综述性文献1 Photovoltaics technology overview
- 格式:pdf
- 大小:538.92 KB
- 文档页数:10
无人机文献综述模板范文全文共四篇示例,供读者参考第一篇示例:一、无人机的发展历史无人机的概念最早可以追溯到20世纪初,当时美国军方开始研发无人飞机,用于军事侦察和攻击。
随着技术的不断进步,无人机逐渐发展成为一种多功能飞行器,被广泛应用于各个领域。
无人机的发展历程可以分为以下几个阶段:1. 初期阶段(20世纪初至20世纪60年代):无人机仅被用于特定的军事任务,如侦察、攻击等。
2. 中期阶段(20世纪70年代至20世纪90年代):无人机逐渐在民用领域得到应用,如航拍摄影、科学研究等。
3. 发展阶段(21世纪初至今):无人机成为一种主流的飞行器,被广泛应用于军事、民用、商业等领域。
二、无人机在军事领域的应用无人机在军事领域的应用最早被军方所采用,主要用于侦察、监视、攻击等任务。
随着技术的不断进步,无人机在军事领域的作用日益凸显,取代了传统的有人飞机,成为军事作战的利器。
具体的应用包括:1. 侦察任务:无人机可以携带各种传感器,如红外线、激光雷达等,用于监视和侦察敌方目标。
2. 攻击任务:无人机可以携带导弹、炸弹等武器,用于对敌方目标进行精确打击。
3. 通信中继:无人机可以携带通信设备,用于建立通信链路,提供通信支持。
无人机在军事领域的应用不仅提高了战场的情报获取能力和打击能力,还减少了军事人员的伤亡风险,降低了战争的成本。
无人机已经成为现代军事作战不可或缺的一部分。
除了军事领域,无人机在民用领域的应用也越来越广泛。
随着技术的不断进步,无人机已经成为一种普遍的工具,被广泛用于各种领域,如:1. 航拍摄影:无人机可以搭载高清摄像头,用于拍摄航拍影视作品、旅游宣传片等。
2. 农业作业:无人机可以搭载各种农业传感器,用于农田的监测、喷洒、播种等作业。
3. 灾害监测:无人机可以在灾害发生后,迅速到达灾区,用于灾害的监测和救援。
无人机在民用领域的应用不仅提高了工作效率,降低了成本,还拓展了工作范围,为人们的生产生活带来了便利。
一、机器视觉与图像采集的研究的意义“作为一项关键性的自动化技术,机器视觉在发展中国家中对经济的现代化非常重要。
为了在世界市场中进行竞争,发展中经济不能无限期的依赖于廉价劳动力。
“ AIA市场分析员Kellett说。
同样地,现代化必须实现高效率、高生产率以及高质量。
这也是机器视觉的作用所在,”对机器视觉长期需求这样的趋势是发展中国家实现经济现代化的基础。
因此,机器视觉对于世界经济的发展将越来越重要。
”二、机器视觉与图像采集的研究的现状国外机器视觉发展的起点难以准确考证,其大致的发展历程是:在机器视觉发展的历程中,有3个明显的标志点,一是机器视觉最先的应用来自“机器人”的研制,也就是说,机器视觉首先是在机器人的研究中发展起来的;二是20世纪70年代CCD图像传感器的出现,CCD摄像机替代硅靶摄像是机器视觉发展历程中的一个重要转折点;三是20世纪80年代CPU、DSP等图像处理硬件技术的飞速进步,为机器视觉飞速发展提供了基础条件。
国内机器视觉发展的大致历程:中国正在成为世界机器视觉发展最活跃的地区之一,其中最主要的原因是中国已经成为全球的加工中心,许许多多先进生产线己经或正在迁移至中国,伴随这些先进生产线的迁移,许多具有国际先进水平的机器视觉系统也进入中国。
对这些机器视觉系统的维护和提升而产生的市场需求也将国际机器视觉企业吸引而至,国内的机器视觉企业在与国际机器视觉企业的学习与竞争中不断成长。
三、机器视觉与图像采集技术在各个领域的应用视觉技术的最大优点是与被观测对象无接触,因此,对观测与被观测者都不会产生任何损伤,十分安全可靠,这是其它感觉方式无法比拟的. 理论上,人眼观察不到的范围机器视觉也可以观察,例如红外线、微波、超声波等,而机器视觉则可以利用这方面的传感器件形成红外线、微波、超声波等图像. 另外,人无法长时间地观察对象,机器视觉则无时间限制,而且具有很高的分辨精度和速度. 所以,机器视觉应用领域十分广泛,可分为工业、科学研究、军事和民用4 大领域.3. 1 工业领域工业领域是机器视觉应用中比重最大的领域,按照功能又可以分成4 类:产品质量检测、产品分类、产品包装、机器人定位. 其应用行业包括印刷包装、汽车工业、半导体材料/ 元器件/ 连接器生产、药品/ 食品生产、烟草行业、纺织行业等.下面以纺织行业为例具体阐述机器视觉在工业领域的应用[9 ] .在纺织企业中,视觉检测是工业应用中质量控制的主要组成部分,用机器视觉代替人的视觉可以克服人工检测所造成的各种误差,大大提高检测精度和效率. 正是由于视觉系统的高效率和非接触性,机器视觉在纺织检测中的应用越来越广泛[10 - 12 ] ,在许多方面已取得了成效.机器视觉可用于检测与纺织材料表面有关的性能指标见表4. 目前主要的研究内容可分为3 大类: 纤维、纱线、织物. 由于织物疵点检测(在线检测) 需要很高的计算速度,因此,设备费用比较昂贵. 目前国内在线检测的应用比较少,主要应用是离线检主要的检测有纺织布料识别与质量评定、织物表面绒毛鉴定、织物的反射特性、合成纱线横截面分析、纱线结构分析等. 此外还可用于织物组织设计、花型纹板、棉粒检测、分析纱线表面摩擦。
图像复原技术研究国内外文献综述作为日常生活中广泛使用的技术,图像修复技术汇集了国内外许多重要技术。
实际上,图像复原分为三种标准:首先是搭建其劣化图像的图像模型;其次去研究和筛选最佳的图像复原方法;最后进行图像复原。
所有类型的成像模型和优化规则都会导致应用于不同领域的不同图像恢复算法。
我们对现有的图像复原方法大致做了总结,如利用线性代数知识的线性代数复原技术、搭建图像退化模型的去卷积图像恢复技术以及不考虑PSF的图像盲解卷积算法等。
其中,去卷积方法主要包括功率谱均衡、Wiener滤波和几何平均滤波等,然而这些方法需要许多预信息和噪声稳定假设,这在现实当中我们不可能利用计算机去做到的的事情,因此它们只适用于线性空间不变的理想系统,仅当噪声与信号无关时才能达到很好的效果。
但是在一些条件恶化的情况下,就不能满足图像修复的效果了。
在图像恢复领域当中,另一个重要且常见的方法是盲去卷积复原法。
它的优势是在没有预先了解退化函数和实际信号的知识前提下,可以根据劣化图像直接估计劣化函数和初始信号。
实际上,现在有几个算法通过不充分的预测信息来恢复劣化图像。
由于我们需要对图像和点扩展函数的一些相关信息进行假设和推导,所以这就导致图像恢复的解通常并不存在唯一性,并且我们已知的初始条件和对附加图像假设的选择也会对解的优劣产生很大的关系。
与此同时,由于信道中不可避免的加性噪声的影响,会进一步导致盲图像的复原变差,给图像复原造成许多困难。
也就是说,如果我们直接利用点扩展函数进行去卷积再现初始图像,则一般会导致高频噪声放大,导致算法的性能恶化,恢复不出清晰的图像。
因此,我们要尽可能的提高图像的信噪比,从而提高图像复原的效果。
基于已知的降质算子和加性噪声的某些统计性质从而恢复清晰的图像,我们将这种方法叫做线性代数恢复方法,并且这种线性代数恢复方法在一定程度上提出了用于恢复滤波器的数值计算从而使得模糊图像恢复到与清晰图像一致的新的设计思想。
医学影像类文献综述范文影像医学是借助医学影像设备对人体或人体某部分进行检查的一门科学,如放射学科、心血管病学科、神经系统学科等。
目前常用的影像医学技术有X线成像检查[包括X线片(Radiography)、心血管摄影(Cardiacangiography)、血管摄影(Angiogra)等]、CT成像检查[包括普通和螺旋CT]、核磁共振成像、超声成像、内视镜(Endoscopy)、单一光子发射电脑断层扫描(SPECT/CT)、正子发射电脑断层扫描(PET/CT)、热影像技术(Thermography)、光声成像技术(Photoacousticimaging)、显微镜(Microscope)、萤光血管显影术esceinangiography)]等。
近年来影像医学发展非常迅速,影像医学设备不断更新,检查技术不断完善,特别是科学的融入,使影像医学如虎添翼,增添了活力,丰富了内容。
医学影像在内分泌专业也得到广泛的应用。
影像学技术在甲状腺疾病诊断中的应用和进展超声具有简便、经济、高敏感性的优点,是甲状腺疾病较常规的检查方法之一。
常规B超是早期运用于甲状腺疾病的检查方法,其主要用于观察甲状腺组织内有无病变存在,明确病变的数目、大小、分布是否规律、边界是否清楚、形态是否规整、有无包膜、内部回声强弱、有无钙化灶等,彩超主要用于评估甲状腺病变及其周围的血流情况,二者结合为甲状腺疾病的诊断提供了更多的依据。
CT是当前用于检查甲状腺良恶性结节的最常用的影像方法之一,并可鉴别其良恶性。
常规检查方法包括CT平扫、增强。
特别是近年来逐渐普及的多层螺旋CT具有密度分辨力高、三维成像及多方位成像等优点,可清晰显示甲状腺良恶性结节的形态、大小、数目、密度、边缘及与正常组织的解剖关系,有无淋巴结转移,尤其对甲状腺病变内的钙化灶及良恶性钙化有很高的敏感性,可为术前评估提供更多信息。
结节或肿块边界不清、密度不等及有无淋巴结肿大转移是判断恶性结节和肿块的三个基本点,细颗粒状钙化是诊断甲状腺癌的特征性表现。
三维动画场景文献综述范文模板例文在本文综述中,我们对三维动画场景进行了详细的研究和文献综述。
我们主要关注了三维动画场景的设计、建模、渲染和动画效果等方面的研究。
我们选择了以下几篇相关文献进行综述,并对它们的研究方法、实验结果和创新点进行了详细的描述和分析。
1. 文献1:《基于虚拟场景的三维模型重建方法研究》这篇文献主要介绍了一种基于虚拟场景的三维模型重建方法。
作者首先对场景进行了拍摄和扫描,然后使用计算机视觉和图像处理技术对这些数据进行处理,最终生成了高质量的三维模型。
文章中提到了一些关键技术,如点云配准、表面重建和纹理映射等。
实验结果表明,该方法能够有效地重建复杂的三维场景,并获得真实感和逼真度较高的模型。
2. 文献2:《基于物理模拟的三维动画场景设计方法研究》这篇文献介绍了一种基于物理模拟的三维动画场景设计方法。
作者通过使用物理引擎和动力学模拟技术,可以模拟真实世界中的物理效应,如重力、碰撞和流体动力学等。
文中对于如何使用物理模拟来设计复杂的场景进行了详细的描述,并提供了一些实际案例和实验结果。
结果表明,该方法能够有效地改善三维动画场景的真实感和逼真度。
3. 文献3:《基于光线追踪的三维动画场景渲染方法研究》这篇文献提出了一种基于光线追踪的三维动画场景渲染方法。
作者通过模拟光线在场景中的传播和反射,可以模拟真实世界中的光照效果和阴影效果。
文中详细介绍了光线追踪算法的原理和实现方法,并给出了一些实验结果和比较分析。
实验结果表明,该方法具有较高的渲染质量和真实感,能够有效地提高三维动画场景的视觉效果。
综上所述,以上三篇文献对于三维动画场景的设计、建模、渲染和动画效果等方面进行了重要的研究。
它们提供了一些创新的方法和技术,能够有效地提高三维动画场景的真实感和逼真度。
未来的研究可以进一步探索和改进这些方法,并将其应用于实际的三维动画制作中。
数字图像处理技术综述摘要:随着计算机的普及,数字图像处理技术也获得了迅速发展,逐渐走进社会生产生活的各个方面。
本文是对数字图像处理技术的一个总体概述,包括其内涵、优势、主要方法及应用,最后对其发展做了简单的总结。
关键词:数字图像、图像处理技术、处理方法、应用领域Overview of digital image processing technologyAbstract: With the popularization of computer, digital image processing technology also won the rapid development, and gradually go into all aspects of social life and production. This paper is a general overview of the digital image processing technology, including its connotation, advantage, main method and its application. And finally, I do a simple summary of the development.Keywords: digital image, image processing technology, processing method, application field前言:图像处理技术被分为模拟图像处理和数字图像处理两大类。
数字图像处理技术一般都用计算机处理或实时的硬件处理,因此也称之为计算机图像处理[1]。
而时至今日,随着计算机的迅速普及,数字图像处理技术也飞速发展着,因为其用途的多样性,可以被广泛运用于医学、交通、化学等各个领域。
一、数字图像处理技术的概念内涵数字图像处理技术是指将一种图像信号转变为二进制数字信号,经过计算机对而其进行的图像变换、编码压缩、增强和复原以及分割、特征提取等处理,而高精准的还原到显示器的过程[2]。
医学影像处理技术综述随着科技的迅速发展,医学影像处理技术得到了快速的发展。
医学影像处理技术是指应用计算机技术和数字图像处理技术对医学图像进行处理和分析,以诊断和治疗疾病。
这项技术已经广泛应用于医学临床、医疗诊断、医学研究等领域,成为现代医学领域中不可或缺的重要组成部分。
本文将综述目前医学影像处理技术的发展和应用。
一、医学影像处理技术的发展历程医学影像处理技术的发展可以追溯到20世纪50年代。
当时,医学图像采集技术还十分落后,各种医学图像仍然采用传统的X光片、CT扫描片等方式进行记录,处理与分析十分困难。
在此背景下,计算机技术的迅猛发展为医学影像处理技术的出现提供了契机。
1963年,美国科学家L. P. Clarke首次提出了数字图像处理的概念。
随后,世界各国的科学家开始研究数字图像处理技术在医学图像处理方面的应用。
到了20世纪80年代,大规模微电子芯片的出现为数字图像的处理提供了更加可靠的技术支持,使得医学影像处理技术得到了长足的发展。
二、医学影像处理技术的分类与应用医学影像处理技术涵盖广泛,可分为一维、二维、三维等多个方向,其中的一些技术应用也逐渐走向成熟。
1. 一维医学影像处理技术:主要应用于心电信号和脑电信号处理等方面。
通过数字信号处理,可以处理出心电波形或脑电波形,以分析患者的心脏与脑部状况。
此外,在医学诊断中,一些肺部疾病可通过呼吸道成像进行一维数据分析。
2. 二维医学影像处理技术:常用于医学影像检测和分析,如图像减噪、图像增强、图像分割、医学图像的自动化分析等。
这些技术可以从医学图像中提取出重要的特征和信息,以支持医生进行正确的诊断和治疗决策。
3. 三维医学影像处理技术:主要应用于病灶、血管、神经以及其他人体解剖结构的三维重建。
这种技术可将大量医学图像信息重组成三维的立体模型,以便医生更加全面、准确的了解病灶、血管、神经的形态、分布等信息,更加精准的进行手术设计和治疗。
三、医学影像处理技术的研究与应用医学影像处理技术在临床医学领域的应用具有广泛的前景与重要性。
图像超分辨率重建算法研究-文献综述毕业设计(论文)题目:图像超分辨率重建算法研究专业(方向):电子信息工程文献综述1.引言超分辨率概念最早出现在光学领域。
在该领域中,超分辨率是指试图复原衍射极限以外数据的过程。
T oraldo di Francia在1955年的雷达文献中关于光学成像第一次提出了超分辨率的概念。
复原的概念最早是由J.L.Harris和J.w.Goodman分别于1964年和1965年提出一种称为Harris-Goodman频谱外推的方法。
这些算法在某些假设条件下得到较好的仿真结果,但实际应用中效果并不理想。
Tsai &Huang首先提出了基于序列或多帧图像的超分辨率重建问题。
1982年D.C.C.Youla和H.Webb在总结前人的基础上,提出了凸集投影图像复原(Pocs)方法。
1986年,S.E.Meinel提出了服从泊松分布的最大似然复原(泊松-ML)方法。
1991年和1992年,B.R.Hunt和PJ.Sementilli在Bayes分析的基础上,提出了泊松最大后验概率复原(泊松-MAP)方法,并于1993年对超分辨率的定义和特性进行了分析,提出了图像超分辨率的能力取决于物体的空间限制、噪声和采样间隔。
伴随着计算机技术、信息处理技术和视觉通信技术的高速发展,人类进入了一个全新的信息化时代。
人们所能够获取的知识量呈爆炸式的增长,因此迫切的要求信息处理技术不断的完善和发展,以便能够为人们提供更加方便、快捷和多样化的服务。
数字图像及其相关处理技术是信息处理技术的重要内容之一,在很多领域得到了越来越广泛的应用。
对于数字图像在一些情况下一般要求是高分辨图像,如:医学图像要求能够显示出那些人眼不能辨别出的细微病灶;卫星地面要求卫星图像至少能够辨别出人的脸相;有些检测识别控制装置需要足够高分辨率的图像才能保证测量和控制的精度。
因此提高图像分辨率是图像获取领域里追求的一个目标。
但是通过改善成像装置硬件的分辨力来提高图像的分辨能力是有限的也是不切实际的。
福州大学专业英语文献综述题目:图像去雾增强算法的研究姓名:学号:专业:一、引言由于近年来空气污染加重,我国雾霾天气越来越频繁地出现,例如:2012底到2013年初,几次连续七日以上的雾霾天气笼罩了大半个中国,给海陆空交通,人民生活及生命安全造成了巨大的影响。
因此,除降低空气污染之外,提高雾霾图像、视频的清晰度是亟待解决的重要问题。
图像去雾实质上就是图像增强的一种现实的应用。
一般情况下,在各类图像系统的传送和转换(如显示、复制、成像、扫描以及传输等)总会在某种程度上造成图像质量的下降。
例如摄像时,由于雾天的原因使图像模糊;再如传输过程中,噪声污染图像,使人观察起来不满意;或者是计算机从中提取的信息减少造成错误,因此,必须对降质图像进行改善处理,主要目的是使图像更适合于人的视觉特性或计算机识别系统。
从图像质量评价观点来看,图像增强技术主要目的是提高图像可辨识度。
通过设法有选择地突出便于人或机器分析的某些感兴趣的信息,抑制一些无用信息,以提高图像的使用价值,即图像增强处理只是增强了对某些信息的辨别能力[1].二、背景及意义近几年空气质量退化严重,雾霾等恶劣天气出现频繁,PM2。
5[2]值越来越引起人们的广泛关注。
在有雾天气下拍摄的图像,由于大气中混浊的媒介对光的吸收和散射影响严重,使“透过光"强度衰减,从而使得光学传感器接收到的光强发生了改变,直接导致图像对比度降低,动态范围缩小,模糊不清,清晰度不够,图像细节信息不明显,许多特征被覆盖或模糊,信息的可辨识度大大降低。
同时,色彩保真度下降,出现严重的颜色偏移和失真,达不到满意的视觉效果[3—6]。
上述视觉效果不佳的图像部分信息缺失,给判定目标带来了一定的困难,直接限制和影响了室外目标识别和跟踪、智能导航、公路视觉监视、卫星遥感监测、军事航空侦察等系统效用的发挥,给生产与生活等各方面都造成了极大的影响[7—9].以公路监控为例,由于大雾弥漫,道路的能见度大大降低,司机通过视觉获得的路况信息往往不准确,进一步影响对环境的判读,很容易发生交通事故,此时高速封闭或者公路限行,给人们的出行带来了极大的不便[10]。
基于机器视觉技术的农产品检测摘要:随着计算机技术尤其是多媒体技术以及数字图像的处理与分析理论及其配套技术的不断发展和完善,机器视觉技术在农产品检测已经得到了广泛的应用。
该文阐述了机器视觉的原理、组成以及机器视觉技术在农产品品质检测与分级、农产品收获及其自动化以及农作物的生长状况监测三个方面的应用,重点介绍了基于机器视觉的农产品品质检测与分级。
指出了机器视觉技术在其应用中存在的问题及不足,并指出了机器视觉技术在农业工程领域在今后的发展趋势及前景。
关键词:机器视觉;农产品检测与分级;数字图像;自动收获0 引言机器视觉是利用图像传感器获取对象的图像,并将其转化成数据矩阵的形式,借助计算机的分析,最终来完成一个相当于视觉的任务。
机器视觉不仅是人眼的延伸, 更重要的是具有人脑的部分功能, 其在农产品品质检测上的应用正是满足了这些应变的要求。
随着图像处理技术的专业化与计算机硬件成本的下降和速度的提高, 在农产品品质自动识别领域应用机器视觉技术已变得越来越具有吸引力,70 年代末以来国际上许多研究人员已为开发用于农产品品质自动识别和分级的机器视觉系统倾注了大量的心血(应义斌等,2000)。
80年代中期,全球掀起了机器视觉的研究热潮(颜发根等,2004),机器视觉技术得到广泛的应用。
机器视觉技术在农业上的研究与应用始于20世纪70年代末期,主要用于果蔬的品质检测和分级(熊利荣等,2004)。
目前,机器视觉已经延伸到农产品收获自动化和农作物生长监测等方面的应用(傅宇,2006)。
包括农作物生长状况监测、自动收获、品质检测及分级等。
该文通过分析大量文献,综述了机器视觉技术在农业工程领域中的应用研究进展,重点分析了机器视觉技术在农产品品质检测与分级方面的应用,并且分析了其在应用中存在的问题和不足,并指出了今后的应用研究方向。
1 机器视觉技术1.1 概述美国制造工程协会(SME,Society of Manufacturing Engineers) 机器视觉分会和美国机器人工业协会(RIA,Robotic Industries Association)的自动化视觉分会对机器视觉下的定义为:“机器视觉是通过光学的装置和非接触的传感器自动地接受和处理一个真实物体的图像,通过分析图像获得所需信息或用于控制机器运动的装置”(曹国斌等,2008)。
数字图像处理论文文献综述文献综述图像处理技术发展到今天,已经被应用到工程学、计算机科学、信息科学、统计学、物理学、化学、生物学、医学甚至社会科学等多个学科,并成为这些学科获取信息的重要来源及利用信息的重要手段,所以图像处理科学己经成为与国计民生紧密相连的一门应用科学。
图像处理技术研究的重点在于图像处理算法和系统结构,随着计算机、集成电路等技术的飞跃发展,图像处理技术在这两方面都取得了长足的发展。
但随着图像信息数据量的增大,图像处理算法复杂度的提高,图像处理技术依然面临着许多挑战性的问题,具体可概括为图像处理的网络化、复杂问题的求解与处理速度的高速化,可以通过选择合适的图像处理平台以及恰当的图像处理算法来解决这些挑战性的问题。
图像处理技术最初是在采用高级语言编程在计算机上实现的,后来还在计算机中加入了图像处理器(GPU),协同计算机的CPU工作,以提高计算机的图形化处理能力。
在大批量、小型化和低功耗的要求提出后,图像处理平台依次出现了基于VLSI技术的专用集成电路芯片((ASIC)和数字信号处理器((DSP),近年来,随着EDA技术的发展以及FPGA(Field-Programmable Gate Array,现场可编程门阵列)技术的提高,越来越多的厂家和科研机构将FPGA作为图像处理技术实现的主要平台,以提高图像处理系统的性能。
FPGA是在PAL, GAL, CPLD等可编程器件的基础上进一步发展的产物。
它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。
FPGA采用了逻辑单元阵列LCA( Logic Cell Array)这样一个新概念,内部包括可配置逻辑模块CLB( Configurable LogicBlock、输出输入模块IOB ( Input Output Block)和内部连线(Interconnect)三个部分。
无人机文献综述模板范文无人机技术作为现代科技的前沿领域,吸引了众多研究者的关注。
本文将提供一份无人机文献综述模板范文,旨在帮助研究者快速了解该领域的研究动态和发展趋势。
**无人机文献综述模板范文**一、引言无人机(Unmanned Aerial Vehicle,UAV)作为一种新兴的航空器,具有遥控驾驶、自主飞行、成本低廉等特点。
近年来,无人机在军事、民用、商业等领域得到了广泛应用,相关研究也取得了显著进展。
本文对近年来无人机领域的研究成果进行梳理和总结,为后续研究提供参考。
二、无人机技术发展概况1.无人机分类与性能指标(1)分类:固定翼无人机、旋翼无人机、扑翼无人机等。
(2)性能指标:飞行速度、航程、续航时间、载重、升限等。
2.无人机关键技术(1)飞行控制系统:自主飞行、路径规划、姿态控制等。
(2)导航与定位技术:GPS、GLONASS、北斗等卫星导航系统,以及视觉导航、惯性导航等。
(3)通信与数据链技术:无线通信、卫星通信、图像传输等。
(4)传感器技术:摄像头、激光雷达、红外探测器等。
三、无人机应用领域及研究进展1.军事领域无人机在侦察、监视、打击、救援等方面具有广泛应用。
近年来,研究者主要关注无人机集群、自主作战、网络化协同等关键技术。
2.民用领域无人机在交通监控、环境监测、农业植保、地质勘探等方面具有广泛应用。
当前研究热点包括无人机编队、多传感器融合、人工智能等。
3.商业领域无人机在物流配送、无人机摄影、无人机表演等方面具有巨大市场潜力。
研究者主要关注无人机的安全性、可靠性和商业化运营模式。
四、无人机发展面临的挑战与展望1.技术挑战(1)飞行安全与可靠性:提高无人机飞行控制系统、传感器等的性能。
(2)续航能力:研究新型动力系统,提高无人机续航时间。
(3)通信与数据链:解决无人机在复杂环境下的通信问题。
2.政策与法规(1)完善无人机飞行法规,确保飞行安全。
(2)制定无人机行业标准,促进产业健康发展。
文献综述范文3000字文献综述,人工智能在医学影像诊断中的应用。
引言。
随着人工智能技术的不断发展,其在医学影像诊断中的应用也日益受到关注。
人工智能技术的引入为医学影像诊断提供了新的思路和方法,极大地提高了诊断的准确性和效率。
本文将就人工智能在医学影像诊断中的应用进行综述,以期为相关领域的研究和实践提供一定的参考。
一、人工智能在医学影像诊断中的发展历程。
人工智能在医学影像诊断中的应用始于上世纪80年代,当时主要是利用专家系统进行医学影像的诊断。
随着计算机技术的不断进步和深度学习算法的兴起,人工智能技术在医学影像诊断中得到了广泛的应用。
目前,人工智能技术已经可以对X光片、CT、MRI等医学影像进行快速准确的诊断,大大提高了医学影像诊断的水平。
二、人工智能在医学影像诊断中的应用现状。
1. 人工智能在肿瘤诊断中的应用。
肿瘤诊断是医学影像诊断中的重要领域,而人工智能技术在肿瘤诊断中发挥了重要作用。
通过分析患者的CT、MRI等医学影像,人工智能技术可以快速准确地识别出肿瘤的位置、大小和类型,为临床医生提供重要的诊断依据。
2. 人工智能在心脏病诊断中的应用。
心脏病是一种常见的疾病,而人工智能技术在心脏病诊断中也发挥了重要作用。
通过分析患者的心脏CT、超声心动图等医学影像,人工智能技术可以快速准确地识别出心脏病的病变部位和程度,为临床医生提供重要的诊断参考。
3. 人工智能在骨科影像诊断中的应用。
骨科影像诊断是医学影像诊断中的重要领域,而人工智能技术在骨科影像诊断中也发挥了重要作用。
通过分析患者的X光片、CT等医学影像,人工智能技术可以快速准确地识别出骨折、骨质疏松等病变,为临床医生提供重要的诊断依据。
三、人工智能在医学影像诊断中的优势和挑战。
1. 优势。
人工智能技术在医学影像诊断中具有快速、准确、全面的优势。
通过分析大量的医学影像数据,人工智能技术可以快速准确地识别出疾病的病变部位和程度,大大提高了诊断的准确性和效率。
柔性直流输电系统逆变侧控制方法改进1 引言近年来,中国风电产业规模延续暴发式增长态势。
2008年就已达到10000兆瓦的发展目标,2010年更是实现了30000兆瓦的风电装机目标。
中国风电2010年新增装机容量达到18,928兆瓦,占全球新增装机容量48%,成为世界第一大风力发电市场[1]。
尽管如此,各地可被利用的风能却很分散,要想将其转化为电能,大规模利用,无疑,需要建立众多中小规模的分散风电场,这无疑增大了输电,并网的经济成本,技术困难等[2]。
然而,基于电压压源型换流器(VSC)的高压直流输电(HVDC)系统可独立调节有功和无功功率并且实现四象限运行、可以向无源网络供电,并且具有联网非同步运行的独立电网、方便构成多端直流系统、不需要交流侧提供无功功率并能够起到STATCOM的作用、不会增加系统的短路容量、可以便捷高效地连接风能、太阳能等距离偏远、地理分散的可再生能源或―绿色‖能源等优势。
因此,柔性直流输电技术(VSC-HVDC)被更多的应用[3]。
传统VSC-HVDC换流站控制回路中,往往使用PI调节器来实现对反馈律设计[4]。
但是随着现代科技的发展对控制精度和响应速度极大地提高,逐渐凸显出PI应用的局限性,因此我们有必要对换流站PI控制器进行改换优化,从而使控制精度,输电效率都得到提高[5]。
2 VSC-HVDC系统的基本控制原理柔性直流输电(VSC-HVDC)的基本任务是实现两端系统之间的功率交换,同时保证直流线路有功功率的平衡,且每个换流站能够独立控制其无功潮流,为系统提供无功支持。
为实现有功功率的平衡,必须有一个换流站采用直流控制器来控制直流电压,另一个换流站采用功率控制器使有功功率维持在定值。
由于VSC 换流站采用PWM控制技术,可以实现有功功率和无功功率独立解耦控制,无功功率可以通过控制站端交流电压来实现,而无需改变直流电压。
典型的柔性直流输电系统控制方式主要有:定直流电压控制,定有功功率控制,定交流电压控制,定无功功率控制,不同的应用场合采用的控制器也不同。
关于科技的英文文献综述范文Here is a 1000-word essay on the topic of "A Literature Review on Technology":Technology has become an integral part of our daily lives, transforming the way we live, work, and communicate. From the invention of the printing press to the development of artificial intelligence, the influence of technology on human civilization is undeniable. This literature review aims to provide a comprehensive overview of the various aspects of technology and its impact on society.One of the most significant advancements in technology is the rapid development of digital technologies. The internet has revolutionized the way we access information, communicate with others, and conduct business. The rise of social media platforms has transformed the way we interact with our friends, family, and the world around us. Similarly, the growing popularity of e-commerce has changed the way we shop, with online retailers offering a vast array of products and services at our fingertips.Another important aspect of technology is the field of automationand robotics. Automated systems are now being used in a wide range of industries, from manufacturing to healthcare, to improve efficiency and reduce human error. The development of sophisticated robots has also led to significant advancements in fields such as exploration, disaster relief, and medical procedures. However, the increasing reliance on automation has also raised concerns about job displacement and the impact on the workforce.The rise of artificial intelligence (AI) is perhaps one of the most significant technological advancements of our time. AI systems are capable of performing tasks traditionally reserved for humans, such as decision-making, problem-solving, and language processing. The potential applications of AI are vast, ranging from personalized recommendations on e-commerce platforms to the development of self-driving cars. At the same time, the ethical implications of AI, such as the potential for bias and the impact on privacy, are the subject of ongoing debates and research.Another area of technology that has seen significant advancements is the field of renewable energy. As the world grapples with the challenge of climate change, the development of sustainable energy sources has become a pressing concern. Solar, wind, and hydroelectric power are just a few examples of the renewable energy technologies that are being explored and implemented on a global scale. These technologies not only help to reduce our carbonfootprint but also have the potential to provide affordable and accessible energy to communities around the world.The impact of technology on healthcare is another area that deserves attention. Advancements in medical technology, such as diagnostic imaging, telemedicine, and personalized medicine, have revolutionized the way we approach healthcare. These technologies have the potential to improve patient outcomes, reduce healthcare costs, and increase access to quality care, particularly in remote or underserved areas.However, the rapid pace of technological change has also raised concerns about the potential negative impacts of technology on our lives. The increased reliance on digital devices and the constant connectivity of the internet can lead to issues such as screen addiction, sleep deprivation, and social isolation. Additionally, the collection and use of personal data by tech companies and governments have raised concerns about privacy and data security.In conclusion, this literature review has explored the various aspects of technology and its impact on society. From the transformative power of digital technologies to the advancements in renewable energy and healthcare, the role of technology in shaping our world is undeniable. However, as we continue to embrace technological progress, it is crucial that we carefully consider the ethical andsocietal implications of these advancements. By doing so, we can ensure that technology is used to enhance and improve the lives of people around the world, rather than contributing to societal problems.。
摄影测量学发展综述(1)摄影测量学,从名字上来看,是摄影与测量的结合。
它起源于19世纪中叶,当时人们开始使用摄影技术进行地形测量,随着科技的发展,摄影测量学已经从传统的手工测量方式逐渐演变为数字化、自动化的测量技术。
起初,摄影测量学主要依赖于大型的户外摄影设备和复杂的化学处理过程。
摄影师需要拍摄大量的照片,然后通过复杂的工艺将底片进行处理、分析和比对,最后得出测量结果。
这个过程不仅耗时,而且对环境和设备的要求极高。
然而,随着科技的进步,特别是数字技术和计算机技术的飞速发展,摄影测量学迎来了新的发展机遇。
数字摄影和卫星遥感技术的出现,使得摄影测量不再局限于户外的大尺度空间,而是可以深入到微观世界,对细微的物体进行精确的测量。
此外,计算机视觉和人工智能的引入,使得摄影测量的自动化程度大大提高。
计算机可以根据拍摄的图像自动识别、定位、匹配,甚至可以自动完成三维模型的构建。
这大大减少了人工干预和计算量,提高了测量的效率和精度。
然而,摄影测量学的发展并不意味着传统的方法被完全替代。
在某些特定的情况下,传统的摄影测量技术仍然有其独特的优势。
例如,在某些复杂的环境下,如茂密的森林、峡谷或者建筑物内部,数字摄影和卫星遥感技术可能无法获取有效的数据,而传统的摄影测量方法可能更加适用。
总的来说,摄影测量学的发展是一个不断进步的过程。
随着科技的进步,我们有理由相信,未来的摄影测量学将更加高效、精确和智能化。
摄影测量学发展综述(2)摄影测量学,源于19世纪中叶的摄影技术,是一门利用摄影或数字化影像,通过对影像的解析和处理,获取目标物体的形状、大小、位置以及相互关系的一门科学。
随着科技的不断进步,摄影测量学也经历了从模拟摄影测量到解析摄影测量,再到数字摄影测量的巨大变革。
在模拟摄影测量时代,摄影底片需要通过人工测量和解析,以获取所需的数据。
这种方法不仅耗时费力,而且精度也受到很大的限制。
随着计算机技术和数字化技术的发展,解析摄影测量应运而生。
文献综述标准范文文献综述,辐射治疗在癌症治疗中的应用。
引言。
癌症是一种严重威胁人类健康的疾病,而辐射治疗作为癌症治疗的重要手段之一,已经在临床上得到了广泛的应用。
本文将从辐射治疗的原理、技术、应用和发展趋势等方面进行综述,以期为临床医生和研究人员提供参考。
一、辐射治疗的原理。
辐射治疗是利用高能辐射对癌细胞进行杀伤,从而达到治疗癌症的目的。
辐射治疗的原理是通过破坏癌细胞的DNA,使其失去增殖能力,最终导致癌细胞的死亡。
辐射治疗的辐射源主要包括X射线、γ射线和重离子束等,其中X射线是目前临床上应用最广泛的一种。
二、辐射治疗的技术。
辐射治疗的技术包括外部束放疗和内部束放疗两种。
外部束放疗是将辐射源放置在患者体外,通过外部机器产生的高能辐射照射到癌细胞部位,从而实现治疗的目的。
而内部束放疗则是将辐射源植入到患者体内,直接照射到癌细胞部位。
这两种技术各有优缺点,临床医生需要根据患者的具体情况来选择合适的治疗方案。
三、辐射治疗的应用。
辐射治疗在临床上主要用于治疗恶性肿瘤,包括头颈部肿瘤、乳腺癌、肺癌、前列腺癌等。
此外,辐射治疗还可以用于减轻癌症患者的症状,如疼痛、出血等。
近年来,辐射治疗在癌症治疗中的应用范围不断扩大,已经成为癌症综合治疗中不可或缺的一部分。
四、辐射治疗的发展趋势。
随着医学技术的不断进步,辐射治疗的技术和设备也在不断更新和改进。
例如,立体定向放疗、调强放疗、质子放疗等新技术的出现,使得辐射治疗在治疗效果和副作用方面都取得了显著的进展。
此外,辐射治疗与免疫治疗、靶向治疗等新的治疗手段的联合应用,也为癌症患者带来了更多的希望。
结论。
综上所述,辐射治疗作为癌症治疗的重要手段,已经在临床上得到了广泛的应用。
随着医学技术的不断进步,相信辐射治疗在癌症治疗中的地位和作用会越来越重要,为更多的癌症患者带来生的希望。
因此,我们有理由相信,辐射治疗在未来会有更加美好的发展前景。
文献综述1.1理论背景数字图像中的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。
物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。
图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。
根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。
1.2、图像边缘检测技术研究的目的和意义数字图像边缘检测是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像边缘检测也在生活中的各个领域得到了广泛的应用。
边缘检测技术是图像边缘检测和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。
首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。
前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。
两者虽然在图像边缘检测中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速度更快,图像特征识别更准确。
早期的经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等。
早在1959年Julez就曾提及边缘检测技术,Roberts则于1965年开始了最早期的系统研究,从此有关边缘检测的理论方法不断涌现并推陈出新。
边缘检测最开始都是使用一些经验性的方法,如利用梯度等微分算子或特征模板对图像进行卷积运算,然而由于这些方法普遍存在一些明显的缺陷,导致其检测结果并不尽如人意。
20世纪80年代,Marr和Canny相继提出了一些更为系统的理论和方法,逐渐使人们认识到边缘检测的重要研究意义。
随着研究的深入,人们开始注意到边缘具有多分辨性,即在不同的分辨率下需要提取的信息也是不同的。
基于核方法的高光谱图像目标检测技术研究----文献选读综述报告1前言20 世纪80 年代遥感领域最重要的发展之一就是高光谱遥感的兴起。
从20 世纪90 年代开始,高光谱遥感已成为国际遥感技术研究的热门课题和光电遥感的最主要手段。
高光谱遥感图像目标检测在民用和军事上都具有重要的理论价值和应用前景,是当前目标识别及遥感信息处理研究领域中的一个热点研究问题。
2 研究目的及意义高光谱遥感图像是在电磁波谱的紫外、可见光、近红外和中红外区域,利用成像光谱仪获取的许多非常窄且光谱连续的图像数据(如图1.1所示)。
成像光谱仪为每个像元提供数十至数百个窄波段(通常波段宽度小于10 nm)的光谱信息,能产生一条完整而连续的光谱曲线。
图1.1 成像光谱仪探测地物目标示意图[1]高光谱遥感技术主要利用各种地物(例如某种土壤、岩石和作物)对不同的光谱波长具有各不相同的吸收率和反射率的原理,根据每种物质所拥有的独特光谱反射曲线来进行检测和分类。
利用高光谱遥感技术,能够很好地提取目标的辐射特性参量,使地表目标的定量分析与提取成为可能。
然而,高光谱遥感成像机理复杂、影像数据量大,这导致影像的大气纠正、几何纠正、光谱定标、反射率转换等预处理困难。
由于成像光谱仪获取的地物光谱特征曲线近乎连续,波段间相关性很高,数据冗余信息很多。
在使用传统目标检测方法对高光谱影像中感兴趣目标进行检测时,波段多且相关性高,会导致训练样本相对不足,致使分类模型参数的估计不可靠,检测分类存在维数灾难现象。
因此,高光谱影像给地物分类识别带来了巨大机遇,同时给传统的目标检测方法也带来了挑战。
为了充分发挥高光谱遥感技术的优势,必须在影像检测分类基本算法的基础之上,结合高光谱影像分类的特点,研究新的适用于高光谱影像的理论、模型和算法〕。
在国内外,许多研究机构在理论和应用上进行了探索,取得了不少成果。
自从上世纪90年代中期核方法在支持向量机分类中得到成功应用以后,人们开始尝试利用核函数将经典的线性特征提取与分类识别方法推广到一般情况,在理论和应用中都有许多成果,引起了继经典统计线性分析、神经网络与决策树非线性分析后第三次模式分析方法的变革,成为机器学习、应用统计、模式识别、数据挖掘等许多学科的研究热点,在人脸识别、语音识别、字符识别、机器故障分类等领域得到成功应用[2]。
*Tel.:#61-2-9385-4018;fax:#61-2-9662-4240.E-mail address:m.green @.au (M.A.Green).Energy Policy 28(2000)989}998Photovoltaics:technology overviewM.A.Green *Centre for Photo v oltaic Engineering,Uni v ersity of New South Wales,Sydney,NSW 2052,AustraliaReceived 24May 2000AbstractSolar electricity produced by photovoltaic solar cells is one of the most promising options yet identi "ed for sustainably providing the world 's future energy requirements.Although the technology has,in the past,been based on the same silicon wafers as used in microelectronics,a transition is in progress to a second generation of a potentially much lower-cost thin-"lm technology.Cost reductions from both increased manufacturing volume and such improved technology are expected to continue to drive down cell prices over the coming two decades to a level where the cells can provide competitively priced electricity on a large scale.The subsidised,urban residential rooftop application of photovoltaics is expected to provide the major application of the coming decade and to provide the market growth needed to reduce rge centralised solar photovoltaic power stations able to provide low-cost electricity on a large scale would become increasingly attractive approaching 2020. 2000Elsevier Science Ltd.All rights reserved.1.IntroductionPhotovoltaics involves the direct conversion of sun-light into electricity in thin layers of material known as semiconductors with properties intermediate between those of metals and insulators.Silicon,the material of microelec-tronics and the information age,is the most common semiconductor.In the latter half of the 20th century,silicon photovoltaic solar cells started to be used mainly to gener-ate small amounts of electricity in remote areas where there was no conventional source of electricity.In the 21st cen-tury,photovoltaics will grow to maturity.Almost everyone will be aware of photovoltaics since photovoltaic solar cells will be on the roof of their home or that of their neighbours *be they in one of the growing megacities across the globe or in a remote rural village (Green,2000).This paper reviews the current state of solar cell tech-nology,outlines developments expected over the coming few decades and considers implications for energy policy.2.Brief historySolar cells have their origins from some of the most important scienti "c developments of the 20th century,combining the Nobel prize winning work of several of the most important scientists of that century.The German scientist,Max Planck,began the century engrossed in the problem of trying to explain the nature of light emitted by hot bodies,such as the sun.He had to make assump-tions about energy being restricted to discrete levels to match theory and observations.This stimulated Albert Einstein,in his `miraculous year a of 1905(Stachel,1998),to postulate that light was made of small `particles a ,later called photons,each with a tiny amount of energy that depends on the photon 's colour.Blue photons have about twice the energy of red photons.Infrared photons,invisible to the eye have even less energy.Ultraviolet photons,the cause of sunburn and skin cancer,are also invisible but carry even more energy than the blue ones,accounting for the damage they can do.Einstein 's radical suggestion led to the formulation and development of quantum mechanics,culminating in 1926in Edwin Schro dinger 's wave equation.Wilson sol-ved this equation for material in solid form in 1930.This allowed him to explain the di !erence between metals,good conductors of electricity and insulators;also the properties of semiconductors with their intermediate electrical properties.Electrons,the carriers of electrical charge,are free to move around in metals,allowing electrical currents to #ow readily.In insulators,electrons are locked into the bonds holding the atoms of the insulator together.They need a jolt of energy to free them0301-4215/00/$-see front matter 2000Elsevier Science Ltd.All rights reserved.PII:S 0301-4215(00)00086-0Fig.1.Incoming sunlight is converted to an electrical current #ow in a load such as a lamp connected between the cell contacts.from these bonds,so they can become mobile.The same applies to semiconductors,except a smaller jolt is needed *even the red photons in sunlight have enough energy to free an electron in the archetypical semiconductor,silicon.Russel Ohl discovered the "rst silicon solar cell by accident in 1940(Riordan and Hoddeson,1997).He was surprised to measure a large electrical voltage from what he thought was a pure rod of silicon when he shone a #ashlight on it.Closer investigation showed that small concentrations of impurities were giving portions of the silicon properties dubbed `negative a (n-type).These properties are now known to be due to a surplus of mobile electrons with their negative charge.Other re-gions had `positive a (p-type)properties,now known to be due to a de "ciency of electrons,causing an e !ect similar to a surplus of positive charge (something close to a physical demonstration of the mathematical adage that two negatives make a positive).William Shockley worked out the theory of the devices formed from junctions between `positive a and `negative a regions (p }n junctions)in 1949and soon used this theory to design the "rst practical transistors.The semiconduc-tor revolution of the 1950s followed,which also resulted in the "rst e $cient solar cells in 1954.This caused enor-mous excitement and attracted front-page headlines at the time (Riordan and Hoddeson,1997).The "rst commercial use of the new solar cells was on spacecraft,beginning in 1958.This was the major com-mercial application until the early 1970s,when oil em-bargoes of that period stimulated a re-examination of the cells 'potential closer to home.From small beginnings,a terrestrial solar cell industry took root at this time and has grown rapidly,particularly over recent years,to US $1billion per year in sales,by the end of the 20th century (Perlin,1999).Increasing international resolve to reduce carbon dioxide emissions as a "rst step to reigning in the `Greenhouse E !ect a ,combined with decreasing cell costs,sees the industry poised to make increasing impact over the "rst two decades of the new millennium.3.Operating principlesFig.1is a schematic of a solar cell under illumination.Light entering the cell through the gaps between the top contact metal gives up its energy by temporarily releasing electrons from the covalent bonds holding the semicon-ductor together;at least this is what happens for those photons with su $cient energy.The p }n junction within the cell ensures that the now mobile charge carriers of the same polarity all move o !in the same direction.If an electrical load,such as the lamp shown in Fig.1,is connected between the top and rear contacts to the cell,electrons will complete the circuit through this load,constituting an electrical current in it.Energy in theincoming sunlight is thereby converted into electrical energy consumed by this load.The cell operates as a `quantum device a ,exchanging photons for electrons.Ideally,each photon of su $cient energy striking the cell causes one electron to #ow through the load.In practice,this ideal is seldom reached.Some of the incoming photons are re #ected from the cell or get absorbed by the metal contacts (where they give up their energy as heat).Some of the electrons excited by the photons relax back to their bound state before reaching the cell contacts and thereby the load.The electrical power consumed by the load is the product of the electrical current supplied by the cell and the voltage across it.Each cell can supply current at a voltage from 0V to a maximum in the 0.5}1.0V range,depending on the particular semiconductor used for the cell.4.Cell technology 4.1.Silicon wafersThe technology used to make most of the solar cells,fabricated so far,borrows heavily from the microelec-tronics industry (Green,1982).The silicon source material is extracted from quartz,although sand would also be a suitable material.The silicon is then re "ned to very high purity and melted.From the melt,a large cylindrical single crystal is drawn (Fig.2),usually of 10}15cm diameter and 1m or more in length,weighting several tens of kilograms.The crystal,or `ingot a ,is then sliced into circular wafers,less than half a millimetre thick,like slicing bread from a loaf.Sometimes this cylindrical ingot is `squared-o !a before slicing so the wafers have a `quasi-square a shape that allows processed cells to be stacked more closely side-by-side.Most of this technology is identical to that used in the much larger microelectronics industry,bene "ting from the corresponding economies of scale.Since good cells990M.A.Green /Energy Policy 28(2000)989}998Fig.2.Growth of a cylindrical siliconcrystal.Fig.4.Structure of a typical commercial cell with textured surface and screen-printedcontacts.Fig.3.(a)Directional solidi "cation of a large block of multicrystalline silicon from a melt;(b)Sawing of large block into smaller ingots prior to slicing into multicrystalline wafers.can be made from material of lower quality than that used in microelectronics,additional economies are ob-tained by using `o !-speci "cation a silicon and `o !-speci-"cation a silicon wafers from this industry.As the photovoltaics industry matures,it will increas-ingly use technology optimised for its own requirements.An example is the increasing use of `multicrystalline a silicon wafers.The starting ingot is formed simply by solidifying the molten silicon slowly in its container (Fig.3(a)).This ingot can be massive,weighing several hun-dreds of kilograms.It is sawn into pieces of a more manageable size (Fig.3(b))and then sliced into wafers.Techniques for growing silicon in the form of ribbons from the melt have also been developed.These have the advantage that no slicing is required (Green,1982).4.2.From wafers to cellsSome manufacturers make their own wafers while others buy them from wafer suppliers.In either case,the "rst step in processing a wafer into a cell is to etch the wafer surface with chemicals to remove damage from the slicing step.The surface of crystalline wafers is then etched again using a chemical that etches at di !erent rates in di !erent directions through the silicon crystal.This leaves featureson the surface,with the silicon structure that remains determined by crystal directions that etch very slowly.The square-based pyramids apparent in Fig.4that are formed by this process are similar in shape,if not in size,to the great pyramids of Egypt.These pyramids are very e !ective in reducing re #ection from the cell surface.(Light re #ected from the side of a pyramid will be re #ec-ted downwards,getting a second chance to get coupled in).The all-important p }n junction is then formed.The impurity required to give p-type properties (usually boron)is introduced during crystal growth,so it is al-ready in the wafer.The n-type impurity (usually phos-phorus)is now allowed to seep into the wafer surface by heating the wafer in the presence of a phosphorus source.This gives a thin skin of phosphorus-doped material around the entire wafer.The skin along the wafer edge is removed (that along the rear is rendered inactive during the rear contacting step).Next,the top and bottom contacts are applied using metal particles (usually silver)suspended in a paste with other additives.This paste is `screen-printed a onto the cell surface in the desired pattern using a simple process similar to that used to print patterns onto T-shirts.After printing,the paste is dried and heated at high temper-ature,leaving the metal particles agglomerated together.A very thin layer of insulating material is sometimes added to the top cell surface as an antire #ection coating,similar to the coating used on high-quality camera lenses.Such coatings are always used for `multicrystalline a wa-fers,since the pyramidal-texturing approach is not e !ec-tive for such wafers and this alternative approach is essential to control re #ection.All the equipment required for this process is available `o !the shelf a from the microelectronics industry (the `hybrid a or `thick "lm a industry sector).This,combinedM.A.Green /Energy Policy 28(2000)989}998991Fig.5.Evolution of silicon laboratory cell e$ciency.The dark squares show improvements demonstrated by the author'sgroup.Fig.6.Buried contact solarcell.Fig.7.Heterojunction with intrinsic thin layer(HIT)cell.with the small number of processing steps,has made this sequence almost universally used by solar cell manufac-turers.However,the penalty paid for its simplicity and convenience is lower cell performance than is inherently available from the staring wafers.The screen-printed silver pastes are also quite expensive.After fabrication,the cells are soldered together and packaged under a sheet of glass into a weatherproof package known as a module.Generally,36cells are packaged into a module,since this is the required number to generate enough voltage to allow charging of a lead-acid battery.4.3.Impro v ed technologyThe previous`screen-printed a sequence was developed in the early1970s and produces cells with performance typical of this era.As shown in Fig.5,there has been over 50%relative improvement in laboratory silicon cell per-formance since that time.Only20%of the cost of produ-cing a standard module is due to cell processing costs. Both these and the remaining80%of the costs are able to be reduced per unit power output by increasing cell e$ciency(since these costs are related to cell and module area).This means that cell processing costs per unit area can double if this results in20%improvement in cell performance(or triple for40%improvement).Given that the screen-printing sequence is simple but still reasonably expensive,due to the costs of the required metal pastes, such a trade-o!is feasible.The most successful commercialisation to data of an improved,higher performance sequence has involved the buried contact cell of Fig.6.This cell o!ers20}30% improvement in output with virtually no increase in cell processing costs(Bruton et al.,1997).The overall relativecost advantage of the technology is therefore close to its relative e$ciency advantage.The improved performance comes from better quality surface regions that allow much better response to blue light,absorbed close to the surface,and much lower electrical resistance and optical losses due to the improved top contacting scheme.A more recently commercialised approach is the Het-erojunction with intrinsic thin layer(HIT)cell of Fig.7. This combines crystalline silicon technology with that of amorphous silicon,discussed below.The HIT cell would be expected to give some of the improvements of the buried contact sequence in the areas mentioned,al-though not to the same extent.The rear processing of the cell is improved compared to the buried contact sequence and the cell responds to light from both directions,a fea-ture that can be used to advantage in some applications. For the processing of multicrystalline wafers,the use of silicon nitride as an antire#ection coating has advantages known for some time.These arise from the presence of hydrogen in this layer,arising from its presence in one of the source gases(SiH )used in the deposition process. The hydrogen di!uses into the silicon and is e!ective in reducing detrimental activities at the boundaries between992M.A.Green/Energy Policy28(2000)989}998Fig.8.Thin-"lm approach.the individual grains in multicrystalline material.The use of nitride is expected to be more widely adopted in the future for such multicrystalline material,in particular.5.Thin-5lm solar cells 5.1.Thin-x lm ad v antagesThe potential for on-going cost reductions is the key reason for con "dence in a signi "cant role for photovol-taics in the future.Rather than the wafer-based technology of the previous section,the future belongs to `thin-"lm a technology.In this approach (Fig.8),thin layers of semiconductor material are deposited onto a supporting substrate,or superstrate,such as a large sheet of glass.Typically,less than a micron thickness of semiconductor material is required,100}1000times less than the thick-ness of a silicon wafer.Reduced material use with associated reduced costs is a key advantage.Another is that the unit of production,instead of being a relatively small silicon wafer,becomes much larger,for example,as large as a conveniently handled sheet of glass might be.This reduces manufac-turing costs.Silicon is one of the few semiconductors inexpensive enough to be used to make solar cells from self-support-ing wafers.However,in thin-"lm form,due to the reduced material requirements,virtually any semicon-ductor can be used.Since semiconductors can be formed not only by elemental atoms such as silicon,but also from compounds and alloys involving multiple elements,there is essentially an in "nite number of semiconductors from which to choose (Berger,1997).At present,solar cells made from "ve di !erent thin-"lm technologies are either available commercially,or close to being so.Over the coming decade,one of these is expected to establish its superiority and attract invest-ment in major manufacturing facilities that will sustain the downward pressure on cell prices.As each of these thin-"lm technologies has its own strengths and weak-nesses,the likely outcome is not clear at present (Zweibel and Green,2000;Kazmerski,1997;Partain,1995).5.2.Amorphous silicon alloy cells5.2.1.PropertiesGiven its success in wafer form,silicon is an obvious choice for development as a thin-"lm cell.Early attempts to make thin-"lm polycrystalline silicon cells did not meet with much success.However,starting from the mid-1970s,very rapid progress was made with silicon in `amorphous a form.In amorphous silicon,the atoms are connected to neighbours in much the same way as in the crystalline material but accumulation of small deviationsfrom perfection means that the perfect ordering over large distances is no longer possible.Amorphous mater-ial has much lower electronic quality,as a consequence,and originally was not thought suitable for solar cells.However,producing amorphous silicon by decomposing the gas,silane (SiH),at low temperature,changed thisopinion.It was found that hydrogen from the source was incorporated into the cell in large quantities (about 10%by volume),improving the material quality.Hydro-genated amorphous silicon cells very quickly found use in small consumer products such as solar calculators and digital watches,their main use so far.The problem with outdoor use is that some of the bene "cial e !ect of hydrogen becomes undone under bright sunshine and the cell performance degrades.Ini-tially,there was hope that some simple material-related solution could be found.When this did not happen,the only alternative was to design around it.Cells had to be developed that could work well with material of de-graded quality,rather than of the starting quality.5.2.2.Amorphous cell designSince the amorphous silicon quality is much poorer than crystalline silicon,a di !erent cell design approach is required.The most active part of a p }n junction solar cell is right at the junction between the p-and n-type region of the cell (Fig.1).This is due to the presence of an electric "eld at this junction.With amorphous silicon cell design,the aim is to stretch out the extent of this junction region as far as possible so almost all the cell is junction.This is done by having the p-and n-type doped regions very thin,with an undoped region between them.The strength of the elec-tric "eld established in this undoped region is nearly constant and depends on this region 's width.The poorer the quality of amorphous silicon,the stronger the "eld needs to be for the device to work well and hence the thinner the device needs to be.For degraded material,it turns out that the cell needs to be thinner than the thickness required to absorb all the useable incident sunlight.The way around this is to stack several cells on top of one another so that light notM.A.Green /Energy Policy 28(2000)989}998993absorbed by an upper one passes through to an underly-ing cell.As discussed in Section6,this works best if the mater-ial in the underlying cells is varied so that each responds progressively better to the redder light that is transmitted to it.By alloying silicon with germanium,a material chemically similar to silicon but much scarcer,this is readily achieved.The best commercial amorphous silicon cells presently use three cells stacked on top of one another,with pro-gressively more germanium in the bottom two(Zweibel and Green,2000;Kazmerski,1997;Pantain,1995).Each cell is very thin,only100}200nm thick.This ensures reasonable stability(only about15%degradation in output when exposed to bright sunlight).However,the stabilised e$cien-cy is quite poor,only6}7%for the best commercial mod-ules,according to manufacturers'data sheets.This low e$ciency,even with the sophisticated cell design involved,is expected to make it di$cult for this technology to be competitive in the long term.However, the low temperatures involved in making these cells mean that they can be deposited onto low-temperature substrates such as plastics.This makes them especially suitable for consumer products.5.3.Thin-x lm,polycrystalline compound semiconductors Many semiconductors made from compounds can ab-sorb light more strongly than the elemental semiconduc-tors,silicon and germanium,for reasons that are well understood but quite subtle(Kazmerski,1997)(silicon and germanium are`indirect a rather than`direct a ban-dgap materials).This means compound semiconductor cells can be thin but still operate e$ciently.Most com-pound semiconductors,when formed in polycrystalline form,have poor electronic properties due to highly del-eterious activity at grain boundaries between individual crystalline grains in the material.A small number main-tain good performance in polycrystalline form for rea-sons that are not usually well understood.These are the candidates for thin-"lm polycrystalline compound semiconductor solar cells.One such semiconductor is the compound cadmium telluride(CdTe).Technically,it is an ideal material,giv-ing properties suitable for making reasonable solar cells even with relatively crude material deposition ap-proaches(such as electrodeposition,chemical spraying, and so on).The junction in these cells is again between p-and n-type material,but for the latter,a di!erent com-pound semiconductor,cadmium sulphide,gives best re-sults.CdTe cells have been used mainly in pocket calculators to date,but large area,moderate performance modules have also been demonstrated(Kazmerski,1997). The main concern with this technology is the toxicity of the materials involved,even though very small amounts are used in the modules.At the very least,this would mean that modules would have to be carefully disposedof or,preferably,recycled after their useful life was"nish-ed.However,there may be some problems in gainingmarket acceptance in what is likely to be mainlya`green a market over coming years.There are also only limited known resources of tellu-rium(Zweibel and Green,2000).If all identi"ed reserveswere converted into cells of the present designs overnight,they could generate10%of the world's present electricityuse(a steadily decreasing percentage inde"nitely,if re-cycled at end of life).An even more promising technology at the moment,inthe author's opinion,is one based on the ternary com-pound,copper indium diselenide(CuInSe ).As if three elements were not enough,this compound is oftenalloyed with copper gallium diselenide(CuGaSe )and copper indium disulphide(CuInS ),giving material with up to"ve elements involved(Kazmerski,1997).The n-type layer in these devices consists of a layer of cadmium sulphide,as in the previous cadmium telluride cells.An alternative for this layer is being sought,to eliminate the toxic cadmium.Small area laboratory cells have demonstrated e$cien-cy close to19%,despite the"ne-grained polycrystallinematerial used(Zweibel and Green,2000;Kazmerski,1997;Partain,1995).Modules of this material are nowcommercially available in small volumes with e$ciencyup to12%demonstrated in pilot production.This is notfar behind what is achieved with standard crystallinesilicon wafer modules.Apart from the use of cadmium and even more limitedknown resources of indium than tellurium,an oftenquoted limitation of this technology is`manufacturabil-ity a.This is often interpreted as meaning it is di$cult todiagnose problems in production with this material,sincethe di!erence between good and bad material is notsu$ciently well understood to allow di!erentiation andcontrol during the various manufacturing steps.5.4.Thin-x lm polycrystalline silicon cellsAs previously mentioned,silicon is a weak absorber ofsunlight compared to some compound semiconductorsand even to hydrogenated amorphous silicon.Early at-tempts to develop thin-"lm solar cells based on the poly-crystalline silicon did not give encouraging results sincethe silicon layers had to be quite thick to absorb most ofthe available light.However,in early1980s,understanding of how e!ec-tively a semiconductor can trap weakly absorbed lightinto its volume greatly increased(Green,1995).Due tothe optical properties of semiconductors,particularlytheir high refractive index,cells can trap light very e!ec-tively if the light direction is randomised,such as bystriking a rough surface,once it is inside the cell.Optical-ly a cell can appear about50times thicker than its actual994M.A.Green/Energy Policy28(2000)989}998Fig.9.One approach for high-temperature preparation of silicon thin-"lm solarcells.Fig.10.Prototype thin-"lm polycrystalline silicon-on-glass module (photograph courtesy of Paci "c Solar Pty.Ltd.,Sydney).Fig.11.Nanocrystalline dye sensitised solar cell.thickness if this occurs.Such `light trapping a removes the weak absorption disadvantage of silicon.Work on polycrystalline thin-"lm solar cells is pro-ceeding in two areas.A variety of `high temperature a approaches such as suggested by Fig.9are being ex-plored.There generally involve either high-temperature deposition of silicon onto a substrate or melting the silicon after deposition,to obtain large grain size in the "nal "lm.Although preparation details are sketchy,the thin-"lm silicon product available from the US company,Astropower,is the most developed representative of this class of approach.In this case,the silicon is deposited onto an expansion-matched ceramic substrate.The "nal material consists of millimetre sized grains and is similar in appearance to multicrystalline silicon wafers.Small area cell performance in the 16}17%range has been demonstrated (Kazmerski,1997),similar to that from such cells on moderate-quality multicrystalline silicon.The performance of large arrays of such cells has also been similar.The other type of approach is a `low-temperature a approach,generally based on amorphous silicon techno-logy.One approach is to deposit the silicon in amorph-ous form and then crystallise it by heating for prolonged periods at intermediate temperatures.This `solid-phase crystallisation a approach has produced cells of quite reasonable performance (Baba et al .,1995).Another ap-proach has involved changing the amorphous silicon deposition conditions,to produce a nanocrystalline phase of silicon.The potential of this approach was highlighted by early results with the `micromorph a solar cell (Wyrsch et al .,1998).More recently,cell e $ciency above 10%has been con "rmed with this approach (Yamamoto et al .,1999).There are plans to use such cells as the lower cell in a tandem con "guration with an amorphous silicon upper cell,with commercial product targeted for 2002(Yamamoto et al .,1999).Also targeted for commercialisation in the same timeframe is a poly-crystalline silicon on glass product shown in Fig.10,based on an amorphous silicon precursor (Paci "c Solar,1999).5.5.Nanocrystalline dye cellsA completely di !erent thin-"lm approach is based on the use of ruthenium-based organic dyes [8,9].Dye mol-ecules are coated onto a porous network to titanium dioxide particles and immersed in an electrolyte (Fig.11).In a process bearing some relationship to photosynthesis,light absorbed by the dye photoexcites a electron into the titanium dioxide which completes the circuit through the external load and the electrolyte.Interestingly,the dye only absorbs a band of photon energies,rather than all photons of energy above theM.A.Green /Energy Policy 28(2000)989}998995。