为:b) 由上式可知,频域采样点数N必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N点IDFT[]得到的序列就是原序列x(n),即=x(n)。
如果N>M,比原序列尾部多N-M个零点;如果N<M,z则=IDFT[]发生了时域混叠失真,而且的长度N也比x(n)的长度M短,因此。
与x(n)不相同。
四、实验内容及步骤:(1)验证时域采样理论。
模拟信号:式中A=444.128,=50π,=50πrad/s。
它的幅频特性曲线如下图。
的幅频特性曲线按照的幅频特性曲线,选取三种采样频率,即=1kHz,300Hz,200Hz。
观测时间选。
为使用DFT,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用,,表示。
要求:编写实验程序,计算、和的幅度特性,并绘图显示。
观察分析频谱混叠失真。
实验程序:A=444.128;a=50*sqrt(2)*pi;w0=50*sqrt(2)*pi;Tp=50/1000;F1=1000;F2=300;F3=200; %观察时间Tp=50msT1=1/F1;T2=1/F2;T3=1/F3; %不同的采样频率n1=0:Tp*F1-1;n2=0:Tp*F2-1;n3=0:Tp*F3-1; %产生不同的长度区间n1,n2,n3x1=A*exp(-a*n1*T1).*sin(w0*n1*T1); %产生采样序列x1(n)x2=A*exp(-a*n2*T2).*sin(w0*n2*T2); %产生采样序列x2(n)x3=A*exp(-a*n3*T3).*sin(w0*n3*T3); %产生采样序列x3(n)f1=fft(x1,length(n1)); %采样序列x1(n)的FFT变换f2=fft(x2,length(n2)); %采样序列x2(n)的FFT变换f3=fft(x3,length(n3)); %采样序列x3(n)的FFT变换k1=0:length(f1)-1;fk1=k1/Tp; %x1(n)的频谱的横坐标的取值k2=0:length(f2)-1;fk2=k2/Tp; %x2(n)的频谱的横坐标的取值k3=0:length(f3)-1;fk3=k3/Tp; %x3(n)的频谱的横坐标的取值subplot(3,2,1)stem(n1,x1,'.')title('(a)Fs=1000Hz');xlabel('n');ylabel('x1(n)'); subplot(3,2,3)stem(n2,x2,'.')title('(b)Fs=300Hz');xlabel('n');ylabel('x2(n)'); subplot(3,2,5)stem(n3,x3,'.')title('(c)Fs=200Hz');xlabel('n');ylabel('x3(n)'); subplot(3,2,2)plot(fk1,abs(f1))title('(a) FT[xa(nT)],Fs=1000Hz'); xlabel('f(Hz)');ylabel('幅度') subplot(3,2,4)plot(fk2,abs(f2))title('(b) FT[xa(nT)],Fs=300Hz');xlabel('f(Hz)');ylabel('幅度')subplot(3,2,6)plot(fk3,abs(f3))title('(c) FT[xa(nT)],Fs=200Hz');xlabel('f(Hz)');ylabel('幅度')运行结果:由图可见,采样序列的频谱的确是以采样频率为周期对模拟信号频谱的周期延拓。
《数字信号处理》上机实验指导书一、引言“数字信号处理”是一门理论和实验密切结合的课程,为了深入地掌握课程内容,应当在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助学生深入地理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
所以,根据本课程的重点要求编写了四个实验。
第一章、二章是全书的基础内容,抽样定理、时域离散系统的时域和频域分析以及系统对输入信号的响应是重要的基本内容。
由于第一、二章大部分内容已经在前期《信号与系统》课程中学习完,所以可通过实验一帮助学生温习以上重要内容,加深学生对“数字信号处理是通过对输入信号的一种运算达到处理目的” 这一重要概念的理解。
这样便可以使学生从《信号与系统》课程顺利的过渡到本课程的学习上来。
第三章、四章DFT、FFT是数字信号处理的重要数学工具,它有广泛的使用内容。
限于实验课时,仅采用实验二“用FFT对信号进行谱分析”这一实验。
通过该实验加深理解DFT的基本概念、基本性质。
FFT是它的快速算法,必须学会使用。
所以,学习完第三、四章后,可安排进行实验二。
数字滤波器的基本理论和设计方法是数字信号处理技术的重要内容。
学习这一部分时,应重点掌握IIR和FIR两种不同的数字滤波器的基本设计方法。
IIR滤波器的单位冲激响应是无限长的,设计方法是先设计模拟滤波器,然后再通过S~Z平面转换,求出相应的数字滤波器的系统函数。
这里的平面转换有两种方法,即冲激响应不变法和双线性变换法,后者没有频率混叠的缺点,且转换简单,是一种普遍应用的方法。
学习完第六章以后可以进行实验三。
FIR滤波器的单位冲激响应是有限长的,设计滤波器的目的即是求出符合要求的单位冲激响应。
窗函数法是一种基本的,也是一种重要的设计方法。
学习完第七章后可以进行实验四。
以上所提到的四个实验,可根据实验课时的多少恰当安排。
例如:实验一可根据学生在学习《信号与系统》课程后,掌握的程度来确定是否做此实验。
若时间紧,可以在实验三、四之中任做一个实验。
数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。
在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。
本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。
实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。
通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。
实验设置如下:1. 设置采样频率为8kHz。
2. 生成一个正弦信号:频率为1kHz,振幅为1。
3. 生成一个方波信号:频率为1kHz,振幅为1。
4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。
这体现了正弦信号和方波信号在时域上的不同特征。
实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。
在实际应用中,信号的采样和重构对信号处理的准确性至关重要。
实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。
2. 设置采样频率为8kHz。
3. 对正弦信号进行采样,得到离散时间信号。
4. 对离散时间信号进行重构,得到连续时间信号。
5. 将重构的信号通过DAC输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。
这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。
实 验 报 告课程名称:信号与系统实验指导老师:万国金学生姓名:学号:专业班级:14级综合实验班2016年 6月 8 日实验一:连续系统的时域分析实验 (3)实验二:信号合成实验 (6)实验三:傅里叶分析实验 (10)实验四(软件实验):连续系统的S域分析实验 (14)实验七:Simulink仿真实验 (17)实验九(软件实验):离散时间系统的时域分析实验 (19)实验十:离散时间系统的z域分析实验 (21)实验一:连续系统的时域分析实验 一、实验目的:1.了解连续时间信号的特点;2.掌握连续时间信号表示的方法;3.掌握连续时间信号时域运算的基本方法;4.掌握连续时间信号波形变换的基本运算;5.熟悉Matlab 相关函数的调用格式及作用, 并实现常用连续信号的运算及连续系统的响应。
二、实验原理:1.常用信号的MATLAB 实现及调用: 信号 ()f t函数 调用形式正弦信号 ()sin()f t A wt ϕ=+sin *sin(*)f A w t ϕ=+ 余弦信号 ()cos()f t A wt ϕ=+cos *cos(*)f A w t ϕ=+指数信号()at f t Ae =exp *exp(*)f A a t = 矩形脉冲信号rectpuls(,)f rectpuls t width =2.连续信号运算的MATLAB 实现:连续信号的基本运算包括连续信号的相加、相乘、翻转、移位和缩展,以及连续信号的微分和积分。
(1) 相加和相乘 连续信号1()f t 和2()f t , 1()y t 为和信号2()y t 为积信号112()()()y t f t f t =+ 212()()*()y t f t f t =; (2)翻转 信号()f t 的自变量t 换成t −,得到另一个信号()f t −; (3)移位 将信号()f t 的自变量换为0t t +,得到另一个信号0()f t t +; (4)展缩 将信号()f t 的自变量t 换位at ,得到另一个信号()f at ; (5)微分和积分微分调用函数diff 调用形式为()diff f积分调用函数int 调用形式为int()f ; 卷积调用函数conv 调用形式为12(,)f conv f f =; 3.连续系统的响应:(1)调用函数impluse 可求解系统冲击响应,调用形式为:(,)y impluse sys t = (2)调用函数step 可求解阶跃响应,调用形式为:(,)y step sys t =(3)调用函数lsim 可求解系统零状态响应,调用形式为:(,,)y lsim sys x t = 式中:t 表示计算系统响应的抽样点向量;x 是系统输入信号向量(4)调用函数lsim 可求解系统全响应,调用形式为(,,,)lsim sys f t z ,f 为系统输入,z 为系统的初始状态。
一、实验目的1. 理解数字信号处理的基本概念和原理。
2. 掌握离散时间信号的基本运算和变换方法。
3. 熟悉数字滤波器的设计和实现。
4. 培养实验操作能力和数据分析能力。
二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。
本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。
2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。
3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。
4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。
三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。
(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。
2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。
(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。
3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。
(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。
4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。
(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。
四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。
实验一 信号、系统及系统响应一、 实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;2、熟悉时域离散系统的时域特性;3、利用卷积方法观察分析系统的时域特性;4、掌握序列傅立叶变换的计算机实现方法,利用序列的傅立叶变换对连续信号、离散信号及系统响应进行频域分析。
二、 实验原理及方法采样是连续信号数字处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅立叶变换、Z 变换和序列傅立叶变换之间关系式的理解。
对一个连续信号)(t x a 进行理想采样的过程可用下式表示:)()()(^t p t t x x aa其中)(^t x a 为)(t x a 的理想采样,p(t)为周期脉冲,即∑∞-∞=-=m nT t t p )()(δ)(^t x a的傅立叶变换为)]([1)(^s m a m j X T j a X Ω-Ω=Ω∑∞-∞= 上式表明^)(Ωj Xa为)(Ωj Xa的周期延拓。
其延拓周期为采样角频率(T /2π=Ω)。
只有满足采样定理时,才不会发生频率混叠失真。
在实验时可以用序列的傅立叶变换来计算^)(Ωj X a 。
公式如下:Tw jwae X j X Ω==Ω|)()(^离散信号和系统在时域均可用序列来表示。
为了在实验中观察分析各种序列的频域特性,通常对)(jw e X 在[0,2π]上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n),有:n jw N n jw k ke m x eX--=∑=)()(1其中,k Mk πω2=,k=0,1,……M-1 时域离散线性非移变系统的输入/输出关系为∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(上述卷积运算也可在频域实现)()()(ωωωj j j e H e X eY =三、 实验程序s=yesinput(Please Select The Step Of Experiment:\n 一.(1时域采样序列分析 s=str2num(s); close all;Xb=impseq(0,0,1); Ha=stepseq(1,1,10);Hb=impseq(0,0,3)+2.5*impseq(1,0,3)+2.2*impseq(2,0,3)+impseq(3,0,3); i=0;while(s);%时域采样序列分析 if(s==1)k=0;while(1)if(k==0)A=yesinput('please input the Amplitude:\n',...444.128,[100,1000]); a=yesinput('please input the Attenuation Coefficient:\n',...222.144,[100,600]);w=yesinput('please input the Angle Frequence(rad/s):\n',...222.144,[100,600]);endk=k+1;fs=yesinput('please input the sample frequence:\n',...1000,[100,1200]);Xa=FF(A,a,w,fs);i=i+1;string+['fs=',num2str(fs)];figure(i)DFT(Xa,50,string);1=yesinput1=str2num(1);end%系统和响应分析else if(s==2)kk=str2num(kk);while(kk)if(kk==1)m=conv(Xb,Hb);N=5;i=i+1;figure(i)string=('hb(n)');Hs=DFT(Hb,4,string);i=i+1;figure(i)string('xb(n)');DFT(Xb,2,string);string=('y(n)=xb(n)*hb(n)');else if (kk==2)m=conv(Ha,Ha);N=19;string=('y(n)=ha(n)*(ha(n)');else if (kk==3)Xc=stepseq(1,1,5);m=conv(Xc,Ha);string=('y(n)=xc(n)*ha(n)');endendendi=i+1;figure(i)DFT(m,N,string);kk=yesinputkk=str2num(kk);end卷积定理的验证else if(s==3)A=1;a=0.5;w=2,0734;fs=1;Xal=FF(A,a,w,fs);i=i+1;figure(i)string=('The xal(n)(A=1,a=0.4,T=1)'); [Xa,w]DFT(Xal,50,string);i=i+1;figure(i)string =('hb(n)');Hs=DFT(Hb,4,string);Ys=Xs.*Hs;y=conv(Xal,Hb);N=53;i=i+1;figure(i)string=('y(n)=xa(n)*hb(n)');[yy,w]=DFT(y,N,string);i=i+1;figure(i)subplot(2,2,1)plot(w/pi,abs(yy));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title(FT[x(n)*h(n)]');subplot(2,2,3)plot(w/pi,abs(Ys));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title('FT[xs(n)].FT[h(n)]'); end end end子函数:离散傅立叶变换及X(n),FT[x(n)]的绘图函数 function[c,l]=DFT(x,N,str) n=0:N-1; k=-200:200; w=(pi/100)*k; l=w; c=x*Xc=stepseq(1,1,5); 子函数:产生信号function c=FF(A,a,w,fs) n=o:50-1;c=A*exp((-a)*n/fs).*sin(w*n/fs).*stepseq(0,0,49); 子函数:产生脉冲信号function [x,n]=impseq(n0,n1,n2) n=[n1:n2];x=[(n-n0)==0];子函数:产生矩形框信号function [x,n]=stepseq(n0,n1,n2) n=[n1:n2];x=[(n-n0>=0)];四、 实验内容及步骤1、认真复习采样理论,离散信号与系统,线性卷积,序列的傅立叶变换及性质等有关内容,阅读本实验原理与方法。
数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。
2.应用 DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。
2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。
而要研究离散时间信号,首先需要产生出各种离散时间信号。
使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。
通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。
数字信号处理实验报告
数字信号处理是指利用数字技术对模拟信号进行采样、量化、编码等处理后,再通过数字信号处理器进行数字化处理的技术。
在数字信号处理实验中,我们通过对数字信号进行滤波、变换、解调等处理,来实现信号的处理和分析。
在实验中,我们首先进行了数字信号采集和处理的基础实验,采集了包括正弦信号、方波信号、三角波信号等在内的多种信号,并进行了采样、量化、编码等处理。
通过这些处理,我们可以将模拟信号转换为数字信号,并对其进行后续处理。
接着,我们进行了数字信号滤波的实验。
滤波是指通过滤波器对数字信号进行处理,去除其中的噪声、干扰信号等不需要的部分,使其更加纯净、准确。
在实验中,我们使用了低通滤波器、高通滤波器、带通滤波器等多种滤波器进行数字信号滤波处理,得到了更加干净、准确的信号。
除了滤波,我们还进行了数字信号变换的实验。
数字信号变换是指将数字信号转换为另一种表示形式的技术,可以将信号从时域转换到频域,或者从离散域转换到连续域。
在实验中,我们使用了傅里叶变换、离散傅里叶变换等多种变换方式,对数字信号进行了变换处理,得到了信号的频谱信息和其他相关参数。
我们进行了数字信号解调的实验。
数字信号解调是指将数字信号转换为模拟信号的技术,可以将数字信号还原为原始信号,并进行后续处理。
在实验中,我们使用了频率解调、相干解调等多种解调方式,将数字信号转换为模拟信号,并对其进行了分析和处理。
总的来说,数字信号处理实验是一项非常重要的实验,可以帮助我们更好地理解数字信号处理的原理和方法,为我们今后从事相关领域的研究和工作打下坚实的基础。
数字信号处理实验报告13050Z011305024237数字信号处理实验报告实验一 采样定理(2学时) 内容:给定信号为()exp()cos(100**)x t at at π=-,其中a 为学号, (1)确定信号的过采样和欠采样频率(2)在上述采样频率的条件下,观察、分析、记录频谱,说明产生上述现象的原因。
基本要求:验证采样定理,观察过采样和欠采样后信号的频谱变化。
a=37; %1305024237 fs=10000; %抽样频率 t=0:1/fs:0.05;x1=exp(-a*t).*cos(100*pi*a*t);N=length(x1); %信号时域横轴向量 k=(0:N-1); %信号频域横轴向量 Y1=fft(x1); Y1=fftshift(Y1); subplot(2,1,1); plot(t,x1);hold on ; stem(t,x1,'o'); subplot(2,1,1); plot(k,abs(Y1)); gtext('1305024237');051015201305024237 刘德文a=37; %1305024237 fs=800; %抽样频率 t=0:1/fs:0.05;x1=exp(-a*t).*cos(100*pi*a*t);N=length(x1); %信号时域横轴向量 k=floor(-(N-1)/2:(N-1)/2); %信号频域横轴向量 Y1=fft(x1); Y1=fftshift(Y1); subplot(2,1,1); plot(t,x1);hold on ; stem(t,x1,'o'); subplot(2,1,2); plot(k,abs(Y1)); title('1305024237 ');0.0050.010.0150.020.0250.030.0350.040.0450.05-20-15-10-50510152005101305024237 刘德文实验二 信号谱分析(2学时) 内容: 给定信号为:(1)()cos(100**)x t at π= (2)()exp()x t at =-(3)()exp()cos(100**)x t at at π=-其中a 为实验者的学号,记录上述各信号的频谱,表明采样条件,分析比较上述信号频谱的区别。
数字信号处理实验报告数字信号处理实验报告一、实验目的本实验旨在通过数字信号处理的方法,对给定的信号进行滤波、频域分析和采样率转换等操作,深入理解数字信号处理的基本原理和技术。
二、实验原理数字信号处理(DSP)是一种利用计算机、数字电路或其他数字设备对信号进行各种处理的技术。
其主要内容包括采样、量化、滤波、变换分析、重建等。
其中,滤波器是数字信号处理中最重要的元件之一,它可以用来提取信号的特征,抑制噪声,增强信号的清晰度。
频域分析是指将时域信号转化为频域信号,从而更好地理解信号的频率特性。
采样率转换则是在不同采样率之间对信号进行转换,以满足不同应用的需求。
三、实验步骤1.信号采集:首先,我们使用实验室的信号采集设备对给定的信号进行采集。
采集的信号包括噪声信号、含有正弦波和方波的混合信号等。
2.数据量化:采集到的信号需要进行量化处理,即将连续的模拟信号转化为离散的数字信号。
这一步通常通过ADC(模数转换器)实现。
3.滤波处理:将量化后的数字信号输入到数字滤波器中。
我们使用不同的滤波器,如低通、高通、带通等,对信号进行滤波处理,以观察不同滤波器对信号的影响。
4.频域分析:将经过滤波处理的信号进行FFT(快速傅里叶变换)处理,将时域信号转化为频域信号,从而可以对其频率特性进行分析。
5.采样率转换:在进行上述处理后,我们还需要对信号进行采样率转换。
我们使用了不同的采样率对信号进行转换,并观察采样率对信号处理结果的影响。
四、实验结果及分析1.滤波处理:经过不同类型滤波器处理后,我们发现低通滤波器可以有效抑制噪声,高通滤波器可以突出高频信号的特征,带通滤波器则可以提取特定频率范围的信号。
这表明不同类型的滤波器在处理不同类型的信号时具有不同的效果。
2.频域分析:通过FFT处理,我们将时域信号转化为频域信号。
在频域分析中,我们可以更清楚地看到信号的频率特性。
例如,对于噪声信号,我们可以看到其频率分布较为均匀;对于含有正弦波和方波的混合信号,我们可以看到其包含了不同频率的分量。
实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。
2.应用DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间 的N 个等间隔分布的点 上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列 的N 点DFT ,实际上就是 序列的DTFT 在N 个等间隔频率点 上样本 。
2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFT( )12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。
由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。
如果没有更多的数据,可以通过补零来增加数据长度。
3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。
对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。
《数字信号处理》实验报告实验一:Z 变换及离散时间系统分析给定系统)8.0/(2.0)(2+-=z z H ,编程并绘出系统的单位阶跃响应y(n),频率响应)e (jw H 。
给出实验报告。
实验代码clear;x=ones(100); t=1:100;b=[0 0 -0.2 ]; a=[1 0 0.8]; y=filter(b,a,x); (t,x,'r.',t,y,'k-'); grid on ;ylabel('x(n) and y(n)') xlabel('n')单位阶跃响应单位抽样:b=[0 0 -0.2 ]; a=[1 0 0.8];[h,t]=impz(b,a,70);stem(t,h, '.')幅頻,相频b=[0 0 -0.2 ];a=[1 0 0.8];[H,w]=freqz(b,a,256,1);Hr=abs(H);Hphase=angle(H);Hphase=unwrap(Hphase); subplot(211)plot(w,Hr);grid on;ylabel(' 幅频.')subplot(212)plot(w,Hphase);grid on; ylabel(' 相频')零极点图:b=[0 0 -0.2 ];a=[1 0 0.8];subplot(221);zplane(b,a);实验二:快速傅里叶变换设x(n)由三个实正弦组成,频率分别是8Hz,9Hz,10Hz,抽样频率为60 Hz,时域取256点,作FFT变换,观察波形,给出实验报告。
实验代码:clear all;N=256;f1=8;f2=9;f3=10;fs=60;w=2*pi/fs;x=sin(w*f1*(0:N-1))+sin(w*f2*(0:N-1))+sin(w*f3*(0:N-1)); subplot(3,1,1);plot(x(1:N/4));f=-0.5:1/N:0.5-1/N;X=fft(x);=ifft(X);(3,1,2);plot(f,fftshift(abs(X)));subplot(3,1,3);plot(real(y(1:N/4)));实验三:无限冲击响应数字滤波器设计设计一个数字带通滤波器,参数自定。
实验六数字滤波器结构一:实验目的1.掌握IIR滤波器的三种结果(直接形式、级联形式、并联形式)及其互相形式。
2.掌握线性相位FIR滤波器的四种结构(横截形、级联形、线性相位形、频率抽样形)及其互相转换。
6.1 级联的实现程序P6.1如下:% 程序 P6_1% 将一个有理数传输函数% 转化为因式形式num = input('分子系数向量 = ');den = input('分母系数向量 = ');[z,p,k] = tf2zp(num,den);sos = zp2sos(z,p,k)习题:1.使用程序P6.1,生成如下有限冲激响应传输函数的一个级联实现:H1(z)=2+10z^(-1)+23z^(-2)+34z^(-3)+31z^(-4)+16z^(-5)+4z^(-6)画出级联实现的框图。
H1(z)是一个线性相位传输函数吗?答:级联框图:H1(z)不是一个线性相位传输函数,因为系数不对称。
2.使用程序P6.1,生成如下有限冲激响应传输函数的一个级联实现:H2(z)=6+31z^(-1)+74z^(-2)+102z^(-3)+74z^(-4)+31z^(-5)+6z^(-6)画出级联实现的框图。
H2(z)是一个线性相位传输函数吗?只用4个乘法器生成H2(z)的一个级联实现。
显示新的级联结构的框图。
答:级联框图:H2(z)是一个线性相位传输函数。
只用四个乘法器生成级联框图:6.2级联和并联实现习题:3.使用程序P6.1生成如下因果无限冲激响应传输函数的级联实现:画出级联实现的框图。
答:级联实现框图:4.使用程序P6.1生成如下因果无限冲激响应传输函数的级联实现:画出级联实现的框图。
答:级联实现框图:程序P6.2生成两种类型的并联实现,程序如下:% 程序 P6_2% 一个无限冲激响应传输函数的并联形式实现num = input('分子系数向量 = ');den = input('分母系数分量 = ');[r1,p1,k1] = residuez(num,den);[r2,p2,k2] = residue(num,den);disp('并联I型')disp('留数是');disp(r1);disp('极点在');disp(p1);disp('常数');disp(k1);disp('并联II型')disp('留数是');disp(r2);disp('极点在');disp(p2);disp('常数');disp(k2);习题:5.使用程序P6.2生成式(6.27)所示因果无限冲激响应传输函数的两种不同并联形式实现。
实验七数字滤波器设计一:实验目的1.掌握数字巴特沃斯滤波器的设计原理和步骤2.进一步学习用窗函数法设计FIR数字滤波器的原理及其设计步骤7.1 无限冲激响应滤波器的阶数的估计滤波器设计过程中的第一步是,选择接近所使用的滤波器的类型,然后由滤波器指标来估计传输函数的阶数。
用来估计巴特沃兹滤波器的阶数的MATLAB命令是[N,Wn] = buttord(Wp,WS,Rp,RS)其中输入参数是归一化通带边界频率Wp、归一化阻带边界频率Ws、单位为dB 的通带波纹Rp和单位为dB的最小阻带衰减Rs,,由于抽样频率被假定为2Hz,Wp 和Ws均必须是0和1之间的一个数。
输出数据是满足指标的最低阶数N和归一化截止频率Wn。
若Rp =3dB,则Wn =Wp。
buttord也可用于估计高通、带通和带阻巴特沃兹滤波器的阶数。
对于高通滤波器设计,Wp>Ws。
对于带通和带阻滤波器设计,Wp和Ws是指定边界频率的双元素向量,其中较低的边界频率是向量的第一个元素。
在后面的情况中,Wn也是一个双元素向量。
习题:1.用MATTAB确定一个数字无限冲激响应低通滤波器所有四种类型的最低阶数。
指标如下:40 kHz的抽样率,,4 kHz的通带边界频率,8 kHz的阻带边界频率,0.5 dB的通带波纹,40 dB的最小阻带衰减。
评论你的结果。
答:标准通带边缘角频率Wp是:标准阻带边缘角频率Ws是:理想通带波纹Rp是0.5dB理想阻带波纹Rs是40dB(1)使用这些值得到巴特沃斯低通滤波器最低阶数N=8,相应的标准通带边缘频率Wn是0.2469.(2)使用这些值得到切比雪夫1型低通滤波器最低阶数N=5,相应的标准通带边缘频率Wn是0.2000.(3)使用这些值得到切比雪夫2型低通滤波器最低阶数N=5,相应的标准通带边缘频率Wn是0.4000.(4)使用这些值得到椭圆低通滤波器最低阶数N=8,相应的标准通带边缘频率Wn是0.2000.从以上结果中观察到椭圆滤波器的阶数最低,并且符合要求。
数字信号处理实验报告班级14050542学号1405054217姓名燕飞宇实验一:频谱分析与采样定理一、实验目的1.观察模拟信号经理想采样后的频谱变化关系。
2.验证采样定理,观察欠采样时产生的频谱混叠现象3.加深对DFT算法原理和基本性质的理解4.熟悉FFT算法原理和FFT的应用二、实验原理根据采样定理,对给定信号确定采样频率,观察信号的频谱三、实验内容和步骤实验内容在给定信号为:1.x(t)=cos(100*π*at)2.x(t)=exp(-at)3.x(t)=exp(-at)cos(100*π*at)其中a为实验者的学号,记录上述各信号的频谱,表明采样条件,分析比较上述信号频谱的区别。
实验步骤1.复习采样理论、DFT的定义、性质和用DFT作谱分析的有关内容。
2.复习FFT算法原理和基本思想。
3.确定实验给定信号的采样频率,编制对采样后信号进行频谱分析的程序四、实验程序clear all;clc;%学号为17号,故w=1700pi,所以采样时间需大于0.004T=0.0005; %采样时间F=1/T; %采样频率N=100; %采样点数,100左右的点看起来比较清晰n=1:N;L=T*N;a=25; %班级学号17号t=0:T:L; %以0为起点,T为步长,L为终点f1=0:F/N:F;f2=-F/2:F/N:F/2;x1=cos(100*pi*a*t); %定义信号x1y1=T*abs(fft(x1)); %求复数实部与虚部的平方和的算术平方根y11=fftshift(y1); %让正半轴部分和负半轴部分的图像分别关于各自的中心对称figure(1),subplot(3,1,1),plot(t,x1);title('正弦信号x1'); subplot(3,1,2),stem(y1);title('正弦信号频谱'); subplot(3,1,3),plot(f2,y11);title('正弦信号频谱'); x2=exp(-a*t); %定义信号x2 y2=T*abs(fft(x2)); y21=fftshift(y2); figure(2),subplot(3,1,1),stem(t,x2);title('指数信号x2'); subplot(3,1,2),stem(f1,y2);title('指数信号频谱'); subplot(3,1,3),plot(f2,y21);title('指数信号频谱'); x3=x1.*x2; %定义信号x3 y3=T*abs(fft(x3)); y31=fftshift(y3); figure(3),subplot(3,1,1),stem(t,x3);title('两信号相乘x3'); subplot(3,1,2),stem(f1,y3);title('两信号相乘频谱'); subplot(3,1,3),plot(f2,y31);title('两信号相乘频谱');00.0050.010.0150.020.0250.030.0350.040.0450.05-101正弦信号x1正弦信号频谱-1000-800-600-400-2000200400600800100000.020.04正弦信号频谱00.0050.010.0150.020.0250.030.0350.040.0450.05指数信号x2指数信号频谱-1000-800-600-400-2000200400600800100000.020.04指数信号频谱两信号相乘x3两信号相乘频谱-1000-800-600-400-2000200400600800100000.010.02两信号相乘频谱分析结果:由实验结果可以看出,当抽样频率大于信号频谱最高频率的2倍时,信号失真较小;当抽样频率等于信号频谱最高频率的2倍时,虽然满足抽样定理,但是为了恢复原信号所采用的滤波器在截止频率处必须具有很陡直的频率特性,这对于滤波器的的设计要求太高,实际上是做不到的,因此仍存在失真;当抽样频率小于信号频谱最高频率的2倍时,不满足抽样定理,信号失真,可以观察到频谱混叠现象。
本科生实验报告实验课程数字信号处理基础学院名称地球物理学院专业名称地球物理学学生姓名学生学号指导教师王山山实验地点5417实验成绩二〇一四年十一月二〇一四年十二月填写说明1、适用于本科生所有的实验报告(印制实验报告册除外);2、专业填写为专业全称,有专业方向的用小括号标明;3、格式要求:①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。
②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下2.54cm,左右2.54cm,页眉1.5cm,页脚1.75cm)。
字符间距为默认值(缩放100%,间距:标准);页码用小五号字底端居中。
③具体要求:题目(二号黑体居中);摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4号宋体);关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体);正文部分采用三级标题;第1章××(小二号黑体居中,段前0.5行)1.1 ×××××小三号黑体×××××(段前、段后0.5行)1.1.1小四号黑体(段前、段后0.5行)参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。
实验一生成离散信号并计算其振幅谱并将信号进行奇偶分解一、实验原理单位脉冲响应h(t)=exp(-a*t*t)*sin(2*3.14*f*t)进行离散抽样,分别得到t=0.002s,0.009s,0.011s采样的结果。
用Excel软件绘图显示计算结果。
并将信号进行奇偶分解,分别得到奇对称信号h(n)-h(-n)与偶对称信号h(n)+h(-n)。
用Excel 软件绘图显示计算结果。
二、实验程序代码(1)离散抽样double a,t;a=2*f*f*log(m);int i;for(i=0;i<N;i++){t=i*dt;h[i]=exp(-a*t*t)*sin(2*3.14*f*t);}(2)奇偶分解float h1[128], h2[128], h3[128], h4[128];int i;for(i=0;i<2*N;i++){h1[i]=h2[i]=h3[i]=h4[i]=0;}for(i=N;i<2*N;i++){h1[i]=h[i-N];}double a;float t=0;a=2*f*f*log(M);for(i=N;i>=0;i--){h2[i]=float(exp(-a*t*t)*sin(2*3.14*f*t));t=t-dt;}for(i=0;i<2*N;i++){h3[i]=h1[i]+h2[i];h4[i]=h1[i]-h2[i];}三、实验结果图(1)离散抽样A信号图B频谱图C频谱图D频谱图(2)奇偶分解A信号图B翻转信号C偶对称信号D奇对称信号四、结果分析对单位脉冲响应h(t)=exp(-a*t*t)*sin(2*3.14*f*t)进行离散抽样,分别得到t=0.002s,0.009s,0.011s采样的结果。
实验报告实验课程:数字信号处理实验专业班级:综合实验141班学生姓名:学号:2016年12月23日实验一: 系统响应及系统稳定性实验二: 时域采样与频域采样实验三: 用FFT对信号作频谱分析实验四: I I R 数字滤波器设计及软件实现实验五: F I R 数字滤波器设计及软件实现实验一:系统响应及系统稳定性1.实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。
也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由其差分方程的系数决定。
实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。
可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的[19]。
系统的稳态输出是指当∞n时,→系统的输出。
如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n 的加大,幅度趋于稳定,达到稳态输出。
注意在以下实验中均假设系统的初始状态为零。
3实验内容及步骤(1)编制程序,包括产生输入信号、单位脉冲响应序列的子程序,用filter 函数或conv 函数求解系统输出响应的主程序。
程序中要有绘制信号波形的功能。
(2)给定一个低通滤波器的差分方程为)1(9.0)1(05.0)(05.0)(-+-+=n y n x n x n y输入信号 )()(81n R n x =)()(2n u n x =a) 分别求出系统对)()(81n R n x =和)()(2n u n x =的响应序列,并画出其波形。
b) 求出系统的单位冲响应,画出其波形。
根据实验要求编写matlab 代码如下:close all;clear all%======内容1:调用filter 解差分方程,由系统对u(n)的响应判断稳定性======A=[1,-0.9];B=[0.05,0.05]; %系统差分方程系数向量B 和Ax1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号x1(n)=R8(n) x2n=ones(1,128); %产生信号x2(n)=u(n)hn=impz(B,A,58); %求系统单位脉冲响应h(n)subplot(1,3,1);y='h(n)';tstem(hn,y); %调用函数tstem绘图title('(a) 系统单位脉冲响应h(n)');box ony1n=filter(B,A,x1n); %求系统对x1(n)的响应y1(n) subplot(1,3,2);y='y1(n)';tstem(y1n,y);title('(b) 系统对R8(n)的响应y1(n)');box ony2n=filter(B,A,x2n); %求系统对x2(n)的响应y2(n) subplot(1,3,3);y='y2(n)';tstem(y2n,y);title('(c) 系统对u(n)的响应y2(n)');box on实验结果为:(3)给定系统的单位脉冲响应为)()(101n R n h =)3()2(5.2)1(5.2)()(2-+-+-+=n n n n n h δδδδ用线性卷积法分别求系统h 1(n)和h 2(n)对)()(81n R n x =的输出响应,并画出波形。
根据实验要求编写matlab 代码如下:%===内容2:调用conv 函数计算卷积============================x1n=[1 1 1 1 1 1 1 1 ]; %产生信号x1(n)=R8(n)h1n=[ones(1,10) zeros(1,10)];h2n=[1 2.5 2.5 1 zeros(1,10)];y21n=conv(h1n,x1n);y22n=conv(h2n,x1n);figure(2)subplot(2,2,1);y='h1(n)';tstem(h1n,y); %调用函数tstem 绘图title('(d) 系统单位脉冲响应h1(n)');box onsubplot(2,2,2);y='y21(n)';tstem(y21n,y);title('(e) h1(n)与R8(n)的卷积y21(n)');box onsubplot(2,2,3);y='h2(n)';tstem(h2n,y); %调用函数tstem 绘图title('(f) 系统单位脉冲响应h2(n)');box onsubplot(2,2,4);y='y22(n)';tstem(y22n,y);title('(g) h2(n)与R8(n)的卷积y22(n)');box on实验结果为:(4)给定一谐振器的差分方程为)2()()2(9801.0)1(8237.1)(00--+---=n x b n x b n y n y n y令 49.100/10=b ,谐振器的谐振频率为0.4rad 。
a) 用实验方法检查系统是否稳定。
输入信号为)(n u 时,画出系统输出波形。
b) 给定输入信号为)4.0s in ()014.0s in ()(n n n x += 求出系统的输出响应,并画出其波形。
根据实验要求编写matlab 代码如下:%=========内容3:谐振器分析======================== un=ones(1,256); %产生信号u(n)n=0:255;xsin=sin(0.014*n)+sin(0.4*n); %产生正弦信号A=[1,-1.8237,0.9801];B=[1/100.49,0,-1/100.49]; %系统差分方程系数向量B 和Ay31n=filter(B,A,un); %谐振器对u(n)的响应y31(n)y32n=filter(B,A,xsin); %谐振器对u(n)的响应y31(n)figure(3)subplot(2,1,1);y='y31(n)';tstem(y31n,y);title('(h) 谐振器对u(n)的响应y31(n)');box onsubplot(2,1,2);y='y32(n)';tstem(y32n,y);title('(i) 谐振器对正弦信号的响应y32(n)');box on实验结果为:4.实验讨论分析实验内容(2)系统的单位冲响应、系统对)()(81n R n x =和)()(2n u n x =的响应序列分别如图(a)、(b)和(c)所示;实验内容(3)系统h 1(n)和h 2(n)对)()(81n R n x =的输出响应分别如图(e)和(g)所示;实验内容(4)系统对)(n u 和)4.0sin()014.0sin()(n n n x +=的响应序列分别如图(h)和(i)所示。
由图(h)可见,系统对)(n u 的响应逐渐衰减到零,所以系统稳定。
由图(i)可见,系统对)4.0sin()014.0sin()(n n n x +=的稳态响应近似为正弦序列sin(0.4)n ,这一结论验证了该系统的谐振频率是0.4 rad 。
5.思考题(1) 如果输入信号为无限长序列,系统的单位脉冲响应是有限长序列,可否用线性卷积法求系统的响应? 如何求?答: 如果输入信号为无限长序列,系统的单位脉冲响应是有限长序列,可否用线性卷积法求系统的响应。
①对输入信号序列分段;②求单位脉冲响应h(n)与各段的卷积;③将各段卷积结果相加。
(2)如果信号经过低通滤波器,把信号的高频分量滤掉,时域信号的剧烈变化将被平滑,由实验内容(1)结果图10.1.1(a)、(b)和(c)可见,经过系统低通滤波使输入信号()n δ、)()(81n R n x =和)()(2n u n x =的阶跃变化变得缓慢上升与下降。
答:如果信号经过低通滤波器,把信号的高频分量滤掉,时域信号会有何变化,用前面 第一个实验结果进行分析说明。
实验二 时域采样与频域采样1. 实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。
要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
2. 实验原理与方法时域采样定理的要点是:a) 对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X是原模拟信号频谱()a X j Ω以采样角频率sΩ(T s /2π=Ω)为周期进行周期延拓。
公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T b) 采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。
利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。
理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为: ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此:∑∞-∞=Ω-=Ωn nTj aae nT xj X )()(ˆ 上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即T j a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。