2008年全国高考数学试题汇编直线与圆的方程
- 格式:doc
- 大小:280.00 KB
- 文档页数:4
第七章 直线和圆的方程三 圆的方程【考点阐述】圆的标准方程和一般方程.圆的参数方程. 【考试要求】(6)掌握圆的标准方程和一般方程,了解参数方程的概念。
理解圆的参数方程. (7)会判断直线、圆的位置关系。
【考题分类】(一)选择题(共15题)1.(安徽卷理8文10)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .[B .(C .[33-D .(33-解:设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1x y -+=有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3k k k ≤+≤,选择C 另外,数形结合画出图形也可以判断C 正确。
2.(北京卷理7)过直线y x =上的一点作圆22(5)(1)2x y -+-=的两条切线12l l ,,当直线12l l ,关于y x =对称时,它们之间的夹角为( ) A .30B .45C .60D .90【标准答案】: C【试题分析一】: 过圆心M 作直线l :y=x 的垂线交与N 点,过N 点作圆的切线能够满足条件,不难求出夹角为600。
【试题分析二】:明白N 点后,用图象法解之也很方便 【高考考点】: 直线与圆的位置关系。
【易错提醒】: N 点找不到。
【备考提示】: 数形结合这个解题方法在高考中应用的非常普遍,希望加强训练。
3.(广东卷文6)经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是 A 、10x y ++= B 、10x y +-= C 、10x y -+= D 、10x y --= 【解析】易知点C 为(1,0)-,而直线与0x y +=垂直,我们设待求的直线的方程为y x b =+,将点C 的坐标代入马上就能求出参数b 的值为1b =,故待求的直线的方程为10x y -+=,选C.(或由图形快速排除得正确答案.)4.(湖北卷理9)过点(11,2)A 作圆22241640x y x y ++--=的弦,其中弦长为整数的共有 A. 16条 B. 17条 C. 32条 D. 34条解:圆的标准方程是:222(1)(2)13x y ++-=,圆心(1,2)-,半径13r =过点(11,2)A 的最短的弦长为10,最长的弦长为26,(分别只有一条)还有长度为11,12,25 的各2条,所以共有弦长为整数的221532+⨯=条。
第七章 直线和圆的方程一 直线的方程【考点阐述】直线的倾斜角和斜率,直线方程的点斜式和两点式.直线方程的一般式.两条直线平行与垂直的条件.两条直线的交角.点到直线的距离. 【考试要求】(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系. 【考题分类】(一)选择题(共3题)1.(全国Ⅱ卷理11)等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( ) A .3 B .2C .13-D .12-【答案】A【解析】1,02:11-==-+k y x l ,71,047:22==--k y x l ,设底边为kx y l =:3 由题意,3l 到1l 所成的角等于2l 到3l 所成的角于是有371711112211+-=-+⇒+-=+-k k k k k k k k k k k再将A 、B 、C 、D 代入验证得正确答案是A【高考考点】两直线成角的概念及公式【备考提示】本题是由教材的一个例题改编而成。
(人教版P49例7) 2.(全国Ⅱ卷文3)原点到直线052=-+y x 的距离为( ) A .1 B .3C .2D .5【答案】D 【解析】52152=+-=d【高考考点】点到直线的距离公式3.(四川卷理4文6)直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( )(A)1133y x =-+ (B)113y x =-+ (C)33y x =- (D)113y x =+ 【解】:∵直线3y x =绕原点逆时针旋转090的直线为13y x =-,从而淘汰(C),(D )又∵将13y x =-向右平移1个单位得()113y x =--,即1133y x =-+ 故选A ;【点评】:此题重点考察互相垂直的直线关系,以及直线平移问题;【突破】:熟悉互相垂直的直线斜率互为负倒数,过原点的直线无常数项;重视平移方法:“左加右减”;(二)填空题(共2题)1.(江苏卷9)如图,在平面直角坐标系xoy 中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点(0,)P p 在线段AO上的一点(异于端点),这里p c b a ,,,均为非零实数,设直线CP BP ,分别与边AB AC ,交于点F E ,,某同学已正确求得直线OE 的方程为01111=⎪⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-y a p x c b ,请你完成直线OF的方程: ( ▲)011=⎪⎪⎭⎫⎝⎛-+y a p x 。
2008年全国高考数学试题汇编——直线与圆的方程(二)28.(上海理科15)如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成区域(含边界),A 、B 、C 、D 是该圆的 四等分点,若点P (x ,y )、P ’(x ’,y ’)满足x ≤x ’ 且y ≥y ’, 则称P 优于P ’,如果Ω中的点Q 满足:不存在Ω中的其 它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( D ) A .AB ︵B .BC ︵C .CD ︵D .DA ︵二、填空题29.(广东文科12)若变量x 、y 满足24025000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,则32z x y =+的最大值是 .答案:7030.(全国I 卷理科13)若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .答案:931.(山东文科16)设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 .答案:1132.(安徽理科15)若A 为不等式组002x y y x ⎧⎪⎨⎪-⎩≤≥≤表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为 . 答案:7433.(浙江理科17)若a ≥0,b ≥0,且当0,0,1x y x y ⎧⎪⎨⎪+⎩≥≥≤时,恒有ax +by ≤1,则以a 、b 为坐标的点P (a ,b )所形成的平面区域的面积等于_________. 答案:134.(福建理科14)若直线3x +4y +m =0与圆⎩⎨⎧x =1+cos θy =-2+sin θ(θ为参数)没有公共点,则实数m 的取值范围是 . 答案:(,0)(10,)-∞⋃+∞(福建文科14)若直线3x+4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是 . 答案:(,0)(10,)-∞⋃+∞35.(山东文科13)已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 .答案:221412x y -= 36.(江苏9)如图,在平面直角坐标系xOy 中,设△ABC 的顶点分别为(0)(0)(0)A a B b C c ,,,,,,点(0)P p ,是线段OA 上一点(异于端点),a b c p ,,,均为 非零实数.直线BP 、CP 分别交AC 、AB 于点E ,F .一同学已 正确地求出直线OE 的方程为11110x y b c p a ⎛⎫⎛⎫-+-= ⎪⎪⎝⎭⎝⎭,请你 完成直线OF 的方程:( ▲ )110x y p a ⎛⎫+-= ⎪⎝⎭. 答案:11c b- 37.(广东理科11)经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是________________.【解析】易知点C 为(1,0)-,而直线与0x y +=垂直,我们设待求的直线的方程为y x b =+,将点C 的坐标代入马上就能求出参数b 的值为1b=,故待求的直线的方程为10x y -+=.38.(重庆理科15)直线l 与圆x 2+y 2+2x -4y +a =0(a <3)相交于两点A ,B ,弦AB 的中点为(0,1),则直线l 的方程为 . 答案:x -y +1=0(重庆文科15)已知圆C :22230xy x ay +++-=(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a = . 答案:-239.(天津理科13)已知圆C 的圆心与抛物线x y 42=的焦点关于直线x y =对称.直线0234=--y x与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为 .. 答案:22(1)10x y +-=40.(天津文科15)已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线34110x y +-=与 圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 . 答案:22(1)18x y ++=41.(湖南文科14)将圆x 2+y 2=1沿x 轴正向平移1个单位后得到圆C ,则圆C 的方程是 ;若过点(3,0)的直线l 和圆C 相切,则直线l 的斜率是 . 答案:(x -1)2+y 2=133-42.(四川文、理科14)已知直线:40l x y -+=与圆22:(1)(1)2C x y -+-=,则C 上各点到l 距离的最小值为 .解析:由数想形,所求最小值=圆心到到直线的距离-圆的半径.圆心(1,1)到直线60x y -+=的距离d三、解答题 43.(宁夏海南文科第20题)已知,m ∈R 直线m y m mx l 4)1(:2=+-和圆01648:22=++-+y x y x C . (Ⅰ)求直线l 斜率的取值范围;(Ⅱ)直线l 能否将圆C 分割成弧长的比值为21的两段圆弧?为什么? 解:(Ⅰ)22,0()1mk km m k m =∴-+=*+ , ,m ∈R ∴当k ≠0时0∆≥,解得1122k -≤≤且k ≠0又当k =0时,m =0,方程()*有解,所以,综上所述1122k -≤≤(Ⅱ)假设直线l 能否将圆C 分割成弧长的比值为21的两段圆弧.设直线l 与圆C 交于A ,B 两点 则∠ACB =120°.∵圆22:(4)(2)4C x y -++=,∴圆心C (4,-2)到l 的距离为1.1=,整理得423530m m ++=.∵254330∆=-⨯⨯<,∴423530m m ++=无实数解. 因此直线l 不可能将圆C 分割成弧长的比值为21的两段圆弧.44.(江苏18)在平面直角坐标系xOy 中,二次函数2()2f x x x b =++(x ∈R )与两坐标轴有三个交点.记过三个交点的圆为圆C . (Ⅰ)求实数b 的取值范围; (Ⅱ)求圆C 的方程;(Ⅲ)圆C 是否经过定点(与b 的取值无关)?证明你的结论. 解:(Ⅰ)令x =0,得抛物线于y 轴的交点是(0,b )令f (x )=0,得x 2+2x +b =0,由题意b ≠0且△>0,解得b <1且b ≠0 (Ⅱ)设所求圆的一般方程为x 2+ y 2+D x +E y +F=0令y =0,得x 2+D x +F=0,这与x 2+2x +b =0是同一个方程,故D=2,F=b 令x =0,得y 2+ E y +b =0,此方程有一个根为b ,代入得E=-b -1 所以圆C 的方程为x 2+ y 2+2x -(b +1)y +b =0 (Ⅲ)圆C 必过定点(0,1),(-2,1)证明如下:将(0,1)代入圆C 的方程,得左边= 02+ 12+2×0-(b +1)×1+b =0,右边=0 所以圆C 必过定点(0,1); 同理可证圆C 必过定点(-2,1).。
2008年高考数学试题分类汇编直线与圆一.选择题:?xyC、是一个与轴的正半轴分别相切于点轴的正半轴、1,(上海卷)如图,在中,y)yP(x,DCABD、点、、、的定圆所围成的区域(含边界),是该圆的四等分点.若点A≥≤??????yyxxQ)P,(xy???P满足:不存在中的点.如果且,则称优于满BDQQ中的其它点优于D ,那么所有这样的点)组成的集合是劣弧(xOCBC B.弧A.弧ABDACD D.弧C.弧yx??1??)(cossin,M)若直线102.)通过点(全国一,则( D ba1111≥≤≥≤22221a?bb1a?11??A. D B.C..2222baba≥?,yx?≤yx,y?3z?x,yx?22满足约束条件: D 3.(全国二)设,则)的最小值(??≥.?x2?8??64??2. B. D CA..04??x?7yx?y?2?0则4.(全国二)两腰所在直线的方程分别为,原点在等腰三角形的底边上,与 A )底边所在直线的斜率为(11??.2CAD.. 3B.32≥?,x?y?10?≥yx?2yx,3z?,y0x? B )5.(北京卷5)若实数则的最小值是(满足??≤,0x?39. C .DBA.0.122l,lll,2??(x?5)?(y1)xyy?x?关于当直线上的一点作圆,的两条切线过直线(6.北京卷7)2121 C )对称时,它们之间的夹角为(90456030.. B C.A.D090xy?3 ) A,再向右平移1个单位,所得到的直线为(四川卷4)直线( 绕原点逆时针旋转7.11111?y?1???xx?xy??y33y?x?(A)(C)(D)(B)33330??yx??1?x?y yx,yx?z?5D8.的最大值为)设变量(天津卷2,则目标函数满足约束条件??x?2y?1?5C)4 (D)( A)2 (B)3 (221y?x?2)?((4,0)A ll的斜率的取值范围为的直线有公共点,则直线与曲线9.(安徽卷8).若过点 C )(3333 )?[?(,,]3)3]3,(?[?3, BD....C A 3333220y?6x?8x?y?)的最长弦和最短弦分别为,510.(山东卷11)已知圆的方程为.设该圆过点(3ABCDACBD B 和,则四边形的面积为6666(A)D1030(B))2040(C)(,?0x?2y?19??x,0?x?y8?aaMya≠>0所表示的平面区域为(,使函数,=11.(山东卷12)设二元一次不等式组??0?2x?y?14?aM C的的取值范围是1)的图象过区域1010,9][1,3] (B)[2,A)] (C)[2,9] (D)[(220??4y?164x?y?2x(11,2)A C 作圆)过点12.(湖北卷9的弦,其中弦长为整数的共有条 C. 32条 D. 34条A.16条 B. 171,x???0,y?x?yx?yx( C )的最大值是3)已知变量满足条件、则13.(湖南卷??0,9??2y?x?D.8C.6A.2B.5220?2x?2x?y?0y??m3x?m相切,则实数)14.与圆(陕西卷)直线等于( C333?3333?3?3333? D或或A..或 C B..或,y≥1??,x?1y≤2y?xx,y?z m1?等于如果目标函数的最小值为1015.(陕西卷)已知实数满足,则实数??.≤mx?y? B )(3 D.C.47 A. B.522220??4yx?2x?0+yx+y OO B的位置关系是: 圆16.(重庆卷3)和圆:21 (D)内切相离(B)相交 (C)外切(A)221y?x?2kx?y? C )与直线(辽宁卷3)圆没有公共点的充要条件是(17...)∞2(,??2)?k2k?(?,2)?(∞,B.A.kk?(?∞,(3?3),?(?33),?∞).CD.二.填空题:011??4y?y?x?13xP(?2,1)相交对称.直线与圆1.(天津卷15)已知圆C的圆心与点关于直线C226AB?18?1)?x?(yB,A __________________.于两点,且,则圆C的方程为≥?,0x?y?≥y,x yx?z?2,0y?3x?913)若.则满足约束条件的最大值为(全国一2.??≤≤,03x?22????Cl21?C:yx?1??0?4?l:x?y的距离的最小值(四川卷14)已知直线,则上各点到与圆3.2。
2008年全国各地高考数学试题及解答分类汇编大全 (12圆锥曲线与方程)一、选择题: 1.(2008北京理)若点P 到直线1x =-的距离比它到点(20),的距离小1,则点P 的轨迹为( D ) A .圆 B .椭圆 C .双曲线 D .抛物线2.(2008福建文、理)双曲线22221(0,0)x y a b a b+=>>的两个焦点为12,F F ,若P 为其上的一点,且12||2||PF PF =,则双曲线离心率的取值范围为( B )A.(1,3) B.(1,3] C.(3,)+∞ D.[3,)+∞3、(2008海南、宁夏文)双曲线221102x y -=的焦距为( D )D.4、(2008海南、宁夏理)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A )A. (41,-1) B. (41,1) C. (1,2) D. (1,-2)5. (2008湖北文、理)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭圆轨道I 和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道I 和Ⅱ的长轴的长,给出下列式子: ①1122;a c a c +=+②1122;a c a c -=-③1212;c a a c >④1212.c c a a < 其中正确式子的序号是( B )A.①③B.②③C.①④D.②④6.(2008湖南文) 双曲线)0,0(12222>>=-b a by a x 的右支上存在一点,它到右焦点及左准线 的距离相等,则双曲线离心率的取值范围是( C )A .B .)+∞C .(11]D .1,)+∞7. (2008湖南理)若双曲线22221x y a b-=(a >0,b >0)上横坐标为32a 的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B. )A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)8.(2008江西文、理) 已知12F F 、是椭圆的两个焦点.满足1MF ²2MF =0的点M 总在椭圆内部,则椭圆离心率的取值范围是(C ) A .(0,1) B .(0,21] C .(0,22) D .[22,1)9.(2008辽宁文) 已知双曲线22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为15,则m =( D ) A .1 B .2 C .3 D .410.(2008辽宁理) 已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A )A B .3CD .9211.(2008全国Ⅰ卷文)若直线1x ya b+=与圆221x y +=有公共点,则( D ) A .221a b +≤B .221a b +≥ C .22111a b +≤ D .2211a b+≥112.(2008全国Ⅱ卷文)设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( B )A .221+ B .231+ C . 21+ D .31+13.(2008全国Ⅱ卷理)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( B )A .B .C .(25),D .(214.(2008山东理)设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点 到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( A )(A )1342222=-y x (B)15132222=-y x (C)1432222=-y x (D)112132222=-y x15.(2008陕西文、理) 双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( B )A BCD16.(2008上海文)设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于(D ) A .4 B .5C .8D .1017.(2008四川文) 已知双曲线22:1916x y C -=的左右焦点分别为12,F F ,P 为C 的右支上一点,且212PF F F =,则12PF F ∆的面积等于( C )(A)24 (B)36 (C)48 (D)9617.【解】:∵双曲线22:1916x y C -=中3,4,5a b c === ∴()()125,0,5,0F F -作1PF 边上的高2AF ,则18AF = ∴26AF == ∴12PF F ∆的面积为12111664822PF PF ⋅=⨯⨯= 故选C18.(2008四川理) 已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且AK =,则AFK ∆的面积为( B )(A)4 (B)8 (C)16 (D)32 18.【解】:∵抛物线2:8C y x =的焦点为()20F ,,准线为2x =- ∴()20K -,设()00A x y ,,过A 点向准线作垂线AB ,则()02B y -,∵AK =,又()0022AF AB x x ==--=+∴由222BK AK AB =-得()22002y x =+,即()20082x x =+,解得()24A ±,∴AFK ∆的面积为01144822KF y ⋅=⨯⨯= 故选B19(2008天津文)设椭圆22221(00)x y m n m n +=>>,的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( B )A .2211216x y +=B .2211612x y += C .2214864x y += D .2216448x y += 20. (2008天津理)设椭圆()1112222>=-+m m y m x 上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为( B )(A) 6 (B) 2 (C) 21 (D) 772 21.(2008浙江文、理)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( D )(A )3 (B )5 (C )3 (D )522.(2008浙江理)如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( B )(A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线23. (2008重庆文)若双曲线2221613x y p-=的左焦点在抛物线y 2=2px的准线上,则p 的值为 (C )(A)2 (B)3(C)424. (2008重庆理)已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e ,则双曲线方程为 (C )(A )22x a -224y a=1 (B)222215x y a a -= (C)222214x y b b -=(D)222215x y b b-=二、填空题:1.(2008安徽文)已知双曲线22112x y n n-=-n = 42. (2008福建文)若直线340x y m ++=与圆222440x y x y +-++=没有公共点,则实数m 的取值范围是 (,0)(10,)-∞+∞3、(2008海南、宁夏理)过双曲线221916x y -=的右顶点为A ,右焦点为F 。
2008年高考数学第七章(直线和圆的方程)第八章(圆锥曲线方程)试题集锦2008年普通高等学校招生全国统一考试文科数学(必修+选修I) 3.原点到直线052=-+y x 的距离为 A.1 B.3 C. 2 D.56.设变量y x ,满足约束条件:⎪⎩⎪⎨⎧-≥≤+≥222x y x x y ,则y x z 3-=的最小值A.-2B. -4C. -6D. -87设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=aA. 1B.21 C. -21 D.-115.已知F 是抛物线C:x y 42=的焦点,A 、B 是C 上的两个点,线段AB 的中点为M(2,2),则ABF ∆的面积等于22. (本大题满分12分)设椭圆中心在坐标原点,)1,0(),0,2(B A 是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点 Ⅰ若DF 6ED =,求k 的值Ⅱ求四边形AEBF 面积的最大值。
2008年普通高等学校招生全国统一考试理科数学(全国Ⅱ) (5)同文科第6题 (9)设1>a ,则双曲线1)1(2222=++a yax 的离心率e 的取值范围是A .)2,2( B. )5,2( C. )5,2( D. )5,2((11)等腰三角形两腰所在直线的方程分别为02=-+y x 和047=--y x ,原点在等腰三角形的底边上,则底边所在直线的斜率为A .3 B. 2 C. 31- D. 21-(14)设曲线axey =在点(0,1)处的切线与直线012=++y x 垂直,则a= .(15)已知F 为抛物线C :x y 42=的焦点,过F 且斜率为1的直线交C 于A 、B 两点.设FB FA >.则FA 与FB 的比值等于 .(21) 同文科第22题2008年普通高等学校招生全国统一考试文科数学(必修1+选修Ⅰ) (4)曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为 (A)30° (B)45° (C)60° (D)12°(10)若直线by a x +=1与图122=+y x 有公共点,则(A)122≤+b a(B) 122≥+b a (C)11122≤+ba(D)11122≥+ba(13)若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .(14)已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 (15)在△ABC 中,∠A =90°,tan B =34.若以A 、B 为焦点的椭圆经过点C ,则该椭圆的离心率e = .(22)(本小题满分12分) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知O A AB O B 、、成等差数列,且BF与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设A B 被双曲线所截得的线段的长为4,求双曲线的方程.2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ) 7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12-D .2-10.若直线1x y a b+=通过点(cos sin )M αα,,则( )A .221a b +≤ B .221a b +≥C .22111ab+≤D .22111ab+≥13.同文科第13题14.同文科第14题15.在A B C △中,A B B C =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = . 21.同文科第22题2008年普通高等学校招生全国统一考试(四川)数 学(文史类) 6、同理科第4题 11、已知双曲线22:1916x y C-=的左右焦点分别为F 1、F 2 ,P 为C 的右支上一点,且||||212P F F F =,则△PF 1F 2 的面积等于(C ) (A )24 (B )36 (C )48 (D )96 14、同理科第14题 22.(本小题满分14分) 设椭圆22221(0)x y a b ab+=>>的左、右焦点分别是F 1和F 2 ,离心率e=,点F 2到右准线l的距离为(Ⅰ)求a b 、的值;(Ⅱ)设M 、N 是右准线l 上两动点,满足0.12F M F M ∙=证明:当.M N 取最小值时,02122F F F M F N ++=. 解:(1)因为c e a=,F 2到l 的距离2ad c c=-,所以由题设得22c a a c c⎧=⎪⎪⎨⎪-=⎪⎩解得,2.c a ==由2222,b a c b =-==得(Ⅱ)由c =,a =2得12(0),0).F F l的方程为x =.故可设12),).M y N y 由120F M F M ∙=知12)0,y y -=得y 1y 2=-6,所以y 1y 2≠0,216y y =-,12112166||||||||||M N y y y y y y =-=+=+≥当且仅当1y =y 2=-y 1,所以,212212(0)))F F F M F N y y ++=-++=(0,y 1+y 2)2008年普通高等学校招生全国统一考试(四川卷)理科数学说明:2008年是四川省高考自主命题的第三年,因突遭特大地震灾害,四川六市州40县延考,本卷为非延考卷. 一、选择题:(5'1260'⨯=)4.直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位后所得的直线为( )A .1133y x =-+ B .113yx =-+C .33y x =-D .113yx =+解析:本题有新意,审题是关键.旋转90︒则与原直线垂直,故旋转后斜率为13-.再右移1得1(1)3y x =--.选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换.12.设抛物线2:8C y x =的焦点为F ,准线与x 轴相交于点K ,点A 在C 上且AK =,则AFK ∆的面积为( )A .4B .8C .16D .32解析:解几常规题压轴,不怕.边读题边画图.28y x =的焦点(2,0)F ,准线2x =-,(2,0)K -.设(,)A x y ,由A K =,即2222(2)2[(2)]x y x y++=-+.化简得:22124y x x =-+-,与28y x =联立求解,解得:2x =,4y =±.1144822AFKA S FK y ∆=⋅⋅=⋅⋅=,选B .本题的难度仅体现在对运算的准确性和快捷性上.14.已知直线:60l x y -+=,圆22:(1)(1)2C x y -+-=,则圆C 上各点到直线l 的距离的最小值(1,1)到直线60x y -+=的距离d =21.(本小题满分12分)设椭圆22221x y ab+= (0)a b >>的左、右焦点分别为1F 、2F ,离心率2e =,右准线为l ,M 、N 是l 上的两个动点,120F M F N =.(Ⅰ)若12||||F M F N ==a 、b 的值;(Ⅱ)证明:当||M N取最小值时,12F M F N + 与12F F 共线.解析: (Ⅰ)由已知, 1(,0)F c -,2(,0)F c .由2e =2212ca=,∴222a c =. 又222a b c =+,∴22b c =,222a b =. ∴l :2222ac x c cc===,1(2,)M c y ,2(2,)N c y .延长2N F 交1M F 于P ,记右准线l 交x 轴于Q . ∵120F M F N ⋅=,∴12F M F N ⊥.12F M F N ⊥ 由平几知识易证1Rt M Q F ∆≌2Rt F Q N ∆ ∴13QN F Q c ==,2QM F Q c==即1y c =,23y c =.∵12F M F N ==∴22920c c +=,22=,22b =,24a =. ∴2a =,b =(Ⅰ)另解:∵120F M F N ⋅=,∴12(3,)(,)0c y c y ⋅=,21230y y c =-<.又12F M F N ==联立212221222392020y y c c y c y ⎧=-⎪+=⎨⎪+=⎩,消去1y 、2y 得:222(209)(20)9c c c--=,整理得:4292094000c c -+=, 22(2)(9200)0c c --=.解得22c =. 但解此方程组要考倒不少人.(Ⅱ)∵1212(3,)(,)0F M F N c y c y ⋅=⋅=, ∴21230y y c =-<.22221212122121212222412M Ny y y y y y y y y y y y c=-=+-≥--=-= .当且仅当12y y =-=或21y y =-=时,取等号.此时MN取最小值.此时1212(3,)(,)(4,0)2F M F N c c c F F +=+==. ∴12F M F N + 与12F F共线.(Ⅱ)另解:∵120F M F N ⋅=,∴12(3,)(,)0c y c y ⋅=,2123y y c=-.设1M F ,2N F 的斜率分别为k ,1k-.由1()32y k x c y kc x c=+⎧⇒=⎨=⎩,由21()2y x c c y k kx c ⎧=--⎪⇒=-⎨⎪=⎩1213M N y y c k k=-=⋅+≥ .当且仅当13kk=即213k =,3k=±即当M N最小时,3k=此时1212(3,3)(,(3,)(,)(4,0)2c F M F N c kc c kc c c F F +=+-=+== ∴12F MF N+与12F F共线.点评:本题第一问又用到了平面几何.看来,与平面几何有联系的难题真是四川风格啊.注意平面几何可与三角向量解几沾边,应加强对含平面几何背景的试题的研究.本题好得好,出得活,出得妙!均值定理,放缩技巧,永恒的考点.2008年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类) (3)曲线C :cos 1.sin 1x y θθ=-⎧⎨=+⎩(θ为参数)的普通方程为 (A)(x -1)2+(y +1)2=1 (B) (x +1)2+(y +1)2=1 (C) (x -1)2+(y -1)2=1(D) (x -1)2+(y -1)2=1(8)若双曲线2221613xy p-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为(A)2 (B)3 (C)4(15)已知圆C : 22230x y x ay +++-=(a 为实数)上任意一点关于直线l :x -y +2=0 的对称点都在圆C 上,则a = .(21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 如题(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足:2.PM PN -=(Ⅰ)求点P 的轨迹方程;(Ⅱ)设d 为点P 到直线l : 12x =的距离,若22PM PN=,求PMd的值. 解:(I )由双曲线的定义,点P 的轨迹是以M 、N 为焦点,实轴长2a=2的双曲线. 因此半焦距c =2,实半轴a =1,从而虚半轴b所以双曲线的方程为x2-23y=1.(II)解法一:由(I )由双曲线的定义,点P 的轨迹是以M 、N 为焦点,实轴长2a=2的双曲线.因此半焦距e=2,实半轴a=1,从而虚半轴R 所以双曲线的方程为x 2-23y=1.(II)解法二:由(I )及答(21)图,易知|PN|≥1,因|PM|=2|PN|2, ① 知|PM|>|PN|,故P 为双曲线右支上的点,所以|PM|=|PN|+2. ②将②代入①,得2||PN|2-|PN|-2=0,解得44舍去,所以|PN|=14+.因为双曲线的离心率e=c a=2,直线l:x =12是双曲线的右准线,故||P N d=e=2,所以d=12|PN |,因此 2||2||4||4||1||||PM PM PN PN dPN PN ====+(II)解法三:设P (x,y ),因|PN |≥1知|PM |=2|PN |2≥2|PN|>|PN |,故P 在双曲线右支上,所以x ≥1. 由双曲线方程有y 2=3x 2-3. 因此||PN ===从而由|PM |=2|PN |得2x+1=2(4x 2-4x +1),即8x 2-10x+1=0.所以x 8(舍去x 8有4d=x-12=18+.故||14P M d=-=+2008年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类) (3)圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是(A)相离 (B)相交(C)外切 (D)内切(8)已知双曲线22221x y ab-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e ,则双曲线方程为 (A )22x a-224ya=1 (B)222215x yaa -=(C)222214x yb b -= (D)222215xyb b-= (15)直线l 与圆x 2+y 2+2x-4y+a=0(a<3)相交于两点A ,B ,弦AB 的中点为(0,1),则直线l 的方程为 . (21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN +=(Ⅰ)求点P 的轨迹方程; (Ⅱ)若2·1cos P M P N M P N-=,求点P 的坐标.解:(Ⅰ)由椭圆的定义,点P 的轨迹是以M 、N 为焦点,长轴长2a =6的椭圆. 因此半焦距c =2,长半轴a =3,从而短半轴b ==所以椭圆的方程为221.95xy+=(Ⅱ)由2,1cos P M P N M P N=- 得cos 2.PM PN M PN PM PN =- ①因为cos 1,MPN P ≠不为椭圆长轴顶点,故P 、M 、N 构成三角形.在△PMN中,4,M N =由余弦定理有2222cos .M NPMPNPM PN M PN =+- ②将①代入②,得 22242(2).PMPNPM PN =+--故点P 在以M 、N 为焦点,实轴长为2213xy -=上.由(Ⅰ)知,点P 的坐标又满足22195xy+=,所以由方程组22225945,3 3.x y x y ⎧+=⎪⎨+=⎪⎩解得22x y ⎧=±⎪⎪⎨⎪=±⎪⎩即P 点坐标为22222222-、-、(-或(-.2008年普通高等学校招生全国统一考试(天津卷)数学(文史类)2.设变量x y ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x 则目标函数5z x y =+的最大值为( )A .2B .3C .4D .57.设椭圆22221(00)x y m n mn+=>>,的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( ) A .2211216xy+= B .2211612xy+= C .2214864xy+= D .2216448xy+=15.已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 . 22.(本小题满分14分)同理科第21题2008年普通高等学校招生全国统一考试(天津卷)数学(理工农医类) (2)同文科第2题 (5)设椭圆()1112222>=-+m m ym x上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为(A) 6 (B) 2 (C)21 (D)772(13)已知圆C 的圆心与抛物线x y 42=的焦点关于直线x y =对称.直线0234=--y x 与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为 . (21)(本小题满分14分)已知中心在原点的双曲线C 的一个焦点是1(30)F -,,一条渐近线的方程是20y -=.(Ⅰ)求双曲线C 的方程; (Ⅱ)若以(0)k k ≠为斜率的直线l 与双曲线C 相交于两个不同的点M N ,,且线段M N的垂直平分线与两坐标轴围成的三角形的面积为812,求k 的取值范围.[本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理运算能力.满分14分.](Ⅰ)解:设双曲线C 的方程为22221x y ab-=(0,0a b >>).由题设得2292a b b a⎧+=⎪⎨=⎪⎩,解得2245a b ⎧=⎪⎨=⎪⎩,所以双曲线方程为22145x y -=. (Ⅱ)解:设直线l 的方程为y kx m =+(0k ≠).点11(,)M x y ,22(,)N x y 的坐标满足方程组22145y kx mx y =+⎧⎪⎨-=⎪⎩将①式代入②式,得22()145xkx m +-=,整理得222(54)84200k x km x m ----=.此方程有两个一等实根,于是2504k -≠,且222(8)4(54)(420)0k m k m ∆=-+-+>.整理得22540m k+->. ③ 由根与系数的关系可知线段M N 的中点坐标00(,)x y 满足12024254x x km x k+==-,002554m y kx m k=+=-.从而线段M N 的垂直平分线方程为22514()5454mkm y x kkk-=----. 此直线与x 轴,y 轴的交点坐标分别为29(,0)54kmk-,29(0,54mk-.由题设可得2219981||||254542kmmk k ⋅=--.整理得222(54)||k m k -=,0k ≠.将上式代入③式得222(54)540||k k k -+->,整理得22(45)(4||5)0k k k --->,0k ≠.解得0||2k <<或5||4k >.所以k的取值范围是55,)(0)(0,(,)4224(∞-+--∞ . 2008年普通高等学校招生全国统一考试(安徽卷)数 学(文科)(11)若A 为不等式组 002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x+y =a 扫过A 中的那部分区域的面积为 (A )34(B)1 (C)74(D)2(14)已知双曲线2212xyn n--=1n =(22)(本小题满分14分)已知椭圆2222:1(0)xyC a b a b+=>>,其相应于焦点F (2,0)的准线方程为x =4.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知过点F 1(-2,0)倾斜角为θ的直线交椭圆C 于A ,B 两点.求证:22cos AB =-θ;(Ⅲ)过点F 1(-2,0)作两条互相垂直的直线分别交椭圆C 于点A 、B 和D 、E ,求A B D E +的最小值.2008年普通高等学校招生全国统一考试(安徽卷)数 学(理科)(8).若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .[B .(C .[33-D .(33-(15).同文科第11题,理科中为填空题 (22).(本小题满分13分)设椭圆2222:1(0)xyC a b a b+=>>过点M ,且焦点为1(0)F(Ⅰ)求椭圆C 的方程;(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两不同点,A B 时,在线段A B 上取点Q ,满足AP Q B AQ PB =,证明:点Q 总在某定直线上2008年普通高等学校招生全国统一考试数学(文史类)(北京卷) (3)“双曲线的方程为116922=-yx”是“双曲线的准线方程为x =59±”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )即不充分也不必要条件x -y +1≥0,(6)若实数x ,y 满足 x +y ≥0, 则z =x +2y 的最小值是x ≤0, (A)0 (B) 21(C) 1 (D)2(19)(本小题共14分)已知△ABC 的顶点A ,B 在椭圆2234x y +=上,C 在直线l :y =x +2上,且AB ∥l . (Ⅰ)当AB 边通过坐标原点O 时,求AB 的长及△ABC 的面积;(Ⅱ)当∠ABC =90°,且斜边AC 的长最大时,求AB 所在直线的方程. 解:(Ⅰ)因为AB ∥l ,且AB 边通过点(0,0),所以AB 所在直线的方程为y =x .设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2).由2234,x y y x ⎧+=⎨=⎩得1,x =±所以12AB x =-=又因为AB 边上的高h 等于原点到直线l 的距离,所以1 2.2A B C h S A B h ===(Ⅱ)设AB 所在直线的方程为y =x +m . 由2234,x y y x m⎧+=⎨=+⎩得2246340.x mx m ++-=因为A ,B 在椭圆上,所以212640.m ∆=-+>设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2).则21212334,,24m m x x x x -+=-=所以122AB x =-=又因为BC 的长等于点(0,m )到直线l 的距离,即BC =所以22222210(1)11.ACABBCm m m =+=--+=-++所以当m =-1时,AC 边最长.(这时12640=-+ >) 此时AB 所在直线的方程为y =x -1.2008年普通高等学校校招生全国统一考试数学(理工农医类)(北京卷) (4)若点P 到直线x =-1的距离比它到点(2,0)的大1,则点P 的轨迹为 (A )圆 (B )椭圆 (C )双曲线 (D )抛物线x -y +1≥0,(5)若实数x ,y 满足 x +y ≥0, 则z =3x +y的最小值是x ≤0,(A)0 (B)1 (C)3 (D)9(7)过直线y =x 上的一点作圆(x -5)2=2的两条切线l 1,l 2,当直线l 1,l 2关于y =x 对称时,综们之间的夹角为 (A )30° (B )45° (C)60° (D)90° (19)(本小题共14分)已知菱形ABCD 的顶点A ,C 在椭圆x 2+3y 2=4上,对角线BD 所在直线的斜率为l. (Ⅰ)当直线BD 过点(0,1)时,求直线AC 的方程; (Ⅱ)当∠ABC =60°,求菱形ABCD 面积的最大值. 解: (Ⅰ)由题意得直线BD 的方程为y =x +1. 因为四边形ABCD 为菱形,所以AC ⊥BD .于是可设直线AC 的方程为y =-x +n .由2234,x y y x n⎧+=⎨=-+⎩得2246340.x nx n -+-= 因为A ,C 在椭圆上,所以△=-12n 2+64>0,解得33n -<设A ,C 两点坐标分别为(x 1,y 1),(x 2,y 2), 则212121122334,,,.24n n x x x x y x n y x n -+===-+=-+所以12.2n y y +=所以AC 的中点坐标为3.44n n⎛⎫⎪⎝⎭由四边形ABCD 为菱形可知,点344n n ⎛⎫⎪⎝⎭在直线y =x +1上, 所以3144n n =+,解得n =-2.所以直线AC 的方程为2y x =--,即x +y +2=0.(Ⅱ)因为四边形ABCD 为菱形,且60A B C ∠=︒,所以.AB BC CA ==所以菱形ABCD的面积2.S =由(Ⅰ)可得22221212316()().2n AC x x y y -+=-+-=所以2316)(433S n n =-+-<所以当n =0时,菱形ABCD的面积取得最大值2008年普通高等学校招生全国统一考试数学卷(福建)数 学(文史类) (10)若实数x 、y 满足10,0,2,x y x x -+≤⎧⎪⎨⎪≤⎩则y x 的取值范围是(D )A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞)(12)双曲线22221xya b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为(B )A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞] (14)若直线3x+4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是 .(22)(本小题满分14分) 如图,椭圆2222:1xyC a b+=(a >b >0)的一个焦点为F (1,0),且过点(2,0). (Ⅰ)求椭圆C 的方程;(Ⅱ)若AB 为垂直于x 轴的动弦,直线l :x =4与x 轴交于点N ,直线AF 与BN 交于点M . (ⅰ)求证:点M 恒在椭圆C 上; (ⅱ)求△AMN 面积的最大值.(本小题主要考查直线与椭圆的位置关系、轨迹方程、不等式等基本知识,考查运算能力和综合解题能力,满分14分) 解法一:(Ⅰ)由题设a =2,c =1,从而b 2=a 2-c 2=3,所以椭圆C 前方程为13422=+yx.(Ⅱ)(i)由题意得F (1,0),N (4,0).设A (m,n ),则B (m ,-n )(n ≠0),3422nm+=1. ……①AF 与BN 的方程分别为:n (x -1)-(m -1)y =0,n (x -4)-(m -4)y =0.设M (x 0,y 0),则有 n (x 0-1)-(m -1)y 0=0, ……②n (x 0-4)+(m -4)y 0=0, ……③由②,③得x 0=523,52850-=--m ny m m .所以点M 恒在椭圆G 上. (ⅱ)设AM 的方程为x =xy +1,代入3422yx+=1得(3t 2+4)y 2+6ty -9=0.1)52(4936)85()52(412)85()52(3)52(4)85()52(3)52(4)85(34222222222222222020=--+-=-+-=-+--=-+--=+m mm m nm m nm m m nm m y x 由于设A (x 1,y 1),M (x 2,y 2),则有:y 1+y 2=.439,4362212+-=+-t y y x x|y 1-y 2|=.4333·344)(2221221++=-+t t y y y y令3t 2+4=λ(λ≥4),则 |y 1-y 2|=,+)--(=+)-(=- 412113411341·3432λλλλλ 因为λ≥4,0<时,,==所以当04411,41≤1=t λλλ|y 1-y 2|有最大值3,此时AM 过点F .△AMN 的面积S △AMN=.292323y ·212121有最大值y y y y y FN -=-=-解法二:(Ⅰ)问解法一: (Ⅱ)(ⅰ)由题意得F (1,0),N (4,0). 设A (m ,n ),则B (m ,-n )(n ≠0),.13422=+nm……①AF 与BN 的方程分别为:n (x -1)-(m -1)y =0, ……②n (x -4)-(m -4)y =0, ……③ 由②,③得:当≠523,528525-=--=x yn x x m 时,. ……④由④代入①,得3422yx+=1(y ≠0).当x=52时,由②,③得:3(1)023(4)0,2n m y n m y ⎧--=⎪⎪⎨⎪-++=⎪⎩解得0,0,n y =⎧⎨=⎩与a ≠0矛盾.所以点M 的轨迹方程为221(0),43xxy +=≠即点M 恒在锥圆C 上.(Ⅱ)同解法一.2008年普通高等学校招生全国统一考试数学卷(福建)数 学(理工农医类) (8) .同文科第10题(11) 同文科第12题x =1+cos θ(14)若直线3x+4y+m=0与圆 y =-2+sin θ(θ为参数)没有公共点,则实数m 的取值范围是 .(21)(本小题满分12分) 如图、椭圆22221(0)x y a b ab+= 的一个焦点是F (1,0),O 为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F 的直线l 交椭圆于A 、B 两点.若直线l 绕点F 任意转动,值有222OA OBAB + ,求a 的取值范围.(本小题主要考查直线与椭圆的位置关系、不等式的解法等基本知识,考查分类与整合思想,考查运算能力和综合解题能力.满分12分.) 解法一:(Ⅰ)设M ,N 为短轴的两个三等分点,因为△MNF 为正三角形, 所以32O F N =,即132, 3.23bb 解得 2214,a b =+=因此,椭圆方程为221.43xy+=(Ⅱ)设1122(,),(,).A x y B x y (ⅰ)当直线 AB 与x 轴重合时,2222222222,4(1),.O A O Ba ABa a O A O BAB +==>+<因此,恒有(ⅱ)当直线AB 不与x 轴重合时,设直线AB 的方程为:22221,1,x y x my ab=++=代入整理得22222222()20,a b m y b my b a b +++-= 所以222212122222222,b m b a b y y y y a b ma b m-+==++因为恒有222OA OB AB +<,所以∠AOB 恒为钝角.即11221212(,)(,)0OA OB x yx y x x y y ==+<恒成立.2121212121212(1)(1)(1)()1x x y y m y m y y y m y y m y y +=+++=++++2222222222222222222222(1)()210.m b a b b ma b ma b mm a b b a b aa b m+-=-+++-+-+=<+又a 2+b 2m 2>0,所以-m 2a 2b 2+b 2-a 2b 2+a 2<0对m ∈R 恒成立,即a 2b 2m 2> a 2 -a 2b 2+b 2对m ∈R 恒成立.当m ∈R 时,a 2b 2m 2最小值为0,所以a 2- a 2b 2+b 2<0. a 2<a 2b 2- b 2, a 2<( a 2-1)b 2= b 4,因为a >0,b >0,所以a <b 2,即a 2-a -1>0,解得a2或a2(舍去),即a2,综合(i )(ii),a的取值范围为(12+,+∞).解法二:(Ⅰ)同解法一, (Ⅱ)解:(i )当直线l 垂直于x 轴时, x =1代入22222221(1)1,A y b a y aba-+===1.因为恒有|OA |2+|OB |2<|AB |2,2(1+y A 2)<4 y A 2, y A 2>1,即21aa->1,解得a2或a2(舍去),即a2.(ii )当直线l 不垂直于x 轴时,设A (x 1,y 1), B (x 2,y 2). 设直线AB 的方程为y =k (x -1)代入22221,xy ab+=得(b 2+a 2k 2)x 2-2a 2k 2x + a 2 k 2- a 2 b 2=0,故x 1+x 2=222222222222222,.a ka k a bx x b a k b a k-=++因为恒有|OA |2+|OB |2<|AB |2,所以x 21+y 21+ x 22+ y 22<( x 2-x 1)2+(y 2-y 1)2, 得x 1x 2+ y 1y 2<0恒成立.x 1x 2+ y 1y 2= x 1x 2+k 2(x 1-1) (x 2-1)=(1+k 2) x 1x 2-k 2(x 1+x 2)+ k 2=(1+k 2)2222222222222222222222222()a k a ba ka ab b k a bk k b a k b a kb a k--+--+=+++.由题意得(a 2- a 2 b 2+b 2)k 2- a 2 b 2<0对k ∈R 恒成立. ①当a 2- a 2 b 2+b 2>0时,不合题意;②当a 2- a 2 b 2+b 2=0时,a2;③当a 2- a 2b 2+b 2<0时,a 2- a 2(a 2-1)+ (a 2-1)<0,a 4- 3a 2 +1>0,解得a 2>32+或a 2>32-(舍去),a>12+,因此a≥12+.综合(i )(ii ),a的取值范围为(12+,+∞).2008年普通高等学校统一考试(广东卷)数学(文科) 6、经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是( C )A. x + y + 1 = 0B. x + y - 1 = 0C. x - y + 1 = 0D. x - y - 1 = 0 12、若变量x 、y 满足24025000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则32z x y =+的最大值是____70___14、(坐标系与参数方程)已知曲线C 1、C 2的极坐标方程分别为cos 3ρθ=,4cos ρθ=(0ρ≥,02πθ≤<),则曲线C 1与C 2交点的极坐标为6π⎛⎫⎪⎝⎭,6π⎛⎫- ⎪⎝⎭20、(本小题满分14分)设b >0,椭圆方程为222212xy bb+=,抛物线方程为28()x y b =-。
2008年全国高考数学试题汇编——直线与圆的方程一、选择题:1.(全国Ⅱ卷文科3)原点到直线052=-+y x 的距离为( D )A .1B .3C .2D .52.(福建文科2)“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的( C )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.(四川理科4文科6)将直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位,所得到的直线为( A )A .1133y x =-+ B .113y x =-+ C .33y x =-D .113y x =+ 解析:本题有新意,审题是关键.旋转90︒则与原直线垂直,故旋转后斜率为13-.再右移1得1(1)3y x =--.选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换.4.(全国I 卷理科10)若直线1x ya b+=通过点(cos sin )M αα,,则 ( B )A .221a b +≤B .221a b +≥ C .22111a b+≤D .22111a b+≥ 5.(重庆理科7)若过两点P 1(-1,2),P 2(5,6)的直线与x 轴相交于点P ,则点P 分有向线段12PP u u u u r所成的比λ的值为( A )A .-13B .-15 C .15 D .13 (重庆文科4)若点P 分有向线段AB u u u r 所成的比为-13,则点B 分有向线段PA u u u r 所成的比是( A )A .-32B .-12C .12D .36.(安徽理科8文科10)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( C )A .[B .(C .[D .( 7.(辽宁文、理科3)圆221x y +=与直线2y kx =+没有..公共点的充要条件是 ( C )A .(2,2)k ∈-B .(,2)(2,)k ∈-∞-⋃+∞ C .(3,3)k ∈-D .(,3)(3,)k ∈-∞-⋃+∞8.(陕西文、理科5)直线30x y m -+=与圆22220x y x +--=相切,则实数m 等于( C ) A .3或3-B .3-或33C .33-或3D .33-或339.(安徽文科11)若A 为不等式组 0,0,2x y y x ⎧⎪⎨⎪-⎩≤≥≤ 表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为( C )A .34B .1C .74D .210.(湖北文科5)在平面直角坐标系xOy 中,满足不等式组,1x y x ⎧⎪⎨<⎪⎩≤的点(,)x y 的集合用阴影表示为下列图中的( C )11.(辽宁文科9)已知变量x 、y 满足约束条件10,310,10,y x y x y x +-⎧⎪--⎨⎪-+⎩≤≤≥则z =2x+y 的最大值为( B )A .4B .2C .1D .-412.(北京理科5)若实数x ,y 满足1000x y x y x -+⎧⎪+⎨⎪⎩≥≥≤,则z =3x +y 的最小值是 ( B )A .0B .1C .3D .9(北京文科6)若实数x ,y 满足1000x y x y x -+⎧⎪+⎨⎪⎩≥≥≤,则z =x +2y 的最小值是( A )A .0B .21 C .1 D .2 13.(福建理科8)若实数x 、y 满足⎩⎨⎧x -y+1≤0x >0,则yx 的取值范围是( C ) A .(0,1) B .(0,1] C .(1,+∞)D .[1,+∞)(福建文科10)若实数x 、y 满足20,0,2,x y x x -+⎧⎪>⎨⎪⎩≤≤则y x 的取值范围是( D )A .(0,2)B .(0,2)C .(2,+∞)D .[2,+∞)14.(天津理科2文科3)设变量y x ,满足约束条件0121x y x y x y -⎧⎪+⎨⎪+⎩≥≤≥,则目标函数y x z +=5的最大值为A .2B .3C .4D .5( D )15.(广东理科4)若变量x 、y 满足24025000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,则32z x y =+的最大值是( C )A .90B .80C .70D .4016.(湖南理科3)已知变量x 、y 满足条件1,0,290,x x y x y ⎧⎪-⎨⎪+-⎩≥≤≤则x+y 的最大值是( C )A .2B .5C .6D .8 (湖南文科3)已知变量x 、y 满足条件120x y x y ⎧⎪⎨⎪-⎩≥≤≤,,,则x +y 是最小值是( C )A .4B .3C .2D .117.(全国Ⅱ卷理科5文科6)设变量x ,y 满足约束条件:,22,2y x x y x ⎧⎪+⎨⎪-⎩≥≤≥则y x z 3-=的最小值为( D )A .-2B .-4C . -6D .-818.(陕西理科10)已知实数x y ,满足121y y x x y m ⎧⎪-⎨⎪+⎩≥≤≤,,.如果目标函数z x y =-的最小值为1-,则实数m 等于( B )A .7B .5C .4D .319.(浙江文科10)若0,0a b ≥≥,且当0,0,1x y x y ⎧⎪⎨⎪+⎩≥≥≤时,恒有1ax by +≤,则以a ,b 为坐标点(,)P a b 所形成的平面区域的面积等于( C )A .12B .4π C .1 D .2π 20.(山东理科12)设二元一次不等式组219080,2140x y x y x y +-⎧⎪-+⎨⎪+-⎩≥≥≤,所表示的平面区域为M ,使函数y =a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是( C ) A .[1,3]B .[2,10]C .[2,9]D .[10,9]21.(山东文科11)若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( B )A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭22.(重庆文科3)曲线C :cos 1.sin 1x y θθ=-⎧⎨=+⎩(θ为参数)的普通方程为( C )A .(x -1)2+(y +1)2=1B .(x +1)2+(y +1)2=1C .(x +1)2+(y -1)2=1D .(x -1)2+(y -1)2=123.(北京理科7)过直线y =x 上的一点作圆22(5)(1)2x y -+-=的两条切线l 1,l 2,当直线l 1,l 2关于y =x 对称时,它们之间的夹角为( C )A .30°B .45°C .60°D .90°24.(广东文科6)经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是( C )A .x +y +1=0B .x +y -1=0C .x -y +1=0D .x -y -1=025.(湖北理科9)过点A (11,2)作圆22241640x y x y ++--=的弦,其中弦长为整数的共有A .16条B .17条C .32条D .34条( C )26.(山东理科11)已知圆的方程为x 2+y 2-6x -8y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为 ( B )A .106B .206C .306D .40627.(重庆理科3)圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是 ( B )A .相离B .相交C .外切D .内切28.(上海理科15)如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成区域(含边界),A 、B 、C 、D 是该圆的 四等分点,若点P (x ,y )、P ’(x ’,y ’)满足x ≤x ’ 且y ≥y ’, 则称P 优于P ’,如果Ω中的点Q 满足:不存在Ω中的其 它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( D ) A .AB ︵B .BC ︵C .CD ︵D .DA ︵二、填空题29.(广东文科12)若变量x 、y 满足24025000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,则32z x y =+的最大值是 .答案:7030.(全国I 卷理科13)若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .答案:931.(山东文科16)设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 .答案:1132.(安徽理科15)若A 为不等式组002x y y x ⎧⎪⎨⎪-⎩≤≥≤表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为 . 答案:7433.(浙江理科17)若a ≥0,b ≥0,且当0,0,1x y x y ⎧⎪⎨⎪+⎩≥≥≤时,恒有ax +by ≤1,则以a 、b 为坐标的点P (a ,b )所形成的平面区域的面积等于_________. 答案:134.(福建理科14)若直线3x +4y +m =0与圆⎩⎨⎧x =1+cos θy =-2+sin θ(θ为参数)没有公共点,则实数m的取值范围是 .答案:(,0)(10,)-∞⋃+∞(福建文科14)若直线3x+4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是 . 答案:(,0)(10,)-∞⋃+∞35.(山东文科13)已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 .答案:221412x y -=36.(江苏9)如图,在平面直角坐标系xOy 中,设△ABC 的顶点分别为(0)(0)(0)A a B b C c ,,,,,,点(0)P p ,是线段OA 上一点(异于端点),a b c p ,,,均为非零实数.直线BP 、CP 分别交AC 、AB 于点E ,F .一同学已正确地求出直线OE 的方程为11110x y b c p a ⎛⎫⎛⎫-+-= ⎪⎪⎝⎭⎝⎭,请你 完成直线OF 的方程:( ▲ )110x y p a ⎛⎫+-= ⎪⎝⎭. 答案:11c b- 37.(广东理科11)经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是________________.【解析】易知点C 为(1,0)-,而直线与0x y +=垂直,我们设待求的直线的方程为y x b =+,将点C 的坐标代入马上就能求出参数b 的值为1b =,故待求的直线的方程为10x y -+=.38.(重庆理科15)直线l 与圆x 2+y 2+2x -4y +a =0(a <3)相交于两点A ,B ,弦AB 的中点为(0,1),则直线l 的方程为 . 答案:x -y +1=0(重庆文科15)已知圆C :22230xy x ay +++-=(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a = . 答案:-239.(天津理科13)已知圆C 的圆心与抛物线x y 42=的焦点关于直线x y =对称.直线0234=--y x与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为 .. 答案:22(1)10x y +-=40.(天津文科15)已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 . 答案:22(1)18x y ++=41.(湖南文科14)将圆x 2+y 2=1沿x 轴正向平移1个单位后得到圆C ,则圆C 的方程是 ;若过点(3,0)的直线l 和圆C 相切,则直线l 的斜率是 .答案:(x -1)2+y 2=13342.(四川文、理科14)已知直线:40l x y -+=与圆22:(1)(1)2C x y -+-=,则C 上各点到l 距离的最小值为 .解析:由数想形,所求最小值=圆心到到直线的距离-圆的半径.圆心(1,1)到直线60x y -+=的距离d =三、解答题 43.(宁夏海南文科第20题)已知,m ∈R 直线m y m mx l 4)1(:2=+-和圆01648:22=++-+y x y x C . (Ⅰ)求直线l 斜率的取值范围;(Ⅱ)直线l 能否将圆C 分割成弧长的比值为21的两段圆弧?为什么? 解:(Ⅰ)22,0()1mk km m k m =∴-+=*+Q , ,m ∈R Q ∴当k ≠0时0∆≥,解得1122k -≤≤且k ≠0又当k =0时,m =0,方程()*有解,所以,综上所述1122k -≤≤(Ⅱ)假设直线l 能否将圆C 分割成弧长的比值为21的两段圆弧.设直线l 与圆C 交于A ,B 两点则∠ACB =120°.∵圆22:(4)(2)4C x y -++=,∴圆心C (4,-2)到l 的距离为1.1=,整理得423530m m ++=.∵254330∆=-⨯⨯<,∴423530m m ++=无实数解. 因此直线l 不可能将圆C 分割成弧长的比值为21的两段圆弧.44.(江苏18)在平面直角坐标系xOy 中,二次函数2()2f x x x b =++(x ∈R )与两坐标轴有三个交点.记过三个交点的圆为圆C . (Ⅰ)求实数b 的取值范围; (Ⅱ)求圆C 的方程;(Ⅲ)圆C 是否经过定点(与b 的取值无关)?证明你的结论. 解:(Ⅰ)令x =0,得抛物线于y 轴的交点是(0,b )令f (x )=0,得x 2+2x +b =0,由题意b ≠0且△>0,解得b <1且b ≠0 (Ⅱ)设所求圆的一般方程为x 2+ y 2+D x +E y +F=0令y =0,得x 2+D x +F=0,这与x 2+2x +b =0是同一个方程,故D=2,F=b 令x =0,得y 2+ E y +b =0,此方程有一个根为b ,代入得E=-b -1 所以圆C 的方程为x 2+ y 2+2x -(b +1)y +b =0 (Ⅲ)圆C 必过定点(0,1),(-2,1)证明如下:将(0,1)代入圆C 的方程,得左边= 02+ 12+2×0-(b +1)×1+b =0,右边=0 所以圆C 必过定点(0,1); 同理可证圆C 必过定点(-2,1).。
2008年普通高等学校招生全国统一考试(全国卷2)数学(供理科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(012)k k n kn n P k C P p k n -=-=,,,,其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}3|0|31x M x x N x x x +⎧⎫==<=-⎨⎬-⎩⎭,≤,则集合{}|1x x ≥=( ) A .M N B .M NC .()M MN ðD .()M MN ð2.135(21)lim(21)x n n n →∞++++-=+( )A .14B .12C .1D .23.圆221x y +=与直线2y kx =+没有..公共点的充要条件是( )A .(k ∈B .((2)k ∈-+,∞C .(k ∈D .((3)k ∈-+,∞4.复数11212i i +-+-的虚部是( ) A .15i B .15 C .15i -D .15-5.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=,则OC =( ) A .2OA OB -B .2OA OB -+C .2133OA OB - D .1233OA OB -+6.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P横坐标的取值范围为( )A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,7.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A .13B .12C .23D .348.将函数21x y =+的图象按向量a 平移得到函数12x y +=的图象,则( )A .(11)=--,aB .(11)=-,aC .(11)=,aD .(11)=-,a 9.一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( )A .24种B .36种C .48种D .72种 10.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( )AB .3CD .9211.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,CC 1的中点,则在空间中与三条直线A 1D 1、EF 、CD 都相交的直线( )A .不存在B .有且只有两条C .有且只有三条D .有无数条 12.设()f x 是连续的偶函数,且当x >0时()f x 是单调函数,则满足3()4x f x f x +⎛⎫=⎪+⎝⎭的所有x 之和为( ) A .3-B .3C .8-D .8第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.函数100xx x y e x +<⎧=⎨⎩,,,≥的反函数是__________. 14.在体积为的球的表面上有A ,B ,C 三点,AB =1,BCA ,C,则球心到平面ABC 的距离为_________.15.已知231(1)nx x x x ⎛⎫+++ ⎪⎝⎭的展开式中没有..常数项,n ∈*N ,且2≤n ≤8,则n =______. 16.已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫⎪⎝⎭,有最小值,无最大值,则ω=__________.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分) 在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=. (Ⅰ)若ABC △a b ,;(Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC △的面积.18.(本小题满分12分)(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;(Ⅱ)已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.19.(本小题满分12分)如图,在棱长为1的正方体ABCD A B C D ''''-中,AP=BQ=b (0<b <1),截面PQEF ∥A D ',截面PQGH ∥AD '.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直; (Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值;(Ⅲ)若D E '与平面PQEF 所成的角为45,求D E '与平 面PQGH 所成角的正弦值. 20.(本小题满分12分)在直角坐标系xOy 中,点P 到两点(0,(0的距离之和等于4,设点P 的轨迹为C ,直线1y kx =+与C 交于A ,B 两点.(Ⅰ)写出C 的方程;(Ⅱ)若OA ⊥OB ,求k 的值;A BCDE FP Q H A ' B 'C 'D 'G(Ⅲ)若点A 在第一象限,证明:当k >0时,恒有|OA |>|OB |. 21.(本小题满分12分)在数列||n a ,||n b 中,a 1=2,b 1=4,且1n n n a b a +,,成等差数列,11n n n b a b ++,,成等比数列(n ∈*N ) (Ⅰ)求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测||n a ,||n b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512n n a b a b a b +++<+++….22.(本小题满分14分) 设函数ln ()ln ln(1)1xf x x x x=-+++. (Ⅰ)求f (x )的单调区间和极值;(Ⅱ)是否存在实数a ,使得关于x 的不等式()f x a ≥的解集为(0,+∞)?若存在,求a 的取值范围;若不存在,试说明理由.2008年普通高等学校招生全国统一考试(辽宁卷) 数学(供理科考生使用)试题参考答案和评分参考说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算.每小题5分,共60分. 1.D 2.B 3.C 4.B 5.A 6.A 7.C 8.A 9.B 10.A 11.D 12.C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.11ln 1.x x y x x -<⎧=⎨⎩,,, ≥14.3215.516.143三、解答题17.本小题主要考查三角形的边角关系,三角函数公式等基础知识,考查综合应用三角函数有关知识的能力.满分12分.解:(Ⅰ)由余弦定理及已知条件得,224a b ab +-=, 又因为ABC △1sin 2ab C =4ab =. ······················· 4分 联立方程组2244a b ab ab ⎧+-=⎨=⎩,,解得2a =,2b =. ·············································· 6分(Ⅱ)由题意得sin()sin()4sin cos B A B A A A ++-=,即sin cos 2sin cos B A A A =, ········································································ 8分 当cos 0A =时,2A π=,6B π=,a =b =, 当cos 0A ≠时,得sin 2sin B A =,由正弦定理得2b a =,联立方程组2242a b ab b a ⎧+-=⎨=⎩,,解得a =b =所以ABC △的面积1sin 2S ab C ==······················································ 12分18.本小题主要考查频率、概率、数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分. 解:(Ⅰ)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3. ····················· 3分 (Ⅱ)ξ的可能值为8,10,12,14,16,且 P (ξ=8)=0.22=0.04, P (ξ=10)=2×0.2×0.5=0.2, P (ξ=12)=0.52+2×0.2×0.3=0.37, P (ξ=14)=2×0.5×0.3=0.3, P (ξ=16)=0.32=0.09.ξ的分布列为·················································································· 9分E ξ=8×0.04+10×0.2+12×0.37+14×0.3+16×0.09=12.4(千元) ···························· 12分 19.本小题主要考查空间中的线面关系,面面关系,解三角形等基础知识,考查空间想象能力与逻辑思维能力。
绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷)数 学本试卷分第I 卷(填空题)和第II 卷(解答题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚. 3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑.参考公式: 样本数据1x ,2x ,,n x 的标准差锥体体积公式(n s x x =++-13V Sh =其中x 为样本平均数 其中S 为底面面积、h 为高 柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高 其中R 为球的半径一、填空题:本大题共14小题,每小题5分,共70分. 1.)6cos()(πω-=x x f 最小正周期为5π,其中0>ω,则=ω ▲ 2.一个骰子连续投2次,点数和为4的概率 ▲3.),(11R b a bi a ii∈+-+表示为的形式,则b a += ▲ 4.{}73)1(2-<-=x x x A ,则集合A Z 中有 ▲ 个元素5.b a ,的夹角为120,1,3a b ==,则5a b -= ▲6.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率 ▲7.某地区为了解70~80岁老人的日平均睡眠时间(单位:h ),现随机地选择50位老人做调查,在上述统计数据的分析中,一部分计算见算法流程图,则输出的S 的值为 . 8.直线b x y +=21是曲线ln (0)y x x =>的一条切线,则实数b 的值为 ▲9.在平面直角坐标系中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点P (0,p )在线段AO 上(异于端点),设p c b a ,,,均为非零实数,直线CP BP ,分别交AB AC ,于点F E ,,一同学已正确算的OE 的方程:01111=⎪⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-y a p x c b ,请你求OF 的方程: ( ▲ )011=⎪⎪⎭⎫ ⎝⎛-+y a p x 10.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10。
2008年全国高考数学试题汇编——直线与圆的方程(一)
一、选择题:
1.(全国Ⅱ卷文科3)原点到直线052=-+y x 的距离为
( D )
A .1
B .3
C .2
D .5
2.(福建文科2)“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的 ( C )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件 3.(四川理科4文科6)将直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位,所得到的直线
为
( A )
A .11
33
y x =-
+ B .1
13
y x =-
+ C .33y x =-
D .1
13
y x =
+ 解析:本题有新意,审题是关键.旋转90︒则与原直线垂直,故旋转后斜率为13-.再右移1得1(1)3
y x =--.
选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换.
4.(全国I 卷理科10)若直线
1x y
a b
+=通过点(cos sin )M αα,,则 ( B )
A .2
2
1a b +≤
B .22
1a b +≥ C .22111a b
+≤
D .
2
211
1a b
+≥ 5.(重庆理科7)若过两点P 1(-1,2),P 2(5,6)的直线与x 轴相交于点P ,则点P 分有向线段12PP
所成的
比λ的值为
( A )
A .-
1
3
B .-
15 C .15 D .13 (重庆文科4)若点P 分有向线段AB 所成的比为-1
3
,则点B 分有向线段PA 所成的比是( A )
A .-32
B .-12
C .12
D .3
6.(安徽理科8文科10)若过点(4,0)A 的直线l 与曲线22
(2)1x y -+=有公共点,则直线l 的斜率
的取值范围为 ( C )
A
.[
B
.( C
.[ D
.( 7.(辽宁文、理科3)圆22
1x y +=与直线2y kx =+没有..
公共点的充要条件是 ( C ) A
.(k ∈ B
.(,)k ∈-∞⋃+∞ C
.(k ∈
D
.(,)k ∈-∞⋃+∞
8.(陕西文、理科5)
0y m -+=与圆2
2
220x y x +--=相切,则实数m 等于( C ) A
B
.
C
.-
D
.-
9.(安徽文科11)若A 为不等式组 0,
0,2x y y x ⎧⎪
⎨⎪-⎩
≤≥≤ 表示的平面区域,则当a 从-2连续变化到1时,
动直线x +y =a 扫过A 中的那部分区域的面积为
( C )
A .
34
B .1
C .
74
D .2
10.(湖北文科5)在平面直角坐标系xOy 中,满足不等式组,
1
x y x ⎧⎪⎨<⎪⎩≤的点(,)x y 的集合用阴影表
示为下列图中的
( C )
11.(辽宁文科9)已知变量x 、y 满足约束条件10,310,10,y x y x y x +-⎧⎪
--⎨⎪-+⎩
≤≤≥则z =2x+y 的最大值为( B )
A .4
B .2
C .1
D .-4
12.(北京理科5)若实数x ,y 满足1000x y x y x -+⎧⎪
+⎨⎪⎩
≥≥≤,则z =3x +y 的最小值是 ( B )
A .0
B .1
C .3
D .9
(北京文科6)若实数x ,y 满足1000x y x y x -+⎧⎪
+⎨⎪⎩
≥≥≤,则z =x +2y 的最小值是
( A )
A .0
B .
2
1 C .1 D .
2 13.(福建理科8)若实数x 、y 满足⎩⎨⎧x -y+1≤0x >0
,则y
x 的取值范围是
( C ) A .(0,1) B .(0,1] C .(1,+∞)
D .[1,+∞)
(福建文科10)若实数x 、y 满足20,0,2,
x y x x -+⎧⎪
>⎨⎪⎩
≤≤则y x 的取值范围是
( D )
A .(0,2)
B .(0,2)
C .(2,+∞)
D .[2,+∞)
14.(天津理科2文科3)设变量y x ,满足约束条件0
121x y x y x y -⎧⎪
+⎨⎪+⎩
≥≤≥,则目标函数y x z +=5的最大值为
A .2
B .3
C .4
D .5
( D )
15.(广东理科4)若变量x 、y 满足24025000
x y x y x y +⎧⎪+⎪
⎨⎪⎪⎩≤≤≥≥,则32z x y =+的最大值是( C )
A .90
B .80
C .70
D .40
16.(湖南理科3)已知变量x 、y 满足条件1,
0,290,x x y x y ⎧⎪
-⎨⎪+-⎩
≥≤≤则x+y 的最大值是( C )
A .2
B .5
C .6
D .8 (湖南文科3)已知变量x 、y 满足条件120x y x y ⎧⎪
⎨⎪-⎩
≥≤≤,,,则x +y 是最小值是
( C )
A .4
B .3
C .2
D .1
17.(全国Ⅱ卷理科5文科6)设变量x ,y 满足约束条件:,22,2y x x y x ⎧⎪
+⎨⎪-⎩
≥≤≥则y x z 3-=的最小值为( D )
A .-2
B .-4
C . -6
D .-8
18.(陕西理科10)已知实数x y ,满足121y y x x y m ⎧⎪
-⎨⎪+⎩
≥≤≤,,.如果目标函数z x y =-的最小值为1-,则实
数m 等于
( B )
A .7
B .5
C .4
D .3
19.(浙江文科10)若0,0a b ≥≥,且当0,0,1x y x y ⎧⎪
⎨⎪+⎩
≥≥≤时,恒有1ax by +≤,则以a ,b 为坐标点(,)P a b 所形成的平面
区域的面积等于
( C ) A .
12
B .
4
π
C .1
D .
2
π 20.(山东理科12)设二元一次不等式组219080,2140x y x y x y +-⎧⎪
-+⎨⎪+-⎩
≥≥≤,所表示的平面区域为M ,使函数
y =a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是
( C )
A .[1,3]
B .[2,10]
C .[2,9]
D .[10,9]
21.(山东文科11)若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该
圆的标准方程是
( B )
A .2
2
7(3)13x y ⎛
⎫-+-= ⎪⎝
⎭
B .2
2
(2)(1)1x y -+-=
C .2
2
(1)(3)1x y -+-=
D .2
23(1)12x y ⎛
⎫-+-= ⎪⎝
⎭
22.(重庆文科3)曲线C :cos 1.
sin 1
x y θθ=-⎧⎨
=+⎩(θ为参数)的普通方程为
( C )
A .(x -1)2+(y +1)2=1
B .(x +1)2+(y +1)2=1
C .(x +1)2+(y -1)2=1
D .(x -1)2+(y -1)2=1
23.(北京理科7)过直线y =x 上的一点作圆22
(5)(1)2x y -+-=的两条切线l 1,l 2,当直线l 1,l 2关
于y =x 对称时,它们之间的夹角为
( C )
A .30°
B .45°
C .60°
D .90°
24.(广东文科6)经过圆22
20x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是( C )
A .x +y +1=0
B .x +y -1=0
C .x -y +1=0
D .x -y -1=0
25.(湖北理科9)过点A (11,2)作圆22241640x y x y ++--=的弦,其中弦长为整数的共有
A .16条
B .17条
C .32条
D .34条 ( C )
26.(山东理科11)已知圆的方程为x 2+y 2-6x -8y =0.设该圆过点(3,5)的最长弦和最短弦分别为
AC 和BD ,则四边形ABCD 的面积为 ( B )
A .106
B .206
C .306
D .406
27.(重庆理科3)圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2
-4y =0的位置关系是
( B )
A .相离
B .相交
C .外切
D .内切。