华师大版重庆市北碚区2018-2019学年八年级(下)期末调研抽测数学试题(含答案)
- 格式:doc
- 大小:400.00 KB
- 文档页数:14
2018-2019学年八年级(下)期末数学试卷题号 一 二 三 四 总分 得分一、选择题(本大题共12小题,共36.0分) 1. 若a >b ,则下列不等式正确的是( )A. a −b <0B. a +8<b −8C. −5a <−5bD. a 4<b42. 下列从左到右的变形,是因式分解的是( )A. (3−x)(3+x)=9−x 2B. (y +1)(y −3)=(3−y)(y +1)C. 4yz −2y 2z +z =2y(2z −zy)+zD. −8x 2+8x −2=−2(2x −1)2 3. 式子3x2,4x−y ,x +y ,x 2+1π,5b3a 中是分式的有( )A. 1个B. 2个C. 3个D. 4个4. 已知一个多边形的内角和是外角和的4倍,则这个多边形是( )A. 八边形B. 九边形C. 十边形D. 十二边形5. 四边形ABCD 的对角线AC 、BD 互相平分,要使它成为矩形,需要添加的条件是( )A. AB =CDB. AC =BDC. AB =BCD. AC ⊥BD 6. 下列分解因式正确的是( )A. a 2−9=(a −3)2B. −4a +a 2=−a(4+a)C. a 2+6a +9=(a +3)2D. a 2−2a +1=a(a −2)+17. 如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF =3,则菱形ABCD的周长是( )A. 12B. 16C. 20D. 248. 如果不等式组{x >m x<5有解,那么m 的取值范围是( )A. m >5B. m ≥5C. m <5D. m ≤89. 如图,在Rt △ABC 中,∠BAC =90∘,将Rt △ABC 绕点C按逆时针方向旋转48∘得到Rt △A′B′C′,点A 在边B′C 上,则∠B′的大小为( )A. 42∘B. 48∘C. 52∘D. 58∘10. 若顺次连接四边形ABCD 各边的中点所得四边形是矩形,则四边形ABCD 一定是()A. 矩形B. 菱形C. 对角线互相垂直的四边形D. 对角线相等的四边形11.在一次数学课上,张老师出示了一个题目:“如图,▱ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,BE.请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:小青:OE=OF;小何:四边形DFBE是正方形;小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF.这四位同学写出的结论中不正确的是()A. 小青B. 小何C. 小夏D. 小雨12.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A. ①②B. ②③C. ①③D. ①④二、填空题(本大题共6小题,共18.0分)13.分解因式−a2+4b2=______.14.化简:a2a−1−1a−1=______.15.如图,平行四边形ABCD中,∠B=30∘,AB=4,BC=5,则平行四边形ABCD的面积为______.16.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快______s后,四边形ABPQ成为矩形.17.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是______.18.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去…记正方形ABCD的边为a1=1,按上述方法所作的正方形的边长依次为a2、a3、a4、…a n,根据以上规律写出a n2的表达式______.三、计算题(本大题共2小题,共12.0分)19.a2(x−y)+b2(y−x).20.解方程:x−8x−7−17−x=8.四、解答题(本大题共7小题,共56.0分)21.如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,求CF的长.22.解不等式组{2x−7<3(x−1) 43x+3>1−23x23.化简分式:(x2−2xx2−4x+4−3x−2)÷x−3x2−4,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.24.暑假期间,两名教师计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家旅行社.经协商,甲旅行社的优惠条件是:两名教师全额收费,学生都按七折收费;乙旅行社的优惠条件是:教师、学生都按八折收费.请你帮他们选择一下,选哪家旅行社比较合算.25.如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.26.在校园手工制作活动中,现有甲、乙两人接到手工制作纸花任务,已知甲每小时制作纸花比乙每小时制作纸花少20朵,甲制作120朵纸花的时间与乙制作160朵纸花的时间相同,求乙每小时制作多少朵纸花?27.感知:如图①,在菱形ABCD中,AB=BD,点E、F分别在边AB、AD上.若AE=DF,易知△ADE≌△DBF.探究:如图②,在菱形ABCD中,AB=BD,点E、F分别在BA、AD的延长线上.若AE=DF,△ADE与△DBF是否全等?如果全等,请证明;如果不全等,请说明理由.拓展:如图③,在▱ABCD中,AD=BD,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上.若AE=DF,∠ADB=50∘,∠AFB=32∘,求∠ADE的度数.答案和解析【答案】1. C2. D3. B4. C5. B6. C7. D8. C9. A10. C11. B12. D13. (2b+a)(2b−a)14. a+115. 1016. 417. x>318. 2n−119. 解:−a2(x−y)+b2(y−x),=a2(x−y)−b2(x−y),=(x−y)(a2−b2),=(x−y)(a+b)(a−b).20. 解:去分母得:x−8+1=8(x−7),整理得:7x=49,解得:x=7,经检验:x=7为增根,原方程无解.21. 解:∵四边形ABCD是平行四边形,∴AD//BC,AD=BC=3,∴∠DAE=∠F,∵AE平分∠DAB,∴∠DAE=∠BAF,∴∠BAF=∠F,∴AB=BF=5,∴CF=BF−BC=5−3=2.22. 解:{2x−7<3(x−1)①43x+3>1−23x②,由①得,x>−4,由②得,x>−1,故不等式组的解集为:x>−1.23. 解:(x2−2xx2−4x+4−3x−2)÷x−3x2−4=[x(x−2)(x−2)2−3x−2)÷x−3x2−4=(xx−2−3x−2)÷x−3x2−4=x−3x−2×(x+2)(x−2)x−3=x+2,∵x2−4≠0,x−3≠0,∴x≠2且x≠−2且x≠3,∴可取x=1代入,原式=3.24. 解:设x名学生,则在甲旅行社花费:2×500+500x×0.7=350x+1000,在乙旅行社的花费:(x+2)×500×0.8=400x+800,当在乙旅行社的花费少时:350x+1000>400x+800,解得x<4;在两家花费相同时:350x+1000=400x+1800,解得x=4;当在甲旅行社的花费少时:350x+1000<400x+800,解得x>4.综上,可得①当两名家长带领的学生少于4人时,应该选择乙旅行社;②当两名家长带领的学生为4人时,选择甲、乙两家旅行社都一样;③当两名家长带领的学生多于4人时,应该选择甲旅行社.25. (1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180∘,∴∠ABC=∠ADC=90∘,∴四边形ABCD是矩形;(2)解:∵∠ADC=90∘,∠ADF:∠FDC=3:2,∴∠FDC=36∘,∵DF⊥AC,∴∠DCO=90∘−36∘=54∘,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCO=54∘,∴∠BDF=∠ODC−∠FDC=18∘.26. 解:设乙每小时制作x朵纸花,依题意得:120x−20=160x解得:x=80,经检验,x=80是原方程的解,且符合题意.答:乙每小时制作80朵纸花.27. 解:探究:△ADE和△DBF全等.∵四边形ABCD是菱形,∴AB=AD.∵AB=BD,∴AB=AD=BD.∴△ABD为等边三角形.∴∠DAB=∠ADB=60∘.∴∠EAD=∠FDB=120∘.∵AE=DF,∴△ADE≌△DBF;拓展:∵点O在AD的垂直平分线上,∴OA=OD.∴∠DAO =∠ADB =50∘. ∴∠EAD =∠FDB .∵AE =DF ,AD =DB ,∴△ADE ≌△DBF.∴∠DEA =∠AFB =32∘. ∴∠EDA =18∘. 【解析】1. 解:A 、不等式两边同时减去b ,不等号的方向不变,故本选项错误;B 、不等式的两边应该加(或减去)同一个数8,不等号是方向才会不改变;故本选项错误;C 、不等式两边都乘以−5,不等号的方向不变,故本选项正确;D 、不等式两边都除以4,不等号的方向不变,故本选项错误; 故选:C .不等式加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;乘或除以一个负数,不等号的方向改变. 本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变; (2)不等式两边乘(或除以)同一个正数,不等号的方向不变; (3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2. 解:A 、(3−x)(3+x)=9−x 2,是整式的乘法运算,故此选项错误;B 、(y +1)(y −3)≠(3−y)(y +1),不符合因式分解的定义,故此选项错误;C 、4yz −2y 2z +z =2y(2z −zy)+z ,不符合因式分解的定义,故此选项错误;D 、−8x 2+8x −2=−2(2x −1)2,正确. 故选:D .分别利用因式分解的定义分析得出答案.此题主要考查了因式分解的定义,正确把握定义是解题关键.3. 解:4x−y ,5b3a 是分式,故选:B .判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.本题主要考查分式的定义,含有字母则是分式,如果不含有字母则不是分式,注意π不是字母,是常数.4. 解:设这个多边形的边数为n ,则该多边形的内角和为(n −2)×180∘, 依题意得(n −2)×180∘=360∘×4, 解得n =10,∴这个多边形的边数是10. 故选:C .先设这个多边形的边数为n ,得出该多边形的内角和为(n −2)×180∘,根据多边形的内角和是外角和的4倍,列方程求解.本题主要考查了多边形内角和定理与外角和定理,多边形内角和=(n −2)⋅180(n ≥3且n 为整数),而多边形的外角和指每个顶点处取一个外角,则n 边形取n 个外角,无论边数是几,其外角和始终为360∘.5. 解:需要添加的条件是AC =BD ;理由如下: ∵四边形ABCD 的对角线AC 、BD 互相平分, ∴四边形ABCD 是平行四边形, ∵AC =BD ,∴四边形ABCD 是矩形(对角线相等的平行四边形是矩形);故选:B.由平行四边形的判定方法得出四边形ABCD是平行四边形,再由矩形的判定方法即可得出结论.本题考查了矩形的判定、平行四边形的判定;熟练掌握平行四边形和矩形的判定方法,并能进行推理论证是解决问题的关键.6. 解:A、原式=(a+3)(a−3),错误;B、原式=−a(4−a),错误;C、原式=(a+3)2,正确;D、原式=(a−1)2,错误,故选:C.原式各式分解因式后,即可作出判断.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.7. 解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长=4BC=4×6=24.故选:D.根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.x<5有解,8. 解:∵不等式组{x>m∴m<5.故选:C.依据小大大小中间找,可确定出m的取值范围.本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键.9. 解:∵在Rt△ABC中,∠BAC=90∘,将Rt△ABC绕点C按逆时针方向旋转48∘得到Rt△A′B′C′,∴∠A′=∠BAC=90∘,∠ACA′=48∘,∴∠B′=90∘−∠ACA′=42∘.故选:A.先根据旋转的性质得出∠A′=∠BAC=90∘,∠ACA′=48∘,然后在直角△A′CB′中利用直角三角形两锐角互余求出∠B′=90∘−∠ACA′=42∘.本题考查了转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形两锐角互余的性质.10. 解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH//FG//BD,EF//AC//HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:C.此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.11. 解:∵四边形ABCD是平行四边形,∴OA=OC,CD//AB,∴∠ECO=∠FAO,(故小雨的结论正确),在△EOC和△FOA中,{∠EOC=∠AOF ∠ECO=∠OAF OC=OA,∴△EOC≌△FOA,∴OE=OF(故小青的结论正确),∴S△EOC=S△AOF,∴S四边形AFED =S△ADC=12S平行四边形ABCD,∴S四边形AFED =S四边形FBCE故小夏的结论正确,∵△EOC≌△FOA,∴EC=AF,∵CD=AB,∴DE=FB,DE//FB,∴四边形DFBE是平行四边形,∵OD=OB,EO⊥DB,∴ED=EB,∴四边形DFBE是菱形,无法判断是正方形,故小何的结论错误,故选:B.利用平行四边形的性质、全等三角形的判定和性质,一一判断即可.本题考查平行四边形的性质、全等三角形的判定和性质、线段的垂直平分线的性质正方形的判定、菱形的判定等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12. 解:∵AE=13AB,∴BE=2AE,由翻折的性质得,PE=BE,∴∠APE=30∘,∴∠AEP=90∘−30∘=60∘,∴∠BEF=12(180∘−∠AEP)=12(180∘−60∘)=60∘,∴∠EFB=90∘−60∘=30∘,∴EF=2BE,故①正确;∵BE=PE,∴EF=2PE,∵EF>PF,∴PF<2PE,故②错误;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30∘,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③错误;由翻折的性质,∠EFB=∠EFP=30∘,∴∠BFP=30∘+30∘=60∘,∵∠PBF=90∘−∠EBQ=90∘−30∘=60∘,∴∠PBF=∠PFB=60∘,∴△PBF是等边三角形,故④正确;综上所述,结论正确的是①④.故选:D.求出BE=2AE,根据翻折的性质可得PE=BE,再根据直角三角形30∘角所对的直角边等于斜边的一半求出∠APE=30∘,然后求出∠AEP=60∘,再根据翻折的性质求出∠BEF=60∘,根据直角三角形两锐角互余求出∠EFB=30∘,然后根据直角三角形30∘角所对的直角边等于斜边的一半可得EF=2BE,判断出①正确;利用30∘角的正切值求出PF=√3PE,判断出②错误;求出BE=2EQ,EF=2BE,然后求出FQ=3EQ,判断出③错误;求出∠PBF=∠PFB=60∘,然后得到△PBF是等边三角形,判断出④正确.本题考查了翻折变换的性质,直角三角形30∘角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等边三角形的判定,熟记各性质并准确识图是解题的关键.13. 解:−a2+4b2=4b2−a2=(2b+a)(2b−a).故答案为:(2b+a)(2b−a).直接利用平方差公式分解因式得出答案.此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14. 解:原式=a2−1=a+1.a−1故答案为:a+1.直接把分子相加减即可.本题考查的是分式的加减法,即同分母的分式想加减,分母不变,把分子相加减.15. 解:作AE⊥BC于E,如图所示:∵在▱ABCD中,AB=4,AD=BC=5,∵∠B=30∘,AB=2,∴AE=12∴▱ABCD的面积为:2×5=10,故答案为10.直接利用直角三角形的性质得出平行四边形的高,再根据平行四边形的面积等于它的底和这个底上的高的积进而求出其面积.此题主要考查了平行四边形的性质、直角三角形的性质,正确得出平行四边形的高是解题关键.16. 解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得3x=20−2x.解得x=4,故答案为:4.根据矩形的性质,可得BC与AD的关系,根据矩形的判定定理,可得BP=AQ,根据解题元一次方程,可得答案.本题考查了矩形的判定与性质,有一个角是直角的平行四边形是矩形.17. 解:当x>3时,x+b>kx+6,即不等式x+b>kx+6的解集为x>3.故答案为:x>3.观察函数图象得到当x>3时,函数y=x+b的图象都在y=kx+6的图象上方,所以关于x的不等式x+b>kx+6的解集为x>3.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.18. 解:∵a2=AC,且在直角△ABC中,AB2+BC2=AC2,∴a2=√2a1=√2,同理a3=√2a2=2,a4=√2a3=2√2,…由此可知:a n=(√2)n−1,则a n2=2n−1.故答案为:2n−1.求a2的长即AC的长,根据直角△ABC中AB2+BC2=AC2可以计算,同理计算a3、a4.由求出的a2=√2a1,a3=√2a2…,a n=√2,a n−1=(√2)n−1,可以找出规律,得到第n个正方形边长的表达式.本题考查了正方形的性质,以及勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到a n的规律是解题的关键.19. 首先把(y−x)变成−(x−y),然后提取公因式(x−y),再利用平方差公式继续进行因式分解.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.20. 首先把分式方程,去分母后化为整式方程,即可求得x的值,再代入方程的分母进行检验即可.本题主要考查解分式方程,解分式方程的基本思想是转化为整式方程,解方程时一定要注意检验.21. 由平行四边形ABCD中,AE平分∠DAB,可证得△ABF是等腰三角形,继而利用CF=BF−BC,求得答案.此题考查了平行四边形的性质以及等腰三角形的判定与性质.能证得△ABF是等腰三角形是解此题的关键.22. 根据不等式组的解集的表示规律:同大取大,可得答案.本题考查了解一元一次不等式组,利用不等式组的解集的表示方法同大取大是解题关键.23. 利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.本题主要考查分式的化简求值,熟悉掌握分式的运算法则是解题的关键,注意分式有意义的条件.24. 设x名学生,根据题意得:甲旅行社的总费用为2×500+500x×0.7元,乙旅行社的总费用为(x+2)×500×0.8元,再分类讨论,求出对应的x的取值范围,判断出选哪家旅行社即可.此题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系,列出不等式.25. (1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90∘,根据矩形的判定得出即可;(2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD= OC,求出∠CDO,即可求出答案.本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.26. 设乙每小时制作x朵纸花,根据题意列出方程解答即可.应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:时间=路程÷速度,需注意分式应用题需验根.27. 探究:△ADE和△DBF全等,利用菱形的性质首先证明三角形ABD为等边三角形,再利用全等三角形的判定方法即可证明△ADE≌△DBF;拓展:因为点O在AD的垂直平分线上,所以OA=OD,再通过证明△ADE≌△DBF,利用全等三角形的性质即可求出∠ADE的度数.本题考查了菱形的性质、等边三角形的判定和性质以及全等三角形的判定和性质,题目综合性很强,但难度不大.。
2018-2019学年八年级(下)期末数学试卷1一、选择题(本大题共12小题,共36.0分)1.下列图形中,中心对称图形有A. B. C. D.2.若,则下列不等式不一定成立的是A. B. C. D.3.下列分式中,最简分式是A. B. C. D.4.如图,沿直线边BC所在的直线向右平移得到,下列结论中不一定正确的是A. B.C. D. 四边形四边形5.如图,在中,,,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则的度数为A.B.C.D.6.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是矩形,则四边形ABCD需要满足的条件是A. B. C. D.7.如图,中,,AD平分,点E为AC的中点,连接DE,若的周长为26,则BC的长为A. 20B. 16C. 10D. 88.如图,已知四边形ABCD是平行四边形,若AF、BE分别是、的平分线,,,则EF的长是A. 1B. 2C. 3D. 49.若关于x的分式方程有增根,则m的值是A. 或B.C.D.10.如图,直线与相交于点P,点P的纵坐标为,则关于x的不等式的解集在数轴上表示正确的是A.B.C.D.11.如图,在菱形ABCD中,对角线AC、BD相交于点O,,,于点E,则AE的长等于A. 5B.C.D.12.如图,▱ABCD中,,F是BC的中点,作,垂足E在线段CD上,连接EF、AF,下列结论:;;;中,一定成立的是A. 只有B. 只有C. 只有D.二、填空题(本大题共8小题,共24.0分)13.分解因式:______.14.如果分式有意义,那么x的取值范围是______.15.若正多边形的一个内角等于,则这个正多边形的边数是______.16.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元若每个篮球80元,每个足球50元,则篮球最多可购买______个17.如图,已知点P是角平分线上的一点,,,M是OP的中点,,如果点C是OB上一个动点,则PC的最小值为______cm.18.如图,已知中,,,将绕点A逆时针反向旋转到的位置,连接,则的长为______.19.若关于x的分式方程无解,则______.20.一组正方形按如图所示的方式放置,其中顶点在y轴上,顶点、、、、、、在x轴上,已知正方形的边长为1,,,则正方形的边长是______.三、计算题(本大题共1小题,共6.0分)21.解不等式组,并将它的解集在数轴上表示出来.四、解答题(本大题共9小题,共72.0分)22.先化简,再求值:,其中.23.如图,已知E、F分别是▱ABCD的边BC、AD上的点,且.求证:四边形AECF是平行四边形.24.北京到济南的距离约为500km,一辆高铁和一辆特快列车都从北京去济南,高铁比特快列车晚出发3小时,最后两车同时到达济南,已知高铁的速度是特快列车速度的倍求高铁和特快列车的速度各是多少?列方程解答25.如图,平面直角坐标系中,已知点,若对于平面内一点C,当是以AB为腰的等腰三角形时,称点C时线段AB的“等长点”.请判断点,点是否是线段AB的“等长点”,并说明理由;若点是线段AB的“等长点”,且,求m和n的值.26.为贯彻党的“绿水青山就是金山银山”的理念,我市计划购买甲、乙两种树苗共7000株用于城市绿化,甲种树苗每株24元,一种树苗每株30元相关资料表明:甲、乙两种树苗的成活率分别为、.若购买这两种树苗共用去180000元,则甲、乙两种树苗各购买多少株?若要使这批树苗的总成活率不低于,则甲种树苗至多购买多少株?在的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.27.如图,在矩形ABCD中,,点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是,连接PQ、AQ、设点P、Q运动的时间为ts.当t为何值时,四边形ABQP是矩形;当t为何值时,四边形AQCP是菱形.28.问题的提出:如果点P是锐角内一动点,如何确定一个位置,使点P到的三顶点的距离之和的值为最小?问题的转化:把绕点A逆时针旋转得到,连接,这样就把确定的最小值的问题转化成确定的最小值的问题了,请你利用图1证明:;问题的解决:当点P到锐角的三顶点的距离之和的值为最小时,求和的度数;问题的延伸:如图2是有一个锐角为的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.29.如图,已知菱形ABCD边长为4,,点E从点A出发沿着AD、DC方向运动,同时点F从点D出发以相同的速度沿着DC、CB的方向运动.如图1,当点E在AD上时,连接BE、BF,试探究BE与BF的数量关系,并证明你的结论;在的前提下,求EF的最小值和此时的面积;当点E运动到DC边上时,如图2,连接BE、DF,交点为点M,连接AM,则大小是否变化?请说明理由.30.如图,中,,,在AB的同侧作正、正和正,求四边形PCDE面积的最大值.答案和解析【答案】1. B2. D3. C4. C5. D6. B7. A8. B9. D10. A11. C12. C13.14.15. 1216. 1617. 418.19. 或6或120.21. 解:解不等式,得:,解不等式,得:,将不等式的解集表示在数轴上如下:所以不等式组的解集为.22. 解:原式,当时,原式.23. 证明:四边形ABCD是平行四边形,,且,,,,四边形AECF是平行四边形.24. 解:设特快列车的速度为x千米时,则高铁的速度为千米时,根据题意得:,解得:,经检验,是原分式方程的解,.答:特快列车的速度为100千米时,高铁的速度为250千米时.25. 解:点,,,,,.点,,,是线段AB的“等长点”,点,,,,,不是线段AB的“等长点”;如图,在中,,,,.分两种情况:当点D在y轴左侧时,,,点是线段AB的“等长点”,,,,;当点D在y轴右侧时,,,,点是线段AB的“等长点”,,.综上所述,,或,.26. 解:设购买甲种树苗x株,则购买乙种树苗株,由题意得解得,则答:甲、乙两种树苗各购买5000、2000株根据题意得解得则甲种树苗至多购买2800株设购买树苗的费用为W根据题意得:随x的增大而减小当时,最小27. 解:由已知可得,,在矩形ABCD中,,,当时,四边形ABQP为矩形,,得故当时,四边形ABQP为矩形.由可知,四边形AQCP为平行四边形当时,四边形AQCP为菱形即时,四边形AQCP为菱形,解得,故当时,四边形AQCP为菱形.28. 解:问题的转化:如图1,由旋转得:,,是等边三角形,,,.问题的解决:满足:时,的值为最小;理由是:如图2,把绕点A逆时针旋转60度得到,连接,由“问题的转化”可知:当B、P、、在同一直线上时,的值为最小,,,,、P、在同一直线上,由旋转得:,,,、、在同一直线上,、P、、在同一直线上,此时的值为最小,故答案为:;问题的延伸:如图3,中,,,,,把绕点B逆时针旋转60度得到,连接,当A、P、、在同一直线上时,的值为最小,由旋转得:,,,,是等边三角形,,,,由勾股定理得:,,则点P到这个三角形各顶点的距离之和的最小值为.29. 解:,证明:、F的速度相同,且同时运动,,又四边形ABCD是菱形,,,,是等边三角形,同理也是等边三角形,,在和中,, ≌ ,;由得: ≌ ,,,,是等边三角形,,如图2,当动点E运动到,即E为AD的中点时,BE的最小,此时EF最小,,,,的最小值是,中,,,,,;如图3,当点E运动到DC边上时,大小不发生变化,在和中,,≌ ,,,,,,,、B、M、D四点共圆,.30. 解:延长EP交BC于点F,,,,,平分,又,,设中,,,则,,和都是等边三角形,,,,,≌ ,,同理可得: ≌ ,,四边形CDEP是平行四边形,四边形CDEP的面积,又,,,即四边形PCDE面积的最大值为1.【解析】1. 解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念中心对称图形是要寻找对称中心,旋转180度后两部分重合.2. 解:A、两边都加2,不等号的方向不变,故A成立,B、两边都乘2,不等号的方向不变,故B成立;C、两边都除以,不等号的方向改变,故C不成立;D、当时,成立,当,时,,故D不一定成立,故选:D.根据不等式的性质,可得答案.本题考查了不等式的性质,利用不等式的性质是解题关键.3. 解:A、,不符合题意;B、,不符合题意;C、是最简分式,符合题意;D、,不符合题意;故选:C.最简分式的标准是分子,分母中不含有公因式,不能再约分判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.本题考查了最简分式的定义及求法一个分式的分子与分母没有公因式时,叫最简分式分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题在解题中一定要引起注意.4. 解:沿直线边BC所在的直线向右平移得到,,,,,,,四边形四边形,但不能得出,故选:C.由平移的性质,结合图形,对选项进行一一分析,选择正确答案.本题考查了平移的基本性质:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.5. 解:等腰中,,,,线段AB的垂直平分线交AB于D,交AC于E,,,.由等腰中,,,即可求得的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得,继而求得的度数,则可求得答案.此题考查了线段垂直平分线的性质以及等腰三角形的性质此题难度不大,注意掌握数形结合思想的应用.6. 解:当时,四边形EFGH是矩形,,,,,即,四边形EFGH是矩形;故选:B.根据“有一内角为直角的平行四边形是矩形”来推断由三角形中位线定理和平行四边形的判定定理易推知四边形EFGH是平行四边形,若或者就可以判定四边形EFGH是矩形.此题考查了中点四边形的性质、矩形的判定以及三角形中位线的性质此题难度适中,注意掌握数形结合思想的应用.7. 解:,AD平分,,,点E为AC的中点,.的周长为26,,.故选:A.根据等腰三角形的性质可得,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.8. 解:四边形ABCD是平行四边形,,,,,,、BE分别是、的平分线,,,,,,,.故选:B.由四边形ABCD是平行四边形,若AF、BE分别是、的平分线,易得与是等腰三角形,继而求得,则可求得答案.此题考查了平行四边形的性质以及等腰三角形的判定与性质注意证得与是等腰三角形是关键.9. 解:去分母得:,由分式方程有增根,得到,即,把代入整式方程得:,解得:,分式方程去分母转化为整式方程,由分式方程有增根,得到,求出x的值,代入整式方程求出m的值即可.本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.10. 解:把代入,得,解得.当时,,所以关于x的不等式的解集为,用数轴表示为:.故选:A.先把代入,得出,再观察函数图象得到当时,直线都在直线的上方,即不等式的解集为,然后用数轴表示解集.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数的值大于或小于的自变量x的取值范围;从函数图象的角度看,就是确定直线在x轴上或下方部分所有的点的横坐标所构成的集合.11. 解:四边形ABCD是菱形,,,,在中,,,故,解得:.故选:C.在中,根据求出OC,再利用面积法可得,由此求出AE即可.此题主要考查了菱形的性质以及勾股定理,正确利用三角形面积求出AE的长是解题关键.12. 解:是BC的中点,,在▱ABCD中,,,,,,,,,,故正确;延长EF,交AB延长线于M,四边形ABCD是平行四边形,,,为BC中点,,在和中,,≌ ,,,,,,,,故正确;,,,故错误;设,则,,,,,,故正确,故选:C.利用平行四边形的性质:平行四边形的对边相等且平行,再由全等三角形的判定得出 ≌ ,利用全等三角形的性质得出对应线段之间关系进而得出答案.此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,解决本题的关键是得出 ≌ .13. 解:,,.故答案为:.先提取公因式y,然后再利用平方差公式进行二次分解.本题考查了提公因式法,公式法分解因式,利用平方差公式进行二次分解因式是解本题的难点,也是关键.14. 解:由题意得,,即,故答案为:.根据分式有意义的条件是分母不为0,列出算式,计算得到答案.本题考查的是分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义分母为零;分式有意义分母不为零;分式值为零分子为零且分母不为零.15. 解:正多边形的一个内角等于,它的外角是:,它的边数是:.故答案为:12.首先根据求出外角度数,再利用外角和定理求出边数.此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.16. 解:设购买篮球x个,则购买足球个,根据题意得:,解得:.为整数,最大值为16.故答案为:16.设购买篮球x个,则购买足球个,根据总价单价购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.17. 解:是角平分线上的一点,,,,M是OP的中点,,,,点C是OB上一个动点,的最小值为P到OB距离,的最小值,故答案为:4.根据角平分线的定义可得,再根据直角三角形的性质求得,然后根据角平分线的性质和垂线段最短得到答案.本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,熟记性质并作出辅助线构造成直角三角形是解题的关键.18. 解:连接,交于D,如图,中,,,,绕点A逆时针反向旋转到的位置,,,,,垂直平分,为等边三角形,,,.故答案为.连接,交于D,如图,利用等腰直角三角形的性质得,再根据旋转的性质得,,,,则可判断垂直平分,为等边三角形,所以,,然后计算即可.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等腰直角三角形的性质.19. 解:为原方程的增根,此时有,即,解得.为原方程的增根,此时有,即,解得.方程两边都乘,得,化简得:.当时,整式方程无解.综上所述,当或或时,原方程无解.该分式方程无解的情况有两种:原方程存在增根;原方程约去分母后,整式方程无解.分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.20. 解:正方形的边长为1,,,,,,,则,同理可得:,故正方形的边长是:,则正方形的边长为:,故答案为:.利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.21. 首先解每个不等式,然后把每个解集在数轴上表示出来,确定不等式的解集的公共部分就是不等式组的解集.本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来向右画;,向左画,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集有几个就要几个在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示.22. 首先将括号里面通分,再将分子与分母分解因式进而化简得出答案.此题主要考查了分式的化简求值,正确分解因式是解题关键.23. 根据平行四边形性质得出,且,推出,,根据平行四边形的判定推出即可.本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.24. 设特快列车的速度为x千米时,则高铁的速度为千米时,根据时间路程速度结合高铁比特快列车少用3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.25. 先求出AB的长与B点坐标,再根据线段AB的“等长点”的定义判断即可;分两种情况讨论,利用对称性和垂直的性质即可求出m,n.本题考查了新定义,锐角三角函数,直角三角形的性质,等腰三角形的性质,坐标与图形性质解的关键是理解新定义,解的关键是画出图形,是一道中等难度的中考常考题.26. 列方程求解即可;根据题意,甲乙两种树苗的存货量大于等于树苗总量的列出不等式;用x表示购买树苗的总费用,根据一次函数增减性讨论最小值.本题为一次函数实际应用问题,综合考察一元一次方程、一元一次不等式及一次函数的增减性.27. 当四边形ABQP是矩形时,,据此求得t的值;当四边形AQCP是菱形时,,列方程求得运动的时间t;本题考查了菱形、矩形的判定与性质解决此题注意结合方程的思想解题.28. 问题的转化:根据旋转的性质证明是等边三角形,则,可得结论;问题的解决:运用类比的思想,把绕点A逆时针旋转60度得到,连接,由“问题的转化”可知:当B、P、、在同一直线上时,的值为最小,确定当:时,满足三点共线;问题的延伸:如图3,作辅助线,构建直角,利用勾股定理求的长,即是点P到这个三角形各顶点的距离之和的最小值.本题主要考查三角形的旋转变换的性质、勾股定理、等边三角形的判定与性质等知识点,将待求线段的和通过旋转变换转化为同一直线上的线段来求是解题的关键,学会利用旋转的方法添加辅助线,构造特殊三角形解决问题,属于中考压轴题.29. 先证明和是等边三角形,再证明 ≌ ,可得结论;由 ≌ ,易证得是正三角形,继而可得当动点E运动到当,即E为AD的中点时,BE的最小,根据等边三角形三线合一的性质可得BE和EF的长,并求此时的面积;同理得: ≌ ,则可得,所以,则A、B、M、D四点共圆,可得.此题是四边形的综合题,考查了菱形的性质、等边三角形的判定与性质、四点共圆的判定和性质、垂线段最短以及全等三角形的判定与性质注意证得 ≌ 是解此题的关键.30. 先延长EP交BC于点F,得出,再判定四边形CDEP为平行四边形,根据平行四边形的性质得出:四边形CDEP的面积,最后根据,判断的最大值即可.本题主要考查了等边三角形的性质、平行四边形的判定与性质以及全等三角形的判定与性质,解决问题的关键是作辅助线构造平行四边形的高线.。
2018-2019学年重庆八中八年级第二学期期末数学试卷一、选择题1.反比例函数y=(k≠0)的图象过点(﹣1,3),则k的值为()A.3B.C.﹣3D.﹣2.若△ABC∽△DEF,若∠A=50°,则∠D的度数是()A.50°B.60°C.70°D.80°3.分式有意义,则x的取值范围为()A.x≠0B.x≠2C.x≠0且x≠2D.x为一切实数4.六边形的内角和等于()A.180°B.360°C.540°D.720°5.方程x2=3x的解是()A.x=3B.x=﹣3C.x=0D.x=3或x=0 6.下列命题是真命题的是()A.方程3x2﹣2x﹣4=0的二次项系数为3,一次项系数为﹣2B.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形7.如果关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,那么k的取值范围是()A.k<4B.k>4C.k<0D.k>08.菱形周长为20,它的一条对角线长6,则菱形的另一条对角线长为()A.2B.4C.6D.89.某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,问二、三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程()A.20(1+x)2=90B.20+20(1+x)2=90C.20(1+x)+20+(1+x)2=90D.20+20(1+x)+20(1+x)2=9010.函数y=kx+b与y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.二、填空题(共6个小题)11.若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为.12.一组数据10,9,10,12,9的中位数是.13.关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,则另一个根为x=.14.若=3,则=.15.已知一元二次方程x2﹣9x+18=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为.16.双曲线y1=,y2=在第一象限的图象如图,过y1上的任意一点A,作y轴的平行线交y2于点B,交x轴于点C,若S△AOB=1,则k的值为.三、解答题17.解方程(1)x2+x﹣1=0;(2)(x+2)(x+3)=2018.先化简,再求值:(﹣a+1+)÷,其中a=3.19.近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作A、B、C、D;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:(1)本次调查的学生总数为人;(2)在扇形统计图中,B所对应扇形的圆心角是度,并将条形统计图补充完整;(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.20.在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣1|+b中,当x=1时,y=3,当x=0时,y=4.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣1|+b ≥的解集.四、填空题:(共5个小题,每小题4分,共20分)请将每小題的答案直接填在答题卡中对应的横线上.21.因式分解:x3﹣2x2y+xy2=.22.如图,在反比例函数y=﹣(x<0)与y=(x>0)的图象上分别有一点E,F,连接E,F交y轴于点G,若E(﹣1,1)且2EG=FG,则OG=.23.若关于x的一元一次不等式组所有整数解的和为﹣9,且关于y的分式方程1﹣=有整数解,则符合条件的所有整数a为.24.2019年6月12日,重庆直达香港高铁的车票正式开售,据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时.该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北.重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高.在此之前技术部门做了大量测试,在一次测试中一高铁列车从A地出发,匀速驶向B地,到达B地停止;同时一普快列车从B地出发,匀速驶向A地,到达A地停止.且A,B两地之间有一C地,其中AC=2BC,如图①,两列车与C地的距离之和y(千米)与普快列车行驶时间x(小时)之间的关系如图②所示.则高铁列车到达B地时,普快列车离A地的距离为千米.25.为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品件.五、解答题(共3个小题,每题10分,共30分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上.26.为了准备“欢乐颂﹣﹣创意市场”,初2020级某同学到批发市场购买了A、B两种原材料,A的单价为每件6元,B的单价为每件3元,该同学的创意作品需要B材料的数量是A材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.(1)该同学最多购买多少件B材料;(2)在该同学购买B材料最多的前提下,用所购买的A,B两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高2a%(a>0)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了a%,求a的值.27.如图,▱ABCD中,点E为BC边上一点,过点E作EF⊥AB于F,已知∠D=2∠AEF.(1)若∠BAE=70°,求∠BEA的度数;(2)连接AC,过点E作EG⊥AC于G,延长EG交AD于点H,若∠ACB=45°,求证:AH=AF+AC.28.如图,平面直角坐标系中,点A,B在x轴上,AO=BO,点C在x轴上方,AC⊥BC,∠CAB=30°,线段AC交y轴于点D,DO=2,连接BD,BD平分∠ABC,过点D 作DE∥AB交BC于E.(1)点C的坐标为;(2)将△ADO沿线段DE向右平移得△A′D'O',当点D'与E重合时停止运动,记△A'D'O′与△DEB的重叠部分面积为S,点P为线段BD上一动点,当S=时,求CD'+D'P+PB的最小值.(3)当△A'D'O'移动到点D'与E重合时,将△A'D'O'绕点E旋转一周,旋转过程中,直线BD分别与直线A'D'、直线D'O'交于点G、点H,作点D关于直线A'D'的对称点D0,连接D0、G、H.当△GD0H为直角三角形时,直接写出线段D0H的长.参考答案一、选择题(10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卡中对应的表格内.1.反比例函数y=(k≠0)的图象过点(﹣1,3),则k的值为()A.3B.C.﹣3D.﹣【分析】把点(﹣1,3)代入解析式即可求出k的值.解:把(﹣1,3)代入反比例函数y=(k≠0),得3=,解得:k=﹣3.故选:C.2.若△ABC∽△DEF,若∠A=50°,则∠D的度数是()A.50°B.60°C.70°D.80°【分析】根据相似三角形的对应角相等可得∠D=∠A.解:∵△ABC∽△DEF,∠A=50°,∴∠D=∠A=50°.故选:A.3.分式有意义,则x的取值范围为()A.x≠0B.x≠2C.x≠0且x≠2D.x为一切实数【分析】直接利用分式有意义则分母不等于零进而得出答案.解:分式有意义,则x﹣2≠0,解得:x≠2.故选:B.4.六边形的内角和等于()A.180°B.360°C.540°D.720°【分析】根据n边形的内角和可以表示成(n﹣2)•180°,即可求得六边形的内角和.解:六边形的内角和是(6﹣2)×180°=720度.故选:D.5.方程x2=3x的解是()A.x=3B.x=﹣3C.x=0D.x=3或x=0【分析】先移项得x2﹣3x=0,然后利用因式分解法解方程.解:x2﹣3x=0,x(x﹣3)=0,x=0或x﹣3=0,所以x1=0,x2=3.6.下列命题是真命题的是()A.方程3x2﹣2x﹣4=0的二次项系数为3,一次项系数为﹣2B.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形【分析】根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.解:A、正确.B、错误,对应边不一定成比例.C、错误,不一定中奖.D、错误,对角线相等的四边形不一定是矩形,故选:A.7.如果关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,那么k的取值范围是()A.k<4B.k>4C.k<0D.k>0【分析】利用一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:方程有两个不相等的两个实数根,△>0,进而求出即可.解:∵关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,∴b2﹣4ac=16﹣4k>0,解得:k<4.故选:A.8.菱形周长为20,它的一条对角线长6,则菱形的另一条对角线长为()A.2B.4C.6D.8【分析】首先根据题意画出图形,由菱形周长为20,可求得其边长,又由它的一条对角线长6,利用勾股定理即可求得菱形的另一条对角线长.解:如图,∵菱形ABCD的周长为20,对角线AC=6,∴AB=5,AC⊥BD,OA=AC=3,∴OB==4,∴BD=2OB=8,即菱形的另一条对角线长为8.故选:D.9.某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,问二、三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程()A.20(1+x)2=90B.20+20(1+x)2=90C.20(1+x)+20+(1+x)2=90D.20+20(1+x)+20(1+x)2=90【分析】设月平均增长率的百分数为x,根据某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,可列方程求解.解:设月平均增长率的百分数为x,20+20(1+x)+20(1+x)2=90.故选:D.10.函数y=kx+b与y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.【分析】先根据反比例函数的性质判断出k的取值,再根据一次函数的性质判断出k取值,二者一致的即为正确答案.解:在函数y=kx+b(k≠0)与y=(k≠0)中,当k>0时,图象都应过一、三象限;当k<0时,图象都应过二、四象限.故选:D.二、填空题(6个小题,每小题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.11.若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为1:2.【分析】根据相似三角形的周长的比等于相似比得出.解:∵△ABC∽△DEF,△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的周长比为1:2.故答案为:1:2.12.一组数据10,9,10,12,9的中位数是10.【分析】根据中位数的意义,将数据排序后找中间位置的数会中间两个数的平均数即可.解:将数据按从小到大排列为:9,9,10,10 12,处于中间位置也就是第3位的是10,因此中位数是10,故答案为:10.13.关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,则另一个根为x=4.【分析】利用根与系数的关系可得出方程的两根之积为﹣4,结合方程的一个根为﹣1,可求出方程的另一个根,此题得解.解:∵a=1,b=m,c=﹣4,∴x1•x2==﹣4.∵关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,∴另一个根为﹣4÷(﹣1)=4.故答案为:4.14.若=3,则=4.【分析】根据比例的合比性质即可直接完成题目.解:根据比例的合比性质,原式=;15.已知一元二次方程x2﹣9x+18=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为15.【分析】用因式分解法可以求出方程的两个根分别是3和6,根据等腰三角形的三边关系,腰应该是6,底是3,然后可以求出三角形的周长.解:x2﹣9x+18=0(x﹣3)(x﹣6)=0解得x1=3,x2=6.由三角形的三边关系可得:腰长是6,底边是3,所故周长是:6+6+3=15.故答案为:15.16.双曲线y1=,y2=在第一象限的图象如图,过y1上的任意一点A,作y轴的平行线交y2于点B,交x轴于点C,若S△AOB=1,则k的值为3.【分析】根据S△AOC﹣S△BOC=S△AOB,列出方程,求出k的值.解:由题意得:S△AOC﹣S△BOC=S△AOB,﹣=1,解得,k=3,故答案为:3.三、解答题(17题8分,18题8分,19题10分,20题10分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上,17.解方程(1)x2+x﹣1=0;(2)(x+2)(x+3)=20【分析】(1)先求出b2﹣4ac的值,再代入公式求出即可;(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.解:(1)x2+x﹣1=0,b2﹣4ac=12﹣4×1×(﹣1)=5,x=,x1=,x2=;(2)(x+2)(x+3)=20,整理得:x2+5x﹣14=0,(x+7)(x﹣2)=0,x+7=0,x﹣2=0,x1=﹣7,x2=2.18.先化简,再求值:(﹣a+1+)÷,其中a=3.【分析】先算括号里面的加法,再将除法转化为乘法,将结果化为最简,然后把a的值代入进行计算即可.解:原式=,=,=.当a=3时,原式=.19.近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作A、B、C、D;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:(1)本次调查的学生总数为50人;(2)在扇形统计图中,B所对应扇形的圆心角是144度,并将条形统计图补充完整;(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.【分析】(1)根据“优”的人数和所占的百分比即可求出总人数;(2)用360°乘以“良”所占的百分比求出B所对应扇形的圆心角;用总人数减去“优”、“良”、“差”的人数,求出“中”的人数,即可补全统计图;(3)根据题意画出树状图得出所以等情况数和所选的两位同学测试成绩恰好都为“良”的情况数,然后根据概率公式即可得出答案.解:(1)本次调查的学生总数为:15÷30%=50(人);故答案为:50;(2)在扇形统计图中,B所对应扇形的圆心角是360°×=144°;“中”等级的人数是:50﹣15﹣20﹣5=10(人),补图如下:故答案为:10;(3)“优秀”和“良”的分别用A1,A2,和B1,B2表示,则画树状图如下:共有12种情况,所选的两位同学测试成绩恰好都为“良”的有2种,则所选的两位同学测试成绩恰好都为“良”的概率是=.20.在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣1|+b中,当x=1时,y=3,当x=0时,y=4.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣1|+b ≥的解集.【分析】(1)根据在函数y=|kx﹣1|+b中,当x=1时,y=3;当x=0时,y=4,可以求得该函数的表达式;(2)根据(1)中的表达式可以画出该函数的图象;(3)根据图象可以直接写出所求不等式的解集.解:(1)∵在函数y=|kx﹣1|+b中,当x=1时,y=3;当x=0时,y=4,∴,得,∴这个函数的表达式是y=|x﹣1|+3;(2)∵y=|x﹣1|+3,∴y=,∴函数y=x+2过点(1,3)和点(4,6);函数y=﹣x+4过点(0,4)和点(﹣2,6);该函数的图象如图所示:(3)由函数图象可得,不等式|kx﹣1|+b≥的解集是x≥2或x<0.四、填空题:(共5个小题,每小题4分,共20分)请将每小題的答案直接填在答题卡中对应的横线上.21.因式分解:x3﹣2x2y+xy2=x(x﹣y)2.【分析】原式提取公因式,再利用完全平方公式分解即可.解:原式=x(x2﹣2xy+y2)=x(x﹣y)2,故答案为:x(x﹣y)222.如图,在反比例函数y=﹣(x<0)与y=(x>0)的图象上分别有一点E,F,连接E,F交y轴于点G,若E(﹣1,1)且2EG=FG,则OG=.【分析】过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,根据平行线分线段成比例定理得:NO=2MO=2,从而可得F(2,2),结合E(﹣1,1)可得直线EF的解析式,求出点G的坐标后即可求解.解:过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图:∴EM∥GO∥FN∵2EG=FG∴根据平行线分线段成比例定理得:NO=2MO∵E(﹣1,1)∴MO=1∴NO=2∴点F的横坐标为2∵F在y=(x>0)的图象上∴F(2,2)又∵E(﹣1,1)∴由待定系数法可得:直线EF的解析式为:y=当x=0时,y=∴G(0,)∴OG=故答案为:23.若关于x的一元一次不等式组所有整数解的和为﹣9,且关于y的分式方程1﹣=有整数解,则符合条件的所有整数a为﹣3.【分析】不等式组整理后,根据所有整数解的和为﹣9,确定出x的值,进而求出a的范围,分式方程去分母转化为整式方程,检验即可得到满足题意a的值,求出符合条件的所有整数a即可.解:,不等式组整理得:﹣4≤x<a,由不等式组所有整数解的和为﹣9,得到﹣2<a≤﹣1,或1<a≤2,即﹣6<a≤﹣3,或3<a≤6,分式方程1﹣=,去分母得:y2﹣4+2a=y2+(a+2)y+2a,解得:y=﹣,经检验a=﹣3,2,﹣1,﹣6,则符合条件的所有整数a为﹣3.故答案为:﹣3.24.2019年6月12日,重庆直达香港高铁的车票正式开售,据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时.该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北.重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高.在此之前技术部门做了大量测试,在一次测试中一高铁列车从A地出发,匀速驶向B地,到达B地停止;同时一普快列车从B地出发,匀速驶向A地,到达A地停止.且A,B两地之间有一C地,其中AC=2BC,如图①,两列车与C地的距离之和y(千米)与普快列车行驶时间x(小时)之间的关系如图②所示.则高铁列车到达B地时,普快列车离A地的距离为360千米.【分析】由图象可知4.5小时两列车与C地的距离之和为0,于是高铁列车和普快列车在C站相遇,由于AC=2BC,因此高铁列车的速度是普快列车的2倍,相遇后图象的第一个转折点,说明高铁列车到达B站,此时两车距C站的距离之和为360千米,由于V=2V普快,因此BC距离为360千米的三分之二,即240千米,普快离开C占的距离为高铁360千米的三分之一,即120千米,于是可以得到全程为240+240×2=720千米,当高铁列车到达B站时,普快列车离开B站240+120=360千米,此时距A站的距离为720﹣360=360千米.解:∵图象过(4.5,0)∴高铁列车和普快列车在C站相遇∵AC=2BC,∴V高铁=2V普快,BC之间的距离为:360×=240千米,全程为AB=240+240×2=720千米,此时普快离开C站360×=120千米,当高铁列车到达B站时,普快列车距A站的距离为:720﹣120﹣240=360千米,故答案为:360.25.为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品320件.【分析】可设第一次购进后库存总数量为m件,第一次购进A种纪念品8x件,则第一次购进B种纪念品7x件,第一次购进C种纪念品9x件,设第二次购进后A种纪念品9y件,则第二次购进后B种纪念品10y件,第二次购进后C种纪念品10y件,设第三次购进后A种纪念品7z件,则第三次购进后B种纪念品6z件,第三次购进后C种纪念品6z件,根据第一次三种纪念品总数量不超过1000件,列出方程组和不等式求解即可.解:设第一次购进后库存总数量为m件,第一次购进A种纪念品8x件,则第一次购进B种纪念品7x件,第一次购进C种纪念品9x件,设第二次购进后A种纪念品9y件,则第二次购进后B种纪念品10y件,第二次购进后C种纪念品10y件,设第三次购进后A种纪念品7z件,则第三次购进后B种纪念品6z件,第三次购进后C种纪念品6z件,依题意有,则24x=29y﹣200=19z﹣370=m,∵0<m≤1000,∴0<x≤41,6<y≤41,19<z≤72,∵x,y、z均为正整数,∴1≤x≤41,7≤y≤41,20≤z≤72,24x=29y﹣200化为:x=y﹣8+,∴5y﹣8=24n(n为正整数),∴5y=8+24n=8(1+3n),∴y=8k(k为正整数),5k=3n+1,∴7≤8k≤41,n=k+,∴1≤k≤5,1≤2k﹣1≤9,∵2k﹣1必为奇数且是3的整数倍.∴2k﹣1=3或2k﹣1=9,∴k=2或k=5,当k=2时,y=16,x=11,z=33(舍)∴k只能为5,∴y=40,x=40,z=70.∴8x=8×40=320.答:第一次购进A种纪念品320件.故答案为:320.五、解答题(共3个小题,每题10分,共30分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上.26.为了准备“欢乐颂﹣﹣创意市场”,初2020级某同学到批发市场购买了A、B两种原材料,A的单价为每件6元,B的单价为每件3元,该同学的创意作品需要B材料的数量是A材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.(1)该同学最多购买多少件B材料;(2)在该同学购买B材料最多的前提下,用所购买的A,B两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高2a%(a>0)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了a%,求a的值.【分析】(1)设该同学购买x件B种原材料,则购买x件A种原材料,由购买原材料的总费用不超过480元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其内的最大正整数即可;(2)设y=a%,根据该同学在本次活动中赚了a%,即可得出关于y的一元二次方程,解之即可得出结论.解:(1)设该同学购买x件B种原材料,则购买x件A种原材料,根据题意得:6×x+3×x≤480,解得:x≤80,∴x最大值为80,答:该同学最多可购买80件B两种原材料.(2)设y=a%,根据题意得:(520+480)×(1+2y)(1﹣y)=(520+480)×(1+y),整理得:4y2﹣y=0,解得:y=0.25或y=0(舍去),∴a%=0.25,a=25.答:a的值为25.27.如图,▱ABCD中,点E为BC边上一点,过点E作EF⊥AB于F,已知∠D=2∠AEF.(1)若∠BAE=70°,求∠BEA的度数;(2)连接AC,过点E作EG⊥AC于G,延长EG交AD于点H,若∠ACB=45°,求证:AH=AF+AC.【分析】(1)作BJ⊥AE于J.证明BJ是∠ABE的角平分线即可解决问题.(2)作EM⊥AD于M,CN⊥AD于N,连接CH.证明△AEF≌△AEM(HL),△AGE ≌△HGC(SAS),△EMA≌△CNH(HL),即可解决问题.【解答】(1)解:作BJ⊥AE于J.∵BF⊥AB,∴∠ABJ+∠BAJ=90°,∠AEF+∠EAF=90°,∵四边形ABCD是平行四边形,∴∠D=∠ABC,∵∠D=2∠AEF,∴∠ABE=2∠AEF=2∠ABJ,∴∠ABJ=∠EBJ,∵∠ABJ+∠BAJ=90°,∠EBJ+∠BEJ=90°,∴∠BAJ=∠BEJ,∵∠BAE=70°,∴∠BEA=70°.(2)证明:作EM⊥AD于M,CN⊥AD于N,连接CH.∵AD∥BC,∴∠DAE=∠BEA,∵∠BAE=∠BEA,∴∠BAE=∠DAE,∵EF⊥AB,EM⊥AD,∴EF=EM,∵EA=EA,∠AFE=∠AME=90°,∴Rt△AEF≌Rt△AEM(HL),∴AF=AM,∵EG⊥CG,∴∠EGC=90°,∵∠ECG=45°,∠GCE=45°,∴GE=CG,∵AD∥BC,∴∠GAH=∠ECG=45°,∠GHA=∠CEG=45°,∴∠GAH=∠GHA,∴GA=GH,∴△AGE≌△HGC(SAS),∴EA=CH,∵CM=CN,∠AME=∠CNH=90°,∴Rt△EMA≌Rt△CNH(HL),∴AM=NH,∴AN=HM,∵△ACN是等腰直角三角形,∴AC=AN,即AN=AC,∴AH=AM+HM=AF+AC.28.如图,平面直角坐标系中,点A,B在x轴上,AO=BO,点C在x轴上方,AC⊥BC,∠CAB=30°,线段AC交y轴于点D,DO=2,连接BD,BD平分∠ABC,过点D 作DE∥AB交BC于E.(1)点C的坐标为(3,3);(2)将△ADO沿线段DE向右平移得△A′D'O',当点D'与E重合时停止运动,记△A'D'O′与△DEB的重叠部分面积为S,点P为线段BD上一动点,当S=时,求CD'+D'P+PB的最小值.(3)当△A'D'O'移动到点D'与E重合时,将△A'D'O'绕点E旋转一周,旋转过程中,直线BD分别与直线A'D'、直线D'O'交于点G、点H,作点D关于直线A'D'的对称点D0,连接D0、G、H.当△GD0H为直角三角形时,直接写出线段D0H的长.【分析】(1)想办法求出A,D,B的坐标,求出直线AC,BC的解析式,构建方程组即可解决问题.(2)如图2中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.利用三角形的面积公式求出点D坐标,再证明PH=PB,把问题转化为垂线段最短即可解决问题.(3)在旋转过程中,符号条件的△GD0H有8种情形,分别画出图形一一求解即可.解:(1)如图1中,在Rt△AOD中,∵∠AOD=90°,∠OAD=30°,OD=2,∴OA=OD=6,∠ADO=60°,∴∠ODC=120°,∵BD平分∠ODC,∴∠ODB=∠ODC=60°,∴∠DBO=∠DAO=30°,∴DA=DB=4,OA=OB=6,∴A(﹣6,0),D(0,2),B(6,0),∴直线AC的解析式为y=x+2,∵AC⊥BC,∴直线BC的解析式为y=﹣x+6,由,解得,∴C(3,3).(2)如图2中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.∵∠FD′G=∠D′GF=60°,∴△D′FG是等边三角形,∵S△D′FG=•D′G2=,∴D′G=,∴DD′=GD′=2,∴D′(2,2),∵C(3,3),∴CD′==2,在Rt△PHB中,∵∠PHB=90°,∠PBH=30°,∴PH=PB,∴CD'+D'P+PB=2+D′P+PH≤2+D′O′=2+2,∴CD'+D'P+PB的最小值为2+2.(3)如图3﹣1中,当D0H⊥GH时,连接ED0.∵ED=ED0,EG=EG.DG=D0G,∴△EDG≌△ED0G(SSS),∴∠EDG=∠ED0G=30°,∠DEG=∠D0EG,∵∠DEB=120°,∠A′EO′=60°,∴∠DEG+∠BEO′=60°,∵∠D0EG+∠D0EO′=60°,∴∠D0EO′=∠BEO′,∵ED0=EB,E=EH,∴△EO′D0≌△EO′B(SAS),∴∠ED0H=∠EBH=30°,HD0=HB,∴∠CD0H=60°,∵∠D0HG=90°,∴∠D0GH=30°,设HD0=BH=x,则DG=GD0=2x,GH=x,∵DB=4,∴2x+x+x=4,∴x=2﹣2.如图3﹣2中,当∠D0GH=90°时,同法可证∠D0HG=30°,易证四边形DED0H是等腰梯形,∵DE=ED0=DH=4,可得D0H=4+2×4×cos30°=4+4.如图3﹣3中,当D0H⊥GH时,同法可证:∠D0GH=30°,在△EHD0中,由∠D0HE=45°,∠HD0E=30°,ED0=4,可得D0H=4×+4×=2+2,如图3﹣4中,当D G⊥GH时,同法可得∠D0HG=30°,设DG=GD0=x,则HD0=BH=2x,GH=x,∴3x+x=4,∴x=2﹣2,∴D0H=2x=4﹣4.如图3﹣5中,当D0H⊥GH时,同法可得D0H=2﹣2.如图3﹣6中,当D G G⊥GH时,同法可得D0H=4+4.如图3﹣7中,如图当D0H⊥HG时,同法可得D0H=2+2.如图3﹣8中,当D0G⊥GH时,同法可得HD0=4﹣4.综上所述,满足条件的D0H的值为2﹣2或2+2或4﹣4或4+4.。
重庆市八中2018-2019学年八年级下学期期末数学试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.反比例函数k y x=经过点(1,3-),则k 的值为( ) A .3 B .3- C .13 D .13- 2.若ABC DEF ∽△△,若50A ∠=︒,则D ∠的度数是( )A .50︒B .60︒C .70︒D .80︒ 3.分式12x -有意义,则x 的取值范围为( ) A .0x ≠B .2x ≠C .0x ≠且2x ≠D .x 为一切实数 4.六边形的内角和为( )A .720°B .360°C .540°D .180° 5.方程23x x =的解是 ( )A .3x =B .3x =-C .0x =D .3x =或0x = 6.下列命题是真命题的是( )A .方程23240x x --=的二次项系数为3,一次项系数为-2B .四个角都是直角的两个四边形一定相似C .某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D .对角线相等的四边形是矩形7.关于x 的一元二次方程240x x k -+=有两个不相等的实数根,则实数k 的取值范围是( )A .4k ≤B .4k <C .4k ≥D .4k > 8.一个菱形的周长是20,一条对角线长为6,则菱形的另一条对角线长为( ) A .4 B .5 C .8 D .10 9.某企业今年一月工业产值达20亿元,前三个月总产值达90亿元,求第二、三月份工业产值的月平均增长率.设月平均增长率为x ,则由题意可得方程( ) A .220(1)90x +=B .22020(1)90x ++=C .22020(1)20(1)90x x ++++=D .20(12)90x +=10.函数y kx b =+与(0)k y k x=≠在同一坐标系中的图象可能是( ) A . B .C .D .二、填空题11.若△ABC ∽△DEF, △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为________.12.一组数据10,9,10,12,9的中位数是__________.13.关于x 一元二次方程240x mx +-=的一个根为1x =-,则另一个根为x =__________.14.若x y =3,则x+y y =_______.15.已知一元二次方程29180x x -+=的两个解恰好分别是等腰ABC 的底边长和腰长,则ABC 的周长为__________.16.双曲线15y x=,2k y x =在第一象限的图象如图,过1y 上的任意一点A ,作y 轴的平行线交2y 于点B ,交x 轴于点C ,若1AOB S =,则k 的值为__________.17.因式分解:3222x x y xy +=﹣__________.18.如图,在反比例函数1(0)y x x =-<与4(0)y x x=>的图象上分别有一点E ,F ,连接EF 交y 轴于点G ,若(1,1)E -且2EG FG =,则OG =__________.19.若关于x 的一元一次不等式组1322x x a x⎧-≤⎪⎨⎪-<-⎩所有整数解的和为-9,且关于y 的分式方程22142a y a y y +-=--有整数解,则符合条件的所有整数a 为__________. 20.2019年6月12日,重庆直达香港高铁的车票正式开售据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高在此之前技术部门做了大量测试,在一次测试中一高铁列车从A 地出发匀速驶向B 地,到达B 地停止;同时一普快列车从B 地出发,匀速驶向A 地,到达A 地停止且A ,B 两地之间有一C 地,其中2AC BC =,如图①两列车与C 地的距离之和y (千米)与普快列车行驶时间x (小时)之间的关系如图②所示则高铁列车到达B 地时,普快列车离A 地的距离为__________千米.21.某超市促销活动,将A B C ,,三种水果采用甲、乙、丙三种方式搭配装进礼盒进行销售.每盒的总成本为盒中A B C ,,三种水果成本之和,盒子成本忽略不计.甲种方式每盒分别装A B C ,,三种水果631kg kg kg ,,;乙种方式每盒分别装A B C ,,三种水果262kg kg kg ,, .甲每盒的总成本是每千克A 水果成本的12.5倍,每盒甲的销售利润率为20%;每盒甲比每盒乙的售价低25%;每盒丙在成本上提高40%标价后打八折出售,获利为每千克A 水果成本的1.2倍.当销售甲、乙、丙三种方式搭配的礼盒数量之比为225::时,则销售总利润率为__________.100%=⨯利润(利润率)成本三、解答题22.解方程:(1)210x x +-=(2)(2)(3)20x x ++=23.先化简,再求值:2344111a a a a a -+⎛⎫-++÷ ⎪++⎝⎭,其中3a =. 24.近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作A 、B 、C 、D ;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:(1)本次调查的学生总数为 人;(2)在扇形统计图中,B 所对应扇形的圆心角 度,并将条形统计图补充完整;(3)在“优”和“良”两个等级的同学中各有两人....愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.25.在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义()()00a a a a a ⎧≥⎪=⎨-<⎪⎩. 结合上面经历的学习过程,现在来解决下面的问题:在函数1y kx b =-+中,当1x =时,3y =,当0x =时,4y =.()1求这个函数的表达式;()2在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;()3已知函数8y x=的图象如图所示,结合你所画的函数图象,直接写出不等式81kx b x-+≥的解集.26.为了准备“欢乐颂——创意市场”,初2020级某同学到批发市场购买了A 、B 两种原材料,A 的单价为每件6元,B 的单价为每件3元.该同学的创意作品需要B 材料的数量是A 材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.(1)该同学最多购买多少件B 材料;(2)在该同学购买B 材料最多的前提下,用所购买的A ,B 两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高2%(0)a a >标价,但无人问津,于是该同学在标价的基础上降低%a 出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了1%2a ,求a 的值.27.如图,ABCD □中,点E 为BC 边上一点,过点E 作EF AB ⊥于F ,已知2D AEF ∠=∠.(1)若70BAE ∠=︒,求BEA ∠的度数;(2)连接AC ,过点E 作EG AC ⊥于G ,延长EG 交AD 于点H ,若45ACB ∠=︒,求证:2AH AF AC =+.28.如图平面直角坐标系中,点A ,B 在x 轴上,AO BO =,点C 在x 轴上方,AC BC ⊥,30CAB ∠=︒,线段AC 交y 轴于点D ,DO =BD ,BD 平分ABC ∠,过点D 作DE AB ∥交BC 于E .(1)点C 的坐标为 .(2)将ADO △沿线段DE 向右平移得A D O '''△,当点D 与E 重合时停止运动,记A D O '''△与DEB 的重叠部分面积为S ,点P 为线段BD 上一动点,当S =求12CD D P PB ''++的最小值; (3)当A D O '''△移动到点D 与E 重合时,将A D O '''△绕点E 旋转一周,旋转过程中,直线BD 分别与直线A D ''、直线D O ''交于点G 、点H ,作点D 关于直线A D ''的对称点0D ,连接0D 、G 、H .当0GD H △为直角三角形时,直接写出....线段0D H 的长.参考答案1.B【解析】【分析】此题只需将点的坐标代入反比例函数解析式即可确定k的值.【详解】把已知点的坐标代入解析式可得,k=1×(-3)=-3.故选:B.【点睛】本题主要考查了用待定系数法求反比例函数的解析式,.2.A【分析】根据相似三角形的对应角相等可得∠D=∠A.【详解】∵△ABC∽△DEF,∠A=50°,∴∠D=∠A=50°.故选:A.【点睛】此题考查相似三角形的性质,熟记相似三角形的对应角相等是解题的关键.3.B【分析】直接利用分式有意义则分母不等于零进而得出答案.【详解】分式12x有意义,则x-2≠0,解得:x≠2.故选:B.【点睛】此题考查分式有意义的条件,正确把握分式的定义是解题关键.4.A【解析】【分析】根据多边形内角和公式2180()n -⨯︒ ,即可求出.【详解】根据多边形内角和公式2180()n -⨯︒,六边形内角和(62)180720=-⨯︒=︒故选A.【点睛】本题考查多边形内角和问题,熟练掌握公式是解题关键.5.D【详解】解:先移项,得x 2-3x =0,再提公因式,得x (x -3)=0,从而得x =0或x =3故选D .【点睛】本题考查因式分解法解一元二次方程.6.A【分析】根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.【详解】A 、正确.B 、错误,对应边不一定成比例.C 、错误,不一定中奖.D 、错误,对角线相等的四边形不一定是矩形.故选:A .【点睛】此题考查命题与定理,熟练掌握基础知识是解题关键.7.B【分析】由方程有两个不相等的实数根结合根的判别式,可得出△=36-4k>0,解之即可得出实数k 的取值范围.【详解】∵方程x2-4x+k=0有两个不相等的实数根,∴△=(-4)2-4k=16-4k>0,解得:k<4.故选:B.【点睛】此题考查根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.8.C【分析】首先根据题意画出图形,由菱形周长为20,可求得其边长,又由它的一条对角线长6,利用勾股定理即可求得菱形的另一条对角线长.【详解】如图,∵菱形ABCD的周长为20,对角线AC=6,∴AB=5,AC⊥BD,OA=12AC=3,∴OB=22AB OA=4,∴BD=2OB=8,即菱形的另一条对角线长为8.故选:C.【点睛】此题考查菱形的性质以及勾股定理.解题关键在于注意菱形的对角线互相平分且垂直.9.C【分析】设月平均增长率的百分数为x,根据某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,可列方程求解.设月平均增长率的百分数为x ,20+20(1+x )+20(1+x )2=90.故选:C .【点睛】此题考查一元二次方程的应用,解题关键看到是一季度的和做为等量关系列出方程. 10.D【分析】根据k 值的正负,判断一次函数和反比例函数必过的象限,二者一致的即为正确答案.【详解】在函数y kx b =+与(0)k y k x=≠中, 当k>0时,图象都应过一、三象限;当k<0时,图象都应过二、四象限,故选:D .【点睛】本题考查了一次函数与反比例函数的图象和性质,掌握一次函数和反比例函数的图象和性质是解题的关键.11.1:2.【分析】根据相似三角形的周长的比等于相似比得出.【详解】解:∵△ABC ∽△DEF ,△ABC 与△DEF 的相似比为1:2,∴△ABC 与△DEF 的周长比为1:2.故答案为:1:2.【点睛】本题主要考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比. 12.10【分析】根据中位数的意义,将数据排序后找中间位置的数会中间两个数的平均数即可.将数据按从小到大排列为:9,9,10,10 12,处于中间位置也就是第3位的是10,因此中位数是10,故答案为:10.【点睛】此题考查中位数的意义,理解中位数的意义,掌握中位数的方法是解题关键.13.4【分析】利用根与系数的关系可得出方程的两根之积为-4,结合方程的一个根为-1,可求出方程的另一个根,此题得解.【详解】∵a=1,b=m,c=-4,∴x1•x2=ca=-4.∵关于x一元二次方程x2+mx-4=0的一个根为x=-1,∴另一个根为-4÷(-1)=4.故答案为:4.【点睛】此题考查根与系数的关系以及一元二次方程的解,牢记两根之积等于ca是解题的关键.14.4【解析】【分析】根据比例的性质即可求解.【详解】∵xy =3,∴x=3y,∴原式=3y+yy=4.故答案为:4.【点睛】本题考查了比例的性质,关键是得出x=3y.15.15【分析】用因式分解法可以求出方程的两个根分别是3和6,根据等腰三角形的三边关系,腰应该是6,底是3,然后可以求出三角形的周长.【详解】x 2-9x+18=0(x-3)(x-6)=0解得x 1=3,x 2=6.由三角形的三边关系可得:腰长是6,底边是3,所故周长是:6+6+3=15.故答案为:15.【点睛】此题考查解一元二次方程-因式分解,解题关键在于用十字相乘法因式分解求出方程的两个根,然后根据三角形的三边关系求出三角形的周长.16.3【分析】根据S △AOC -S △BOC =S △AOB ,列出方程,求出k 的值.【详解】由题意得:S △AOC -S △BOC =S △AOB ,522k -=1, 解得,k=3,故答案为:3.【点睛】此题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.根据面积关系得出方程是解题的关键.17.()2x x y -【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式()()2222x x xy y x x y =-+=-,故答案为()2x x y -【点睛】本题考查提公因式,熟练掌握运算法则是解题关键.18.43【分析】过点E 作EM ⊥x 轴于点M ,过点F 作FN ⊥x 轴于点N ,根据平行线分线段成比例定理得:NO=2MO=2,从而可得F (2,2),结合E (-1,1)可得直线EF 的解析式,求出点G 的坐标后即可求解.【详解】过点E 作EM ⊥x 轴于点M ,过点F 作FN ⊥x 轴于点N ,如图:∴EM ∥GO ∥FN∵2EG=FG∴根据平行线分线段成比例定理得:NO=2MO∵E (-1,1)∴MO=1∴NO=2∴点F 的横坐标为2∵F 在4(0)y x x=>的图象上 ∴F (2,2)又∵E (-1,1)∴由待定系数法可得:直线EF 的解析式为:y=1433x +当x=0时,y=43 ∴G (0,43) ∴OG=43故答案为:43. 【点睛】此题考查反比例函数的综合应用,平行线分线段成比例定理,待定系数法求一次函数的解析式,解题关键在于掌握待定系数法求解析式.19.-4,-3.【分析】不等式组整理后,根据所有整数解的和为-9,确定出x 的值,进而求出a 的范围,分式方程去分母转化为整式方程,检验即可得到满足题意a 的值,求出符合条件的所有整数a 即可.【详解】 解:1322x x a x⎧-≤⎪⎨⎪-<-⎩, 不等式组整理得:-4≤x <13a , 由不等式组所有整数解的和为-9,得到-2<13a≤-1,或1<13a≤2, 即-6<a≤-3,或3<a≤6, 分式方程22142a y a y y +-=--, 去分母得:y 2-4+2a=y 2+(a+2)y+2a ,解得:y=-42a + , 经检验y=-42a +为方程的解, 得到a≠-2, ∵22142a y a y y +-=--有整数解, ∴则符合条件的所有整数a 为-4,-3,故答案为:-4,-3.【点睛】此题考查分式方程的解,一元一次不等式组的整数解,熟练掌握运算法则是解题的关键. 20.360【分析】由图象可知4.5小时两列车与C 地的距离之和为0,于是高铁列车和普快列车在C 站相遇,由于AC=2BC ,因此高铁列车的速度是普快列车的2倍,相遇后图象的第一个转折点,说明高铁列车到达B 站,此时两车距C 站的距离之和为360千米,由于V 高铁=2V 普快,因此BC 距离为360千米的三分之二,即240千米,普快离开C 占的距离为360千米的三分之一,即120千米,于是可以得到全程为240+240×2=720千米,当高铁列车到达B 站时,普快列车离开B 站240+120=360千米,此时距A 站的距离为720-360=360千米.【详解】∵图象过(4.5,0)∴高铁列车和普快列车在C 站相遇∵AC=2BC ,∴V 高铁=2V 普快,BC 之间的距离为:360×23=240千米,全程为AB=240+240×2=720千米, 此时普快离开C 站360×13=120千米, 当高铁列车到达B 站时,普快列车距A 站的距离为:720-120-240=360千米,故答案为:360.【点睛】 此题考查一次函数的应用.解题关键是由函数图象得出相关信息,明确图象中各个点坐标的实际意义.联系行程类应用题的数量关系是解决问题的关键,图象与实际相结合容易探求数量之间的关系,也是解决问题的突破口.21.20%.【分析】分别设每千克A 、B 、C 三种水果的成本为x 、y 、z ,设丙每盒成本为m ,然后根据题意将甲、乙、丙三种方式的每盒成本和利润用x 表示出来即可求解.【详解】设每千克A、B、C三种水果的成本分别为为x、y、z,依题意得:6x+3y+z=12.5x,∴3y+z=6.5x,∴每盒甲的销售利润=12.5x•20%=2.5x乙种方式每盒成本=2x+6y+2z=2x+13x=15x,乙种方式每盒售价=12.5x•(1+20%)÷(1-25%)=20x,∴每盒乙的销售利润=20x-15x=5x,设丙每盒成本为m,依题意得:m(1+40%)•0.8-m=1.2x,解得m=10x.∴当销售甲、乙、丙三种方式的水果数量之比为2:2:5时,总成本为:12.5x•2+15x•2+10x•5=105x,总利润为:2.5x•2+5x×2+1.2x•5=21x,销售的总利润率为21105xx×100%=20%,故答案为:20%.【点睛】此题考查了三元一次方程的实际应用,分析题意,找到关键描述语,找到合适的等量关系是解题的关键.22.(1)x1x2;(2)x1=-7,x2=2.【分析】(1)先求出b2-4ac的值,再代入公式求出即可;(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1)x2+x-1=0,b2-4ac=12-4×1×(-1)=5,,x1x2;(2)(x+2)(x+3)=20,整理得:x2+5x-14=0,(x+7)(x-2)=0,x+7=0,x-2=0,x1=-7,x2=2.【点睛】此题考查解一元二次方程,能选择适当的方法解一元二次方程是解题的关键.23.2+2aa-,-5.【分析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【详解】原式=()222 3111aaa a--+÷++=()()()2 22112a a aa a+-++-=2+ 2aa -其中a=3,原式=2+3=-5 2-3.【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则.24.(1)50;(2)144°,图见解析;(3)16.【分析】(1)根据“优”的人数和所占的百分比即可求出总人数;(2)用360°乘以“良”所占的百分比求出B所对应扇形的圆心角;用总人数减去“优”、“良”、“差”的人数,求出“中”的人数,即可补全统计图;(3)根据题意画出树状图得出所以等情况数和所选的两位同学测试成绩恰好都为“良”的情况数,然后根据概率公式即可得出答案.【详解】(1)本次调查的学生总数为:15÷30%=50(人);故答案为:50;(2)在扇形统计图中,B 所对应扇形的圆心角是360°×2050=144°; “中”等级的人数是:50-15-20-5=10(人),补图如下:故答案为:10;(3)“优秀”和“良”的分别用A 1,A 2,和B 1,B 2表示,则画树状图如下:共有12种情况,所选的两位同学测试成绩恰好都为“良”的有2种,则所选的两位同学测试成绩恰好都为“良”的概率是21126= . 【点睛】此题考查列表法或树状图法求概率.解题关键在于掌握列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比. 25.()113y x =-+; ()2详见解析;()30x <或2x ≥【分析】(1)把x=0,y=4;x=1,y=3代入函数1y kx b =-+中,求出k 、b 即可;(2)根据(1)中的表达式可以画出该函数的图象;(3)根据图象可以直接写出所求不等式的解集.【详解】(1)把x=0,y=4代入1y kx b =-+得:4=1b -+,∴b=3,把x=1,y=3,b=3代入1y kx b =-+得:=31+3k -,∴k=1,即函数的表达式为13y x =-+,(2)由题意得:2(1)13=4(1)x x y x x x +≥⎧=-+⎨-<⎩,画图象如下图:(3)由上述图象可得:当x<0或x ≥2时,81kx b x-+≥, 故答案为:x<0或x ≥2. 【点睛】本题考查了待定系数法求函数表达式,函数图象的画法,由图象写出不等式的解集,掌握函数的图象和性质是解题的关键. 26.(1)80件B 种原材料;(2)25. 【分析】(1)设该同学购买x 件B 种原材料,则购买12x 件A 种原材料,由购买原材料的总费用不超过480元,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,取其内的最大正整数即可;(2)设y=a%,根据该同学在本次活动中赚了12a%,即可得出关于y的一元二次方程,解之即可得出结论.【详解】(1)设该同学购买x件B种原材料,则购买12x件A种原材料,根据题意得:6×12x+3×x≤480,解得:x≤80,∴x最大值为80,答:该同学最多可购买80件B种原材料.(2)设y=a%,根据题意得:(520+480)×(1+2y)(1-y)=(520+480)×(1+12 y),整理得:4y2-y=0,解得:y=0.25或y=0(舍去),∴a%=0.25,a=25.答:a的值为25.【点睛】此题考查一元二次方程的应用以及一元一次不等式的应用,解题的关键是找准等量关系,列出不等式或方程.27.(1)∠BEA=70°;(2)证明见解析;【分析】(1)作BJ⊥AE于J.证明BJ是∠ABE的角平分线即可解决问题.(2)作EM⊥AD于M,CN⊥AD于N,连接CH.证明△AEF≌△AEM(HL),△AGE≌△HGC (SAS),△EMA≌△CNH(HL),即可解决问题.【详解】(1)解:作BJ⊥AE于J.∵BF⊥AB,∴∠ABJ+∠BAJ=90°,∠AEF+∠EAF=90°,∴∠ABJ=∠AEF,∵四边形ABCD是平行四边形,∴∠D=∠ABC,∵∠D=2∠AEF,∴∠ABE=2∠AEF=2∠ABJ,∴∠ABJ=∠EBJ,∵∠ABJ+∠BAJ=90°,∠EBJ+∠BEJ=90°,∴∠BAJ=∠BEJ,∵∠BAE=70°,∴∠BEA=70°.(2)证明:作EM⊥AD于M,CN⊥AD于N,连接CH.∵AD∥BC,∴∠DAE=∠BEA,∵∠BAE=∠BEA,∴∠BAE=∠DAE,∵EF⊥AB,EM⊥AD,∴EF=EM,∵EA=EA,∠AFE=∠AME=90°,∴Rt△AEF≌Rt△AEM(HL),∴AF=AM,∵EG⊥CG,∴∠EGC=90°,∵∠ECG=45°,∠GCE=45°,∴GE=CG,∵AD∥BC,∴∠GAH=∠ECG=45°,∠GHA=∠CEG=45°,∴∠GAH=∠GHA,∴GA=GH,∵∠AGE=∠CGH,∴△AGE≌△HGC(SAS),∴EA=CH,∵CM=CN,∠AME=∠CNH=90°,∴Rt△EMA≌Rt△CNH(HL),∴AM=NH,∴AN=HM,∵△ACN是等腰直角三角形,∴AN,即,∴AH=AM+HM=AF+2AC.【点睛】此题考查平行四边形的性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.28.(1)C(3,;(2)最小值为(3)D0H的值为或+2或-4或.【分析】(1)想办法求出A,D,B的坐标,求出直线AC,BC的解析式,构建方程组即可解决问题.(2)如图2中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.利用三角形的面积公式求出点D坐标,再证明PH=12PB,把问题转化为垂线段最短即可解决问题.(3)在旋转过程中,符号条件的△GD0H有8种情形,分别画出图形一一求解即可.【详解】(1)如图1中,在Rt △AOD 中,∵∠AOD=90°,∠OAD=30°,OD=23, ∴OA=3OD=6,∠ADO=60°, ∴∠ODC=120°, ∵BD 平分∠ODC , ∴∠ODB=12∠ODC=60°, ∴∠DBO=∠DAO=30°, ∴DA=DB=43,OA=OB=6,∴A (-6,0),D (0,23),B (6,0), ∴直线AC 的解析式为y=33x+23, ∵AC ⊥BC ,∴直线BC 的解析式为y=-3x+63,由323363y x y x ⎧+⎪⎨⎪-+⎩== ,解得333x y ⎧⎪⎨⎪⎩==,∴C (3,33).(2)如图2中,设BD 交O′D′于G ,交A′D′于F .作PH ⊥OB 于H .∵∠FD′G=∠D′GF=60°, ∴△D′FG 是等边三角形, ∵S △D′FG =233•D G '=, ∴D′G=23 , ∴DD′=3GD′=2, ∴D′(2,23), ∵C (3,33), ∴CD′=221(3)+=2,在Rt △PHB 中,∵∠PHB=90°,∠PBH=30°,∴PH=12PB , ∴CD'+D'P+12PB=2+D′P+PH≤2+D′O′=2+23,∴CD'+D'P+12PB 的最小值为2+23.(3)如图3-1中,当D 0H ⊥GH 时,连接ED 0.∵ED=ED0,EG=EG.DG=D0G,∴△EDG≌△ED0G(SSS),∴∠EDG=∠ED0G=30°,∠DEG=∠D0EG,∵∠DEB=120°,∠A′EO′=60°,∴∠DEG+∠BEO′=60°,∵∠D0EG+∠D0EO′=60°,∴∠D0EO′=∠BEO′,∵ED0=EB,E=EH,∴△EO′D0≌△EO′B(SAS),∴∠ED0H=∠EBH=30°,HD0=HB,∴∠CD0H=60°,∵∠D0HG=90°,∴∠D0GH=30°,设HD0=BH=x,则DG=GD0=2x,GH=3x,∵DB=43,∴2x+3x+x=43,∴x=23-2.如图3-2中,当∠D0GH=90°时,同法可证∠D0HG=30°,易证四边形DED0H是等腰梯形,∵DE=ED0=DH=4,可得D0H=4+2×4×cos30°=4+43.如图3-3中,当D0H⊥GH时,同法可证:∠D0GH=30°,在△EHD0中,由∠D0HE=45°,∠HD0E=30°,ED0=4,可得D0H=4×13+⨯=+,42232如图3-4中,当D G⊥GH时,同法可得∠D0HG=30°,设DG=GD0=x,则HD0=BH=2x,GH=3x,∴3x+3x=43,∴x=23-2,∴D0H=2x=43-4.如图3-5中,当D0H⊥GH时,同法可得D0H=23-2.如图3-6中,当D G G⊥GH时,同法可得D0H=43+4.如图3-7中,如图当D0H⊥HG时,同法可得D0H=23+2.如图3-8中,当D0G⊥GH时,同法可得HD0=43-4.综上所述,满足条件的D0H的值为23-2或23+2或43-4或43+4.【点睛】此题考查几何变换综合题,解直角三角形,旋转变换,一次函数的应用,等边三角形的判定和性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会构建一次函数确定交点坐标,学会用分类讨论的思想思考问题.。
2018-2019学年八年级(下)期末数学试卷
一、选择题(共10小题,每小题3分,满分30分)
1.(3分)利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是()
A.B.
C.D.
2.(3分)下列等式从左到右的图形,属于因式分解的是()A.m(a﹣b)=ma﹣mb B.2a2+a=a(2a+1)
C.(x+y)2=x2+2xy+y2D.m2+4m+4=m(m+4)+4
3.(3分)若分式有意义,则实数x的取值范围是()
A.x=0B.x=3C.x≠0D.x≠3
4.(3分)如图,直线m∥n,点A在直线m上,点B、C在直线n上,AB=CB,∠1=70°,则∠BAC等于()
A.40°B.55°C.70°D.110°
5.(3分)一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和()
A.增加(n﹣2)×180°B.减小(n﹣2)×180°
C.增加(n﹣1)×180°D.没有改变
6.(3分)关于x的分式方程=有增根,则a的值为()A.﹣3B.﹣5C.0D.2。
★绝密★启用前2018-2019学年下学期期末考试八年级数学(北师大版)(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是(C)2.将下列多项式因式分解,结果中不含因式x-1的是(D)A.x2-1B.x(x-2)+(2-x)C.x2-2x+1D.x2+2x+13.如图,在正方形网格中,线段A'B'是线段AB绕某点逆时针旋转角α得到的,点A'与A对应,则角α的大小为(C)A.30°B.60°C.90°D.120°,当x=-m时,下列说法正确的是 (C)4.对分式x+x2x-3A.分式的值等于0B.分式有意义时,分式的值等于0C.当m≠-32D.当m=3时,分式没有意义25.下列说法不一定成立的是(C)A.若a>b,则a+c>b+cB.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b6.如图所示,在直角△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC于点E,连接AE,则△ACE的周长为(A)A.16B.15C.14D.137.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为(B)A.30°B.36°C.54°D.72°8.如图,在平面直角坐标系中,▱MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标为(A)A.(-3,-2)B.(-3,2)C.(-2,3)D.(2,3)9.不等式组{x>x,x<3的整数解有三个,则a的取值范围是(A)A.-1≤a<0B.-1<a≤0C.-1≤a≤0D.-1<a<010.如图所示,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CG,CF,则下列结论不一定正确的是(C)A.△CDF≌△EBCB.∠CDF=∠EAFC.CG⊥AED.△ECF是等边三角形二、填空题(每小题3分,共18分)11.已知a+b=3,ab=2,则代数式a3b+2a2b2+ab3的值为18.12.如图所示,在△ABC中,点D,E,F分别是AB,BC,AC的中点,若平移△ADF,则图中能与它重合的三角形是△DBE(或△FEC)(写出一个即可).13.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA.若PC=4,则PD的长是2.14.若关于x的分式方程2x-xx-1=1的解为正数,那么字母a的取值范围是a>1且a≠2.15.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的不等式kx+b>0的解集为x>-1.(第15题图)16.如图所示,已知AB=10,点C,D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是3.(第16题图)三、解答题(共52分)17.(5分)解不等式组:{x+1≥2,①5x≤4x+3.②请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.解(1)x≥1(2)x≤3(3)如图所示.(4)1≤x≤318.(5分)先化简,再求值:(x2-xx -x-1)÷x2-x2x2-2xx+x2,其中x=√2,y=√6.解(x 2-xx -x-1)÷x2-x2x2-2xx+x2=(x2-xx -x2x-xx)×(x-x)2(x+x)(x-x)=-(x+x)x ×x-xx+x=-x-xx.当x=√2,y=√6时,原式=-√2-√6√2=-1+√3.19. (6分)如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE 绕着CB的中点D逆时针旋转180°,点E到了点E'位置,点B和点C重合.求证:四边形ACE'E是平行四边形.证明∵DE是△ABC的中位线,∴DE∥AC,DE=12AC.∵将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E'位置,∴DE=DE',∴EE'=2DE=AC,∴四边形ACE'E是平行四边形.20. (6分)如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD相交于点O,求证:OE=OF.证法1如图所示,连接BE,DF.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD-AE=BC-CF.∴DE=BF,∴四边形BEDF是平行四边形.∴OF=OE.证法2连接BE,DF.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∴∠ODE=∠OBF.∵AE=CF,∴AD-AE=BC-CF,∴DE=BF.在△DOE和△BOF中,∠DOE=∠BOF,∠ODE=∠OBF,DE=BF,∴△DOE≌△BOF,∴OE=OF.21.(6分)如图,已知∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于点D,交AC于点E.(1)求∠BAD的度数;(2)若AB=10,BC=12,求△ABD的周长.解(1)∵∠BAC=60°,∠B=80°,∴∠C=180°-∠BAC-∠B=180°-60°-80°=40°,∵DE垂直平分AC,∴DA=DC.∴∠DAC=∠C=40°,∴∠BAD=60°-40°=20°.(2)由(1)知DA=DC,∴△ABD的周长=AB+AD+BD=AB+BC=10+12=22.22.(7分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.解(1)如图,△A1B1C1为所求三角形.因为点C(-1,3)平移后的对应点C1的坐标为(4,0),所以△ABC先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),点B1的坐标为(3,-2).(2)如图,因为△ABC和△A2B2C2关于原点O成中心对称图形,所以A2(3,-5),B2(2,-1),C2(1,-3).(3)如图,△A3B3C3为所求三角形,A3(5,3),B3(1,2),C3(3,1).23.(8分)如图,已知△ABC是等边三角形,点D,F分别在线段BC,AB上,∠EFB=60°,EF=DC.(1)求证:四边形EFCD是平行四边形;(2)若BE=EF,求证:AE=AD.证明(1)∵△ABC是等边三角形,∴∠B=60°.∵∠EFB=60°,∴∠B=∠EFB,∴EF∥DC.∵EF=DC,∴四边形EFCD是平行四边形.(2)连接BE.∵BE=EF,∠EFB=60°,∴△EBF是等边三角形,∴EB=EF,∠EBF=60°.∵DC=EF,∴EB=DC.∵△ABC是等边三角形,∴∠ACB=60°,AB=AC,∴∠EBF=∠ACB,∴△AEB≌△ADC,∴AE=AD.24. (9分)(2017·黑龙江绥化中考)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?=解(1)设甲工程队每天修路x千米,则乙工程队每天修路(x-0.5)千米,根据题意,得1.5×15x15,解得x=1.5.x-0.5经检验x=1.5是原方程的解,且x-0.5=1.所以甲工程队每天修路1.5千米,乙工程队每天修路1千米.(2)设甲工程队修路a天,则乙工程队需要修(15-1.5a)千米,所以乙工程队需要修路(15-1.5a)÷1=15-1.5a(天).根据题意,得0.5a+0.4(15-1.5a)≤5.2,解得a≥8.所以,甲工程队至少修路8天.。
2018-2019学年重庆市北碚区西南大学附中八年级(下)月考数学试卷(5月份)一.选择题(共12小题)1.下列数中最大的数是()A.﹣2B.﹣3C.﹣πD.﹣42.下列图形中是轴对称的是()A.B.C.D.3.下列调查适合用全面调查的是()A.对重庆市园博游客满意程度的调查B.对新研发的战斗机的零部件进行检查C.对2019年重庆市居民每户月均用水量的调查D.对西大附中全体学生的视力情况进行调查4.使得函数y=有意义的自变量的取值范围是()A.x≥﹣2B.x≥﹣2且x≠0C.x≠0D.x>﹣25.下列计算正确的是()A.m2+m3=m5B.m2•(﹣m)3=﹣m5C.(﹣m2n)3=﹣m5n3D.(2mn)2•3m3n=12m5n26.已知一次函数y=kx+b的图象经过一、二、四象限,则二次函数y=kx2+bx﹣k的顶点在第()象限.A.一B.二C.三D.四7.估算2+3的范围是下列哪两个数之间()A.11﹣12B.12﹣13C.13﹣14D.14﹣158.下列图形都是由同样大小的黑色圆点按照一定规律所组成的,其中第①个图形中一共有6个黑色圆点第②个图形中一共有15个黑色圆点,第③个图形中一共有28个黑色圆点,…,按此规律排列下去,第⑦个图形中黑色圆点的个数为()A.66B.91C.120D.1359.如图,在矩形ABCD中,AB=3,BC=4,点M在BC边上,且满足BM=1,过D作DN⊥AM交AM于点N,则DN的长为()A.B.C.D.10.“五一”期间,小华和妈妈到某景区游玩,小明想利用所学的数学知识,估测景区里的观景塔DE的高度.他从点D处的观景塔出来走到点A处.沿着斜坡AB从A点走了8米到达B点,此时回望观景塔,更显气势宏伟.在B点观察到观景塔顶端的仰角为45°且AB⊥BE,再往前走到C处,观察到观景塔顶端的仰角30°,测得BC之间的水平距离BC=10米,则观景塔的高度DE约为()米.(=1.41,=1.73)A.14B.15C.19D.2011.如图,双曲线y=与一次函数y=﹣x+4在第一象限内交于A,B两点,且△AOB的面积为2,则k的值为()A.2B.C.D.412.已知二次函数y=(a+2)x2+2ax+a﹣1的图象与x轴有交点,且关于x的分式方程+1=的解为整数,则所有满足条件的整数a之和为()A.﹣4B.﹣6C.﹣8D.3二.填空题(共6小题)13.计算:()﹣2+(﹣1)2019+|2﹣π|+=.14.任意抛掷一枚质地均匀的正方体骰子1次,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数不大于4的概率为.15.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为.16.已知函数y=,且使y=k成立的x值恰好有2个,则k的取值范是.17.已知,甲地到乙地的路程为450千米,一辆大货车从甲地前往乙地运送物资,行驶1小时在途中某地出现故障,立即通知技术人员乘小汽车从甲地赶来维修(通知时间忽略不计),小汽车到达该地后经过半小时修好大货年后以原速原路返甲地,小汽车在返程途中当走到一半路程时发现有重要物品落在大货车上,于是立即掉头以原速追赶大货车,追上大货车取下物品(取物品时间忽略不计)后以原速原路返回甲地,大货车修好后以原速前往乙地,如图是两车距甲地的路程y(千米)与大货车所用时间x(小时)之间的函数图象,则当小汽车第二次追上大货车时,大货车距离乙地千米.18.端午节是中华民族的传统节日,节日期间大家都有吃粽子的习惯.某超市去年销售蛋黄粽、肉粽、豆沙粽的数量比为3:5:2.根据市场调查,超市决定今年在去年销售量的基础上进货,肉粽增加20%、豆沙粽减少10%、蛋黄粽不变.为促进销售,将全部粽子包装成三种礼盒,礼盒A有2个蛋黄粽、4个肉粽、2个豆沙粽,礼盒B有3个蛋黄粽、3个肉粽、2个豆沙粽,礼盒C有2个蛋黄粽、5个肉粽、1个豆沙粽,其中礼盒A和C的总数不超过200盒,礼盒B和C的总数超过210盒.每个蛋黄粽、肉粽、豆沙粽的售价分别为6元、5元、4元,且A、B、C三种礼盒的包装费分别为10元、12元、9元(礼盒售价为粽子价格加上包装费).若这些礼盒全部售出,则销售额为元.三.解答题(共8小题)19.计算:(1)(a﹣b)(a﹣4b)﹣(a﹣2b)2(2)÷(﹣m﹣2)20.如图,在△ABD中,C为BD上一点,使得CA=CD,过点C作CE∥AD交AB于点E,过点D作DF⊥AD交AC的处长线于点F.(1)若CD=3,求AF的长;(2)若∠B=30°,∠ADC=40°,求证:AC=EC.21.2019年4月,西大附中初2019级中招体育考试已经顺利结束,在所有师生共同努力下,取得了历史性的好成绩.初二小明为了解初三哥哥姐姐们中招体育考试成绩的情况,采取抽样调查的方法,从年级各班随机调查了若干名同学的体考成绩,并将调查结果进行了整理,分成了5个小组,根据体考成绩制定出部分频数分布表和部分频数分布直方图体育成绩频数分布表组别成绩(x分)频数频率A35<x≤381B38<x≤410.05C41<x≤44D44<x≤476E47<x≤50(1)在这次考察中,共调查了名学生;并请补全频数分布直方图;(2)被调查的学生中,有30人是满分50分,若西大附中初2019级全年级有1100多名学生,请估计该年级体考成绩满分的总人数约有多少名?(3)初三哥哥姐姐们体测取得的辉煌成绩让初二的学弟学妹们信心大增,为了调动初二学子跳绳积极性,初二年级将举行1分钟跳绳比赛,每班推荐一人参赛,小明所在的班级李杰和陈亮两人均想报名参赛,为了公平选拔,班主任让小明统计了两人近10次的跳绳成绩(单位:个/分),如下:李杰成绩(个/170175180190195分)次数l1323陈亮成绩(个/165180190195200分)次数22321则李杰10次成绩的中位数是;陈亮10次成绩的众数是,请你通过计算两位同学的平均成绩和方差帮班主任选一名同学参赛,并说明理由.22.如图,一次函数y1=kx+2图象与反比例函数y2=图象相交于A,B两点,已知点B 的坐标为(3,﹣1).(1)求一次函数和反比例函数的解析式;(2)请直接写出不等式kx﹣≤﹣2的解集;(3)点C为x轴上一动点,当S△ABC=3时,求点C的坐标.23.西南大学银翔实验中学第二届缤纷科技节于2019年5月份隆重举行,主题:绿色体验•成长﹣玩出你的稀缺竞争力”,本届缤纷科技节有展示类、体验类、竞赛类共40多个项目.4月份,学校对活动中所需物品统一购,其中某一体验类项目需要A、B两种材料,已知A种材料单价32元/套,B种材料单价24元/套,活动需要A、B两种材料共50套计划购买A、B两种材料总费用不超过1392元.(1)若按计划采购,最多能购买A种材料多少套?(2)在实际来购过程中,受多方面因素的影响,与(1)中最多购买A种材料的计划相比,实际采购A种材料数量的增加了a%,B种材料的数量减少a%(A、B材料的数量均为整数),实际采购A种材料的单价减少了a%,B种材料的单价增加a%,且实际总费用比按(1)中最多购买A种材料的总费用多了16元,求a.24.如图1,四边形ABCD中,BD⊥AD,E为BD上一点,AE=BC,CE⊥BD,CE=ED(1)已知AB=10,AD=6,求CD;(2)如图2,F为AD上一点,AF=DE,连接BF,交BF交AE于G,过G作GH⊥AB 于H,∠BGH=75°.求证:BF=2GH+EG.25.“格子乘法”是15世纪中叶,意大利数学家帕乔利在《算术几何及比例性质摘要》一书中介绍的一种两个数的相乘的计算方法.这种方法传入中国之后,在明朝数学家程大位的《算法统宗》书中被称为“铺地锦”具体步骤如下:①先画一个矩形,把它分成p×q个方格(p,q分别为两乘数的位数)在方格上边、右边分别写下两个因数;②再用对角线把方格一分为二,分别记录上述各位数字相应乘积的十位数与个位数;③然后这些乘积由右下到左上,沿对角线方向相加,相加满十时向前进一;④最后得到结果(方格左侧与下方数字依次排列).比如:(1)图1是用“铺地锦”计算x9×784的格子,则z=,x9×784=(2)图2是用“铺地锦”计算ab×cd的格子,已知ab×cd=2176,求m和n的值.26.如图,y轴上有一点A(0,1),点B是x轴上一点,∠ABO=60°,抛物线y=﹣x2++3与x轴交于C、D两点(点C在点D的左侧).(1)将点C向右平移个单位得到点E,过点E作直线l⊥x轴,点P为y轴上一动点,过点P作PQ⊥y轴交直线l于点Q,点K为抛物线上第一象限内的一个动点,当△ABK面积最大时,求KQ+QP+PE的最小值,及此时点P的坐标;(2)在(1)的条件下,将线段PE绕点P逆时针旋转90°后得线段PE′,问:在第一象限内是否存在点S,使得△SPE'是有一个角为60°,且以线段PE′为斜边的直角三角形,若存在请直接写出所有满足条件的点S,若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.下列数中最大的数是()A.﹣2B.﹣3C.﹣πD.﹣4【分析】先根据实数的大小比较法则比较大小,再得出选项即可.【解答】解:∵﹣4<﹣π<﹣3<﹣2,∴最大的数是﹣2,故选:A.2.下列图形中是轴对称的是()A.B.C.D.【分析】根据轴对称图形的概念判断即可.【解答】解:A、不是轴对称图形;B、不是轴对称图形;C、是轴对称图形;D、不是轴对称图形;故选:C.3.下列调查适合用全面调查的是()A.对重庆市园博游客满意程度的调查B.对新研发的战斗机的零部件进行检查C.对2019年重庆市居民每户月均用水量的调查D.对西大附中全体学生的视力情况进行调查【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断.【解答】解:A、对重庆市园博游客满意程度的调查适合用抽样调查;B、对新研发的战斗机的零部件进行检查适合用全面调查;C、对2019年重庆市居民每户月均用水量的调查适合用抽样调查;D、对西大附中全体学生的视力情况进行调查适合用抽样调查;故选:B.4.使得函数y=有意义的自变量的取值范围是()A.x≥﹣2B.x≥﹣2且x≠0C.x≠0D.x>﹣2【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得x+2>0,解得x>﹣2.故选:D.5.下列计算正确的是()A.m2+m3=m5B.m2•(﹣m)3=﹣m5C.(﹣m2n)3=﹣m5n3D.(2mn)2•3m3n=12m5n2【分析】根据合并同类项的法则,同底数幂的乘法、以及积的乘方和单项式乘单项式的知识求解即可求得答案.【解答】解:A、m2和m3不是同类项不能合并,故本选项错误;B、m2•(﹣m)3=﹣m5,故本选项正确;C、(﹣m2n)3=﹣m6n3,故本选项错误;D、(2mn)2•3m3n=4m2n2•3m3n=12m5n3,故本选项错误.故选:B.6.已知一次函数y=kx+b的图象经过一、二、四象限,则二次函数y=kx2+bx﹣k的顶点在第()象限.A.一B.二C.三D.四【分析】利用一次函数的性质得到k<0,b>0,则判断△>0得到抛物线与x轴有两个交点,然后确定抛物线的对称轴的位置,从而得到抛物线顶点所在的象限.【解答】解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,∵△=b2﹣4k(﹣k)=b2+4k2>0,∴抛物线与x轴有两个交点,∵k、b异号,∴抛物线的对称轴在y轴右侧,∴二次函数y=kx2+bx﹣k的顶点在第一象限.故选:A.7.估算2+3的范围是下列哪两个数之间()A.11﹣12B.12﹣13C.13﹣14D.14﹣15【分析】直接利用特殊值法得出、的取值范围即可.【解答】解:2=,3=,∵4<<4.5,7<<7.5,∴11<+<12,∴2+3的大小应在11与12之间.故选:A.8.下列图形都是由同样大小的黑色圆点按照一定规律所组成的,其中第①个图形中一共有6个黑色圆点第②个图形中一共有15个黑色圆点,第③个图形中一共有28个黑色圆点,…,按此规律排列下去,第⑦个图形中黑色圆点的个数为()A.66B.91C.120D.135【分析】观察图形特点,从中找出规律,黑色圆点的个数分别是1+3+1×2,1+3+5+2×3,1+3+5+7+3×4,1+3+5+7+9+4×5,…,总结出第n个图形中的黑色圆点的个数为1+3+5+…+(2n+1)+n(n+1),根据规律求解.【解答】解:通过观察,得到:第①个图形中的黑色圆点的个数为:1+3+1×2=6,第②个图形中的黑色圆点的个数为:1+3+5+2×3=15,第③个图形中的黑色圆点的个数为:1+3+5+7+3×4=28,…,所以第n个图形中的黑色圆点的个数为:1+3+5+…+(2n+1)+n(n+1),当n=7时,1+3+5+7+9+11+13+15+7×8=120,故选:C.9.如图,在矩形ABCD中,AB=3,BC=4,点M在BC边上,且满足BM=1,过D作DN⊥AM交AM于点N,则DN的长为()A.B.C.D.【分析】连接DM,由勾股定理得出∠B=90°,AD=BC=4,△AMD底边AD上的高为AB,由勾股定理得出AM==,再由△ADM的面积即可得出答案.【解答】解:连接DM,如图所示:∵四边形ABCD是矩形,∴∠B=90°,AD=BC=4,△AMD底边AD上的高为AB,AM===,∵△ADM的面积=AM×DN=AD×AB,∴DN===;故选:D.10.“五一”期间,小华和妈妈到某景区游玩,小明想利用所学的数学知识,估测景区里的观景塔DE的高度.他从点D处的观景塔出来走到点A处.沿着斜坡AB从A点走了8米到达B点,此时回望观景塔,更显气势宏伟.在B点观察到观景塔顶端的仰角为45°且AB⊥BE,再往前走到C处,观察到观景塔顶端的仰角30°,测得BC之间的水平距离BC=10米,则观景塔的高度DE约为()米.(=1.41,=1.73)A.14B.15C.19D.20【分析】作BF⊥DE于F,AH⊥BF于H,根据等腰直角三角形的性质求出AH,根据正切的定义用EF表示出CF、BF,根据题意列式求出EF,结合图形计算,得到答案.【解答】解:作BF⊥DE于F,AH⊥BF于H,∵∠EBF=45°,∴∠ABH=45°,∴AH=BH=8×=4,在Rt△ECF中,tan∠ECF=,则CF=EF,在Rt△EBF中,∠EBF=45°,∴BF=EF,由题意得,EF﹣EF=10,解得,EF=5+5,则DE=EF+DF=5+5+4≈19,故选:C.11.如图,双曲线y=与一次函数y=﹣x+4在第一象限内交于A,B两点,且△AOB的面积为2,则k的值为()A.2B.C.D.4【分析】设一次函数y=﹣x+4的图象与y轴交于点C,把x=0代入y=﹣x+4,求出点C 坐标,设点A的横坐标为x1,点B的横坐标为x2,根据S△AOB=S△OBC﹣S△OAC=2,找到x1和x2之间的关键,联立,得到关于x的一元二次方程,根据一元二次方程根与系数的关系,得到关于k的一元一次方程,解之即可.【解答】解:设一次函数y=﹣x+4的图象与y轴交于点C,如下图所示:,把x=0代入y=﹣x+4得:y=4,即点C的坐标为:(0,4),线段OC的长度为4,设点A的横坐标为x1,点B的横坐标为x2,S△AOB=S△OBC﹣S△OAC=﹣=2x2﹣2x1=2,即x2﹣x1=1,整理得:﹣4x1x2=1,联立,整理得:x2﹣4x+k=0,则x1+x2=4,x1x2=k,把x1+x2=4,x1x2=k代入﹣4x1x2=1得:16﹣4k=1,解得:k=,故选:B.12.已知二次函数y=(a+2)x2+2ax+a﹣1的图象与x轴有交点,且关于x的分式方程+1=的解为整数,则所有满足条件的整数a之和为()A.﹣4B.﹣6C.﹣8D.3【分析】根据二次函数的定义和判别式的意义得到a+2≠0且△=4a2﹣4×(a+2)(a﹣1)≥0,则a≤2且a≠﹣2,再解分式方程得到x=且x≠﹣1,利用分式方程的解为整数可求出解得a=0,﹣2,1,﹣3,2,﹣4,5,加上a的范围可确定满足条件的a的值,然后计算它们的和.【解答】解:根据题意得a+2≠0且△=4a2﹣4×(a+2)(a﹣1)≥0,解得a≤2且a≠﹣2,去分母得ax+x+1=7,解得x=且x≠﹣1,因为分式方程的解为整数,所以a+1=±1,±2,±3,±6,且a≠﹣7,解得a=0,﹣2,1,﹣3,2,﹣4,5,所以满足条件的a的值为﹣4,﹣3,0,2,1.所以所有满足条件的整数a之和为﹣4+(﹣3)+0+2+1=﹣4.故选:A.二.填空题(共6小题)13.计算:()﹣2+(﹣1)2019+|2﹣π|+=6+π﹣2.【分析】直接利用负整数指数幂的性质、绝对值的性质、立方根的性质分别化简得出答案.【解答】解:原式=4﹣1+π﹣2+3=6+π﹣2.故答案为:6+π﹣2.14.任意抛掷一枚质地均匀的正方体骰子1次,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数不大于4的概率为.【分析】点数不大于4的有1种情况,除以总个数6即为向上的一面的点数不大于4的概率.【解答】解:∵共有6种情况,点数不大于4的有4种,∴P(点数不大于4)==.故答案为:.15.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为.【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,根据勾股定理得,CF===.故答案为:.16.已知函数y=,且使y=k成立的x值恰好有2个,则k的取值范是k=1或k<﹣8.【分析】求出抛物线y=﹣(x﹣1)2+1和抛物线y=﹣(x﹣7)2+1交点坐标(4,﹣8),然后利用函数图象求出直线y=k与函数图象有两个交点时k的范围即可.【解答】解:y=﹣(x﹣1)2+1的顶点坐标为(1,1),y=﹣(x﹣7)2+1的顶点坐标为(7,1),解方程﹣(x﹣1)2+1=﹣(x﹣1)2+1得x=4,则抛物线y=﹣(x﹣1)2+1和抛物线y =﹣(x﹣7)2+1相交于点(4,﹣8),如图,直线y=﹣8与函数图象有三个交点,当k<﹣8时,直线y=k与函数图象有2个交点,当k=1时,直线y=k与函数图象有2个交点,所以使y=k成立的x值恰好有2个时,k=1或k<﹣8.故答案为k=1或k<﹣8.17.已知,甲地到乙地的路程为450千米,一辆大货车从甲地前往乙地运送物资,行驶1小时在途中某地出现故障,立即通知技术人员乘小汽车从甲地赶来维修(通知时间忽略不计),小汽车到达该地后经过半小时修好大货年后以原速原路返甲地,小汽车在返程途中当走到一半路程时发现有重要物品落在大货车上,于是立即掉头以原速追赶大货车,追上大货车取下物品(取物品时间忽略不计)后以原速原路返回甲地,大货车修好后以原速前往乙地,如图是两车距甲地的路程y(千米)与大货车所用时间x(小时)之间的函数图象,则当小汽车第二次追上大货车时,大货车距离乙地90千米.【分析】根据题意和函数图象中的数据可以求得大货车和小轿车的速度,从而可以计算出当小汽车第二次追上大货车时,大货车距离乙地的距离.【解答】解:由图可得,大货车的速度为:90÷1=90(千米/小时),设小汽车从甲地到大货车出现故障的地方所用的时间为a,则a+0.5+0.5a=,得a=,故小汽车的速度为:90÷=120(千米/小时),设小汽车第二次追上大货车的时间b小时,45+(b﹣)×120=90+(b﹣1﹣)×90,解得,b=,故则当小汽车第二次追上大货车时,大货车距离乙地:450﹣[90+(﹣1﹣)×90]=90(千米),故答案为:90.18.端午节是中华民族的传统节日,节日期间大家都有吃粽子的习惯.某超市去年销售蛋黄粽、肉粽、豆沙粽的数量比为3:5:2.根据市场调查,超市决定今年在去年销售量的基础上进货,肉粽增加20%、豆沙粽减少10%、蛋黄粽不变.为促进销售,将全部粽子包装成三种礼盒,礼盒A有2个蛋黄粽、4个肉粽、2个豆沙粽,礼盒B有3个蛋黄粽、3个肉粽、2个豆沙粽,礼盒C有2个蛋黄粽、5个肉粽、1个豆沙粽,其中礼盒A和C的总数不超过200盒,礼盒B和C的总数超过210盒.每个蛋黄粽、肉粽、豆沙粽的售价分别为6元、5元、4元,且A、B、C三种礼盒的包装费分别为10元、12元、9元(礼盒售价为粽子价格加上包装费).若这些礼盒全部售出,则销售额为12312元.【分析】设超市去年销售蛋黄粽的数量销售分别为3x个,设销售了A、B、C三种礼盒的数量分别为a盒,b盒,c盒,根据题意列出方程组,用x表示a、b、c,再根据“礼盒A和C的总数不超过200盒,礼盒B和C的总数超过210盒,”列出x的不等式组,求得x的取值范围,再根据礼盒数与粽子数量为整数,求得x的值,进而便可求得结果.【解答】解:设超市去年销售蛋黄粽、肉粽、豆沙粽的数量销售分别为3x个,5x个,2x 个,则今年该超市销售蛋黄粽、肉粽、豆沙粽的数量销售分别为3x个,(1+20%)×5x =6x个,(1﹣10%)×2x=1.8x个,设销售了A、B、C三种礼盒的数量分别为a盒,b 盒,c盒,根据题意得,,解得,,∵礼盒A和C的总数不超过200盒,礼盒B和C的总数超过210盒,∴,∴,∵a=0.15x、b=0.3x、c=0.9x、1.8x都为整数,∴x必为20的倍数,∴x=180,∴a=27,b=54,c=162,∴这些礼盒全部售出的销售额为:(2×6+4×5+2×4+10)a+(3×6+3×5+2×4+12)b+(2×6+5×5+1×4)c=50a+53b+50c=50×27+53×54+50×162=12312,故答案为:12312.三.解答题(共8小题)19.计算:(1)(a﹣b)(a﹣4b)﹣(a﹣2b)2(2)÷(﹣m﹣2)【分析】(1)根据整式的混合运算顺序和运算法则化简可得;(2)利用分式的混合运算顺序和运算法则化简可得.【解答】解:(1)原式=a2﹣4ab﹣ab+4b2﹣(a2﹣4ab+4b2)=a2﹣4ab﹣ab+4b2﹣a2+4ab﹣4b2=﹣ab;(2)原式=÷(﹣)=•=﹣.20.如图,在△ABD中,C为BD上一点,使得CA=CD,过点C作CE∥AD交AB于点E,过点D作DF⊥AD交AC的处长线于点F.(1)若CD=3,求AF的长;(2)若∠B=30°,∠ADC=40°,求证:AC=EC.【分析】(1)由等腰三角形的性质可得∠CAD=∠CDA,由余角的性质可得∠F=∠CDF,可得CD=CF=3,即可求解;(2)由三角形内角和定理可求∠CAB=70°,由平行线的性质和外角的性质可求∠AEC =∠CAB=70°,即可求解.【解答】解:(1)∵CA=CD=3,∴∠CAD=∠CDA,∵AD⊥DF,∴∠ADF=90°,∴∠F+∠F AD=90°,∠ADC+∠CDF=90°,∴∠F=∠CDF,∴CD=CF=3,∴AF=AC+CF=6;(2)∵∠B=30°,∠ADC=∠CAD=40°,∴∠CAB=180°﹣30°﹣40°﹣40°=70°,∵CE∥AD,∴∠BCE=∠ADC=40°,∴∠AEC=∠B+∠BCE=70°,∴∠AEC=∠CAB,∴AC=CE.21.2019年4月,西大附中初2019级中招体育考试已经顺利结束,在所有师生共同努力下,取得了历史性的好成绩.初二小明为了解初三哥哥姐姐们中招体育考试成绩的情况,采取抽样调查的方法,从年级各班随机调查了若干名同学的体考成绩,并将调查结果进行了整理,分成了5个小组,根据体考成绩制定出部分频数分布表和部分频数分布直方图体育成绩频数分布表(1)在这次考察中,共调查了60名学生;并请补全频数分布直方图;(2)被调查的学生中,有30人是满分50分,若西大附中初2019级全年级有1100多名学生,请估计该年级体考成绩满分的总人数约有多少名?(3)初三哥哥姐姐们体测取得的辉煌成绩让初二的学弟学妹们信心大增,为了调动初二学子跳绳积极性,初二年级将举行1分钟跳绳比赛,每班推荐一人参赛,小明所在的班级李杰和陈亮两人均想报名参赛,为了公平选拔,班主任让小明统计了两人近10次的跳绳成绩(单位:个/分),如下:分)次数l1323陈亮成绩(个/分)165180190195200次数22321则李杰10次成绩的中位数是185;陈亮10次成绩的众数是190,请你通过计算两位同学的平均成绩和方差帮班主任选一名同学参赛,并说明理由.【分析】(1)根据38<x≤41的频数和频率求出总人数,再用总人数减去其他段的人数求出41<x≤44的人数,从而补全统计图;(2)用总人数乘以体考成绩满分的人数所占的百分比即可;(3)根据中位数、众数、平均数以及方差的计算公式分别进行计算,然后再进行比较即可得出答案.【解答】解:(1)共调查的学生数是:3÷0.05=60(名),41<x≤44的人数有:60﹣1﹣3﹣6﹣45=5(名),补图如下:(2)根据题意得:1100×=550(名),答:估计该年级体考成绩满分的总人数约有550名;(3)李杰10次成绩的中位数是=185;陈亮10次成绩的众数是190;李杰10次成绩的平均成绩是:=185,李杰10次成绩的方差是:[(170﹣185)2+(175﹣185)2+3(180﹣185)2+2(190﹣185)2+3(195﹣185)2]=55;陈亮10次成绩的平均成绩是:=185,陈亮10次成绩的方差是:[2(165﹣185)2+2(180﹣185)2+3(190﹣185)2+2(195﹣185)2+(200﹣185)2]=135;两位同学的平均成绩一样,但李杰的方差小于陈亮的方差,所以应派李杰参赛;故答案为:185,190.22.如图,一次函数y1=kx+2图象与反比例函数y2=图象相交于A,B两点,已知点B 的坐标为(3,﹣1).(1)求一次函数和反比例函数的解析式;(2)请直接写出不等式kx﹣≤﹣2的解集;(3)点C为x轴上一动点,当S△ABC=3时,求点C的坐标.【分析】(1)将B的坐标(3,﹣1)分别代入一次函数y1=kx+2图象与反比例函数y2=中,可求出k、m的值,进而确定函数关系式,(2)求出一次函数与反比例函数图象的交点坐标,根据图象得出不等式的解集,(3)求出一次函数与x轴的交点坐标,根据S△ABC=3,可以求出CM的长,分两种情况进行解答即可.【解答】解:(1)把B(3,﹣1)分别代入y1=kx+2和y2=得.﹣1=3k+2,m=3×(﹣1),∴k=﹣1,m=﹣3,∴一次函数和反比例函数的解析式分别为y1=﹣x+2,y2=,(2)由题意得:,解得:,,∴A(﹣1,3)不等式kx﹣≤﹣2的解集,即kx+2≤的解集,由图象可得,﹣1≤x<0或x≥3,答:不等式kx﹣≤﹣2的解集为﹣1≤x<0或x≥3.(3)直线y=﹣x+2与x轴的交点M(2,0),即OM=2,∵S△ABC=3,∴S△AMC+S△BMC=3即:×CM×3+CM×1=3,解得:CM=,①当点C在M的左侧时,OC1=2﹣=,∴点C的坐标为(,0),②当点C在M的右侧时,OC2=2+=,∴点C的坐标为(,0),答:点C的坐标为(,0)或(,0).23.西南大学银翔实验中学第二届缤纷科技节于2019年5月份隆重举行,主题:绿色体验•成长﹣玩出你的稀缺竞争力”,本届缤纷科技节有展示类、体验类、竞赛类共40多个项目.4月份,学校对活动中所需物品统一购,其中某一体验类项目需要A、B两种材料,已知A种材料单价32元/套,B种材料单价24元/套,活动需要A、B两种材料共50套计划购买A、B两种材料总费用不超过1392元.(1)若按计划采购,最多能购买A种材料多少套?(2)在实际来购过程中,受多方面因素的影响,与(1)中最多购买A种材料的计划相比,实际采购A种材料数量的增加了a%,B种材料的数量减少a%(A、B材料的数量均为整数),实际采购A种材料的单价减少了a%,B种材料的单价增加a%,且实际总费用比按(1)中最多购买A种材料的总费用多了16元,求a.【分析】(1)设购买A材料x套,则购买B材料为50﹣x套,由题意得:32x+24(50﹣x)≤1392,即可求解;(2)设x=a%,由题意得:24(1+x)×32(1﹣x)+26(1﹣x)×24(1+x)=1392+16,即可求解.【解答】解:(1)设购买A材料x套,则购买B材料为50﹣x套,由题意得:32x+24(50﹣x)≤1392,解得:x≤24,则最大购买A材料24(购买B材料26套);(2)设x=a%,由题意得:24(1+x)×32(1﹣x)+26(1﹣x)×24(1+x)=1392+16,化简得:58x2﹣37x+4=0,解得:x=或(不合题意舍去),即=x=a%,解得:a=50.24.如图1,四边形ABCD中,BD⊥AD,E为BD上一点,AE=BC,CE⊥BD,CE=ED(1)已知AB=10,AD=6,求CD;(2)如图2,F为AD上一点,AF=DE,连接BF,交BF交AE于G,过G作GH⊥AB 于H,∠BGH=75°.求证:BF=2GH+EG.【分析】(1)由勾股定理得出BD==8,由HL证得Rt△ADE≌Rt△BEC,得出BE=AD,则CE=ED=BD﹣BE=BD﹣AD=2,由等腰直角三角形的性质即可得出结果;(2)连接CF,易证AF=CE,AD∥CE,得出四边形AECF是平行四边形,则AE=CF,AE∥CF,得出∠CFD=∠EAD,∠CFB=∠AGF,由Rt△ADE≌Rt△BEC,得出∠CBE =∠EAD,推出∠CBE=∠CFD,证得△BCF是等腰直角三角形,则BF=BC=CF =AE,∠FBC=∠BFC=45°,推出∠AGF=45°,∠AGH=60°,∠GAH=30°,则AG=2GH,得出BF=AE=(AG+EG),即可得出结论.【解答】(1)解:∵BD⊥AD,∴BD===8,∵CE⊥BD,∴∠CEB=∠EDA=90°,在Rt△ADE和Rt△BEC中,,∴Rt△ADE≌Rt△BEC(HL),∴BE=AD,∴CE=ED=BD﹣BE=BD﹣AD=8﹣6=2,∴CD=CE=2;(2)解:连接CF,如图2所示:∵AF=DE,DE=CE,∴AF=CE,∵BD⊥AD,CE⊥BD,∴AD∥CE,∴四边形AECF是平行四边形,∴AE=CF,AE∥CF,∴∠CFD=∠EAD,∠CFB=∠AGF,由(1)得:Rt△ADE≌Rt△BEC,∴∠CBE=∠EAD,∴∠CBE=∠CFD,∵∠FBD+∠BFC+∠CFD=90°,∴∠FBD+∠BFC+∠CBE=90°,∴∠BCF=90°,∵AE=BC,∴BC=CF,∴△BCF是等腰直角三角形,∴BF=BC=CF=AE,∠FBC=∠BFC=45°,∴∠AGF=45°,∵∠BGH=75°,∴∠AGH=180°﹣45°﹣75°=60°,∵GH⊥AB,∴∠GAH=30°,∴AG=2GH,∴BF=AE=(AG+EG),∴BF=2GH+EG.25.“格子乘法”是15世纪中叶,意大利数学家帕乔利在《算术几何及比例性质摘要》一书中介绍的一种两个数的相乘的计算方法.这种方法传入中国之后,在明朝数学家程大位的《算法统宗》书中被称为“铺地锦”具体步骤如下:①先画一个矩形,把它分成p×q个方格(p,q分别为两乘数的位数)在方格上边、右边分别写下两个因数;②再用对角线把方格一分为二,分别记录上述各位数字相应乘积的十位数与个位数;③然后这些乘积由右下到左上,沿对角线方向相加,相加满十时向前进一;④最后得到结果(方格左侧与下方数字依次排列).比如:(1)图1是用“铺地锦”计算x9×784的格子,则z=2,x9×784=30576(2)图2是用“铺地锦”计算ab×cd的格子,已知ab×cd=2176,求m和n的值.【分析】(1)利用“铺地锦”格子,求出x,y,z的值即可判断.(2)由题意bd=16.①当b=d=4时.②当b=2,d=8时.③当b=8,d=2时,分。
★绝密★启用前2018-2019学年下学期期末考试八年级数学(北师大版)(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是(C)2.将下列多项式因式分解,结果中不含因式x-1的是(D)A.x2-1B.x(x-2)+(2-x)C.x2-2x+1D.x2+2x+13.如图,在正方形网格中,线段A'B'是线段AB绕某点逆时针旋转角α得到的,点A'与A对应,则角α的大小为(C)A.30°B.60°C.90°D.120°,当x=-m时,下列说法正确的是 (C)4.对分式x+x2x-3A.分式的值等于0B.分式有意义时,分式的值等于0C.当m≠-32D.当m=3时,分式没有意义25.下列说法不一定成立的是(C)A.若a>b,则a+c>b+cB.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b6.如图所示,在直角△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC于点E,连接AE,则△ACE的周长为(A)A.16B.15C.14D.137.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为(B)A.30°B.36°C.54°D.72°8.如图,在平面直角坐标系中,▱MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标为(A)A.(-3,-2)B.(-3,2)C.(-2,3)D.(2,3)9.不等式组{x>x,x<3的整数解有三个,则a的取值范围是(A)A.-1≤a<0B.-1<a≤0C.-1≤a≤0D.-1<a<010.如图所示,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CG,CF,则下列结论不一定正确的是(C)A.△CDF≌△EBCB.∠CDF=∠EAFC.CG⊥AED.△ECF是等边三角形二、填空题(每小题3分,共18分)11.已知a+b=3,ab=2,则代数式a3b+2a2b2+ab3的值为18.12.如图所示,在△ABC中,点D,E,F分别是AB,BC,AC的中点,若平移△ADF,则图中能与它重合的三角形是△DBE(或△FEC)(写出一个即可).13.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA.若PC=4,则PD的长是2.14.若关于x的分式方程2x-xx-1=1的解为正数,那么字母a的取值范围是a>1且a≠2.15.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的不等式kx+b>0的解集为x>-1.(第15题图)16.如图所示,已知AB=10,点C,D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是3.(第16题图)三、解答题(共52分)17.(5分)解不等式组:{x+1≥2,①5x≤4x+3.②请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.解(1)x≥1(2)x≤3(3)如图所示.(4)1≤x≤318.(5分)先化简,再求值:(x2-xx -x-1)÷x2-x2x2-2xx+x2,其中x=√2,y=√6.解(x 2-xx -x-1)÷x2-x2x2-2xx+x2=(x2-xx -x2x-xx)×(x-x)2(x+x)(x-x)=-(x+x)x ×x-xx+x=-x-xx.当x=√2,y=√6时,原式=-√2-√6√2=-1+√3.19. (6分)如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE 绕着CB的中点D逆时针旋转180°,点E到了点E'位置,点B和点C重合.求证:四边形ACE'E是平行四边形.证明∵DE是△ABC的中位线,∴DE∥AC,DE=12AC.∵将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E'位置,∴DE=DE',∴EE'=2DE=AC,∴四边形ACE'E是平行四边形.20. (6分)如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD相交于点O,求证:OE=OF.证法1如图所示,连接BE,DF.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD-AE=BC-CF.∴DE=BF,∴四边形BEDF是平行四边形.∴OF=OE.证法2连接BE,DF.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∴∠ODE=∠OBF.∵AE=CF,∴AD-AE=BC-CF,∴DE=BF.在△DOE和△BOF中,∠DOE=∠BOF,∠ODE=∠OBF,DE=BF,∴△DOE≌△BOF,∴OE=OF.21.(6分)如图,已知∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于点D,交AC于点E.(1)求∠BAD的度数;(2)若AB=10,BC=12,求△ABD的周长.解(1)∵∠BAC=60°,∠B=80°,∴∠C=180°-∠BAC-∠B=180°-60°-80°=40°,∵DE垂直平分AC,∴DA=DC.∴∠DAC=∠C=40°,∴∠BAD=60°-40°=20°.(2)由(1)知DA=DC,∴△ABD的周长=AB+AD+BD=AB+BC=10+12=22.22.(7分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.解(1)如图,△A1B1C1为所求三角形.因为点C(-1,3)平移后的对应点C1的坐标为(4,0),所以△ABC先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),点B1的坐标为(3,-2).(2)如图,因为△ABC和△A2B2C2关于原点O成中心对称图形,所以A2(3,-5),B2(2,-1),C2(1,-3).(3)如图,△A3B3C3为所求三角形,A3(5,3),B3(1,2),C3(3,1).23.(8分)如图,已知△ABC是等边三角形,点D,F分别在线段BC,AB上,∠EFB=60°,EF=DC.(1)求证:四边形EFCD是平行四边形;(2)若BE=EF,求证:AE=AD.证明(1)∵△ABC是等边三角形,∴∠B=60°.∵∠EFB=60°,∴∠B=∠EFB,∴EF∥DC.∵EF=DC,∴四边形EFCD是平行四边形.(2)连接BE.∵BE=EF,∠EFB=60°,∴△EBF是等边三角形,∴EB=EF,∠EBF=60°.∵DC=EF,∴EB=DC.∵△ABC是等边三角形,∴∠ACB=60°,AB=AC,∴∠EBF=∠ACB,∴△AEB≌△ADC,∴AE=AD.24. (9分)(2017·黑龙江绥化中考)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?=解(1)设甲工程队每天修路x千米,则乙工程队每天修路(x-0.5)千米,根据题意,得1.5×15x15,解得x=1.5.x-0.5经检验x=1.5是原方程的解,且x-0.5=1.所以甲工程队每天修路1.5千米,乙工程队每天修路1千米.(2)设甲工程队修路a天,则乙工程队需要修(15-1.5a)千米,所以乙工程队需要修路(15-1.5a)÷1=15-1.5a(天).根据题意,得0.5a+0.4(15-1.5a)≤5.2,解得a≥8.所以,甲工程队至少修路8天.。
北碚区 2018-2019 学年度第一学期八年级调研抽测数学试题一、选择题:(本大题12个小题,每小题4分,共48分)1.实的平方根()A. B. C. D.【答案】D【解析】试题解析,3的平方根是,∴实的平方根是,故选D.2.若|x2–4x+4| 互为相反数,则x+y 的值为( )A. 3B. 4C. 6D. 9【答案】A【解析】根据题意得=0,所以=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.3.计算(﹣2)100+(﹣2)99的结果是()A. 2B. ﹣2C. ﹣299D. 299【答案】D【解析】解:原式=(﹣2)99[(﹣2)+1]=﹣(﹣2)99=299.故选D.4.下列多项式乘法中可以用平方差公式计算的是A. B.C. D.【答案】A【解析】【分析】平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差,由此进行判断即可.【详解】A、可以看成两项和与差的乘积,符合平方差公式的特点,可以运用平方差公式,故本选项正确;B、不符合平方差公式的特点,不能运用平方差公式,故本选项错误;C、不符合平方差公式的特点,不能运用平方差公式,故本选项错误;D、不符合平方差公式的特点,不能运用平方差公式,故本选项错误;故选:A.【点睛】本题考查了平方差公式的知识,掌握平方差公式的形式是关键.5.已知 a、b、c 为△ABC 的三边,且满足 a2c2-b2c2=a4-b4,则△ABC 是()A. 直角三角形B. 等腰三角形C. 等腰三角形或直角三角形D. 等腰直角三角形【答案】C【解析】【分析】移项并分解因式,然后解方程求出a、b、c 的关系,再确定出△ABC 的形状即可得解.【详解】移项得,a2c2-b2c2-a4+b4=0,c2(a2-b2)-(a2+b2)(a2-b2)=0,(a2-b2)(c2-a2-b2)=0,所以,a2-b2=0 或c2-a2-b2=0,即a=b 或a2+b2=c2,因此,△ABC 等腰三角形或直角三角形.故选C.【点睛】本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a、b、c 的关系式是解题的关键.6.下列调查方式,你认为最合适的是()A. 了解北京市每天的流动人口数,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C. 了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式【答案】A【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、了解北京市每天的流动人口数,采用抽样调查方式,正确;B、旅客上飞机前的安检,采用全面调查方式,故错误;C、了解北京市居民”一带一路”期间的出行方式,抽样调查方式,故错误;D、日光灯管厂要检测一批灯管的使用寿命,采用抽样调查方式,故错误;故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.如图,在△ABC 中,∠C=90°,AD 平分∠BAC,DE⊥AB 于E,有下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD 平分∠CDE;⑤S△ABD:S△ACD=AB:AC,其中正确的有()A. 5 个B. 4 个C. 3 个D. 2 个【答案】A【解析】:①正确,因为角平分线上的点到两边的距离相等知;②正确,因为由HL 可知△ADC≌△ADE,所以AC=AE,即AC+BE=AB;③正确,因为∠BDE 和∠BAC 都与∠B 互余,根据同角的补角相等,所以∠BDE=∠BAC;④正确,因为由△ADC≌△ADE 可知,∠ADC=∠ADE,所以AD 平分∠CDE;⑤正确,因为CD=ED,△ABD 和△ACD 的高相等,所以S△ABD:S△ACD=AB:AC.所以正确的有五个,故选A.8. 如图,在矩形ABCD 中,AC、BD 相交于点O,AE 平分∠BAD 交BC 于E,若∠EAO=15°,则∠BOE 的度数为().A. 85°B. 80°C. 75°D. 70°【答案】C【解析】试题分析:由矩形的性质得出OA=OB,再由角平分线得出△ABE 是等腰直角三角形,得出AB=BE,证明△AOB 是等边三角形,得出∠ABO=60°,OB=AB,得出OB=BE,由三角形内角和定理和等腰三角形的性质可得(180°﹣30°)=75°.故选:C.考点:矩形的性质.9.如图,▱ABCD 的对角线交于,且:3,那么AC 的长为A. B. C. 3 D. 4【答案】D【解析】∵四边形ABCD 是平行四边形,∴OA=OC,OB=OD,∵AC:BD=2:3,∴OA:OB=2:3,设OA=2m,BO=3m,∵AC⊥BD,∴∠BAO=90°,∴OB2=AB2+OA2,∴9m2=5+2m2,∴m=±1 ,∵m>0,∴AC=2OA=4.故选:D. 10.如图所示,△ABC 的顶点A、B、C 在边长为1 的正方形网格的格点上,BD⊥AC 于点D,则BD 的长为()A. B. C. D.【答案】A【解析】如图,作AE⊥BC 于点E,由题意可知,BC=2,AE=2,∵BD⊥AC 于点D,∴S△ABC=AC·BD= BC·AE ,·BD= ,∴BD=.故选A.11.如图,在一个高为 5m,长为 13m 的楼梯表面铺地毯,则地毯长度至少应是()A. 13mB. 17mC. 18mD. 25m【答案】B【解析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【详解】由勾股定理得:楼梯的水平宽度=12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17 米.故选B.【点睛】本题考查了勾股定理的知识,与实际生活相联系,加深了学生学习数学的积极性.12.如图,在等腰ABC 中,AB=AC,∠BAC=50°,∠BAC 的平分线与AB 的垂直平分线交于点O、点C 沿EF 折叠后与点O 重合,则∠CEF 的度数是()A. 60°B. 55°C. 50°D. 45°【答案】C【解析】【分析】连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.【详解】如图,连接OB,∵∠BAC=50°,AO 为∠BAC 的平分线∠BAC=12×50°=25°. 又∵AB=AC,∴∠ABC=∠ACB=65°. ∵DO 是AB 的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC−∠ABO=65°−25°=40°.∵AO 为∠BAC 的平分线,AB=AC,∴直线AO 垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C 沿EF(E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE 中,∠OEC=180°−∠COE−∠OCB=180°−40°−40°=100°∴∠CEF= ∠CEO=50°. 故选:C.【点睛】本题考查了等腰三角形的性质的运用、垂直平分线性质的运用、折叠的性质,解答时运用等腰三角形的性质和垂直平分线的性质是解答的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13. +1 的值在两个整数a 与a+1 之间,则a= .【答案】5【解析】∵+1 的值在两个整数a 与a+1 之间<5,∴5<+1<6,∴a=5.故答案为:5.14.对于任意实数,规定的意义=ad-bc.则当x2-3x+1=0 时= .【答案】1【解析】【分析】根据题意得出算式(x+1)(x﹣1)﹣3x(x﹣2),化简后把x2﹣3x 的值代入求出即可.【详解】根据题意得:原式=(x+1)(x﹣1)﹣3x(x﹣2)=x2﹣1﹣3x2+6x=﹣2x2+6x﹣1=﹣2(x2﹣3x)﹣1.∵x2﹣3x+1=0,∴x2﹣3x=﹣1,原式=﹣2×(﹣1)﹣1=1.故答案为:1.【点睛】本题考查了整式的混合运算和求值的应用,主要考查学生的计算能力和化简能力.15.如图,点P 是等边三角形ABC 内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B 逆时针旋转60 度后得到△CQB,则∠APB的度数是.【答案】150°【解析】连接PQ,由题意可知△ABP≌△CBQ则QB=PB=4,PA=QC=3,∠ABP=∠CBQ,∵△ABC 是等边三角形,∴∠ABC=∠ABP+∠PBC=60°,∴∠PBQ=∠CBQ+∠PBC=60°,∴△BPQ 为等边三角形,∴PQ=PB=BQ=4,又∵PQ=4,PC=5,QC=3,∴PQ2+QC2=PC2,∴∠PQC=90°,∵△BPQ 为等边三角形,∴∠BQP=60°,∴∠BQC=∠BQP+∠PQC=150°∴∠APB=∠BQC=150°16.有一块田地的形状和尺寸如图所示,则它的面积为。
★绝密★启用前2018-2019学年下学期期末考试八年级数学(北师大版)(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是(C)2.将下列多项式因式分解,结果中不含因式x-1的是(D)A.x2-1B.x(x-2)+(2-x)C.x2-2x+1D.x2+2x+13.如图,在正方形网格中,线段A'B'是线段AB绕某点逆时针旋转角α得到的,点A'与A对应,则角α的大小为(C)A.30°B.60°C.90°D.120°,当x=-m时,下列说法正确的是 (C)4.对分式x+x2x-3A.分式的值等于0B.分式有意义时,分式的值等于0C.当m≠-32D.当m=3时,分式没有意义25.下列说法不一定成立的是(C)A.若a>b,则a+c>b+cB.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b6.如图所示,在直角△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC于点E,连接AE,则△ACE的周长为(A)A.16B.15C.14D.137.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为(B)A.30°B.36°C.54°D.72°8.如图,在平面直角坐标系中,▱MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标为(A)A.(-3,-2)B.(-3,2)C.(-2,3)D.(2,3)9.不等式组{x>x,x<3的整数解有三个,则a的取值范围是(A)A.-1≤a<0B.-1<a≤0C.-1≤a≤0D.-1<a<010.如图所示,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CG,CF,则下列结论不一定正确的是(C)A.△CDF≌△EBCB.∠CDF=∠EAFC.CG⊥AED.△ECF是等边三角形二、填空题(每小题3分,共18分)11.已知a+b=3,ab=2,则代数式a3b+2a2b2+ab3的值为18.12.如图所示,在△ABC中,点D,E,F分别是AB,BC,AC的中点,若平移△ADF,则图中能与它重合的三角形是△DBE(或△FEC)(写出一个即可).13.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA.若PC=4,则PD的长是2.14.若关于x的分式方程2x-xx-1=1的解为正数,那么字母a的取值范围是a>1且a≠2.15.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的不等式kx+b>0的解集为x>-1.(第15题图)16.如图所示,已知AB=10,点C,D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是3.(第16题图)三、解答题(共52分)17.(5分)解不等式组:{x+1≥2,①5x≤4x+3.②请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.解(1)x≥1(2)x≤3(3)如图所示.(4)1≤x≤318.(5分)先化简,再求值:(x2-xx -x-1)÷x2-x2x2-2xx+x2,其中x=√2,y=√6.解(x 2-xx -x-1)÷x2-x2x2-2xx+x2=(x2-xx -x2x-xx)×(x-x)2(x+x)(x-x)=-(x+x)x ×x-xx+x=-x-xx.当x=√2,y=√6时,原式=-√2-√6√2=-1+√3.19. (6分)如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE 绕着CB的中点D逆时针旋转180°,点E到了点E'位置,点B和点C重合.求证:四边形ACE'E是平行四边形.证明∵DE是△ABC的中位线,∴DE∥AC,DE=12AC.∵将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E'位置,∴DE=DE',∴EE'=2DE=AC,∴四边形ACE'E是平行四边形.20. (6分)如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD相交于点O,求证:OE=OF.证法1如图所示,连接BE,DF.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD-AE=BC-CF.∴DE=BF,∴四边形BEDF是平行四边形.∴OF=OE.证法2连接BE,DF.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∴∠ODE=∠OBF.∵AE=CF,∴AD-AE=BC-CF,∴DE=BF.在△DOE和△BOF中,∠DOE=∠BOF,∠ODE=∠OBF,DE=BF,∴△DOE≌△BOF,∴OE=OF.21.(6分)如图,已知∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于点D,交AC于点E.(1)求∠BAD的度数;(2)若AB=10,BC=12,求△ABD的周长.解(1)∵∠BAC=60°,∠B=80°,∴∠C=180°-∠BAC-∠B=180°-60°-80°=40°,∵DE垂直平分AC,∴DA=DC.∴∠DAC=∠C=40°,∴∠BAD=60°-40°=20°.(2)由(1)知DA=DC,∴△ABD的周长=AB+AD+BD=AB+BC=10+12=22.22.(7分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.解(1)如图,△A1B1C1为所求三角形.因为点C(-1,3)平移后的对应点C1的坐标为(4,0),所以△ABC先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),点B1的坐标为(3,-2).(2)如图,因为△ABC和△A2B2C2关于原点O成中心对称图形,所以A2(3,-5),B2(2,-1),C2(1,-3).(3)如图,△A3B3C3为所求三角形,A3(5,3),B3(1,2),C3(3,1).23.(8分)如图,已知△ABC是等边三角形,点D,F分别在线段BC,AB上,∠EFB=60°,EF=DC.(1)求证:四边形EFCD是平行四边形;(2)若BE=EF,求证:AE=AD.证明(1)∵△ABC是等边三角形,∴∠B=60°.∵∠EFB=60°,∴∠B=∠EFB,∴EF∥DC.∵EF=DC,∴四边形EFCD是平行四边形.(2)连接BE.∵BE=EF,∠EFB=60°,∴△EBF是等边三角形,∴EB=EF,∠EBF=60°.∵DC=EF,∴EB=DC.∵△ABC是等边三角形,∴∠ACB=60°,AB=AC,∴∠EBF=∠ACB,∴△AEB≌△ADC,∴AE=AD.24. (9分)(2017·黑龙江绥化中考)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?=解(1)设甲工程队每天修路x千米,则乙工程队每天修路(x-0.5)千米,根据题意,得1.5×15x15,解得x=1.5.x-0.5经检验x=1.5是原方程的解,且x-0.5=1.所以甲工程队每天修路1.5千米,乙工程队每天修路1千米.(2)设甲工程队修路a天,则乙工程队需要修(15-1.5a)千米,所以乙工程队需要修路(15-1.5a)÷1=15-1.5a(天).根据题意,得0.5a+0.4(15-1.5a)≤5.2,解得a≥8.所以,甲工程队至少修路8天.。
北碚区2018-2019学年度第二学期八年级调研抽测数学试题(分数:150分时间:120分钟全卷共五个大题)注意事项:1.试题的答案书写在答题卡(卷)上,不得在试卷上直接作答。
2.作答前认真阅读答题卡(卷)上的注意事项。
3.考试结束,由监考人员将试题和答题卡(卷)一并收回。
一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.函数中,自变量的取值范围是A. B. C. D.2.一次函数y=-kx+k与反比例函数y=-(k≠0)在同一坐标系中的图象可能是A. B. C. D.3.给出下列命题:(1)平行四边形的对角线互相平分;(2)矩形的对角线相等;(3)菱形的对角线互相垂直平分;(4)正方形的对角线相等且互相垂直平分.其中,真命题的个数是A.2B.3C.4D.14.如图,把一张正方形纸对折两次后,沿虚线剪下一角,展开后所得图形一定是A.三角形B.菱形C.矩形D.正方形5.一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、、2、0,其中判断错误的是A.前一组数据的中位数是200B.前一组数据的众数是200C.后一组数据的平均数等于前一组数据的平均数减去200D.后一组数据的方差等于前一组数据的方差减去2006.把中根号外的移入根号内,结果是A. B. C. D.7.已知点P位于x轴上方,到x轴的距离为2,到y轴的距离为5,则点P坐标为A.(2,5)B.(5,2)C.(2,5)或(-2,5)D.(5,2)或(-5,2)8.在四边形ABCD中,AC⊥BD,点E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH是A.矩形B.菱形C.正方形D.无法确定9.如图,在菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE分别交AC、AD于点F、G,连接OG,则下列结论中一定成立的是:①OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形.A.1个B.2个C.3个D.4个10.已知直线l:y=-x+1与x轴交于点P,将l绕点P顺时针旋转90°得到直线l′,则直线l′的解析式为A. B.y=2x-1 C. D.y=2x-411.如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,连接DP,将直线DP绕点P顺时针旋转使∠DPG=∠DAC,且过D作DG⊥PG,连接CG,则CG最小值为A. B. C. D.12.当x分别取,,,….,-2,-1,0,1,,,…,,,时,分别计算分式的值,再将所得结果相加,其和等于A.-1B.1C.0D.二、填空题:(本大题共6个小题,每小题4分,共24分)13.关于x的分式方程+=1的解为非正数,则k的取值范围是____.14.如图,点A是反比例函数y(x>0)的图象上任意一点,AB∥x轴交反比例函数y(k≠0)的图象于点B,以AB为边作平行四边形ABCD,点C,点D在x轴上.若S▱ABCD=5,则k=____.15.如图,平行四边形ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,连接AP,若S△APH=2,则S四边形PGCD=______.第14题图第15题图第16题图16.把长为20,宽为a的长方形纸片(10<a<20),如图那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后,剩下的长方形为正方形,则操作停止.当n=3时,a的值为________.17.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.18.在平面直角坐标系内,直线l⊥y轴于点C(C在y轴的正半轴上),与直线相交于点A,和双曲线交于点B,且AB=6,则点B的坐标是______.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答书写在答题卡中对应题号的位置上。
19.(1)计算:(2)分解因式:.20.为了有效地落实国家精准扶贫的政策,切实关爱贫困家庭学生.兼善中学对全校各班贫困家庭学生的人数情况进行了调查.发现每个班级都有贫困家庭学生,经统计班上贫困家庭学生人数分别有1名、2名、3名、5名,共四种情况,并将其制成了如下两幅不完整的统计图:(1)填空:a=______,b=______;(2)求这所学校平均每班贫困学生人数;(3)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表或画树状图的方法,求出被选中的两名学生来自同一班级的概率.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答书写在答题卡中对应题号的位置上。
21.随着“一带一路”的不断建设与深化,我国不少知名企业都积极拓展海外市场,参与投资经营.某著名手机公司在某国经销某种型号的手机,受该国政府经济政策与国民购买力双重影响,手机价格不断下降.分公司在该国某城市的一家手机销售门店,今年5月份的手机售价比去年同期每台降价1000元,若卖出同样多的手机,去年销售额可达10万元,今年销售额只有8万元.(1)今年5月份每台手机售价多少元?(2)为增加收入,分公司决定拓展产品线,增加经销某种新型笔记本电脑.已知手机每台成本为3500元,笔记本电脑每台成本为3000元,分公司预计用不少于4.8万元的成本资金少量试生产这两种产品共15台,但因资金所限不能超过5万元,共有几种生产方案?(3)如果笔记本电脑每台售价3800元,现为打开笔记本电脑的销路,公司决定每售出1台笔记本电脑,就返还顾客现金a元,要使(2)中各方案获利最大,a的值应为多少?最大利润多少?22.如图,一次函数y1=-x+b的图象与反比例函数y2=(x>0)的图象交于A、B两点,与x轴交于点C,且点A的坐标为(1,2),点B的横坐标为3.(1)在第一象限内,当x取何值时,y1>y2?(根据图直接写出结果)(2)求反比例函数的解析式及△AOB的面积.23.如图,平行四边形ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CD于点E,连接AE,AE⊥A D.(1)若BG=1,BC=,求EF的长度;(2)求证:CE+BE=A B.24.如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,PH⊥AB于点H.(1)求证:四边形AGPH是矩形;(2)在点P的运动过程中,GH的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.25.如图,以△ABC的三边为边在BC同侧分别作等边三角形,即△ABD,△BCE,△ACF.(1)四边形ADEF为__________四边形;(2)当△ABC满足条件____________时,四边形ADEF为矩形;(3)当△ABC满足条件____________时,四边形ADEF为菱形;(4)当△ABC满足条件____________时,四边形ADEF不存在.五、解答题:(本大题1个小题,共14分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答书写在答题卡中对应题号的位置上。
26.如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC=2,过点A的直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD=∠APB,PD交x轴于点D,交y轴于点E.(1)若△APD为等腰直角三角形.①求直线AP的函数解析式;②在x轴上另有一点G的坐标为(2,0),请在直线AP和y轴上分别找一点M、N,使△GMN的周长最小,并求出此时点N的坐标和△GMN周长的最小值.(2)如图2,过点E作EF∥AP交x轴于点F,若以A、P、E、F为顶点的四边形是平行四边形,求直线PE的解析式.北碚区2018-2019学年度第二学期八年级调研抽测数学答案解析及评分标准难度系数:一、选择题(每小题4分,共48分)题号 1 2 3 4 5 6 选项D C C B D C 题号7 8 9 10 11 12 选项D A B D D二、填空题(每小题4分,共24分)13. k≥1且k≠3 14. -3 15. 816. 12或15 17. 或 18. (2,)三、解答题(每小题7分,共14分)19.(1)解:原式=2a2-2ab+ab-b2-2a2+ab,…………2分=-b2;…………3分(2)原式=-xy(x2-4xy+4y2),…………5分=-xy(x-2y)2. …………7分20.21.22.23.24.25.(1)平行;26.(2)∠BAC=150°;27.(3)AB=AC且∠BAC≠60°;28.(4)∠BAC=60°29.解:(1)①∵矩形OABC,OA=3,OC=230.∴A(3,0),C(0,2),B(3,2),31.AO∥BC,AO=BC=3,∠B=90°,CO=AB=232.∵△APD为等腰直角三角形33.∴∠PAD=45°34.∵AO∥BC35.∴∠BPA=∠PAD=45°36.∵∠B=90°37.∴∠BAP=∠BPA=45°38.∴BP=AB=239.∴P(1,2)40.设直线AP解析式y=kx+b,过点A,点P41.∴42.∴43.∴直线AP解析式y=-x+344.②作G点关于y轴对称点G'(-2,0),作点G关于直线AP对称点G''(3,1)45.连接G'G''交y轴于N,交直线AP于M,此时△GMN周长的最小.46.∵G'(-2,0),G''(3,1)47.∴直线G'G''解析式y=x+48.当x=0时,y=,49.∴N(0,)50.∵G'G''=51.∴△GMN周长的最小值为52.(2)如图:作PM⊥AD于M53.54.∵BC∥OA55.∴∠CPD=∠PDA且∠CPD=∠APB56.∴PD=PA,且PM⊥AD57.∴DM=AM58.∵四边形PAEF是平行四边形59.∴PD=DE60.又∵∠PMD=∠DOE,∠ODE=∠PDM61.∴△PMD≌△ODE62.∴OD=DM,OE=PM63.∴OD=DM=MA64.∵PM=2,OA=365.∴OE=2,OM=266.∴E(0,-2),P(2,2)67.设直线PE的解析式y=mx+n68.69.∴70.∴直线PE解析式y=2x-2。