微积分公式与定积分计算练习
- 格式:doc
- 大小:1.16 MB
- 文档页数:31
第九章 定 积 分练 习 题§1定积分概念习 题1.按定积分定义证明:⎰-=ba ab k kdx ).(2.通过对积分区间作等分分割,并取适当的点集{}i ξ,把定积分看作是对应的积分和的极限,来计算下列定积分:(1)⎰∑=+=1012233)1(41:;ni n n i dx x 提示 (2)⎰10;dx e x (3)⎰ba x dx e ; (4)2(0).(:bi adxa b xξ<<=⎰提示取§2 牛顿一菜布尼茨公式1.计算下列定积分:(1)⎰+10)32(dx x ; (2)⎰+-102211dx x x ; (3)⎰2ln e e x x dx ;(4)⎰--102dx e e xx ; (5)⎰302tan πxdx (6)⎰+94;)1(dx xx(7)⎰+40;1x dx(8)⎰eedx x x12)(ln 1 2.利用定积分求极限: (1));21(1334lim n nn +++∞→ (2);)(1)2(1)1(1222lim⎥⎦⎤⎢⎣⎡++++++∞→n n n n n n (3));21)2(111(222lim nn n n n +++++∞→ (4))1sin 2sin (sin 1lim nn n n n n -+++∞→ ππ3.证明:若f 在[a,b]上可积,F 在[a,b]上连续,且除有限个点外有F '(x )=f (x),则有()()().ba f x dx Fb F a =-⎰§3 可积条件1.证明:若T ˊ是T 增加若干个分点后所得的分割,则∑∑∆≤∆'.''T Ti i i i χωχω2.证明:若f 在[a,b]上可积,[][][]上也可积在则ββ,,,,a f b a a ⊂.3.设f ﹑g 均为定义在[a,b]上的有界函数。
证明:若仅在[a,b]中有限个点处()(),χχg f ≠则当f 在[a,b]上可积时,g 在[a,b]上也可积,且()().χχχχd g a bd f a b ⎰⎰=3.设f 在[a,b]上有界,{}[],,b a a n ⊂.lim c ann =∞→证明:在[a,b]上只有() ,2,1=n a n 为其间断点,则f 在[a,b]上可积。
定积分与微积分基本定理练习题及答案1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =⎠⎛01(x2-x)dx B .S =⎠⎛01(x -x2)dxC .S =⎠⎛01(y2-y)dyD .S =⎠⎛01(y -y)dy [答案] B[分析] 根据定积分的几何意义,确定积分上、下限和被积函数.[解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =⎠⎛01(x -x2)dx.2.(2010·山东日照模考)a =⎠⎛02xdx ,b =⎠⎛02exdx ,c =⎠⎛02sinxdx ,则a 、b 、c 的大小关系是( )A .a<c<bB .a<b<c$C .c<b<aD .c<a<b [答案] D[解读] a =⎠⎛02xdx =12x2|02=2,b =⎠⎛02exdx =ex|02=e2-1>2,c =⎠⎛02sinxdx =-cosx|02=1-cos2∈(1,2),∴c<a<b.3.(2010·山东理,7)由曲线y =x2,y =x3围成的封闭图形面积为( )[答案] A[解读] 由⎩⎪⎨⎪⎧y =x2y =x3得交点为(0,0),(1,1).∴S =⎠⎛01(x2-x3)dx =⎪⎪⎝⎛⎭⎫13x3-14x401=112. [点评] 图形是由两条曲线围成的时,其面积是上方曲线对应函数表达式减去下方曲线对应函数表达式的积分,请再做下题:^(2010·湖南师大附中)设点P 在曲线y =x2上从原点到A(2,4)移动,如果把由直线OP ,直线y =x2及直线x =2所围成的面积分别记作S1,S2.如图所示,当S1=S2时,点P 的坐标是( )[答案] A[解读] 设P(t ,t2)(0≤t≤2),则直线OP :y =tx ,∴S1=⎠⎛0t (tx -x2)dx =t36;S2=⎠⎛t 2(x2-tx)dx =83-2t +t36,若S1=S2,则t =43,∴P ⎝⎛⎭⎫43,169.4.由三条直线x =0、x =2、y =0和曲线y =x3所围成的图形的面积为( ) A .4 D .6 [答案] A[解读] S =⎠⎛02x3dx =⎪⎪x4402=4.5.(2010·湖南省考试院调研)⎠⎛1-1(sinx +1)dx 的值为( ))A .0B .2C .2+2cos1D .2-2cos1 [答案] B[解读] ⎠⎛1-1(sinx +1)dx =(-cosx +x)|-11=(-cos1+1)-(-cos(-1)-1)=2.6.曲线y =cosx(0≤x≤2π)与直线y =1所围成的图形面积是( ) A .2π B .3π D .π [答案] A [解读] 如右图, S =∫02π(1-cosx)dx—=(x -sinx)|02π=2π.[点评] 此题可利用余弦函数的对称性①②③④面积相等解决,但若把积分区间改为⎝⎛⎭⎫π6,π,则对称性就无能为力了. 7.函数F(x)=⎠⎛0x t(t -4)dt 在[-1,5]上( )A .有最大值0,无最小值B .有最大值0和最小值-323 C .有最小值-323,无最大值D .既无最大值也无最小值 [答案] B[解读] F′(x)=x(x -4),令F′(x)=0,得x1=0,x2=4, ∵F(-1)=-73,F(0)=0,F(4)=-323,F(5)=-253.?∴最大值为0,最小值为-323.[点评] 一般地,F(x)=⎠⎛0x φ(t)dt 的导数F′(x)=φ(x).8.已知等差数列{an}的前n 项和Sn =2n2+n ,函数f(x)=⎠⎛1x 1t dt ,若f(x)<a3,则x 的取值范围是( )B .(0,e21)C .(e -11,e)D .(0,e11) [答案] D[解读] f(x)=⎠⎛1x 1t dt =lnt|1x =lnx ,a3=S3-S2=21-10=11,由lnx<11得,0<x<e11.9.(2010·福建厦门一中)如图所示,在一个长为π,宽为2的矩形OABC 内,曲线y =sinx(0≤x≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( ))[答案] A[解读] 由图可知阴影部分是曲边图形,考虑用定积分求出其面积.由题意得S =⎠⎛0πsinxdx =-cosx|0π=-(cosπ-cos0)=2,再根据几何概型的算法易知所求概率P =SS 矩形OABC =22π=1π.10.(2010·吉林质检)函数f(x)=⎩⎪⎨⎪⎧x +2-2≤x<02cosx 0≤x≤π2的图象与x 轴所围成的图形面积S为( )B .1C .4 [答案] C[解读] 面积S =∫π2-2f(x)dx =⎠⎛0-2(x +2)dx +∫π202cosxdx =2+2=4.11.(2010·沈阳二十中)设函数f(x)=x -[x],其中[x]表示不超过x 的最大整数,如[-]=-2,[]=1,[1]=1.又函数g(x)=-x3,f(x)在区间(0,2)上零点的个数记为m ,f(x)与g(x)的图象交点的个数记为n ,则⎠⎛mn g(x)dx 的值是( )A .-52B .-43C .-54D .-76 [答案] A~[解读] 由题意可得,当0<x<1时,[x]=0,f(x)=x ,当1≤x<2时,[x]=1,f(x)=x -1,所以当x ∈(0,2)时,函数f(x)有一个零点,由函数f(x)与g(x)的图象可知两个函数有4个交点,所以m =1,n =4,则⎠⎛m n g(x)dx =⎠⎛14⎝⎛⎭⎫-x 3dx =⎪⎪-x2614=-52.11.(2010·江苏盐城调研)甲、乙两人进行一项游戏比赛,比赛规则如下:甲从区间[0,1]上随机等可能地抽取一个实数记为b ,乙从区间[0,1]上随机等可能地抽取一个实数记为c(b 、c 可以相等),若关于x 的方程x2+2bx +c =0有实根,则甲获胜,否则乙获胜,则在一场比赛中甲获胜的概率为( )[答案] A[解读] 方程x2+2bx +c =0有实根的充要条件为Δ=4b2-4c≥0,即b2≥c ,由题意知,每场比赛中甲获胜的概率为p =⎠⎛01b2db 1×1=13.12.(2010·吉林省调研)已知正方形四个顶点分别为O(0,0),A(1,0),B(1,1),C(0,1),曲线y =x2(x≥0)与x 轴,直线x =1构成区域M ,现将一个质点随机地投入正方形中,则质点落在区域M 内的概率是( )[答案] C\[解读] 如图,正方形面积1,区域M 的面积为S =⎠⎛01x2dx=13x3|01=13,故所求概率p =13.2.如图,阴影部分面积等于( )A .23B .2-3[答案] C[解读] 图中阴影部分面积为S =⎠⎛-31 (3-x2-2x)dx =(3x -13x3-x2)|1-3=323. 4-x2dx =( )-A .4πB .2πC .π [答案] C[解读] 令y =4-x2,则x2+y2=4(y≥0),由定积分的几何意义知所求积分为图中阴影部分的面积,∴S =14×π×22=π.4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v甲和v乙(如图所示).那么对于图中给定的t0和t1,下列判断中一定正确的是()A.在t1时刻,甲车在乙车前面…B.在t1时刻,甲车在乙车后面C.在t0时刻,两车的位置相同D.t0时刻后,乙车在甲车前面[答案]A[解读]判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t0,t1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积分,即速度函数v(t)的图象与t轴以及时间段围成区域的面积.从图象知:在t0时刻,v甲的图象与t轴和t=0,t=t0围成区域的面积大于v乙的图象与t轴和t=0,t=t0围成区域的面积,因此,在t0时刻,甲车在乙车的前面,而且此时乙车的速度刚刚赶上甲车的速度,所以选项C,D错误;同样,在t1时刻,v甲的图象与t轴和t=t1围成区域的面积,仍然大于v 乙的图象与t 轴和t =t1围成区域的面积,所以,可以断定:在t1时刻,甲车还是在乙车的前面.所以选A.5.(2012·山东日照模拟)向平面区域Ω={(x ,y)|-π4≤x≤π4,0≤y≤1}内随机投掷一点,该点落在曲线y =cos2x 下方的概率是( )-1 [答案] D [解读]平面区域Ω是矩形区域,其面积是π2,在这个区,6. (sinx -cosx)dx 的值是( )A .0 C .2 D .-2 [答案] D[解读] (sinx -cosx)dx =(-cosx -sinx) =-2.7.(2010·惠州模拟)⎠⎛02(2-|1-x|)dx =________.[答案] 3[解读] ∵y =⎩⎪⎨⎪⎧1+x 0≤x≤13-x 1<x≤2,∴⎠⎛02(2-|1-x|)dx =⎠⎛01(1+x)dx +⎠⎛12(3-x)dx=(x +12x2)|10+(3x -12x2)|21=32+32=3.8.(2010·芜湖十二中)已知函数f(x)=3x2+2x +1,若⎠⎛1-1f(x)dx =2f(a)成立,则a =________. ([答案] -1或13[解读] ∵⎠⎛1-1f(x)dx =⎠⎛1-1(3x2+2x +1)dx =(x3+x2+x)|1-1=4,⎠⎛1-1f(x)dx =2f(a),∴6a2+4a +2=4,∴a =-1或13.9.已知a =∫π20(sinx +cosx)dx ,则二项式(a x -1x )6的展开式中含x2项的系数是________.[答案] -192[解读] 由已知得a =∫π20(sinx +cosx)dx =(-cosx +sinx)|π20=(sin π2-cos π2)-(sin0-cos0)=2,(2x -1x)6的展开式中第r +1项是Tr +1=(-1)r×Cr 6×26-r×x3-r ,令3-r =2得,r =1,故其系数为(-1)1×C16×25=-192.10.有一条直线与抛物线y =x2相交于A 、B 两点,线段AB 与抛物线所围成图形的面积恒等于43,求线段AB 的中点P 的轨迹方程.[解读] 设直线与抛物线的两个交点分别为A(a ,a2),B(b ,b2),不妨设a<b , 则直线AB 的方程为y -a2=b2-a2b -a(x -a), ·即y =(a +b)x -ab.则直线AB 与抛物线围成图形的面积为S =⎠⎛ab [(a +b)x -ab -x2]dx =(a +b2x2-abx -x33)|b a =16(b -a)3,∴16(b -a)3=43,解得b -a =2.设线段AB 的中点坐标为P(x ,y), 其中⎩⎪⎨⎪⎧x =a +b 2,y =a2+b22.将b -a =2代入得⎩⎪⎨⎪⎧x =a +1,y =a2+2a +2.消去a 得y =x2+1.∴线段AB 的中点P 的轨迹方程为y =x2+1.能力拓展提升11.(2012·郑州二测)等比数列{an}中,a3=6,前三项和S3=⎠⎛034xdx ,则公比q 的值为( )A .1B .-12[C .1或-12D .-1或-12 [答案] C[解读] 因为S3=⎠⎛034xdx =2x2|30=18,所以6q +6q2+6=18,化简得2q2-q -1=0,解得q =1或q =-12,故选C.12.(2012·太原模拟)已知(xlnx)′=lnx +1,则⎠⎛1e lnxdx =( )A .1B .eC .e -1D .e +1 [答案] A[解读] 由(xlnx)′=lnx +1,联想到(xlnx -x)′=(lnx +1)-1=lnx ,于是⎠⎛1e lnxdx =(xlnx -x)|e 1=(elne -e)-(1×ln1-1)=1.13.抛物线y2=2x 与直线y =4-x 围成的平面图形的面积为________. [答案] 18[解读] 由方程组⎩⎪⎨⎪⎧y2=2x ,y =4-x ,解得两交点A(2,2)、B(8,-4),选y 作为积分变量x =y22、x =4-y ,%∴S =⎠⎛-42 [(4-y)-y22]dy =(4y -y22-y36)|2-4=18.14.已知函数f(x)=ex -1,直线l1:x =1,l2:y =et -1(t 为常数,且0≤t≤1).直线l1,l2与函数f(x)的图象围成的封闭图形如图中区域Ⅱ所示,其面积用S2表示.直线l2,y 轴与函数f(x)的图象围成的封闭图形如图中区域Ⅰ所示,其面积用S1表示.当t 变化时,阴影部分的面积的最小值为________.[答案] (e -1)2[解读] 由题意得S1+S2=⎠⎛0t (et -1-ex +1)dx +⎠⎛t 1(ex -1-et +1)dx =⎠⎛0t (et -ex)dx +⎠⎛t1(ex -et)dx =(xet -ex)|t 0+(ex -xet)|1t =(2t -3)et +e +1,令g(t)=(2t -3)et +e +1(0≤t≤1),则g′(t)=2et +(2t -3)et =(2t -1)et ,令g′(t)=0,得t =12,∴当t ∈[0,12)时,g′(t)<0,g(t)是减函数,当t ∈(12,1]时,g′(t)>0,g(t)是增函数,因此g(t)的最小值为g(12)=e +1-2e 12=(e-1)2.故阴影部分的面积的最小值为(e -1)2.15.求下列定积分.(1)⎠⎛1-1|x|dx 。
微积分公式与定积分计算练习 (附加三角函 数公式)、基本导数公式二、导数的四则运算法则三、高阶导数的运算法则nx na In(1 ) u x v x (2)cu cuu ax baxkc n uk 0xv (k) x四、基本初等函数的阶导数公式(12)(15)cosx secxlog a xarcta nxsin x secx tan x1 1 x 2(13)(16)tanxarcs in xarccotxsec 2 xIn⑶ sinx⑹cotxcscx1 x 2(11)(17)In x(14)COSX csc 2 x cscx cot xarccosx(18)uvuvu v uv ""2 vax beax bcos axsin ax bna cos ax bax b ⑹n a n n! 1ax五、微分公式与微分运算法则cosx sin xdx tanxsecx secx tan xdxe x dxd (12) log a x1dx xlna(13)na sin axb n —21dxln ax bnax bsin x cosxdxsec xdxIn adxd arcs in xcotx csc xdxcscx cscx cot xdxd(ii)In x1 dxxd (15) arcta nx1 x2dx d(16)六、微分运算法则⑴ d u v du dv⑶ d uv vdu udv七、基本积分公式kdx kx cx dxxx aa dxln ae x dxsin xdx cosxd(14)arccosx1dx.1 x2 arccotxcudxxcduvdudxudv2 vIn xcosxdx sin x cdx sec xdx tanx⑻ cos xtan xdx In cosx c secxdx In secx tanx c1 1 x ---- dx - arcta n- c a x a acotxdx In sin x c cscxdx Incscx cotx c11lx a-2 --- 2 dx Incx a 2a|x a积分型换元公式1f ax b d^- f ax b d ax b au ax bf x x 1dx 1 f x d xu x1f In x -dxf In x d In xxu In xX X 工x Xf e e dx f e d exu e 1r x X 」 1 r x i x f a a dx ------------ f a d aIn axu af sin x cosxdx f sin x d sin x u sin xf cosx sin xdxf cosx d cosxu cosxf tan x sec xdx f tan x d tan xu tanx2f cotx csc xdx f cotx d cotxu cotx1~~2~sin xcsc xdx cot x cdx arctanx c1 x 2(ii) arcs in x c八、补充积分公式dx.xarcs in ca1dxIn x V x 2~a 2十、分部积分法公式形如 xFnxdx 令 口 x n , dv sin xdx 形如 x c °sxdx令 口 x n , dv cosxdx⑵形如 x arctanxdx ,令 u arctanx , dv x n dx 形如 x lnxdx ,令 u ln x , dv x n dx卜一、第二换元积分法中的三角换元公式2 2(1)a xx a si nt (2)、a 2 x 2 x ata nt⑶ x 22a x a sect【特殊角的三角函数值】1.3sin — —sin — —sin 1(1)sin 0 0(2)6 2(3)32(4)2(5)sin.31cos — —cos — — cos — 0(1)cos0 1(2)6 2 (3)3 2 (4) 2(5) cos 1tan -仝tan3 tan —(1)tanO 0(2)63 (3)3(4)2不存在(5) tancot—cotcot — 0(1cot0不存在 (2)6(3)3 3(4)2(5) cot 不存在十二、重要公式n ax I⑴形如Xedx ,令udv e ax dx⑶形如 axe sin xdx ecosxdx 令 u e ax ,sinx,cosx 均可。
第一单元 函数与极限一、填空题1、已知x xf cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim 22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sin lim 0=→x x k x 成立的k 为 。
5、=-∞→x e x x arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、____________22lim22=--++∞→x x n 。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
微稅分公式与定稅分廿算练习(附加三角函数公茨)一、基本导数公式⑴(C°(2)宀旷(3)(g)' =cosx⑷(cosx) =-sinx(5)(kmx) = sec2 x^(cot x) = -esc2 x(7)(secx) =secx ・tanx(8)(cscx) =-cscxcotx(log *)' = —1—(arcsin x) = 2_. (arccos x) = _ --^=⑫' 7x\n a丁1一2(⑷”1一2 ^(arctanx/^^Carccotx;=-占肋(0 = 1二、导数的四则运算法剧(w±v) =11 ±V r(MV)= ll'v + UV三、高阶导数的运算法剧(1)["(WWxF—WQWx)1'”[“(ox + b)]'" = aS/切(o¥ + Z?)(4) [“⑴•咻)尸)(x》H(x)JO囚、基本初等函数的n阶导数分衣(汕“(2)(严『(1 )⑶(打”)Mintsin(ox+b)Y) (4)7T 12>=a' sin ax+ b + n •—cos(ax +方)"⑸=a n cos ax + b + n•兰2丿\(町< ax + b)⑹五、微分公式与fit分运算法剧帥(祇+对"=(-1)"心"心一邛⑺cix + h)fl---- + c \naf ——dx= fsec 2 xdx = tanx + c ⑻」cos* x Jf —L — = f esc 2 xdx = -cot x + c f —⑼」siirx J(10」1 +对f dx = arcsin x + c(11) Jl-F八、补充秋分公貳J tan xdx = -In |cos x| + c J cot xdx = In |sin x| + cJ sec xdx = ln|sec x + tanx| + c j esc xdx = In |cscx-cot x\ + cc 11 x fl » x-a⑴ d (c) = 0 ⑵〃 (x")= “严么⑶〃 (sin x) = cos xdx(4) 〃 (cos x) = _sin 人〃v (5)d (tan x ) = sec 2 xdx 伦)d (cot x) = -esc 2 xdx(7)d (sec x) = sec x ・ tan xdx 侶)d (esc x) = - esc x cot xdx^.d(e x \ = e x dx.^.d(a x \ = a x \nadx,. ⑼ '丿 (10 '丿 (11)〃仃co U _1 d (arcsin x] = dx J(arccosx)=——=2dxd (arctan x)=〔】、dx d (arc cot -v)=-〔】、dxAs 做分运算法U⑴〃 (“ ± v ) = du ± dv ⑵ d (cu) = cdu⑶ d (wv) = vdu + udv ⑷ "L 一 lt ^v「丿v 2七.基本稅分公式kdx = kx+c"严⑶用讪⑺ j* sin xdx = - cos x+cdx = arctan x + cJ 1.. Jx = arcsin - + c [ 1.十、分部积分法公式⑴形如J""%,令« = dv = e ax dx 形』X sin皿令U = X n , dv = sin xdx 形』x”cos皿令十,d v =CO sxdx ⑵形如J V ,! aiCtan Xcix ,令“ =arctan x clv = x n clx 形如J V 4 ,令u = In xt dv = x'l dx⑶形如F Shl皿」严CQSxdx令“=严,血x,cosx均可十一、第二换元稅分法中的三角換元公貳dx = \n x + yjx2 ±a2⑴ J/x = osin/ ⑵ J ,+F x = atant (3)~a x = asect【将殊角的三角函数值】(1)cosO = 1k 73cos —=——6 2十二.重要公式(系数不为0的怖况)1-cosx-sinx 〜x tanx 〜x arcsinx 〜x arctan x~ x ln(l + x)~U~2—l~xlz十四、三角函数公衣1 •两角和公实sin(A + B) = sin A cos B + cos A sin B sin(A 一 3) = sin A cos B 一 cos A sin B cos(A + B) = cos A cos B-sinA sin B cos( A -B) = cos A cos B + sin 4 sin 3(1)sin 0 = 0 兀1sin — = _ (2) 6 2 (3)龙>/3sin —=——3 2sin — = 1 (4) 2 (5 ) sin 龙=0(1)tan 0 = 0(2)tanM6 3(3)tan ?=^(4) tan — 2 不存在(5) tan^ = 0 (1 ) 8t°不存在(2)cot- = V36(3)cot —3(4)7T ccot — = 02 (5) co”不存在 cos — = 0 (4) 2(5 ) cos/= _1(1 )(4)(7) sin x (lim ------- = 1lim 亦=1 lim arc cot x = 0XT30 (10)lim e x = oo2lim(l + x)7 =e (2)-八 7limarctanx = —(5 ) 一 2 lim arccot x =(8 ) x 一+ ・・・ + ©_\in\yfa(a >o) = 1lim «rctanx = - —(6 ) —x 2 (9) !呼 _0(12)十三、 下列常用等价无穷小关系(XT°)z 4 c、 tan A + tan 3 z 4 补 tan A- tan Btan(A + B) = ---------------------- tan(A -B) = ------------------------1 - tan A tan B 1 + tan A tan B/ , cot A ・ cot 3 — 1 z 4 c 、 cot A cotB + \cot(A + B) =----------------------- cot(A _ B)= -------------------------cot B +cot A cot B-cotA2 •二倍角公式sin 2A = 2 sin A cos A cos2A = cos 1 2 A-sin 2 A = l-2sin 2 A = 2cos 2 A-l 2 tan >4tan 2A = ---------- —1-tan" A3•半角公成.A /1-cosA A /1 + cosA Sin 7_V —2 — COS 2~\ —2—4 •和差化秋公6•万能公衣2 tan — 2 sin a = ---------- --- cos a =1-tan 2 — —tan a = 2- 1-tan 2- 2 27 •平方关系sin 2 x + cos 2 x= 1 sec 2 x-tan 2 x = \ csc 2x-cot 2x = l8.fl«关系tanx ・cotx = l secx-cosx= 1 cscx sinx = \9 •商数关系sinx cosxtan x = ------- cot x = ---------cos x sinx1 + tan2 —21+cos A sin A・ ・, c ・a+bsintz + sin/? = 2sin --------2 f c a + b cos a + cosb = 2 cos -------2a-b .・, r a + b . (i_b・ cos --- sin a 一 sin b = 2 cos2 2 2a_b f c . a + b . u_b cos a 一 cos b = -2 sin ----------- sin -------- 2•cos •sintan a + tan /?=sin(d + b)cos "・差公 Stsinasinb = -— 2L ]rcos (a + Z?) — cos (a -b)]sinocosZ? = — sin (« + /?) +sin (€/-/?) cos a sin Z?=21 r n cos a cos/? = — [cos (a+ Z?) + cos—[sin (//+ Z?)-sin (6/-/?)] 22tanI1 + tanA tan —= 21-cos A sin A A ------ = cot —= 1 + cos A 1 + cos A 21 一 cos A 1 一 cos A十五.几种常见的St分方程dv3.—阶拔性非齐次St 分方程:^+,,(A )V =(?(A )髙考定稅分应用常见題型大全选择题(共21小愿)1. (2012.) $0图所示,在边长为1的正方形OABC 中任取一点P,囲点P 怡好取自明彫部分A. 1B. 1C. 1 D ・145672. (2010.)由曲a y=x 2, y=x 3围成的齐闭图形面枳为( )A. 1B. 1C. 1D. 712 4 3122,汪[0, 1]3•设f (x )=l 2-^ 圧(1,2],因数图象与x 讷围成討闭区域的而枳为( )A. 3B. 45C. 5 6D.674(2对丄) d x4. 定枳分1X的值为( )A. 9B. 3+ln2c. 3-ln2D. 6+ln245. 如图所示,曲Sy=x 2和曲Sy=V^围成一个叶形图(明影跚分),貝面枳是( )dy1 •可分离变量的做分方程:页= /(x)g(y)/1 (x)gi (y)^+z (x)g2 (y)dy=o2 •齐次做分方程:解为广"平(4sJ 2 开(x+cosx) dx6. 飞 =()A. TtB. 2C. -n7. 已知函»f (x)的定义域Jl[-2, 4],且f (4)=f(・2)虬f (x)为f(x)的导函数,函数y=f ( x )的图象如图所示,團平面区锁f ( 2a +b ) <1 (a^O, b^O)所围成的而枳是8. f oVdx 与f o 1e xdx 相比有关系氏() A.2B. 2/ o'e'dx < J oQ dx J o 1e <dx> / Je” dx C.2D.z(f <e x dx ) 2= / 01e' dxJ Je x dx=( 01e' dxD ・返2D. 4C. 5D. 89. 若a= j JTO HQ「1 ,b= Jo cosxdx,则a 与b 的关系是(A. a< bB. a> bC. a=b10. r a J 0 ({1 - Cx-1) 2"X 2)%值是( )A. 7T _ 1B.兀_ ■ 1 C ・兀一 .14 3 432 3S R sinxdx)D. a+b=OD.兀11.若f(x)=2A. 12+e2 - eX>1h X<1(e为自然对数的U数),则;o f 3)12-e2+eB. 12+ec. D.dx ,=(丄-・e12.已知f(x)=2-|x|, M3 dx=(A. 3B. 4C.)3.5 D.4.513.设f ( x ) =3 - |x -1|, | J 22f ( x ) dx=(A. 7B. 8C. 7.5D. 6.514.枳分『三aVa2 - x2dx;15.f 巳知函数A. 1/216.是( A. 4(x)二C.na2D.2na2cosx,"x+b 0<x<1的图象与X轴所围成图形的面枳为()B. 1C. 2D. 3/2_3兀由因数y=cosx ( 0WXW2H )的图象与頁线* 2 K y=l Bi围成的一f封团图%的面枳C. 7T “T+1° 2n17.曲Sy=x3在点(1, 1) 5b的幼裁与x轴及直线xT两围成的三角形曲而枳为()A・丄B・212 6 C. 13D.丄2A. 16B. 18C. 20D. 2219.如图中阴影跚分的面枳是(尸sin. (x - 20.曲线 A. V2T-手)(0<x< 葺)―44 与坐标轴围成的面枳是()B. 2-^2C. V2D. Q V22pk21.如图,P (3a, a )是反比网函y=x ( k> 0 )与00的一个交点,图中明影册分的面枳髙考定稅分应用常见題型大全(含答案)参考答案与試题解析选择題(共21小題)1. (2012.) 50图所示,在边长为1的正方形OABC 中任取一点P, IM 点P 恰好取自明影部分的側率为( )B. 9-2^3C. 32D. 35为10n,囲反比例因数的解桥衣为(B. 10y-D. 27y-y=x考/定枳分在求面枳中的应用;JI ・501974 专趣:计算臥分析:根H 題意,易得正方形OABC 的面枳,观察图形可得,阴黔部分由因数XX 与戶"匚围 成,由定枳分公式,廿算可得阴黔部分的面枳,逍而由几何槪塑公衣廿算可得答案.解答:解:禺据题意,正方形OABC 的面枳为1 x1=1,_2 2 2而明黔部分由因数y=x 与戶换围成,貝面枳为山(讥・x)dx=(亏/・2)|上瓦16 _1则正方形OABC 中任取一点P,点P 取自阴影部分的御率为二乞; 故选C.fiih 本题考査几何枫世的廿算,涉及定枳分在求面枳中的应用,关进是正彌卄算出阴影跚 分的面枳・ 考点:定枳分在求面枳中的应用.501974专趣:计算题.分析:要求曲8y=x 3, y=x 3围应的討阳图形面枳,根据定稅分的几何意义,只要求/o 1(x 2-X s ) dxU 可.解答:解:由题意得,两曲线的交点坐标是(1, 1), (0, 0)故枳分区间是[0, 1]—X 1 - A X l~-所求封闭图形的面枳为丿oUx 2 ・x 3)dx=3 4 12,故选A.目评:本题考査定枳分的星胡知识,由定枳分求曲线围戒封闭图形的面枳.3 (2010-)由曲s y=x 2, y=x 3围应的对闻图形面枳为()A. _14 B. _15 C.丄6D. 17A. 112B. _14C.丄3D. 712x 2, xE [0, 1]3•设f (x )=l 2_x »圧(1,2],因数图象与x 抽围成討ffl 区域的而枳为( ) A. 3B. 4C. _5D. _64 5 6 7考点:分段函数的解折貳*法及其图象的作法;因数的图象;定枳分在求面枳中的应 用.501974 专趣:计算題;数形结合.分析「利用坐标系屮作出函数图象的形状,通过定枳分的企貳,分别对两部分用定枳分求出 其面枳,再把它们«|加,即可求出围戒的封用区域曲血图形的面枳.故选C自评:本題考査分段因数的图象相定枳分的运用,考查枳分与曲ii 图形面枳的关系,属干中 時題•解題关邃是找出被枳函数的原函数,注恿运算的准确性・考点:定枳分;傲枳分基本定理;定枳分的简单应用.501974专题:廿算臥分析:由題设条件,求岀被枳函数的原函数,然后根掘槪枳分基本定理求岀定枳分的值即可. 解答: r 2(2x+-) dx解: 1X = ( x 2+lnx ) |i 2= ( 22+ln2 ) - (12+ln1 ) =3+ln2故选 B.4.「2 定枳分1 (2x+丄)dxx的值为(A. 9B. 3+ln2)C ・ 3-ln2 D. 6+ln2s= S Jx 2dx+r f ■ (2- x) dx二# (2 - 号)冷Sih 本題考査求定枳分,求解的关建是拿常住定枳分的定义及相关因数的导数的求法,属 于基胡題・考/定枳分;定枳分的简单应用.501974 专題:计算臥分析:味立由曲S y=x 2fn 曲找X 仮两个解桥貳求出交点坐林,然后在XG (0, 1)区间上 利用定枳分的方法求出围应的面枳即可.(x=l (x=0 解得(尸1或ty=o,设曲线与頁线围应的面枳力s,_1囲 s= J' o 1 (Vx-X 2) dx=3 故选:C目评:考查学生求因数交点帝法的能力,利用定枳分求图形而枳的能力.J 2 开(x+cosx) dx 6. 一" =() A. TiB. 2考fi : a 枳分基本定理;定枳分的简单应用.501974 专题:计算臥 分析:1由于 F ( x ) = 2x 2+sinx 为 f ( x ) =x+cosx 的一个原函数即 F ( x )二f ( x ), ffi 据 J ?f ( x )dx=F (x)『公氏即可求出值.解苔: 1解:•・•( 2x 2++sinx) =x+cosx,D.返2C.-nD. 423貝而枳是( )=(2x 2+sinx ) 2=2.故笞案为:2.点评:此題考査学生拿捋函数的求导法则,会求因数的定枳分运算,是一道基就臥7.已知函 at (x)的定艾域为[-2, 4], flf(4)=f( - 2)=1, f'(x ) ^f(x)的导函数,函数y=f* ( x )的图象如图所示,则平面区域f ( 2a +b ) <1 (a5:0f bMO)两围成的面枳是考点:定枳分的简单应用.501974分ffi : ffilg 导函数的图象,分桥原函数的性喷或作出原函数的草图,找出a 、b 満足曲条件, 画出平面区域,即可*解.解答•2解:由图可知[・2, 0)上f (x) <0,函数f (x)在[・2, 0)上单期递«,(0, 4]上r (x) >o, •••因数f (x)在(0, 4]上单调递增,故在[・2, 4]上,f(x)的最大值为f ( 4 ) =f (・2)=1,r-2<2a-Hb<4《a>0.-.f ( 2a+b ) <1 ( azO, b^O ) =>〔b 》0表示的平而区域如图所示: 故选B.r2( x+cosx ) dxJTSih 本題考査了导数与函数单燜It 的关系及找性规则问题的绘台应用,属干高苗題•解 决时要注意数形结合思想应用.28. j 01e x dx 与J o*e x dx 相比有关系式(C.z(f 01e x dx ) 2= f 01e x dx考点:定枳分的简单应用;定枳分.501974 专题:计算亂 分析:2根据枳分所表示的几何意义是WiSx=0,x=1及函9y=e x 或y=e‘ 在图象第一象限 岡W 与坐标轴围成的面枳,只需酉出函数图象规察而枳大小即可.解皐解:/Mix 表示的几何意义是WSSx=0, x=1及函fiy=e x 在图象第一象限职与坐 标轴围成的面枳,Jo'e x "dx 表示的几何豆义是111^ x=0, x=1及函» y=e x '在图象第一象限同* 与坐标箱囲成的面枳, 如因2 2••当 0 < x < 1 时,e"x > e“ ,故有:j o e x dx > f 01e' dx故选B.A.2/ o 1e'dx < J 01e , dx B. zJ Je x dx> / o e' dxD.2J Je x dx= / 01e" dx定枳分运算是求导的逆运算,解題的关邃是求原因数,也可 u 于基雷題.J R sinxdx| 9.若圧 T , b= ;O cosxdx , H a 与b 的关系是( ) A. a<bB. a> bC. a 二bD. a+b=O考点:定枳分的简单应用.501974 专題:计算臥2-1 1亠 > 1, 1 .I jS1 1 •11 11pfiih 本題主要考查了定枳分, 利用几何意义怖求解, T Rsinxdx a= 2・ cosx ) T=・ cos2 )JI-cos 2 ) = - cos2«sin24.6°,b=J Jc 0S xdx =sinx1°=sin1 - sin0=sin1 «sin57.3°.S R sinxdx I n•. a= 2 =(・ cosx )2 =(・ cos2 )JT・ cos 2 )二・ cos2« -cos114.6°=sin24.6°,b=」0cosxdx =s inx I 0=S jn1 - sin0=sin1 -sin57.3°,・•・b > a.故选A.Sih 本题考査定枳分的应用,是基础題.解题时娶汰真审題,仔细解答. 10. ;o (V1- (x-l) «2) ^^[1 是( )A.丄£_丄B. _K _1C.匹—丄D.考点:定枳分的简单应用.501974y专题:计算題.分桥:根据枳分两表示的几何意义是以(1,0 )为岡心,1为半径第一象限岡%与施物裁XX? 在第一象限的跚分坐标轴围应的面枳,只需求出風的面枳秦以呱分之一与Uft 物我在第 一象限的部分与x 轴flisx=i 围成的图形的面枳即可.解答:解;枳分所表示曲几何意义是£1(1, 0 )为風心,1为半径第一象限同扳与施掏找y=x? 在第一象限的跚分坐标轴围应的面枳,故只需求出岡的而枳秦以呱分之一与抛物线在第一象限的部分与x 轴和頁线x=1围应 的图形的面枳之差.I -------------------- - 仃 7T、勺 7T 13 1 1即打(Ji 匸"17巨-恭)d*=E.瑞/djz.gx I L T _I 故苔案选A目评:本題主要考查了定枳分,定枳分运算是*导的逆运算,解題的关邃是求原因数,也可 利用几何意义怖求R, BT 1«8考点:定枳分的简单应用.501974 专題:廿算臥分析:由于因数力分段函数,枚将枳分区同分为两部分,进而分别求出祁应的枳分,即可得 到结论. 解答:解:S pf (x) dx = s Jxdx+ / \ ( - e x ) dx_^x 2 丨| [寺- /+e 故选C.点评:本題車点考查定枳分,解趣的关址是將枳分区冋分为两部分,再分别求出相应的枳分.12. B fflf(x)=2-|x|, H ;-l f 3)dx=() A. 3B. 4C. 3.5D. 4.5由題意,『°匹⑴山二j 匕1(2+Q 如凭(2-"气由就可求定枳分的 E.解:由題意,J 3 [f (x) dx= J 11 (2+x) dx+ Q (2 ~ x) dx _ ( )| j 十11. -就 X >1q 若 f(x)」hh x<l (e 为自然对数的庇数),则J 'o f Cx) dx =(A ・22+e 2 - eB. 12+eC.丄2-e 2+eD. 1-纸2 - e考点专定枳分的简单应用.501974• • •• 題分析(2x -丄2 1 1 2X丿 I 也2 ・ 2+4 ・ 2=3.5故选C.点本題考查定枳分的it 算,解題的关扯是利用定枳分的性质化为两个定枳分的和. 评:13. 设 f ( x ) =3 ・|x ・1|,呱 J / (x)dx=( )A. 7B. 8C. 7.5D. 6.5考点:定枳分的简单应用.501974 专趣:廿算臥分析:J / (x)dx=/ *(3・|x ・1|)dx,将 J* (3 ・|x ・1|)dx 转化成丿(2+x ) dx+ / ,2(4・x)dx,然后根曾定枳分的定义先求岀被枳函数的原函数,於后求解即可.解苔:丄,解:J 22f ( x ) dx= J -22 ( 3 - |x -1|) dx= f 2 ( 2+x ) dx+ f i 2 ( 4 - x ) dx= ( 2x+ 2x 2) | 丄2'+ ( 4x- 2X 2) h 2=7故选A.fii?:本趣壬要考查了定积分,定枳分运第是求导的逆运算,同时考査了转化与划IH 的思想, 属于SMg. 14. 枳分 -aVa 2 ~ x 2<ix考点:定枳分的简单应用;定枳分.501974 专題:计算臥 分析:J 2 _―2本蝕利用定枳分的几何意艾it 算定枳分,即求被枳因数x 与x 轴所围成的 图形的面枳,围成的图象是半个亂解苔:r a A / 2 -― A V解:禺稠定枳分的几何意艾,则」-aVa x dx 表示岡心在原点,半径为3的岡 的上半同的面枳, 故J 爲需F 嗨"3兮兀/ 故选B.fiih 本小題主要考查定枳分、定枳分的几何意义、岡的面枳等基罐知识,考查考査数形结合思亂属于基妣題・15. 巳知因数1一齢1,0<x<l 的图象与x 轴所围成图形的面枳为( )A. 1/2B. 1C. 2D. 3/2考点:定枳分在求面枳中的应用.501974 专題:廿算题.分析:根据几何图形用定枳分表示岀所围成的封闻图形的面枳,求岀函数f (x )的枳分,求 岀所求即可.D.解 i J 彳(-x+1) d x+ J °JT cosxdx解:由題意图象与X轴所围戒图形的面枳为一厅=(・ 2* +x ) |0'+sinx 21=2+1=2点评:本題考査定枳分在求面枳中的应用,求解的关邃是正确利用定枳分的运算规则求岀定枳分的值,本题易因力对两个知识直不熟悉公述用猜而导致錯误,牢固拿捋好基隅知识很車雯.3兀16. 由因数y=cosx(0wxw2ii)的图象与頁线“巳及yT两围成的一个齐闭图形的而枳是()A. 4B. 3兀-C.兀 *D. °考点:定枳分在求面枳中的应用.501974 专題:计算题.分: 丫』由题意可知函数*COSX(0WXW2TI)的图象与頁线"2及y卄围成的一个封囲图竺9形可利用定枳分进{亍廿算,只要求门(1-cosx ) dx I!P nJ.然后根据枳分的运算公式进行求解即可.解答:__3兀解:由函数0cosx(owxw2ii )的图象与IS X=^~g y=1 围成的一个封用图形的面枳,3打3尺2 9就是:f c (1 - cosx ) dx= ( x - sinx ) |cSih本题考査余弦因数的图象,定枳分,考查廿算能力,解題的关进是两挟封冈图形的面枳之和规是上跚頁接枳分騷去下跚枳分.17. 曲Sy=x3在点(1, 1) ft的幼找与x轴员直线xT所围成的三角形的而枳为( )A. 1B. 1C. 1D. 112 6 3 2考点:定枳分在求面枳中的应用.501974专题:计算亂分析:徹帝所围应的三角形的ffiR,先求出在点(1, 1)处的幼找方棺,只须求岀貝斜率的值即可,故娶利用导数求出在XT 处的导函数值,再结合导数的几何恿义RP可求岀幼缆的料率,从而冋題解决.解苔:解:*,••y/x2,当XT时,y=3得tn线的斜率为3,所a k=3;所以曲裁在点(1,1)处的切找方f?力:y - 1=3x ( x -1 ),即3x - y - 2=0.2令y=O 得:X=3,・・・幼线与X轴、1«X=1 01围应的三角形的面枳为:2 Z 丄S=2x(1-3)x1=6故选B.自评:本小題壬要考查頁找的斜率、导数的几何意义、利用导数研究曲线上杲方样等基雷知识,属于基《|题.考点:定枳分在求面枳中的应用.501974专题:计算亂分ffi: U图象中知施掏找与頁线的交点坐标分别为(2,・2), (8, 4). 11 (2.・2)作x 轴的垂找把阴影甜分分为Si, S2两部分,利用定枳分的方法分别求出它*的面枳并相m即可得到阴影部分的面枳.解答:解:从图象中知擅物线与頁找的交找坐标分别为(2,・2), (8, 4).过(2, -2)作X轴的垂找把明黔册分分为&, S2两部分,分别求出它们的面枳A- A2:Al= j 02[V^ -(-伍)]dx=2 M'您dx=328A2= J 28[V2^- (x-4)]dx= 316 38Bi以阴静部分的面枳A=A,+A2= 3 3=18故选B.自评:本題考査定枳分在求面枳中的应用,解題是要连意分割,关樂是iiig在x轴下方的部分枳分为负(枳分的几阿恿义强関代数和),属干基陶题・考查学生利用定枳分求阴影面枳的方法的能力.19.如图中阴影跚分的面枳是()A. 2V3 C. 32 D. 35考定枳分在求而枳屮的应用.501974& :专it算題.Si:分求阴影跚分的面枳,先要对阴影部分逍行分留到三个象限,分别对三跚分进行枳分求和ffi: I®可.解解:I y=2x与擅胸裁y=3・x2解得交点为(・3,・6)和(1, 2)§: M^Sy=3・x2与x轴负半轴交点(■循,0)设阴影部分面枳为s is二冗(3-X2-2X) d x+ J 1 苗(3- /)d x - ; °32xd x+ (3- x2) d —■|+2V5+9 - 2A/332 =3两以阴影部分的面枳为3,故选c.&本題考査定枳分在求而枳屮的应用,解题是要诜意分割,关扯是iilg在X轴下方的部评:分枳分为负(枳分的几何意义强调代数和),属干星础题・考点:定枳分在求面枳中的应用.501974专题:计算亂分桥:先禺据题恿酉出区域,然后依齬图形得到枳分下限为0,枳分上限力4 t U而利用定枳分表示出曲边梯形的面枳,量后用定枳分的定义求出Bi求即可.得到枳分上限为4 ,枳分下限力07T . x JT x 7T 3 兀・f兀、---- ui ri I v —----------------- J ----------- ui m I v — --------- J2-—2 -2^2・・・围成的而枳是 2Sih 本題主要考査了学生会求岀原函数的能力,UK 考查了数形结合的思想,冋时会利用 定枳分求图形面枳的能力,解题的关进就是求原因数.k21.如图,P (3a, a)是反比网函y=x( k> 0 )与00的一个交点,图中明影册分的面枳为10n,囲反比例因数的解桥衣为(考点:定枳分在求面枳中的应用.501974 专题:计算題;数形结台. 分林:2根齬岡的对称性以及反比例函数的对怖性可得,阴影部分的面枳等干圆的面枳的4, 囿可求得阖的半径,再ffifiP 在反比例函数的图象上,以及在圆上,即可来得k 的值.解答:辭:设冏的半径是「,根齬圆的对称性以及反比侧函数的对林11可得:丄4nr 2=10n解得:r=2V10.k••点 P(3a, a)是gltN 函 y =^(k>0)与G>0 的一个交点.3a 2=k 討(3&)2 + 界=「 _L_:.a 2= 1 Ox ( 2^/10 ) 2=4.B. 10y-C. 12 y=xD. 27 y~y=xk=3x4=12,12则反比例函数的解桥衣是:y= «. 故选c.贞评:本S££考査反比傅函数图象的对称性的知识戌,解决本題的关谡是科用反比例函数的对称牧得到阴影部分与團之间的关系.。
微积分试题及答案一、选择题1. 函数 \( f(x) = x^2 \) 在 \( x = 2 \) 处的导数是:A. 0B. 2C. 4D. 8答案:C2. 定积分 \( \int_{0}^{1} x dx \) 的值是:A. 0B. 0.5C. 1D. 2答案:B二、填空题1. 若 \( f(x) = 3x^3 - 2x^2 + x \),则 \( f'(x) \) 等于__________。
答案:\( 9x^2 - 4x + 1 \)2. 曲线 \( y = x^3 \) 与直线 \( y = 6x \) 相切的点的横坐标是__________。
答案:2三、简答题1. 请说明如何求函数 \( f(x) = \ln(x) \) 的导数。
答案:函数 \( f(x) = \ln(x) \) 的导数可以通过对数函数的导数公式求得,即 \( f'(x) = \frac{1}{x} \)。
2. 计算定积分 \( \int_{1}^{e} e^x dx \)。
答案:首先找到 \( e^x \) 的原函数,即 \( e^x \) 本身。
然后根据定积分的计算法则,代入上下限得到 \( e^e - e \)。
四、计算题1. 求曲线 \( y = x^2 + 3x - 2 \) 在 \( x = -1 \) 处的切线斜率及切点坐标。
答案:首先求导得到 \( y' = 2x + 3 \)。
将 \( x = -1 \) 代入得到切线斜率 \( m = 1 \)。
切点坐标为 \( (-1, 0) \)。
2. 计算由曲线 \( y = x^2 \),直线 \( y = 4x \) 及 \( x \) 轴所围成的平面图形的面积。
答案:首先求出两曲线的交点,然后计算定积分 \( \int_{0}^{2} (4x - x^2) dx \),结果为 \( \frac{16}{3} \)。
五、证明题1. 证明 \( \frac{d}{dx} [(x^2 + 1)^5] = 10x(x^2 + 1)^4 \)。
微积分定积分练习题(有答案)1利用定积分的几何意义计算1-x 2d x . 2.计算定积分⎠⎛12(x +1)d x . 3.定积分⎠⎛a b f (x )d x 的大小 ( )A .与f (x )和积分区间[a ,b ]有关,与ξi 的取法无关B .与f (x )有关,与区间[a ,b ]以及ξi 的取法无关C .与f (x )以及ξi 的取法有关,与区间[a ,b ]无关D .与f (x )、区间[a ,b ]和ξi 的取法都有关4.在求由x =a ,x =b (a <b ),y =0及y =f (x )(f (x )≥0)围成的曲边梯形的面积S 时,在区间[a ,b ]上等间隔地插入n -1个分点,分别过这些分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,下列结论中正确的个数是 ( )①n 个小曲边梯形的面积和等于S ;②n 个小曲边梯形的面积和小于S ;③n 个小曲边梯形的面积和大小S ;④n 个小曲边梯形的面积和与S 之间的大小关系不确定A .1 B .2 C .3 D .45.求由曲线y =e x ,直线x =2,y =1围成的曲边梯形的面积时,若选择x 为积分变量,则积分区间为 ( )A .[0,e2]B .[0,2]C .[1,2]D .[0,1]6.⎠⎛011d x 的值为( )A .0 B .1 C.12 D .2 7.lim n →+∞ ⎝ ⎛⎭⎪⎫1n +2n +…+n +1n ·1n写成定积分是________. 8.已知⎠⎛02f (x )d x =3,则⎠⎛02[f (x )+6]d x =________. 9.利用定积分的几何意义求⎠⎛069-(x -3)2d x . 10 求下列定积分:(1)⎠⎛12(x 2+2x +1)d x ; (2)⎠⎛0π(sin x -cos x )d x ; (3)⎠⎛12⎝ ⎛⎭⎪⎫x -x 2+1x d x ;(4)⎠⎛0-π(cos x +e x )d x . (5)⎠⎛01x 2d x (6)⎠⎛01(2x +1)d x ; (7)⎠⎛12⎝ ⎛⎭⎪⎫2x +1x d x (7)⎠⎛121x d x ; (8)⎠⎛01x 3d x ; (9)⎠⎛1-1e x d x .11 求y =-x 2与y =x -2围成图形的面积S.12.由直线x =12,x =2,曲线y =1x 及x 轴所围图形的面积为( )A.154B.174C.12ln2 D .2ln213.已知⎠⎛1-1(x 3+ax +3a -b )d x =2a +6且f (t )=⎠⎛0t (x 3+ax +3a -b )d x 为偶函数,求a ,b . 14.已知函数f (x )=⎠⎛0x (at 2+bt +1)d t 为奇函数,且f (1)-f (-1)=13,求a ,b 的值. 15. 求正弦曲线y =sin x 在[0,2π]上围成的图形的面积________16. (sin x +cos x )d x 的值是 ( )A .0 B.π4 C .2 D .417.下列各式中,正确的是( ) A.⎠⎛a b f ′(x )d x =f ′(b )-f ′(a ) B.⎠⎛ab f ′(x )d x =f ′(a )-f ′(b ) C.⎠⎛a b f ′(x )d x =f (b )-f (a ) D.⎠⎛ab f ′(x )d x =f (a )-f (b ) 18.已知自由落体的运动速度v =gt (g 为常数),则当t ∈[1,2]时,物体下落的距离为( )A.12g B .g C.32g D .2g19.如图中阴影部分面积用定积分表示为________.20e 2x d x =________.答案1. π2。
课题:定积分与微积分基本定理考纲要求:① 了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念 .② 了解微积分基本定理的含义.教材复习 1.定积分()1积分的定义及相关概念如果函数()f x 在区间[],a b 上连续,用分点0122n n a x x x x x b -=<<<<<=,将区间[],a b 等分成n 个小区间,在每个小区间[]1,i i x x -上任取一点i ξ(1,2,i =…,n ),作和式1()ni i b af n ξ=-∑,当n →∞时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[],a b 上的定积分,记作()baf x dx ⎰.其中, 与 分别叫做积分下限与积分上限,区间[],a b 叫做积分区间, 叫做被积函数, 叫做积分变量,()f x dx 叫做被积式.()2定积分的性质:①1ba dx =⎰;②()bakf x dx =⎰ (k 为常数);③[]()()baf xg x dx ±=⎰ ;()b af x dx =⎰()3定积分的几何意义:① 当函数()f x 在区间[],a b 上恒正时,定积分()baf x dx ⎰的几何意义是由直线x a =,x b =,0y =和曲线()y f x =所围成的曲边梯形的面积(左图中的阴影部分)即()baS f x dx =⎰; 当()f x ≤0时,()baS f x dx ==⎰()baf x dx ⎰.② 一般情况下,定积分()baf x dx ⎰的几何意义是介于x 轴、曲边()f x以及直线x a =,x b =之间的曲边梯形的面积的代数和(右图中的阴影部分),其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上的积分值的相反数.2.微积分基本定理如果()f x 是区间[],a b 上的连续函数,并且()()F x f x '=,那么()baf x dx =⎰,这个结论叫微积分基本定理,又叫牛顿—莱布尼兹公式.3.定积分的应用()1曲边梯形的面积:一般地,设由曲线()y f x =,()y g x =以及直线,x a x b ==所围成的平面图形的面积为S ,则S = (()()f x g x >).()2匀变速运动的路程公式:作变速直线运动的物体所经过的路程s,等于其速度函数()v v t =(()0v t ≥)在时间区间[],a b 上的定积分,即 ()bas v t dt =⎰.()3简单几何体的体积:若几何体是由曲线()y f x =与直线,x a x b ==以及x 轴所围成的区域绕x 轴旋转一周得到的,则其体积为V =基本知识方法:1.求定积分有两种途径:牛顿-莱布尼兹公式和定积分的几何意义;当被积函数较为复杂,定积分很难直接求出时,可考虑用定积分的几何意义求定积分.2.若()f x 是[],a a -连续的奇函数,则()aaf x dx -=⎰ ;若()f x 是[],a a -连续的偶函数,则()aaf x dx -=⎰()af x dx ⎰典例分析:考向一 定积分的计算(考虑牛顿-莱布尼兹公式和定积分的几何意义)问题1.计算下列积分:()1221x dx ⎰; ()20(sin cos )x x dx π-⎰; ()32132xdx -⎰;()41-⎰; ()5()11cos 5sin x x x dx --⎰考向二 利用定积分求面积问题2.求下图中阴影部分的面积.解:考向三 定积分的应用问题3.()1一物体以()238v t t t =-+()m s 的速度运动,在前30s 的平均速度为()2(2012福建)如图所示,在边长为1 的正方形OABC中任取一点P ,则点P 恰好取自阴影部分的概率为.A 14 .B 15 .C 16 .D 17课后作业:1.计算定积分:①220sin 2xdx π⎰; ②()0cos x x e dx π-+⎰;③;④⎰2. (2013届高三西工大附中六模))1x dx ⎰=3. (2013届高三湖北武汉调研)2302cos 12x dx π⎛⎫-= ⎪⎝⎭⎰.A -.B 12-.C 12.D走向高考:1.(2013北京)直线l 过抛物线C :24x y =的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于 .A 43 .B 2 .C 83 .D 132.(2013江西)若2211S x dx =⎰,2211S dx x=⎰,231,x S e dx =⎰则123,,S S S 的大小关系为.A 123S S S << .B 213S S S << .C 231S S S << .D 321S S S <<3.(2013湖北)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度()73v t t =-251t++(t 的单位:s ,v 的单位:/m s )行驶至停止.在此期间汽车继 续行驶的距离(单位;m )是.A 125ln5+ .B 11825ln 3+ .C 425ln5+ .D 450ln 2+4.(2013湖南)若209Tx dx =⎰,则常数T 的值为5.(2012江西)计算定积分()121sin xx dx -+=⎰6.(2010湖南) 421dx x⎰等于 .A 2ln 2- .B 2ln 2 .C ln 2- .D l n 2 7.(2011陕西)设20lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a =。
定积分与微积分基本定理自我检测:1.设连续函数f(x)>0,则当a<b 时,定积分∫()ba f x dx 的符号( )A.一定是正的B.一定是负的C.当0<a<b 时是正的,当a<b<0时是负的D.以上结论都不对 2. ∫22ππ- (1+cosx)dx 等于( )A.πB.2C.π-2D.π+23.用S 表示图中阴影部分的面积,则S 的值是( )A. ∫()c a f x dxB.| ∫()c a f x dx|C. ∫()b a f x dx+∫()c b f x dxD. ∫()c b f x dx-∫()ba f x dx4.设函数()m f x x ax =+的导函数f′(x)=2x+1,则∫21()f x -dx 的值等于( )A.56 B.12 C.23 D.165.直线y=2x+3与抛物线2y x =所围成的图形面积为 .巩固练习:1. ∫412x dx 等于( )A.-2ln2B.2ln2C.-ln2D.ln22. ∫10(e 2)xx +dx 等于( )A.1B.e-1C.eD.e+13.已知f(x)= 210101x x x ⎧,-≤≤,⎨,<<,⎩则∫11()f x -dx 的值为 ( )A.32B.23-C.23 D.434.函数f(x)= 2110cosx 0x x x π+,-≤<,⎧⎨,≤≤⎩ 的图象与x 轴所围成的封闭图形的面积为( )A.32 B.1 C.2 D.125.函数y=∫(x x -cos 22)t t ++dt( )A.是奇函数B.是偶函数C.是非奇非偶函数D.以上都不正确6.由直线330x x y ππ=-,=,=与曲线y=cos x 所围成的封闭图形的面积为( )A.12 B.1 C.32 D.3 7.由曲线32y x y x =,=围成的封闭图形的面积为( )A.112B.14 C.13 D.7128.曲线1x y =与直线y=x,x=2所围成的图形面积为 .9.如果∫10()f x dx=1, ∫20()f x dx=-1,则∫21()f x dx= .10.由曲线2y x =和直线x=0,x=1,y=2(01)t t ,∈,所围成的图形(阴影部分)的面积的最小值为 .11.计算下列定积分.(1) ∫2211(2)x x -dx; (2) ∫3212()x x +dx; (3) ∫30π (sinx-sin2x)dx.12.已知f(x)为二次函数,且f(-1)=2,f′(0)=0,∫10()f x dx=-2.(1)求f(x)的解析式;(2)求f(x)在[-1,1]上的最大值与最小值.。
3.3 定积分与微积分基本定理必备知识预案自诊知识梳理1.定积分的定义如果函数f (x )的图像在区间[a ,b ]上连续,用分点a=x 0<x 1<…<x i-1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i-1,x i ]上任取一点ξi (i=1,2,…,n ),作和式∑i=1nf (ξi )Δx=∑i=1n b -a nf (ξi ),当n →+∞时,上述和式无限接近某个常数,这个常数叫作函数f (x )在区间[a ,b ]上的定积分,记作∫baf (x )d x.2.定积分的几何意义(1)当函数f (x )的图像在区间[a ,b ]上连续且恒有f (x )≥0时,定积分∫baf (x )d x 的几何意义是由直线x=a ,x=b (a ≠b ),y=0和曲线y=f (x )所围成的曲边梯形(图①中阴影部分)的面积.图①图②(2)一般情况下,定积分∫baf (x )d x 的几何意义是介于x 轴、曲线y=f (x )以及直线x=a ,x=b之间的曲边梯形(图②中阴影部分)面积的代数和,其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数.3.定积分的性质(1)∫ba kf (x )d x= (k 为常数); (2)∫ba [f (x )±g (x )]d x= ;(3)∫baf (x )d x= (其中a<c<b ).4.微积分基本定理一般地,如果f (x )是图像在区间[a ,b ]上连续的函数,并且F'(x )=f (x ),那么∫baf (x )d x= .这个结论叫作微积分基本定理,又叫作牛顿—莱布尼茨公式,其中F(x)叫作f(x)的一个原函数.为了方便,我们常把F(b)-F(a)记作,即∫ba f(x)d x=F(x)|a b=F(b)-F(a).5.定积分在物理中的两个应用(1)变速直线运动的路程:如果变速直线运动物体的速度为v=v(t),那么从时刻t=a到t=b所经过的路程s=∫ba v(t)d t.(2)变力做功:某物体在变力F(x)的作用下,沿着与F(x)相同的方向从x=a移动到x=b时,力F(x)所做的功是W=∫baF(x)d x.1.定积分与曲边梯形的面积的关系:设图中阴影部分的面积为S,则(1)如图(1),S=∫baf(x)d x;(2)如图(2),S=-∫baf(x)d x;(3)如图(3),S=∫ca f(x)d x-∫bcf(x)d x;(4)如图(4),S=∫ba[f(x)-g(x)]d x.2.设函数f(x)在闭区间[-a,a]上连续,则有:(1)若f(x)是偶函数,∫a-a f(x)d x=2∫af(x)d x;(2)若f(x)是奇函数,则∫a-af(x)d x=0.考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)若函数y=f(x)的图像在区间[a,b]上连续,则∫ba f(x)d x=∫b a f(t)d t.()(2)若f(x)是图像连续的偶函数,则∫a-a f(x)d x=2∫af(x)d x;若f(x)是图像连续的奇函数,则∫a-af(x)d x=0.()(3)在区间[a,b]上连续的曲线y=f(x)和直线x=a,x=b(a≠b),y=0所围成的曲边梯形的面积S=∫ba|f(x)|d x.() (4)若∫baf(x)d x<0,则由y=f(x),x=a,x=b以及x轴所围成的图形一定在x轴下方.()(5)已知质点移动的速度v=10t,则质点从t=0到t=t0所经过的路程是∫t010t d t=5t02.()2.已知函数f(x)={√x,1<x≤4,x|x|,-1≤x≤1,则∫4-1f(x)d x=()A.14B.143C.7D.2123.汽车以v=(3t+2)m/s做变速运动时,在第1 s至2 s之间的1 s内经过的路程是()A.5 mB.112mC.6 mD.132m4.(2020湖南师大附中测试)直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为()A.2√2B.4√2C.2D.45.(2020江西南昌模拟)设a>0,若曲线y=√x与直线x=a,y=0所围成的封闭图形的面积为a2,则a=.关键能力学案突破考点定积分的计算【例1】计算下列定积分.(1)∫1(-x2+2x)d x;(2)∫π(sin x-cos x)d x;(3)∫21(e2x+1x)d x;(4)∫π2√1-sin2x d x.?解题心得计算定积分的步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差.(2)把定积分变形为求被积函数为上述函数的定积分.(3)分别用求导公式的逆运算找到一个相应的原函数.(4)利用微积分基本定理求出各个定积分的值,然后求其代数和.对点训练1(1)∫3-1(3x2-2x+1)d x;(2)∫21(x-1x)d x;(3)∫π-π(x3cos x)d x;(4)∫2|1-x|d x.考点利用定积分的几何意义求定积分【例2】已知函数f(x)={-x+2,x≤2,√1-(x-3)2,2<x≤4,则定积分∫412f(x)d x的值为()A.9+4π8B.1+4π4C.1+π2D.3+2π4?解题心得当被积函数的原函数不易求,而被积函数的图像与直线x=a,x=b,y=0所围成的曲边图形形状规则,面积易求时,利用定积分的几何意义求定积分.对点训练2(2020四川成都一中测试)∫1-1(√1-x2+sin x)d x=()A.π4B.π2C.πD.π2+2考点定积分的应用(多考向探究)考向1求曲线围成的平面图形的面积【例3】(1)如图所示,曲线y=x2-1,x=2,x=0,y=0围成的阴影部分的面积为() A.∫2|x2-1|d xB.∫21(1-x2)d x+∫1(x2-1)d xC.∫2(x2-1)d xD.∫21(x2-1)d x+∫1(1-x2)d x(2)(2020云南昆明一中测试)如图是函数y=cos2x-5π6在一个周期内的图像,则阴影部分的面积是()A.34B.5 4C.3 2D.32−√34?2已知曲线围成的面积求参数【例4】(2020安徽合肥摸底)由曲线f(x)=√x与y轴及直线y=m(m>0)围成的图形的面积为83,则m的值为()B.3C.1D.8?3定积分在概率中的应用【例5】(2020山西太原联考)如图,在矩形ABCD中的曲线是y=sin x,y=cos x的一部分,点A(0,0),B(π2,0),D(0,1),在矩形ABCD内随机取一点,则此点取自阴影部分的概率是()A.4π(√3-1) B.4π(√2-1) √3-1)π D.4(√2-1)π?4定积分在物理中的应用【例6】(1)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v(t)=7-3t+251+t(t 的单位:s,v的单位:m/s)行驶至停止.在此期间汽车行驶的距离(单位:m)是()A.1+25ln 5B.8+25ln 113C.4+25ln 5D.4+50ln 2(2)一物体在力F (x )={5,0≤x ≤2,3x +4,x >2(单位:N )的作用下沿与力F 相同的方向从x=0处运动到x=4(单位:m)处,则力F (x )做的功为 J .?解题心得1.对于求平面图形的面积问题,应首先画出平面图形的大致图形,然后根据图形特点,选择相应的积分变量及被积函数,并确定被积区间.2.已知图形的面积求参数,一般是先画出它的草图;然后确定积分的上、下限,确定被积函数,由定积分求出其面积,再应用方程的思想建立关于参数的方程,从而求出参数的值.3.与概率相交汇问题.解决此类问题应先利用定积分求出相应平面图形的面积,再用相应概率公式进行计算.4.利用定积分解决变速运动问题和变力做功问题时,关键是求出物体做变速运动的速度函数和变力与位移之间的函数关系,确定好积分区间,得到积分表达式,再利用微积分基本定理计算即得所求.对点训练3(1)如图,由两条曲线y=-x 2,y=-14x 2及直线y=-1所围成的平面图形的面积为 .(2)已知t>1,若∫t1(2x+1)d x=t 2,则t= .(3)如图所示,在一个边长为1的正方形AOBC 内,曲线y=x 3(x>0)和曲线y=√x 围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A.512B.16C.14D.13(4)汽车以36 km/h 的速度行驶,到某处需要减速停车,设汽车以加速度a=-2 m/s 2刹车,则从开始刹车到停车,汽车走的距离是 m .(5)设变力F (x )作用在质点M 上,使M 沿x 轴正向从x=1运动到x=10,已知F (x )=x 2+1,且方向和x 轴正向相同,则变力F (x )对质点M 所做的功为 J(x 的单位:m;力的单位:N).1.求定积分的方法:(1)利用定义求定积分,可操作性不强. (2)利用微积分基本定理求定积分的步骤如下: ①求被积函数f (x )的一个原函数F (x );②计算F (b )-F (a ).(3)利用定积分的几何意义求定积分. 2.定积分∫baf (x )d x 的几何意义是x 轴、曲线f (x )以及直线x=a ,x=b 围成的曲边梯形的面积的代数和.在区间[a ,b ]上连续的曲线y=f (x )和直线x=a ,x=b (a ≠b ),y=0所围成的曲边梯形的面积S=∫ba |f (x )|d x.1.被积函数若含有绝对值号,应去掉绝对值号,再分段积分.2.若积分式子中有几个不同的参数,则必须分清谁是被积变量.3.定积分式子中隐含的条件是积分上限大于积分下限.4.定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负.3.3 定积分与微积分基本定理必备知识·预案自诊知识梳理3.(1)k ∫ba f (x )d x(2)∫ba f (x )d x ±∫ba g (x )d x (3)∫c af (x )d x+∫bcf (x )d x4.F (b )-F (a ) F (x )|ab 考点自诊1.(1)√ (2)√ (3)√ (4)× (5)√2.B 函数f (x )={√x ,1<x ≤4,x |x |,-1≤x ≤1,则∫4-1f (x )d x=∫1-1x|x|d x+∫41√x d x=0+23x 3214=143.故选B .3.D S=∫21(3t+2)d t=(32t 2+2t) 12=92+2=132.故选D .4.D 由{y =4x ,y =x 3,得x=0或x=2或x=-2(舍),∴S=∫2(4x-x 3)d x=2x 2-14x 402=4.5.49 封闭图形如图阴影部分所示,则∫a√x d x=23x 32 0a =23a 32=a 2,解得a=49.关键能力·学案突破例1解(1)∫1(-x 2+2x )d x=∫1(-x 2)d x+∫12x d x=(-13x 3) 01+(x 2) 01=-13+1=23. (2)∫π0(sinx-cosx )dx=∫π0sinxd x-∫πcos x d x=(-cos x ) π0-sin x π0=2.(3)∫21(e 2x +1x )dx=∫21e 2x dx+∫211x x=12e d 2x12ln x 12=12e+4-12e 2+ln2ln1=e-4-12e 122+ln2. (4)∫π2√1-sin2x dx=∫π2|sinx-cos x|d x=∫π4(cos x-sin x )d x+∫π2π4(sin x-cos x )d x=(sinx+cos x ) 0π4+(-cos x-sin x ) π4π2=√2-1+(-1+√2)=2√2-2.对点训练1解(1)∫3-1(3x 2-2x+1)d x=(x 3-x 2+x )|-13=24. (2)∫21(x -1x )d x=12x 2-ln x 12=32-ln2.(3)因为y=x 3cos x 为奇函数, 所以∫π-π(x 3cos x )d x=0.(4)∫2|1-x|dx=∫1(1-x)dx+∫21(x-1)d x=(x -12x 2) 01+12x 2-x 12=(1-12)-0+12×22-2-12×12-1=1.例2A 因为f (x )={-x +2,x ≤2,√1-(x -3)2,2<x ≤4,所以∫412f (x )dx=∫212(-x+2)dx+∫42√1-(x -3)2d x ,∫212(-x+2)d x=-12x 2+2x122=98. ∫42√1-(x -3)2d x 的几何意义为以(3,0)为圆心,以r=1为半径的圆在x 轴上方的部分,因而S=12×π×12=π2, 所以∫412f (x )d x=98+π2=9+4π8.故选A .对点训练2B ∫1-1(√1-x 2+sin x )d x=∫1-1√1-x 2d x+∫1-1sin x d x ,∵y=sin x 为奇函数,∴∫1-1sin x d x=0. 又∫1-1√1-x 2d x 表示以坐标原点为圆心,以1为半径的圆的上半圆的面积,∴∫1-1√1-x 2d x=π2. ∴∫1-1(√1-x 2+sin x )d x=π2.例3(1)A (2)B (1)由曲线y=x 2-1,直线x=0,x=2和x 轴围成的封闭图形的面积为S=∫1(1-x 2)d x+∫21(x 2-1)d x.根据对称性,它和函数y=|x 2-1|,直线x=0,x=2和x 轴围成的封闭图形的面积相等,如图所示,即S=∫2|x 2-1|d x.(2)阴影部分的面积为S=-∫π6cos 2x-5π6d x+∫2π3π6cos 2x-5π6d x =-12sin 2x-5π60π6+12sin 2x-5π6π62π3= -12sin -π2-12sin -5π6+12sin π2−12sin -π2=14+1=54.故选B .例4A 由题知曲线f (x )=√x 与直线y=m 的交点为(m 2,m ),则∫m 20(m-√x )d x=mx-23x 320m 2=m 3-23m 3=83,解得m=2.例5BS 阴影=2∫π4(cos x-sin x )d x=2[sin x+cos x ] 0π4=2(√2-1),S ABCD =π2×1=π2,由测度比是面积比可得,此点取自阴影部分的概率是P=S 阴影SABCD=2(√2-1)π2=4π(√2-1).故选B .例6(1)C (2)36 (1)由v (t )=7-3t+251+t =0,可得t=4,t=-83(舍去),因此汽车从刹车到停止一共行驶了4s,此期间行驶的距离为∫40v (t )d t=∫47-3t+251+t d t=7t-32t 2+25ln(1+t )04=4+25ln5(m).(2)由题意知,力F (x )所做的功为W=∫42F (x )d x=∫425d x+∫42(3x+4)d x=5×2+32x 2+4x 24=10+32×42+4×4-32×22+4×2=36(J).对点训练3(1)43 (2)2 (3)A (4)25(5)342 (1)由{y =-x 2,y =-1得交点A (-1,-1),B (1,-1).由{y =-14x 2,y =-1得交点C (-2,-1),D (2,-1).所以所求面积S=2∫2(-14x 2+1)−∫1(-x 2+1)=43.(2)∫t1(2x+1)d x=(x 2+x ) 1t =t 2+t-2,从而得方程t 2+t-2=t 2,解得t=2.(3)此题为关于面积的几何概型,边长为1的正方形AOBC 的面积为1,叶形图(阴影部分)的面积S (A )=∫1(√x -x 3)d x=(23x 32-14x 4) 01=512. 所以所求概率P (A )=512.故选A .(4)t=0时,v 0=36km/h=10m/s ,刹车后,汽车减速行驶,速度为v(t)=v 0+at=10-2t ,由v (t )=0得t=5s,所以从刹车到停车,汽车所走过的路程为∫5v(t)dt=∫5(10-2t )d t=(10t-t 2)05=25(m).(5)变力F (x )=x 2+1使质点M 沿x 轴正向从x=1运动到x=10所做的功为W=∫101F (x )d x=∫101(x 2+1)d x=(13x 3+x) 110=342(J).。
x(1) (2)微积分公式与定积分计算练习 (附加三角函 数公式)、基本导数公式⑶ sin x = cosxsecx = secx tan xcscx = - cscx cot xcosx = -sin x2 ⑸ tanx 二 sec x2⑹ cot X i ; 一 CSCXx x e =e ⑽『F |na(11)In x Jx (12) arcs in x二(13)1 _x2 arccosx 二-(14)1 _x 2(15) ‘ 1arcta n x 21 +x・ 1arccot x(16)1 x 2(17)X 1(18)12. x二、导数的四则运算法则 u u v 「uvuv = u v uvv 2三、高阶导数的运算法则 (1)|l u X —V X " =U X " —V X "(2)[cu (x )F )=cu (n X x )u (ax +b )=a n u(n *ax +b )(3)- (4))F )=£ c ;u (n p xv (k )(x )k=0四、基本初等函数的 n 阶导数公式 ax "bn二 a x|n naDosgx +b )丫)=a n cos' ax +b + n ?五、微分公式与微分运算法则2d cosx - -sin xdx ⑸ d tan x \-sec xdx1d In x = — dx (11) x1 d arcta nx2dx (15)1 x1 d arccot x2dx(16)1 x六、微分运算法则 ⑴ d u _v 二 du _ dvvdu 「udvd uv i ;二vdu udv⑶ 七、基本积分公式sin ax b= a n sin ax b n -I2 J1一lax +b j⑹ 卯n ■,n a n!=-1nr(ax +b )In ax b l'二⑺n 」a (n —1学 (-1) ' 'nax bd c =0⑶ d sin x j=cosxdxd secx =secx tanxdx⑻ d cscx 二-cscx cot xdxd log a x- dx (12) xl na(13)1d (arcs in x )= ,—dx (1 -x 21 d arccosx :- - --------- = dx(14)亠 X 2⑴ kdx* c x'dx 二 x⑵xa x dx - c ⑷ In a e x dx =e x c ⑹.cosxdxfx c⑺sinxdx 一cosx c1 2 厂 dx 二 sec xdx 二 tan x c ⑻cos x2⑹ d cotx - - csc xdxd e x i=e x dx⑽ d a x 二 a x l nadx⑵ d cu 二 cdu2=csc xdx = - cot x c12 dx = arctan x c⑽T • xdx 二 arcs in x c八、补充积分公式ftanxdx = —In cosx +cJsecxdx = In secx + tanx +c Jcotxdx = In sinx +c Jcscxdx = In cscx - cot x + c1 , 1 x 二2 dx arcta n c a x a a(11)—dx*rcsin x c ,a 2-x 2a, , .^2 2 dx = In x x ±adx 二丄In十、分部积分法公式⑵形如arctanxdx,令u=arctanx, dv=x n dx形如X1 nxdx,令U = |nx , dv=x n dx⑶形如Qsinxdx,貴cosxdx令U宀in x’cosx均可。
微积分基础 练习题导数基本公式:积分基本公式: (c )′=0 ⎰dx 0=c(x a )′=ax a-1⎰dx x a =a x x a ln 1+ (a x )′= a x lna(a>0且a ≠1) ⎰dx a x =a a xln +c(a>0且a ≠1) (e x )′= e x⎰dx e x =e x +c (log a x )′=a x ln 1( a>0且a ≠1) (lnx )′=x 1 ⎰+=c x dx x ln 1(sinx )′=cosx⎰+-=c x xdx cos sin (cosx )′=- sinx ⎰+-=c x xdx sin cos(tanx )′=x 2cos 1 ⎰+=c x dx x tan cos 12(cotx )′=x 2sin 1 ⎰+-=c x dx x n cot si 12一、单项选择题1.设函数y=xsinx,则该函数是( )。
A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数2.当x →+∞时,下列变量为无穷小量的是( )。
A.xx sin B.ln(1+x) C.xsinx1 D. x x +1 3.若函数)(x f 在点x 0处可导,则( )是错误的。
A.函数)(x f 在点x 0处有定义B.函数)(x f 在点x 0处连续C.函数)(x f 在点x 0处可微 C.lim )(x f =A,但A ≠)(x 0f4.若)0()(>+=x x x x f ,则=dx x f )(( )。
A.c x x ++23223 B. c x x ++2 C.c x x ++ D.2323221x x ++c 5.下列微分方程串为可分离变量方程的是() A.)ln(y x dx dy ⋅= B. x y e dxdy += C. y x e e dx dy += D. )ln(y x dx dy += 二、填空题6.若函数74)2(2++=+x x x f ,则)(x f =7.若函数=)(x f ==⎩⎨⎧=≠+k x x k x x 处连续,则在00,0,22 8.函数2)1(2+=x y 的单调增加区间是9.dx e x 20⎰∞-=10.微分方程()x y xy y sin 45)4(3=+''的阶数为三、计算题11.计算极限234222lim +--→x x x x 。
年 级 高二 学科数学内容标题 定积分的计算 编稿老师马利军一、教学目标:1。
理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题。
2。
理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题。
二、知识要点分析1. 定积分的概念:函数)(x f 在区间[a ,b ]上的定积分表示为:⎰badx x f )(2. 定积分的几何意义:(1)当函数f (x )在区间[a ,b]上恒为正时,定积分⎰badx x f )(的几何意义是:y=f(x)与x=a ,x=b 及x 轴围成的曲边梯形面积,在一般情形下.⎰b adx x f )(的几何意义是介于x 轴、函数f (x )的图象、以及直线x=a,x=b 之间的各部分的面积代数和,在x 轴上方的面积取正号,x 轴下方的面积取负号。
在图(1)中:0s dx )x (f ba>=⎰,在图(2)中:0s dx )x (f ba<=⎰,在图(3)中:dx)x (f ba⎰表示函数y=f (x )图象及直线x=a,x=b 、x 轴围成的面积的代数和。
注:函数y=f (x )图象与x 轴及直线x=a ,x=b 围成的面积不一定等于⎰badx x f )(,仅当在区间[a,b ]上f (x )恒正时,其面积才等于⎰badx x f )(。
3. 定积分的性质,(设函数f (x),g (x )在区间[a,b]上可积) (1)⎰⎰⎰±=±bab abadx )x (g dx )x (f dx )]x (g )x (f [(2)⎰⎰=bab a dx x f k dx x kf )()(,(k 为常数)(3)⎰⎰⎰+=bcbac adx x f dx x f dx x f )()()((4)若在区间[a ,b ]上,⎰≥≥badx x f x f 0)(,0)(则推论:(1)若在区间[a,b]上,⎰⎰≤≤babadx x g dx x f x g x f )()(),()(则(2)⎰⎰≤babadx x f dx x f |)(||)(|(3)若f(x )是偶函数,则⎰⎰=-a aadx x f dx x f 0)(2)(,若f (x )是奇函数,则0)(=⎰-aadx x f4。
定积分的计算公式例题讲解在微积分中,定积分是一个重要的概念,它可以用来计算曲线下面积、求解体积和质量等问题。
定积分的计算公式是一种基本的工具,掌握这些公式可以帮助我们更好地理解和应用微积分知识。
本文将通过例题讲解的方式,详细介绍定积分的计算公式及其应用。
首先,我们来回顾一下定积分的定义。
对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b] f(x) dx。
其中,f(x)是被积函数,dx表示自变量x的微元。
定积分的计算公式可以帮助我们求解这个积分,从而得到曲线在区间[a, b]上的面积。
下面,我们通过几个例题来讲解定积分的计算公式。
例题1,计算定积分∫[0, 2] x^2 dx。
解:根据定积分的计算公式,我们可以将被积函数展开成一个无穷小区间上的和:∫[0, 2] x^2 dx = lim(n→∞) Σ(i=1→n) f(xi)Δx。
其中,Δx = (b-a)/n,xi是区间[a, b]上的任意一点,f(xi)是函数在xi处的取值。
在这个例题中,我们可以将区间[0, 2]等分成n个小区间,每个小区间的长度为Δx。
然后,在每个小区间上取一个点xi,计算出f(xi)的值,最后将这些值相加并取极限即可得到定积分的值。
具体来说,我们可以取n=4,将区间[0, 2]等分成4个小区间,每个小区间的长度为Δx=2/4=0.5。
然后,在每个小区间上取一个点xi,分别计算出f(xi)的值:x1 = 0.25, f(x1) = (0.25)^2 = 0.0625。
x2 = 0.75, f(x2) = (0.75)^2 = 0.5625。
x3 = 1.25, f(x3) = (1.25)^2 = 1.5625。
x4 = 1.75, f(x4) = (1.75)^2 = 3.0625。
将这些值相加并乘以Δx,得到定积分的近似值:Σ(i=1→4) f(xi)Δx = 0.06250.5 + 0.56250.5 + 1.56250.5 + 3.06250.5 = 2.25。
微积分公式与定积分计算练习(附加三角函数公式)一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()xxe e '= ⑽()ln xx a a a'= ⑾()1ln x x '=⑿()1log ln x ax a '=⒀()arcsin x '= ⒁()arccos x '= ⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则(1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦ (4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式 (1)()()!n n x n = (2)()()n ax b n ax be a e ++=⋅ (3)()()ln n x x n a a a=(4)()()sin sin2n nax b a ax b nπ⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(5)()()cos cos2n nax b a ax b nπ⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(6)()()()11!1n nnna nax b ax b+⋅⎛⎫=-⎪+⎝⎭+(7)()()()()()11!ln1nn nna nax bax b-⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c=⑵()1d x x dxμμμ-=⑶()sin cosd x xdx=⑷()cos sind x xdx=-⑸()2tan secd x xdx=⑹()2cot cscd x xdx=-⑺()sec sec tand x x xdx=⋅⑻()csc csc cotd x x xdx=-⋅⑼()x xd e e dx=⑽()lnx xd a a adx=⑾()1lnd x dxx=⑿()1loglnxad dxx a=⒀()arcsind x=⒁()arccosd x=⒂()21arctan1d x dxx=+⒃()21arccot1d x dxx=-+六、微分运算法则⑴()d u v du dv±=±⑵()d cu cdu=⑶()d uv vdu udv=+⑷2u vdu udvdv v-⎛⎫=⎪⎝⎭七、基本积分公式⑴kdx kx c=+⎰⑵11xx dx cμμμ+=++⎰⑶lndxx cx=+⎰⑷ln xxa a dx c a =+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰ ⑽21arctan 1dx x c x =++⎰⑾arcsin x c=+⎰八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan x dx c a x a a =++⎰2211ln 2x adx c x a a x a -=+-+⎰arcsinxc a =+⎰ln x c=++⎰九、下列常用凑微分公式十、分部积分法公式⑴形如n axx e dx⎰,令nu x=,axdv e dx=形如sinnx xdx⎰令nu x=,sindv xdx=形如cosnx xdx⎰令nu x=,cosdv xdx=⑵形如arctannx xdx⎰,令arctanu x=,ndv x dx=形如ln nx xdx⎰,令ln u x =,ndv x dx = ⑶形如sin axe xdx⎰,cos axe xdx⎰令,sin ,cos axu e x x =均可。
十一、第二换元积分法中的三角换元公式sin x a t =tan x a t =sec x a t =【特殊角的三角函数值】(1)sin 00= (2)1sin62π=(3)sin32π=(4)sin 12π= (5)sin 0π=(1)cos01= (2)cos62π=(3)1cos 32π= (4)cos 02π= (5)cos 1π=-(1)tan 00= (2)tan63π=(3)tan 3π=4)tan2π不存在(5)tan 0π=(1)cot 0不存在 (2)cot6π=3)cot33π=(4)cot 02π=(5)cot π不存在十二、重要公式(1)0sin lim 1x x x →= (2)()10lim 1x x x e →+= (3))1n a o >=(4)1n = (5)limarctan 2x x π→∞=(6)lim tan 2x arc x π→-∞=-(7)limarccot 0x x →∞= (8)lim arccot x x π→-∞= (9)lim 0x x e →-∞=(10)lim x x e →+∞=∞(11)0lim 1xx x +→=(12)00101101lim 0n n n m m x m a n m b a x a x a n m b x b x b n m--→∞⎧=⎪⎪+++⎪=<⎨+++⎪∞>⎪⎪⎩L L (系数不为0的情况)十三、下列常用等价无穷小关系(0x →)sin x x : tan x x : arcsin x x : arctan x x :211cos 2x x-:()ln 1x x+: 1x e x -: 1ln xa x a -:()11x x∂+-∂:十四、三角函数公式 1.两角和公式sin()sin cos cos sin A B A B A B +=+ sin()sin cos cos sin A B A B A B -=- cos()cos cos sin sin A B A B A B +=- cos()cos cos sin sin A B A B A B -=+tan tan tan()1tan tan A B A B A B ++=- tan tan tan()1tan tan A BA B A B --=+ cot cot 1cot()cot cot A B A B B A ⋅-+=+ cot cot 1cot()cot cot A B A B B A ⋅+-=- 2.二倍角公式sin 22sin cos A A A = 2222cos 2cos sin 12sin 2cos 1A A A A A =-=-=-22tan tan 21tan A A A =-3.半角公式sin2A =cos 2A =sin tan21cos A A A ==+sin cot 21cos A A A ==-4.和差化积公式sin sin 2sincos 22a b a b a b +-+=⋅ sin sin 2cos sin 22a b a ba b +--=⋅ cos cos 2cos cos 22a b a b a b +-+=⋅ cos cos 2sin sin22a b a ba b +--=-⋅ ()sin tan tan cos cos a b a b a b ++=⋅5.积化和差公式()()1sin sin cos cos 2a b a b a b =-+--⎡⎤⎣⎦ ()()1cos cos cos cos 2a b a b a b =++-⎡⎤⎣⎦()()1sin cos sin sin 2a b a b a b =++-⎡⎤⎣⎦ ()()1cos sin sin sin 2a b a b a b =+--⎡⎤⎣⎦6.万能公式22tan2sin 1tan 2aa a=+221tan 2cos 1tan 2a a a -=+ 22tan2tan 1tan 2aa a=-7.平方关系22sin cos 1x x += 22sec n 1x ta x -= 22csc cot 1x x -=8.倒数关系tan cot 1x x ⋅= sec cos 1x x ⋅= c sin 1cs x x ⋅= 9.商数关系sin tan cos x x x =cos cot sin xx x =十五、几种常见的微分方程1.可分离变量的微分方程:()()dyf xg y dx = , ()()()()11220f xg y dx f x g y dy += 2.齐次微分方程:dy y f dxx ⎛⎫= ⎪⎝⎭3.一阶线性非齐次微分方程:()()dyp x y Q xdx+=解为:()()()p x dx p x dxy e Q x e dx c-⎡⎤⎰⎰=+⎢⎥⎣⎦⎰高考定积分应用常见题型大全一.选择题(共21小题)1.(2012•福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.2.(2010•山东)由曲线y=x2,y=x3围成的封闭图形面积为()A.B.C.D.3.设f(x)=,函数图象与x轴围成封闭区域的面积为()A.B.C.D.4.定积分的值为()A.B.3+ln2C.3﹣ln2D.6+ln25.如图所示,曲线y=x2和曲线y=围成一个叶形图(阴影部分),其面积是()A.1B.C.D.6.=()A.πB.2C.﹣πD.47.已知函数f(x)的定义域为[﹣2,4],且f(4)=f(﹣2)=1,f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示,则平面区域f(2a+b)<1(a≥0,b≥0)所围成的面积是()A.2B.4C.5D.88.∫01e x dx与∫1e x dx相比有关系式()A.∫01e x dx<∫1e x dxB.∫1e x dx>∫1e x dxC.(∫01e x dx)2=∫1e x dxD.∫1e x dx=∫1e x dx9.若a=,b=,则a与b的关系是()A.a<b B.a>b C.a=b D.a+b=0 10.的值是()A.B.C.D.11.若f(x)=(e为自然对数的底数),则=()A.+e2﹣e B.+eC.﹣e2+eD.﹣+e2﹣e12.已知f(x)=2﹣|x|,则()A.3B.4C.3.5D.4.513.设f(x)=3﹣|x﹣1|,则∫﹣22f(x)dx=()A.7B.8C.7.5D.6.5 14.积分=()A.B.C.πa2D.2πa215.已知函数的图象与x轴所围成图形的面积为()A.1/2B.1C.2D.3/216.由函数y=cosx(0≤x≤2π)的图象与直线及y=1所围成的一个封闭图形的面积是()A.4B.C.D.2π17.曲线y=x3在点(1,1)处的切线与x轴及直线x=1所围成的三角形的面积为()A.B.C.D.18.图中,阴影部分的面积是()A.16B.18C.20D.2219.如图中阴影部分的面积是()A.B.C.D.20.曲线与坐标轴围成的面积是()A.B.C.D.21.如图,点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=高考定积分应用常见题型大全(含答案)参考答案与试题解析一.选择题(共21小题)1.(2012•福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.考点:定积分在求面积中的应用;几何概型.501974专题:计算题.分析:根据题意,易得正方形OABC的面积,观察图形可得,阴影部分由函数y=x与y=围成,由定积分公式,计算可得阴影部分的面积,进而由几何概型公式计算可得答案.解答:解:根据题意,正方形OABC的面积为1×1=1,而阴影部分由函数y=x与y=围成,其面积为∫01(﹣x)dx=(﹣)|1=,则正方形OABC中任取一点P,点P取自阴影部分的概率为=;故选C.点评:本题考查几何概型的计算,涉及定积分在求面积中的应用,关键是正确计算出阴影部分的面积.2.(2010•山东)由曲线y=x2,y=x3围成的封闭图形面积为()A.B.C.D.考点:定积分在求面积中的应用.501974专题:计算题.分析:要求曲线y=x2,y=x3围成的封闭图形面积,根据定积分的几何意义,只要求∫01(x2﹣x3)dx 即可.解答:解:由题意得,两曲线的交点坐标是(1,1),(0,0)故积分区间是[0,1]1(x2﹣x3)dx═,所求封闭图形的面积为∫故选A.点评:本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积.3.设f(x)=,函数图象与x轴围成封闭区域的面积为()A.B.C.D.考点:分段函数的解析式求法及其图象的作法;函数的图象;定积分在求面积中的应用.501974专题:计算题;数形结合.分析:利用坐标系中作出函数图象的形状,通过定积分的公式,分别对两部分用定积分求出其面积,再把它们相加,即可求出围成的封闭区域曲边图形的面积.解答:解:根据题意作出函数的图象:根据定积分,得所围成的封闭区域的面积S=故选C点评:本题考查分段函数的图象和定积分的运用,考查积分与曲边图形面积的关系,属于中档题.解题关键是找出被积函数的原函数,注意运算的准确性.4.定积分的值为()A.B.3+ln2C.3﹣ln2D.6+ln2考点:定积分;微积分基本定理;定积分的简单应用.501974专题:计算题.分析:由题设条件,求出被积函数的原函数,然后根据微积分基本定理求出定积分的值即可.解答:2=(22+ln2)﹣(12+ln1)=3+ln2解:=(x2+lnx)|1故选B.点评:本题考查求定积分,求解的关键是掌握住定积分的定义及相关函数的导数的求法,属于基础题.5.如图所示,曲线y=x2和曲线y=围成一个叶形图(阴影部分),其面积是()A.1B.C.D.考点:定积分;定积分的简单应用.501974专题:计算题.分析:联立由曲线y=x2和曲线y=两个解析式求出交点坐标,然后在x∈(0,1)区间上利用定积分的方法求出围成的面积即可.解答:解:联立得,解得或,设曲线与直线围成的面积为S,1(﹣x2)dx=则S=∫故选:C点评:考查学生求函数交点求法的能力,利用定积分求图形面积的能力.6.=()A.πB.2C.﹣πD.4考点:微积分基本定理;定积分的简单应用.501974专题:计算题.分析:b f(x)dx=F由于F(x)=x2+sinx为f(x)=x+cosx的一个原函数即F′(x)=f(x),根据∫ab公式即可求出值.(x)|a解答:解:∵(x2++sinx)′=x+cosx,∴(x+cosx)dx=(x2+sinx)=2.故答案为:2.点评:此题考查学生掌握函数的求导法则,会求函数的定积分运算,是一道基础题.7.已知函数f(x)的定义域为[﹣2,4],且f(4)=f(﹣2)=1,f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示,则平面区域f(2a+b)<1(a≥0,b≥0)所围成的面积是()A.2B.4C.5D.8考点:定积分的简单应用.501974分析:根据导函数的图象,分析原函数的性质或作出原函数的草图,找出a、b满足的条件,画出平面区域,即可求解.解答:解:由图可知[﹣2,0)上f′(x)<0,∴函数f(x)在[﹣2,0)上单调递减,(0,4]上f′(x)>0,∴函数f(x)在(0,4]上单调递增,故在[﹣2,4]上,f(x)的最大值为f(4)=f(﹣2)=1,∴f(2a+b)<1(a≥0,b≥0)⇒表示的平面区域如图所示:故选B.点评:本题考查了导数与函数单调性的关系,以及线性规划问题的综合应用,属于高档题.解决时要注意数形结合思想应用.8.∫01e x dx与∫1e x dx相比有关系式()A.∫01e x dx<∫1e x dxB.∫1e x dx>∫1e x dxC.(∫01e x dx)2=∫1e x dxD.∫1e x dx=∫1e x dx考点:定积分的简单应用;定积分.501974专题:计算题.分析:根据积分所表示的几何意义是以直线x=0,x=1及函数y=e x或y=e x在图象第一象限内圆弧与坐标轴围成的面积,只需画出函数图象观察面积大小即可.解答:解:∫01e x dx表示的几何意义是以直线x=0,x=1及函数y=e x在图象第一象限内圆弧与坐标轴围成的面积,∫1e x dx表示的几何意义是以直线x=0,x=1及函数y=e x在图象第一象限内圆弧与坐标轴围成的面积,如图∵当0<x<1时,e x x>e x,故有:∫01e x dx>∫1e x dx故选B.点评:本题主要考查了定积分,定积分运算是求导的逆运算,解题的关键是求原函数,也可利用几何意义进行求解,属于基础题.9.若a=,b=,则a与b的关系是()A.a<b B.a>b C.a=b D.a+b=0考点:定积分的简单应用.501974专题:计算题.分析:a==(﹣cosx)=(﹣cos2)﹣(﹣cos)=﹣cos2≈sin24.6°,b==sinx=sin1﹣sin0=sin1≈sin57.3°.解答:解:∵a==(﹣cosx)=(﹣cos2)﹣(﹣cos)=﹣cos2≈﹣cos114.6°=sin24.6°,b==sinx=sin1﹣sin0=sin1≈sin57.3°,∴b>a.故选A.点评:本题考查定积分的应用,是基础题.解题时要认真审题,仔细解答.10.的值是()A.B.C.D.考点:定积分的简单应用.501974专题:计算题.分析:根据积分所表示的几何意义是以(1,0)为圆心,1为半径第一象限内圆弧与抛物线y=x2在第一象限的部分坐标轴围成的面积,只需求出圆的面积乘以四分之一与抛物线在第一象限的部分与x轴和直线x=1围成的图形的面积即可.解答:解;积分所表示的几何意义是以(1,0)为圆心,1为半径第一象限内圆弧与抛物线y=x2在第一象限的部分坐标轴围成的面积,故只需求出圆的面积乘以四分之一与抛物线在第一象限的部分与x轴和直线x=1围成的图形的面积之差.即=﹣=﹣=故答案选A点评:本题主要考查了定积分,定积分运算是求导的逆运算,解题的关键是求原函数,也可利用几何意义进行求解,属于基础题11.若f(x)=(e为自然对数的底数),则=()A.+e2﹣e B.+eC.﹣e2+eD.﹣+e2﹣e考点:定积分的简单应用.501974专题:计算题.分析:由于函数为分段函数,故将积分区间分为两部分,进而分别求出相应的积分,即可得到结论.解答:解:===故选C.点评:本题重点考查定积分,解题的关键是将积分区间分为两部分,再分别求出相应的积分.12.已知f(x)=2﹣|x|,则()A.3B.4C.3.5D.4.5考点:定积分的简单应用.501974专题:计算题.分析:由题意,,由此可求定积分的值.解答:解:由题意,=+=2﹣+4﹣2=3.5故选C.点评:本题考查定积分的计算,解题的关键是利用定积分的性质化为两个定积分的和.13.设f(x)=3﹣|x﹣1|,则∫﹣22f(x)dx=()A.7B.8C.7.5D.6.5考点:定积分的简单应用.501974专题:计算题.分析:∫﹣22f(x)dx=∫﹣22(3﹣|x﹣1|)dx,将∫﹣22(3﹣|x﹣1|)dx转化成∫﹣21(2+x)dx+∫12(4﹣x)dx,然后根据定积分的定义先求出被积函数的原函数,然后求解即可.解答:解:∫﹣22f(x)dx=∫﹣22(3﹣|x﹣1|)dx=∫﹣21(2+x)dx+∫12(4﹣x)dx=(2x+x2)|﹣21+( 4x﹣x2)|12=7故选A.点评:本题主要考查了定积分,定积分运算是求导的逆运算,同时考查了转化与划归的思想,属于基础题.14.积分=()A.B.C.πa2D.2πa2考点:定积分的简单应用;定积分.501974专题:计算题.分析:本题利用定积分的几何意义计算定积分,即求被积函数y=与x轴所围成的图形的面积,围成的图象是半个圆.解答:解:根据定积分的几何意义,则表示圆心在原点,半径为3的圆的上半圆的面积,故==.故选B.点评:本小题主要考查定积分、定积分的几何意义、圆的面积等基础知识,考查考查数形结合思想.属于基础题.15.已知函数的图象与x轴所围成图形的面积为()A.1/2B.1C.2D.3/2考点:定积分在求面积中的应用.501974专题:计算题.分析:根据几何图形用定积分表示出所围成的封闭图形的面积,求出函数f(x)的积分,求出所求即可.解答:解:由题意图象与x轴所围成图形的面积为1+sinx=(﹣)|=+1=故选D.点评:本题考查定积分在求面积中的应用,求解的关键是正确利用定积分的运算规则求出定积分的值,本题易因为对两个知识点不熟悉公式用错而导致错误,牢固掌握好基础知识很重要.16.由函数y=cosx(0≤x≤2π)的图象与直线及y=1所围成的一个封闭图形的面积是()A.4B.C.D.2π考点:定积分在求面积中的应用.501974专题:计算题.分析:由题意可知函数y=cosx(0≤x≤2π)的图象与直线及y=1所围成的一个封闭图形可利用定积分进行计算,只要求∫(1﹣cosx)dx即可.然后根据积分的运算公式进行求解即可.解答:解:由函数y=cosx(0≤x≤2π)的图象与直线及y=1所围成的一个封闭图形的面积,就是:∫0(1﹣cosx)dx=(x﹣sinx)|=.故选B.点评:本题考查余弦函数的图象,定积分,考查计算能力,解题的关键是两块封闭图形的面积之和就是上部直接积分减去下部积分.17.曲线y=x3在点(1,1)处的切线与x轴及直线x=1所围成的三角形的面积为()A.B.C.D.考点:定积分在求面积中的应用.501974专题:计算题.分析:欲求所围成的三角形的面积,先求出在点(1,1)处的切线方程,只须求出其斜率的值即可,故要利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率,从而问题解决.解答:解:∵y=x3,∴y'=3x2,当x=1时,y'=3得切线的斜率为3,所以k=3;所以曲线在点(1,1)处的切线方程为:y﹣1=3×(x﹣1),即3x﹣y﹣2=0.令y=o得:x=,∴切线与x轴、直线x=1所围成的三角形的面积为:S=×(1﹣)×1=故选B.点评:本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,属于基础题.18.图中,阴影部分的面积是()A.16B.18C.20D.22考点:定积分在求面积中的应用.501974专题:计算题.分析:从图象中知抛物线与直线的交点坐标分别为(2,﹣2),(8,4).过(2,﹣2)作x轴的垂线把阴影部分分为S1,S2两部分,利用定积分的方法分别求出它们的面积并相加即可得到阴影部分的面积.解答:解:从图象中知抛物线与直线的交点坐标分别为(2,﹣2),(8,4).过(2,﹣2)作x轴的垂线把阴影部分分为S1,S2两部分,分别求出它们的面积A1,A2:A1=∫2[]dx=2 dx=,A2=∫28[]dx=所以阴影部分的面积A=A1+A2==18故选B.点评:本题考查定积分在求面积中的应用,解题是要注意分割,关键是要注意在x轴下方的部分积分为负(积分的几何意义强调代数和),属于基础题.考查学生利用定积分求阴影面积的方法的能力.19.如图中阴影部分的面积是()A.B.C.D.考点:定积分在求面积中的应用.501974专题:计算题.分析:求阴影部分的面积,先要对阴影部分进行分割到三个象限内,分别对三部分进行积分求和即可.解答:解:直线y=2x与抛物线y=3﹣x2解得交点为(﹣3,﹣6)和(1,2)抛物线y=3﹣x2与x轴负半轴交点(﹣,0)设阴影部分面积为s,则==所以阴影部分的面积为,故选C.点评:本题考查定积分在求面积中的应用,解题是要注意分割,关键是要注意在x轴下方的部分积分为负(积分的几何意义强调代数和),属于基础题.20.曲线与坐标轴围成的面积是()A.B.C.D.考点:定积分在求面积中的应用.501974专题:计算题.分析:先根据题意画出区域,然后依据图形得到积分下限为0,积分上限为,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.解答:解:先根据题意画出图形,得到积分上限为,积分下限为0曲线与坐标轴围成的面积是:S=∫(﹣)dx+∫dx=∴围成的面积是故选D.点评:本题主要考查了学生会求出原函数的能力,以及考查了数形结合的思想,同时会利用定积分求图形面积的能力,解题的关键就是求原函数.21.如图,点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=考点:定积分在求面积中的应用.501974 专题:计算题;数形结合.序分析:根据圆的对称性以及反比例函数的对称性可得,阴影部分的面积等于圆的面积的,即可求得圆的半径,再根据P在反比例函数的图象上,以及在圆上,即可求得k的值.解答:解:设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π解得:r=2.∵点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点.∴3a2=k 且=r∴a2=×(2)2=4.∴k=3×4=12,则反比例函数的解析式是:y=.故选C.点评:本题主要考查反比例函数图象的对称性的知识点,解决本题的关键是利用反比例函数的对称性得到阴影部分与圆之间的关系.页脚内容31。