1、相反数、倒数、绝对值
- 格式:doc
- 大小:120.00 KB
- 文档页数:2
《数学思维与能力训练》辅导讲义姓名 辅导日期相 反 数 和 倒 数【知识要点】1、相反数是指绝对值相同而符号相反的两个数,两个互为相反数的和等于零。
如果两个数互为倒数,那么这两个数的积等于1,这是判断两个数互为倒数的方法。
2、在许多数学综合题中经常出现相反数和倒数,引进相反数,减法可以统一为加法,引进倒数,除法可以统一为乘法,灵活合理的运用相反数和倒数的概念及相关知识,解答某些数学问题往往起着非常重要且意想不到的作用。
【夯实基础】[例题1]若a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于1,求a + b + x 2 – cdx 值[例题2]若a 和b 互为相反数,b 和c 互为倒数,求23ac b ac 的值[例题3]若 | x – 1 | 与 | y + 2 | 互为相反数,试化简 (x + y ) 2003〖小试牛刀〗1、已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于2,求x 2 – c 2d 2x – a – b 的值2、若 | m + 5 | 与 ( n – 2 ) 4互为相反数,求m n 的值3、已知2 | 3a – 2b | + (4b – 12) 2 = 0,求)421(41312++--b b a a a 的值4、若| a + b | 与| a – b | 互为相反数,化简| a 1999 + b 1999 | + | a 1999– b 1999 |5、有理数a等于它的相反数,有理数b等于它的倒数,则a 2002 + b 2002的值为多少?6、若一个数的相反数与自身的绝对值的和为0,求这个数[例题4]设y = ax 17 + bx 13 + cx 11– 5,其中a、b、c为常数,已知当x = 7时y = 7,则x = – 7时y的值等于多少?〖小试牛刀〗已知y = ax 5 + bx 3 + cx + 665,且当x = 365时,y = 665,求x = – 365时y 的值【拓展探究】1、已知 | ab – 2 | 与 | b – 1 | 互为相反数,试求下列代数式的值)2002)(2002(1)2)(2(1)1)(1(11++++++++++a a b a b a ab2、若a 、c 是整数,b 是正整数,且满足a + b = c ,b + c = d ,c + d = a ,求a + b + c + d 的最大值。
二、概念、比较大小、平方、绝对值、相反数、倒数有关知识1、正数和负数正数和负数是表示两个具有相反意义的量,即正数和负数是相对的,规定不同,则正数和负数的表示不一样。
2、任何一个数字母(未知数)都要分三种情况来分析(例如a a是正数a>0a是0 a=0a是负数a<0)3 相反数:1、互为相反数的两个数到原点的距离相等2、a的相反数是-a3、-a不一定是负数,-a是a的相反数。
(a=-3,则-a=3)4、相反数和为0(即ab互为相反数,则a+b=0或a= -b)4、绝对值:1正数的绝对值是他本身(|a|=a |A-B|=A-B(A>B))2负数的绝对值是他的相反数(|a|=-a |A-B|=B-A(A<B))3、0的绝对值是0 (|A-B|=0(A=B))4、绝对值要考虑两种情况|a| =3,则a= +3或-35、倒数:⑴a的倒数是1 a2、1a的倒数是a3、倒数积为1,(即ab互为倒数则ab=1,a=1 b)6、平方:y2=9 y= +3或-37、七年级中不能为负的数只有两种情况即1、(|a|>=0 )2、y 2 >=08、比较大小的方法一般有三种情况:1,数轴比较法:(数轴上右边的数总比左边的大、正数大于0、负数小于0、正数大于负数)(一般适用于数字间的比较)2、绝对值比较:两个负数比较大小,绝对值大的反而小3、做差法:一般用于多项式之间的比较(A-B>0则A>B ,A-B<0则A<B 。
A-B=0则A=B )例如2x-3和2x+1比较大小,(2x-3)-(2x+1)=-4所以2x-3<2x+14、平方法:一般用于幂次数之间的比较32 和23比较大小 练习题讲解1、-9的倒数的相反数是______ ;2、平方等于9的数是__________ ;(y2=9 y= +3或-3)3、比较各对数的大小: -0.5____-2/3 ;(两个负数比较大小,绝对值大的反而小,分数化小数)4、如果把长江的水位比警戒水位高0.2米,记作+0.2米,那么比警戒水位低0.15米,记作____米5、在数轴上,距原点2个单位长度的点表示的数是 。
1、数及数的运算1.1、相反数、绝对值、分数的运算学生: 小组评价: 综合评价:(一)、课前预习学习目标:1、了解相反数、绝对值、分数的概念。
2、会进行相反数、绝对值、分数等相关运算。
3、运用所学知识,自主探究,合作互助,解决相关问题。
学习重难点:相反数、绝对值、分数等相关运算3.倒数:如果两个数的乘积是 ,那么它们互为倒数。
4.绝对值:数轴上一个数所对应的点与原点的 叫做该数绝对值。
正数的绝对值是 ,负数的绝对值是 ,零的绝对值是 .即5.分数的基本性质:分数的分子和分母同乘(或除以) 分数的值不变。
即(0)a a c c b b c ⨯=≠⨯ (0)a a c c b b c÷=≠÷ 6.分数的运算法则:a abc c÷=∙= (4)与整数一样,分数的运算同样满足交换律结合律和乘法对加法的分配律。
即(式中的字母可以是分数)a b b a +=+ ab ba =()()a b c a b c ++=++ ()()ab c a bc =()a b c ab ac +=+(二)、温故而知新一、导同学们就要开始新的人生阶段了,很高兴可以和大家一起度过这段美好的时光.希望同学们可以通过自己不懈的努力,在毕业后能够找到一个合适的工作,能够独立生存,能够成为为家庭、为企业、为社会做出自我贡献的能工巧匠.当然要达到这样的目的需要你脚踏实地的认真的学做人、学做事,那么现在请让我们从学习开始…… 1.学习——旅程学习是一段旅程,对知识的探求永无止境,而且这段旅程可以从任何时候开始!未来的成功在现在脚下! 2.老师——导游与大家一起开始这一段新的旅程、一起分享学习中的快乐、一起体会成长与进步的滋味.3.目的——运用我们应当能够理解数学,而且通过运用数学进行沟通和推理,在现实生活中应用数学来解决问题,养成一种数学上的自信心理.请不要害怕学数学,每个人都可以根据自己的能力和实际需要学好自己的数学.4.准备——必需品轻松愉快的心情、热情饱满的精神、全力以赴的态度、踏实努力的行动、科学认真的方法、及时真诚的交流.5.在学习新知识之前,我们先一起来回忆一下初中所学过的一些数学知识,今天我们先来回顾一下“相反数、绝对值、分数的运算”的相关知识。
绥化召文教育个性化辅导教案时间:年月日__________段家长签字:A. 2B. 21C. -2D. 21- 8.如果a 的相反数是2,那么a 等于〔 〕 A 、-2 B 、2 C 、12 D 、12-9.6-的值是〔 〕A .-6B . 16- C . 16 D .6 10.数在线A 、B 两点坐标分别为﹣3、﹣6,假设在数在线找一点C ,使得A 与C 的距离为4;找一点D ,使得B 与D 的距离为1,那么以下何者不可能为C 与D 的距离〔 〕A 、0B 、2C 、4D 、611.如图数在线的O 是原点,A ,B ,C 三点所表示的数分别为a .b .c .根据图中各点的位置,以下各数的絶对值的比拟何者正确〔 〕A .|b |<|c |B .|b |>|c |C .|a |<|b |D .|a |>|c |12.如图,在数轴上点A ,B 对应的实数分别为a ,b ,那么有〔 〕A 、a +b >0B 、a -b >0C 、ab >0D 、ba >0 13.计算:-2021的相反数是 .14. 7的相反数是〔 〕A .-7B .7C .71D .-71 15.﹣3的相反数是〔 〕A 、3B 、﹣3C 、D 、﹣16.﹣4的倒数的相反数是〔 〕A 、﹣4B 、4C 、﹣D 、17. 的绝对值是〔 〕A 、B 、C 、﹣2D 、218.﹣2+5的相反数是〔 〕A 、3B 、﹣3C 、﹣7D 、7二、填空题1.﹣2的相反数是 .2.计算:-(-12)=12;︱-12︱=12; 01()2-= 1 ;11()2--= . 3.﹣6的相反数是 6 .4.〕实数a ,b 在数轴上对应点的位置如下图,那么|a| > |b|〔填“>〞“<〞或“=〞〕.5.﹣3的相反数是〔 〕A 、3B 、﹣3C 、D 、﹣6.在数轴上表示﹣5的点到原点的距离是 5 .7.﹣19的绝对值是=8.数轴上点A 、B 的位置如下图,假设点B 关于点A 的对称点为C ,那么点C 表示的数为9.﹣2021的相反数是 2021 .10.假设|x -3|+|y +2|=0,那么x +y 的值为 .11. -2021的相反数是 .12. 2______.-=三、解答题1.计算:0(3)3228π-+-+2.〔1〕计算:4201116-+-︒—;〔2〕化简:〔a +3〕2+a 〔2﹣a 〕.3.〔1〕计算:023162sin30(2)---+-;〔2〕先化简,再求值:22142a a a ---,其中32a =-.〔结果精确到0.01〕.4. 计算:|-3|+20210-8×2+6×2-1.5. |﹣3|+〔2﹣1〕0﹣〔12〕﹣1.召文学校。
绝对值、相反数、倒数的性质及应用一、【知识大串联】1.相反数的概念关键要理解“只有符号不同”的含义,规定零的相反数是零;2.互为相反数指的是一对数,甲、乙两数互为相反数包括甲是乙的相反数,乙也是甲的相反数;3.相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O的两边,并且到原点的距离相等。
4.多重符号化简的依据就是相反数的意义,化简的结果是由“-”号的个数来决定的,简称:奇负偶正。
5.什么是一个数的绝对值呢?从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离。
注意,这里的距离,是以单位长度为度量单位的,是一个非负的量。
6.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数;零的绝对值是零。
7.两个负数,绝对值大的反而小。
8.绝对值的性质:(1)若a为有理数,则︱a︱≥0.(2)绝对值为某一正数的有理数有两个,它们互为相反数;互为相反数的两个数的绝对值相等。
(3)若︱a︱=a,则a≥0.(4)若︱a︱+︱b︱+︱c︱+︱d︱+…+︱m︱=0,则︱a︱=0︱b︱=0,︱c︱=0,︱d︱=0,…,︱m︱=0, 即a=0,b=0,c=0,d=0,…,m=0.(5)最小的绝对值为0,但无最大的绝对值。
9.相反数的性质:若a、b互为相反数,则a+b=0.10.倒数的性质:若a、b互为倒数,则ab=1.【精练】若a、b互为相反数,c、d互为倒数,则a+b+cd+1= .解:因为a、b互为相反数,c、d互为倒数所以a+b=0,cd=1 所以a+b+cd+1=0+1+1=2二、【典例分析】1.利用概念例1.5的相反数是() A. -5 B. 5 C. D.解析:根据相反数的概念:只有符号不同的两个数叫做互为相反数,易知本题选A例2.绝对值为4的实数是 A. ±4 B. 4 C. -4 D. 2解析:求绝对值等于4的数用绝对值几何定义比较直观,绝对值等于4的整数即在数轴上到原点距离等于4的整数点表示的数,故本题选A2.用性质特征3.例3.-2的绝对值是()A.2 B.-2 C.±2 D.解析:由绝对值的特征:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 所以-2的绝对值是2例4.若a与2 互为相反数,则|a+2|等于() A. 0 B. -2 C.2 D. 4 解析:由相反数的特征若a、b两数互为相反数,则a+b=0,反之也成立.可知a+2=0,再由绝对值的特征可得本题选A例5若a、b、c都是负数,且︱x-a︱+︱y-b︱+︱z-c︱=0,则xyz是()A 负数B 非负数C 正数D非正数解:由绝对值性质,得:x-a=0,y-b=0,z-c=0 所以x=a,y=b,z=c 因为a<0,b<0,c<0 所以xyz=abc<0 即xyz为负数,故选A。
绝对值与相反数(基础)【学习目标】1.借助数轴理解绝对值和相反数的概念;2.知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系;3.会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小;4.通过应用绝对值解决实际问题,体会绝对值的意义和作用.【要点梳理】要点一、相反数1.定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0.要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.要点二、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点诠释:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.要点三、绝对值1.定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3.要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩2.性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数.(2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点四、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:两数同号同为正号:绝对值大的数大 同为负号:绝对值大的反而小 两数异号正数大于负数 -数为0 正数与0:正数大于0负数与0:负数小于0要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.【典型例题】类型一、相反数的概念1.下列各组数互为相反数的是( )A .18-和0.8+ B .13和0.33- C .6-和(6)-- D . 3.14-和π 【思路点拨】解决这类问题的关键是抓住互为相反数的特征“只有符号不同”,所以只要将原数的符号变为相反的符号,即可求出其相反数.【答案】C【解析】18-的相反数是18,而不是0.8+;13的相反数是13-,而不是0.33-,-6的相反数就是(6)--,所以C 正确; 3.14-的相反数是3.14,不是π.【总结升华】求一个数的相反数,只改变这个数的符号,其他部分都不变.举一反三:【变式】(2015•天水)若a 与1互为相反数,则|a+1|等于( )A.-1B.0C.1D.2【答案】B类型二、多重符号的化简2.(2014秋•本溪校级月考)化简: (1)﹣{+[﹣(+3)]};(2)﹣{﹣[﹣(﹣|﹣3|)]}.【答案与解析】解:(1)原式=﹣{+[﹣3]}=﹣{﹣3}=3;(2)原式=﹣{﹣[﹣(﹣3)]}=﹣{﹣[+3]}=﹣{﹣3}=3.【总结升华】运用多重符号化简的规律解决这类问题较为简单.即数一下数字前面有多少个负号.若有偶数个,则结果为正;若有奇数个,则结果为负.类型三、绝对值的概念3.求下列各数的绝对值.112-,-0.3,0,132⎛⎫-- ⎪⎝⎭【思路点拨】112,-0.3,0,132⎛⎫-- ⎪⎝⎭在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解.【答案与解析】方法1:因为112-到原点距离是112个单位长度,所以111122-=. 因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.因为0到原点距离为0个单位长度,所以|0|=0.因为132⎛⎫-- ⎪⎝⎭到原点的距离是132个单位长度,所以113322⎛⎫--= ⎪⎝⎭. 方法2:因为1102-<,所以111111222⎛⎫-=--= ⎪⎝⎭. 因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.因为0的绝对值是它本身,所以|0|=0因为1302⎛⎫--> ⎪⎝⎭,所以113322⎛⎫--= ⎪⎝⎭ 【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法为:首先判断这个数是正数、负数还是零.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是零.从而求出该数的绝对值.类型四、比较大小4.比较下列有理数大小:(1)-1和0; (2)-2和|-3| ;(3)13⎛⎫-- ⎪⎝⎭和12- ; (4)1--______0.1-- 【答案】(1)0大于负数,即-1<0;(2)先化简|-3|=3,负数小于正数,所以-2<3,即-2<|-3|;(3)先化简1133⎛⎫--= ⎪⎝⎭,1122-=,1123>,即1132⎛⎫--<- ⎪⎝⎭. (4)先化简11--=-,0.10.1--=-,这是两个负数比较大小:因为11-=,0.10.1-=,而10.1>,所以10.1-<-,即1--<0.1--【解析】(2)、(3)、(4)先化简,再运用有理数大小比较法则.【总结升华】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断. 举一反三:【高清课堂:绝对值比大小 356845 典型例题2】【变式】比大小:653-______763- ; -|-3.2|______-(+3.2); 0.0001______-1000; 1.38-______-1.384; -π______-3.14.【答案】>;=;>;>;<类型五、绝对值非负性的应用5. 已知|2-m|+|n-3|=0,试求m-2n 的值.【思路点拨】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和为0.所以|2-m |=0,|n-3|=0.因此,2-m =0,n-3=0,所以m =2,n =3.【答案】解:因为|2-m|+|n-3|=0且|2-m|≥0,|n-3|≥0所以|2-m|=0,|n-3|=0即2-m =0,n-3=0所以m =2,n =3故m-2n =2-2×3=-4.【解析】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和为0.所以|2-m |=0,|n-3|=0.因此,2-m =0,n-3=0,所以m =2,n =3.【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a=b=…=m=0.类型六、绝对值的实际应用6.正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.【答案】因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.【解析】根据实际问题可知,哪个足球的质量偏离规定质量越小,则足球的质量越好.这个偏差可以用绝对值表示,即绝对值越小偏差也就越小,反之绝对值越大偏差也就越大.【总结升华】绝对值越小,越接近标准.【变式】某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L的误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数记作负数.检查结果如下表:+0.0018 -0.0023 +0.0025-0.0015 +0.0012 +0.0010请用绝对值知识说明:(1)哪几瓶是合乎要求的(即在误差范围内的)?(2)哪一瓶净含量最接近规定的净含量?【答案】(1)绝对值不超过0.002的有4瓶,分别是检查结果为+0.0018,-0.0015,+0.0012,+0.0010的这四瓶(2)第6瓶净含量与规定的净含量相差最少,最接近规定的净含量.。
第二讲相反数和绝对值一、知识梳理1.相反数的概念2.相反数的表示方法以及性质判定3.有理数多重符号的化简4.绝对值的概念5.绝对值的性质6.利用绝对值比较大小二、课堂例题精讲与随堂演练知识点1:相反数的概念(1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
如5与-5是互为相反数。
(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
例1 5的相反数是( )A. -5B. 5C.D.例2 下列判断不正确的有()①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个【分析与解答】根据相反数的概念:只有符号不同的两个数叫做互为相反数,易知本【随堂演练】【A类】1.写出下列各数的相反数:526,8, 3.9,,,100,0211---【B类】2. -7的相反数的倒数是()知识点2:相反数的表示在一个数的前面添上“-”号就成为原数的相反数。
若表示一个有理数,则的相反数表示为-。
在一个数的前面添上“+”号仍与原数相同。
例如,+7=7,特别地,+0=0,-0=0。
若互为相反数,则,反之若,则互为相反数。
例3下面说法中正确的是()C .-a 的相反数是正数;D .两个表示相反意义的数是相反数.【分析与解答】 互为相反的数应是数字相同,符号不同的数.A 中的两个数是互为倒数,它们不是互为相反数,要注意区别相反数与倒数;B 中的两个数的符号不同,数字相同,81=0.125,所以它们是互为相反数;C 中的-a 不一定是负数,若a 是负数,则-a 是正数,正数的相反数是负数;D 中要注意区别相反数和相反意义的量,在数轴上互为相反数是在原点两旁,并且与原点距离相等的两个数,相反意义的量则不同,如向东行40米和向西行50米是相反意义的量,不是相反数.根据分析,A.C.D 均错,只有B 对, ∴选B【随堂演练】【A 类】3.填空【B 类】4.若4-=a ,则________=-a .若3.2+=a ,则_________=-a ;若1=-a ,则_____=a ;若2-=-a ,则_____=a ;如果a a =-,那么_____=a .知识点3:多重符号化简(1)相反数的意义是简化多重符号的依据。
一、知识点1、正数前面可以加“+”号,也可以不加“+”号。
2、判断一个数是不是负数,要看它是不是在正数的前面加“—”号,而不是看它是不是带有“—”号。
注意“—a”不一定是负数。
3、相反意义的量是成对出现的。
4、0是有理数,也是整数,也是最小的自然数。
5、奇数、偶数也可以扩充到负数,如—1,—21,—53…等都是奇数;—2,—22,—26^等都是偶数。
6、整数也可以看作分母为1的分数。
7、的相反数是,但—不一定是负数。
8、求一个式子的相反数,一定要将整个式子加上括号,再在括号前面加上“—”号,例如的相反数是—(),即。
9、多重符号的化简化简的结果取决与正数前面负号“—”的个数,“奇负偶正”。
10、当时,,即绝对值等于它本身的是非负数;当时,,即绝对值等于它的相反数的是非正数。
11、无论为正数、负数或0,,称为绝对值的非负性。
12、几个非负数的和为0,则这几个非负数均为0.即,。
13、有理数加法法则:(1)同号两数相加,取相同的负号,并把绝对值相加。
(2)异号两数相加,绝对值相等时,和为0;绝对值不相等时,取绝对值较大数的符号,并把绝对值想减。
14、有理数乘法法则:先看有没有0因数,只要有一个因数是0,积就为0。
在没有0因数的情况下,先定积得符号,再把绝对值之积作为积的绝对值。
(“奇负偶正”,不要忘记写符号“—”)。
15、不是任何数都有倒数,0是没有倒数的。
倒数是它本身的有。
16、分数的化简:不要忽略分数本身的符号,分数的分子、分母及分数本身的符号,改变其中任意两个,分数值不变。
17、(1)在有理数的加减混合计算过程中,先把减法转化成加法。
(2)在有理数的乘除混合计算中,先把带分数化成假分数,在把除法变成乘法。
有乘方的一定要先算乘方。
二、巩固练习1、 在下列各数中,负数有哪些?2、 下列结论正确的是( )A、不大于0的数一定是负数B、海拔高度是0米表示没有高度C、0是正数与负数的分界D、不是正数的数一定是负数3、 下列说法正确的有( )①小数都是有理数。
绥化召文教育个性化辅导教案时间:年月日__________段家长签字:5.-2的绝对值是( )A .﹣2B .21- C .2 D .21 6.|﹣3|的值等于( )A .3B .﹣3C .±3D .3 7. 21-的相反数是( ) A. 2 B. 21 C. -2 D. 21- 8.如果a 的相反数是2,那么a 等于( ) A 、-2 B 、2 C 、12 D 、12-9.6-的值是( )A .-6B . 16-C . 16D .6 10.已知数在线A 、B 两点坐标分别为﹣3、﹣6,若在数在线找一点C ,使得A 与C 的距离为4;找一点D ,使得B 与D 的距离为1,则下列何者不可能为C 与D 的距离( )A 、0B 、2C 、4D 、611.如图数在线的O 是原点,A ,B ,C 三点所表示的数分别为a .b .c .根据图中各点的位置,下列各数的絶对值的比较何者正确( )A .|b |<|c |B .|b |>|c |C .|a |<|b |D .|a |>|c |12.如图,在数轴上点A ,B 对应的实数分别为a ,b ,则有( )A 、a +b >0B 、a -b >0C 、ab >0D 、ba >0 13.计算:-2011的相反数是 .14. 7的相反数是( )A .-7B .7C .71D .-71 15.﹣3的相反数是( )A 、3B 、﹣3C 、D 、﹣16.﹣4的倒数的相反数是( )A 、﹣4B 、4C 、﹣D 、17. 的绝对值是( )A 、B 、C 、﹣2D 、218.﹣2+5的相反数是( )A 、3B 、﹣3C 、﹣7D 、7二、填空题1.﹣2的相反数是 .2.计算:-(-12)=12;︱-12︱=12; 01()2-= 1 ;11()2--= . 3.﹣6的相反数是 6 .4.)实数a ,b 在数轴上对应点的位置如图所示,则|a| > |b|(填“>”“<”或“=”).5.﹣3的相反数是( )A 、3B 、﹣3C 、D 、﹣6.在数轴上表示﹣5的点到原点的距离是 5 .7.﹣19的绝对值是=8.数轴上点A 、B 的位置如图所示,若点B 关于点A 的对称点为C ,则点C 表示的数为9.﹣2011的相反数是 2011 .10.若|x -3|+|y +2|=0,则x +y 的值为 .11. -2011的相反数是 .12. 2______.-=三、解答题1.计算:0(3)3228π-+-+2.(1)计算:4201116-+-︒—错误!未找到引用源。
初一数学竞赛培训相反数和倒数主备:杨晓一、有关知识与要点1、相反数指绝对值相同而符号相反的两个数,两个互为相反数的和等于0。
2、1除以一个数(0除外)的商,叫做这个数的倒数,如果两个数互为倒数,则这两个数的积等于1。
二、例题例1①你能找到两个数,它们互为相反数,它们的倒数也互为相反数吗?②你能找到两个有理数,它们既互为相反数,又互为倒数吗?例2如果两个数互为倒数,那么它们的和的倒数与它们的倒数的和也互为倒数吗?为什么?例3已知a、b互为相反数,c、d互为倒数,x的绝对值等于1,求a+b+x2-cdx的值。
例4若a、c、d是整数,b是正整数,且满足a+b=c,b+c=d,c+d=a那么a+b+c+d的最大值是()A、-1B、0C、1D-5例5设y=ax17+bx13+cx11-5,其中a、b、c为常数,已知当x=-7时,y=7则x=7时,y的值等于()A、-17B、-7C、14D、21E、不能唯一确定例6 若(x 2-x+1)6=a 12x 12+a 11x 11+……+a 2x 2+a 1x+a 0,求a 12+a 10+a 8+a 6+a 4+a 2+a 0的值练习:1. 一个有理数的相反数与自身的绝对值的和( )A 、可能是负数B 、必为正数C 、必为非负数D 、必为02. 两个质数的和是49,则这两个质数的倒数和是( )A 、4994B 、9449C 、4586D 、8645 E 、以上结论都不对 3. 一个数的倒数小于2,且大于-3,则这个数a 的取值范围是( ) A 、2131<<-a B 、13121<<->a a 或 C 、3121-<>a a 或 D 、这样的a 不存在 4. 若()212-++-y x y x 与互为相反数,则x= ,y=5. 若a>0,则aa 1 与的大小关系是6. 若()425-+n m 与互为相反数,则m n =7. 若(2x-1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x+a 0,则a 0-a 1+a 2-a 3+a 4-a 5=8. 已知y=ax 5+bx 3+cx+665,且当x=365时,y=-665,求x=-365时,y 的值。