大物实验报告
- 格式:docx
- 大小:1.04 MB
- 文档页数:6
大学物理实验报告范文3篇大学物理实验是一门着重培养大学生综合能力和素质的课程。
做好大学物理实验课程的考试工作对于大学物理实验课程教学质量的提高和人才的培养都具有重要的意义。
本文是小编为大家整理的大学物理实验报告范文3篇_大学物理实验报告怎么写,仅供参考。
大学物理实验报告范文篇一:一、实验综述1、实验目的及要求1.了解游标卡尺、螺旋测微器的构造,掌握它们的原理,正确读数和使用方法。
2.学会直接测量、间接测量的不确定度的计算与数据处理。
3.学会物理天平的使用。
4.掌握测定固体密度的方法。
2 、实验仪器、设备或软件1 50分度游标卡尺准确度=0.02mm 最大误差限△仪=±0.02mm2 螺旋测微器准确度=0.01mm 最大误差△仪=±0.005mm 修正值=0.018mm3 物理天平 TW-0.5 t天平感度0.02g 最大称量500g △仪=±0.02g 估读到 0.01g二、实验过程(实验步骤、记录、数据、分析)1、实验内容与步骤1、用游标卡尺测量圆环体的内外径直径和高各6次;2、用螺旋测微器测钢线的直径7次;3、用液体静力称衡法测石蜡的密度;2、实验数据记录表(1)测圆环体体积(2)测钢丝直径仪器名称:螺旋测微器(千分尺) 准确度=0.01mm 估读到0.001mm测石蜡的密度仪器名称:物理天平TW—0.5 天平感量:0.02 g 最大称量500 g3、数据处理、分析(1)、计算圆环体的体积1直接量外径D的A类不确定度SD ,SD=○SD=0.0161mm=0.02mm2直接量外径D的B类不确定度u○d.ud,=Ud=0.0155mm=0.02mm3直接量外径D的合成不确定度σσ○σD=0.0223mm=0.2mm4直接量外径D科学测量结果○D=(21.19±0.02)mmD=5直接量内径d的A类不确定度S○Sd=0.0045mm=0.005mmd。
dS=6直接量内径d的B类不确定度u○dud=ud=0.0155mm=0.02mm7直接量内径d的合成不确定度σi σ○σd=0.0160mm=0.02mm8直接量内径d的科学测量结果○d=(16.09±0.02)mm9直接量高h的A类不确定度S○Sh=0.0086mm=0.009mmd=h hS=10直接量高h的B类不确定度u○h duh=0.0155mm=0.02mm11直接量高h的合成不确定度σ○σh=0.0177mm=0.02mm 12直接量高h的科学测量结果○h=(7.27±0.02)mmhσh=13间接量体积V的平均值:V=πh(D-d)/4 ○22V =1277.8mm14 间接量体积V的全微分:dV=○3(D2-d2)4dh+Dh?dh?dD- dd 22再用“方和根”的形式推导间接量V的不确定度传递公式(参考公式1-2-16)222v(0.25?(D2?d2)?h)?(0.5Dh??D)?(0.5dh??d)计算间接量体积V的不确定度σ3σV=0.7mmV15写出圆环体体积V的科学测量结果○V=(1277.8±0.7) mm2、计算钢丝直径(1)7次测量钢丝直径d的A类不确定度Sd ,Sd=SdSd =0.0079mm=0.008mm3(2)钢丝直径d的B类不确定度ud ,ud=udud=0.0029mm=0.003mm(3)钢丝直径d的合成不确定度σ。
关于大学物理实验报告参考精选5篇通过实验,我们得出结果,很明显的可以发现热敏电阻的阻值对温度的变化是非常敏感的。
下面就是小编给大家带来的大学物理实验报告,希望能帮助到大家!大学物理实验报告1摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。
本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。
关键词:热敏电阻、非平衡直流电桥、电阻温度特性1、引言热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。
因此,热敏电阻一般可以分为:Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。
国产的主要是指MF91~MF96型半导体热敏电阻。
由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。
大多应用于测温控温技术,还可以制成流量计、功率计等。
Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。
这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。
载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。
应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。
2、实验装置及原理【实验装置】FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。
实验报告是把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报。
以下是初心为您推荐。
大学物理实验报告1一、实验任务精确测定银川地区的重力加速度二、实验要求测量结果的相对不确定度不超过5%三、物理模型的建立及比较初步确定有以下六种模型方案方法一、用打点计时器测量所用仪器为打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等.利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.方法二、用滴水法测重力加速度调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃杯的形状为旋转抛物面重力加速度的计算公式推导如下取液面上任一液元a,它距转轴为_,质量为m,受重力mg、弹力n.由动力学知ncosα-mg=0(1)nsinα=mω2_(2)两式相比得tgα=ω2_/g,又tgα=dy/d_,∴dy=ω2_d_/g,∴y/_=ω2_/2g.∴g=ω2_2/2y..将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标_、y测出,将转台转速ω代入即可求得g.方法四、光电控制计时法调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t方法五、用圆锥摆测量所用仪器为米尺、秒表、单摆.使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r由以上几式得g=4π2n2h/t将所测的n、t、h代入即可求得g值.方法六、单摆法测量重力加速度在摆角很小时,摆动周期为则通过对以上六种方法的比较,本想尝试利用光电控制计时法来测量,但因为实验室器材不全,故该方法无法进行;对其他几种方法反复比较,用单摆法测量重力加速度原理、方法都比较简单且最熟悉,仪器在实验室也很齐全,故利用该方法来测最为顺利,从而可以得到更为精确的值。
一、实验目的1. 了解转动惯量的概念及其在物理和工程中的应用。
2. 掌握使用三线摆法测量物体转动惯量的原理和方法。
3. 通过实验,加深对转动惯量概念的理解,并验证转动惯量与质量分布的关系。
二、实验原理转动惯量是描述物体绕某一固定轴旋转时,物体抵抗角加速度变化的物理量。
对于一个刚体,其转动惯量I与物体的质量m及其质量分布有关,具体公式为:I = Σmi^2其中,mi为物体上第i个质点的质量,ri为第i个质点到转轴的距离。
三线摆法是一种常用的测量物体转动惯量的方法。
其原理如下:1. 将待测物体悬挂在三线摆的悬线上,使物体处于平衡状态。
2. 轻轻扰动物体,使其偏离平衡位置,然后测量物体摆动的周期T。
3. 根据周期T和物体质量m,可以计算出物体的转动惯量I。
三、实验仪器与材料1. 三线摆仪2. 秒表3. 游标卡尺4. 待测物体(如圆盘、圆环等)5. 水准器四、实验步骤1. 将三线摆仪放置在水平面上,并调整水准器,确保三线摆处于水平状态。
2. 将待测物体悬挂在三线摆的悬线上,使物体处于平衡状态。
3. 用秒表测量物体摆动的周期T,重复测量三次,取平均值。
4. 使用游标卡尺测量物体各部分的尺寸,记录数据。
5. 根据测量数据,计算物体的转动惯量I。
五、实验数据与结果1. 待测物体:圆盘- 质量m = 0.5 kg- 直径D = 0.1 m- 周期T = 1.2 s- 转动惯量I = 0.05 kg·m^22. 待测物体:圆环- 质量m = 0.3 kg- 直径D = 0.2 m- 周期T = 0.9 s- 转动惯量I = 0.02 kg·m^2六、实验分析通过实验,我们得到了圆盘和圆环的转动惯量。
根据实验数据,我们可以得出以下结论:1. 转动惯量与物体的质量成正比,与物体的质量分布有关。
2. 对于形状规则的物体,其转动惯量可以通过理论公式计算得到;而对于形状不规则或非均质物体,需要通过实验方法进行测量。
篇一:大学物理实验报告示例(含数据处理)【实验题目】长度和质量的测量【实验目的】1. 掌握米尺、游标卡尺、螺旋测微计等几种常用测长仪器的读数原理和使用方法。
2. 学会物理天平的调节使用方法,掌握测质量的方法。
3. 学会直接测量和间接测量数据的处理,会对实验结果的不确定度进行估算和分析,能正确地表示测量结果。
【实验仪器】(应记录具体型号规格等,进实验室后按实填写)直尺(50cm)、游标卡尺(0.02mm)、螺旋测微计(0~25mm,0.01mm),物理天平(tw-1b型,分度值0.1g,灵敏度1div/100mg),被测物体【实验原理】(在理解基础上,简明扼要表述原理,主要公式、重要原理图等)一、游标卡尺主尺分度值:x=1mm,游标卡尺分度数:n(游标的n个小格宽度与主尺的n-1小格长度相等),游标尺分度值:n?1nx(50分度卡尺为0.98mm,20分度的为:0.95mm),主尺分度值与游标尺n?1nx?xn分度值的差值为:x?,即为游标卡尺的分度值。
如50分度卡尺的分度值为:1/50=0.02mm,20分度的为:1/20=0.05mm。
读数原理:如图,整毫米数l0由主尺读取,不足1格的小数部分?l需根据游标尺与主尺对齐的刻线数?l?kx?kk和卡尺的分度值x/n读取:n?1nx?kxn读数方法(分两步):(1)从游标零线位置读出主尺的读数.(2)根据游标尺上与主尺对齐的刻线k读出不足一分格的小数,二者相加即为测量值.即: l?l0??l?l0?kxn,对于50分度卡尺:l?l0?k?0.02;对20分度:l?l0?k?0.05。
实际读数时采取直读法读数。
二、螺旋测微器原理:测微螺杆的螺距为0.5mm,微分筒上的刻度通常为50分度。
当微分筒转一周时,测微螺杆前进或后退0.5mm,而微分筒每转一格时,测微螺杆前进或后退0.5/50=0.01mm。
可见该螺旋测微器的分度值为0.01mm,即千分之一厘米,故亦称千分尺。
大学物理实验报告(10篇)大学物理实验报告1院系名称:勘察与测绘学院专业班级:姓名:学号:辉光盘【实验目的】:观察平板晶体中的高压辉光放电现象。
【实验仪器】:大型闪电盘演示仪【实验原理闪电盘是在两层玻璃盘中密封了涂有荧光材料的玻璃珠,玻璃珠充有稀薄的惰性气体(如氩气等)。
控制器中有一块振荡电路板,通过电源变换器,将12V低压直流电转变为高压高频电压加在电极上。
通电后,振荡电路产生高频电压电场,由于稀薄气体受到高频电场的电离作用二产生紫外辐射,玻璃珠上的荧光材料受到紫外辐射激发出可见光,其颜色由玻璃珠上涂敷的荧光材料决定。
由于电极上电压很高,故所发生的光是一些辐射状的辉光,绚丽多彩,光芒四射,在黑暗中非常好看。
【实验步骤】:1. 将闪电盘后控制器上的电位器调节到最小;2. 插上220V电源,打开开关;3. 调高电位器,观察闪电盘上图像变化,当电压超过一定域值后,盘上出现闪光;4. 用手触摸玻璃表面,观察闪光随手指移动变化;5. 缓慢调低电位器到闪光恰好消失,对闪电盘拍手或说话,观察辉光岁声音的变化。
【注意事项】:1. 闪电盘为玻璃质地,注意轻拿轻放;2. 移动闪电盘时请勿在控制器上用力,避免控制器与盘面连接断裂;3. 闪电盘不可悬空吊挂。
辉光球【实验目的】观察辉光放电现象,了解电场、电离、击穿及发光等概念。
【实验步骤】1.将辉光球底座上的电位器调节到最小;2.插上220V电源,并打开开关;3. 调节电位器,观察辉光球的玻璃球壳内,电压超过一定域值后中心处电极之间随机产生数道辉光;4.用手触摸玻璃球壳,观察到辉光随手指移动变化;5.缓慢调低电位器到辉光恰好消失,对辉光球拍手或说话,观察辉光随声音的变化。
【注意事项】1.辉光球要轻拿轻放;2.辉光球长时间工作可能会产生臭氧。
【实验原理】辉光球发光是低压气体(或叫稀疏气体)在高频电场中的放电现象。
玻璃球中央有一个黑色球状电极。
球的底部有一块震荡电路板,通电后,震荡电路产生高频电压电场,由于球内稀薄气体受到高频电场的电离作用而光芒四射。
大学物理实验报告范文3篇大学物理实验报告范文3篇大学物理实验报告范文篇一:一、实验综述1、实验目的及要求1.了解游标卡尺、螺旋测微器的构造,掌握它们的原理,正确读数和使用方法。
学会直接测量、间接测量的不确定度的计算与数据处理。
3.学会物理天平的使用。
4.掌握测定固体密度的方法。
2 、实验仪器、设备或软件1 50分度游标卡尺准确度=0.02mm 最大误差限△仪= 0.02mm2 螺旋测微器准确度=0.01mm 最大误差△仪= 0.005mm 修正值=0.018mm3 物理天平 TW-0.5 t天平感度0.02g 最大称量500g △仪=0.02g 估读到 0.01g二、实验过程准确度=0.01mm 估读到0.001mm测石蜡的密度仪器名称:物理天平TW 0.5 天平感量:0.02 g 最大称量500 g3、数据处理、分析h) mm2、计算钢丝直径t以25C为标准查表取值,计算石蜡密度平均值:M1tM2 M3=0.9584kgm3三、结论1、实验结果实验结果即上面给出的数据。
2、分析讨论心得体会:1、天平的正确使用:测量前应先将天平调水平,再调平衡,放取被称量物和加减砝码时○一定要先将天平降下后再操作,天平的游码作最小刻度的12估读。
2、螺旋测微器正确使用:记下初始读数,旋动时只旋棘轮旋柄,当听到两声咯咯响○时便停止旋动,千分尺作最小刻度的110估读。
思考:1、试述螺旋测微器的零点修正值如何确定?测定值如何表示? ○答:把螺旋测微器调到0点位置,读出此时的数值,测定值是读数+零点修正值2、游标卡尺读数需要估读吗? ○答:不需要。
3、实验中所用的水是事先放置在容器里,还是从水龙头里当时放出来的好,为什么? ○答:事先放在容器里面的,这样温度比较接近设定温度。
建议学校的仪器存放时间过长,精确度方面有损,建议购买一些新的。
四、指导教师评语及成绩:评语:成绩:指导教师签名:批阅日期:大学物理实验报告范文篇二:一、实验目的。
南大大物实验报告一、实验目的1. 了解光的干涉与衍射现象;2. 掌握用光几何方法分析光的干涉与衍射的基本规律;3. 学会使用干涉仪和衍射仪进行实验观测,并对观测结果进行分析。
二、实验原理2.1 光的干涉光的干涉是指两个或多个波源发出的光波在空间叠加时相互加强或抵消的现象。
干涉现象可以分为间接干涉和直接干涉。
间接干涉是指光经过反射、折射等发生改变后再叠加产生干涉现象,而直接干涉是指波源直接发出的光波在空间中叠加产生干涉。
2.2 光的衍射光的衍射是指光通过有限孔径或障碍物后,在周围空间形成特殊的波前分布图案的现象。
衍射现象是光的直接属性,只要光通过了足够小的孔径或物体,就会发生衍射。
三、实验器材和装置1. 多色光源;2. 目镜、物镜;3. 干涉管、干涉仪;4. 狭缝片;5. 衍射片;6. 三棱镜。
四、实验步骤及数据记录4.1 干涉实验1. 设置干涉仪,使干涉管两支光线平行且略有干涉条纹;2. 调整狭缝片的宽度,观察干涉条纹的变化,并记录数据。
4.2 衍射实验1. 将狭缝片替换为衍射片,观察衍射图样;2. 调整衍射片的位置和角度,观察衍射图样的变化,并记录数据。
五、实验结果与分析5.1 干涉实验结果分析通过调整狭缝片的宽度,我们观察到干涉条纹的变化。
随着狭缝片宽度的减小,干涉条纹的亮度逐渐增强,条纹间距逐渐变大。
这符合光的干涉现象,说明光波的相位关系发生了变化,导致干涉结果的改变。
5.2 衍射实验结果分析在衍射实验中,我们通过调整衍射片的位置和角度观察到不同的衍射图样。
当衍射片与光线垂直时,呈现出中央亮斑和一系列圆形暗环。
当衍射片与光线不垂直时,衍射图样会发生变形。
这证实了衍射是由光线通过有限孔径产生的,孔径越小,衍射现象越明显。
六、实验总结通过本次实验,我们深入了解了光的干涉与衍射现象,并通过实验观察到了干涉条纹和衍射图样。
实验结果与理论分析相吻合,验证了光的干涉与衍射规律。
这对于我们深入理解光的特性和应用具有重要意义,也为我们今后的学习和研究提供了基础。
大物实验液体表面张力实验报告实验名称:液体表面张力实验一、实验目的1.了解液体表面张力的概念及测量原理。
2.通过实验测量不同液体的表面张力。
3.分析实验数据,探究影响液体表面张力的因素。
二、实验原理液体表面张力是指液体表面分子之间的相互吸引力,是液体内部分子之间的凝聚力作用于液体表面的结果。
表面张力的大小反映了液体分子间的相互吸引程度。
本实验通过使用最大泡法测量液体的表面张力。
三、实验步骤1.准备实验器材:表面张力计、烧杯、称量纸、天平、吸水管、实验液体(水、醋、洗洁精溶液)等。
2.将表面张力计归零,确保测量准确。
3.用称量纸称量一定量的实验液体,分别倒入不同的烧杯中。
4.用吸水管取适量的水,滴到表面张力计上,记录最大泡的质量(m1)。
5.用同样的方法分别测量不同实验液体的最大泡质量(m2、m3)。
6.记录实验过程中室温、湿度等环境参数。
四、实验数据五、数据分析与结论1.从实验数据可以看出,水的表面张力最大,醋次之,洗洁精溶液的表面张力最小。
这说明不同液体的表面张力存在差异。
2.表面张力的大小与液体分子间的相互作用有关。
分子间相互作用强的液体,表面张力较大;反之,分子间相互作用弱的液体,表面张力较小。
水分子间的相互作用较强,因此水的表面张力最大。
醋分子间的相互作用次之,因此醋的表面张力较小。
洗洁精溶液中加入了表面活性剂,分子间的相互作用被削弱,因此洗洁精溶液的表面张力最小。
3.实验过程中保持室温、湿度等环境参数恒定,有利于减小误差,提高实验准确性。
4.本实验采用最大泡法测量液体表面张力,该方法简单易操作,能够满足一般实验需求。
如需获得更精确的数据,可采用其他先进的测量方法。
5.通过本实验,我们深入了解了液体表面张力的概念及测量原理,学会了如何通过实验手段测量不同液体的表面张力,并探究了影响液体表面张力的因素。
这不仅丰富了我们的理论知识,还提高了我们的实践能力和科学探究能力。
六、实验建议与展望1.在本实验中,我们仅测量了三种液体的表面张力。
实验名称:大物实验实验日期:2023年3月10日实验地点:中南大学物理实验中心一、实验目的1. 熟悉大物实验的基本操作流程和实验设备。
2. 掌握光学仪器的基本使用方法,如显微镜、光谱仪等。
3. 通过实验,加深对光学现象和物理规律的理解。
4. 培养严谨的科学态度和良好的实验习惯。
二、实验原理大物实验主要涉及光学、力学、热学等领域的基本物理规律。
本实验主要涉及以下原理:1. 光的折射原理:当光从一种介质进入另一种介质时,其传播方向会发生改变,这种现象称为光的折射。
2. 光的干涉原理:当两束相干光相遇时,会发生干涉现象,产生明暗相间的条纹。
3. 光的衍射原理:当光通过一个狭缝或障碍物时,会发生衍射现象,产生明暗相间的条纹。
4. 力的平衡原理:当一个物体受到多个力的作用时,这些力达到平衡,物体将保持静止或匀速直线运动。
三、实验内容与步骤1. 实验内容(1)观察光的折射现象,测量折射率。
(2)观察光的干涉现象,测量波长。
(3)观察光的衍射现象,测量狭缝宽度。
(4)研究力的平衡原理,测量物体受力情况。
2. 实验步骤(1)观察光的折射现象,测量折射率① 准备实验器材:折射仪、光具座、标准样品、待测样品等。
② 将待测样品放置在折射仪的测量平台上。
③ 调整光具座,使光线垂直照射到待测样品上。
④ 观察折射现象,记录数据。
⑤ 计算折射率。
(2)观察光的干涉现象,测量波长① 准备实验器材:干涉仪、光具座、光源、分束器、光栅等。
② 将干涉仪安装好,调整光具座。
③ 调整光源,使其照射到分束器上。
④ 观察干涉现象,记录数据。
⑤ 计算波长。
(3)观察光的衍射现象,测量狭缝宽度① 准备实验器材:衍射仪、光具座、光源、狭缝等。
② 将衍射仪安装好,调整光具座。
③ 调整光源,使其照射到狭缝上。
④ 观察衍射现象,记录数据。
⑤ 计算狭缝宽度。
(4)研究力的平衡原理,测量物体受力情况① 准备实验器材:力传感器、支架、砝码等。
② 将力传感器安装在支架上。
Class: 2010211118
Student number: 10210530
Name: 孙布勒
Experiment:
Measure the speed of light by a piece of chocolate
1.Experiment purpose:
To measure the speed of light, our human-beings have conducted thousands of experiments for hundreds of years. But now I want to introduce a simple experiment for measuring the speed of light. Yes, it is done by my favorite snack —— chocolate.
2.Experiment equipment:
A microwave oven
Some pieces of chocolate
A pallet can be put in the microwave
Some toothpicks
A ruler
3.Experiment principle:
The microwave provided by the oven will form a standing wave in the oven. The standing wave is a wave that formed by two waves whose frequency, amplitude and direction of vibration are the same, but the direction of propagation is opposite. The standing wave does n’t move. The standing wave in the oven strikes the hydrone(水分子) and excite(激发)it, and in this way the microwave oven heat up the food. If we take the revolving pallet out, the microwave would only heat some points, and these points on the chocolate would be heavily melted. The distance between two mostly melted points is equal to half of the wavelength of the microwave. As we know, the frequency of the microwave is written at the bottom of the wave. So
we can get the speed of light by the formula: c=λ*f ;
4.Experiment procedure:
①Buy some pieces of chocolate and line them to make a bar of
30 centimeters and then put them into the pallet.
②Take the revolving pallet out and put the pallet that contains
the chocolate bar in the microwave oven. Then heat the
chocolate bar by the maximum power.
③Make sure the bar has melted visibly at many
parts( especially some points ), it takes about one to two minutes.
④Stick toothpicks into the chocolate at these visibly melted
points, and measure the distance between neighboring points. And then figure out the average of these distances, we know the average value is equal to half of the wavelength.
⑤Get the frequency from the microwave oven.
⑥Figure out the speed of microwave (equals to the speed of
light) by the formula: c=λ*f ; And compare it with the
standard speed. We should also work out the error(误差).
5.Data processing
λ=2*6.1215=12.2430(cm)
V=λ*f=12.2430*0.01*2450*1000000=299953500(m/s)
C=299792000(m/s)
Error=|299792000-299953500|=161500(m/s)
Relative error=0.0005387=0.05387%
6.Summary
This is a very easy method of measuring the speed of light, and
we can see that the relative error is acceptable. We can conduct this experiment at home, so it is really a convenient experiment.
2011/11/2。