最新人教新课标A版高中数学必修三全册教案
- 格式:doc
- 大小:3.30 MB
- 文档页数:101
第一章算法初步
一、课标要求:
1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。
2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。
3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。进一步体会算法的基本思想。
4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。
二、编写意图与特色:
算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。
第一章算法初步
1.1.1算法的概念
一、教学目标:
1、知识与技能:(1)了解算法的含义,体会算法的思想。(2)能够用自然语言叙述算法。(3)掌握正确的算法应满足的要求。(4)会写出解线性方程(组)的算法。(5)会写出一个求有限整数序列中的最大值的算法。(6)会应用Scilab求解方程组。
2、过程与方法:通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。
3、情感态度与价值观:通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力。
二、重点与难点:
重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
难点:把自然语言转化为算法语言。
三、学法与教学用具:
学法:1、写出的算法,必须能解决一类问题(如:判断一个整数n(n>1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用。
2、要使算法尽量简单、步骤尽量少。
3、要保证算法正确,且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的,但让计算机去执行“倒一杯水”“替我理发”等则是做不到的。
教学用具:电脑,计算器,图形计算器
四、教学设想:
1、创设情境:
算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。但是我们却从小学就开始接触算法,熟悉许多问题的算法。如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。因此,算法其实是重要的数学对象。
—-可编辑修改,可打印——
别找了你想要的都有!
精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——
全力满足教学需求,真实规划教学环节
最新全面教学资源,打造完美教学模式
第一章 算法初步
1.1 算法与程序框图 1.1.1 算法的概念
授课时间:第 周 年 月 日(星期 )
教学分析
算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固. 三维目标
1.正确理解算法的概念,掌握算法的基本特点.
2.通过例题教学,使学生体会设计算法的基本思路.
3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣. 重点难点
教学重点:算法的含义及应用.
教学难点:写出解决一类问题的算法.
教学过程
导入新课
思路1(情境导入)
一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法. 思路2(情境导入)
大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步? 答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上. 上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念. 思路3(直接导入)
新人教A版数学必修3全套教案
教案一:平面向量
教学目标:
1.理解平面向量的概念及基本性质。
2.掌握平面向量的加法、减法、数量乘法及向量的线性运算。
3.利用向量的性质解决实际问题。
教学重点:
1.向量的基本概念和性质。
2.向量的加法和减法。
3.向量的数量乘法和线性运算。
教学难点:
1.向量的线性运算和应用。
2.解决实际问题的向量运算方法。
教学步骤:
一、引入新知识(20分钟)
教师通过引入平面向量的概念和基本性质,以及向量的几何表示和坐标表示,引发学生对向量的兴趣。
二、向量的加法和减法(30分钟)
1.向量的几何表示和坐标表示。
2.向量加法和减法的定义和性质。
3.通过例题讲解向量加法和减法的具体运算方法。
三、向量的数量乘法和线性运算(30分钟)
1.向量数量乘法的定义和性质。
2.讲解向量的数乘和向量的线性运算。
3.通过例题加深学生对向量数量乘法和线性运算的理解。
四、应用实例(30分钟)
1.结合实际问题讲解向量运算在解决实际问题中的应用。
2.利用向量运算解决实际问题的步骤和方法。
五、巩固练习(20分钟)
教师布置一些巩固练习,让学生运用所学知识解决一些相关问题。教学反思:
通过本节课的教学,学生对平面向量的概念和基本性质有了初步的了解,并且掌握了向量的加法、减法、数量乘法及向量的线性运算。通过实际应用例题的解析,学生对向量运算在解决实际问题中的应用有了更深入的理解。整个教学过程中,教师注重启发式教学,通过提问和引导,激发学生的思维和创造力,培养学生的问题解决能力。同时,教师还通过巩固练习,对学生所学知识进行巩固和拓展,帮助学生更好地掌握和应用向量的相关知识。
第一章 算法初步
1.1 算法与程序框图 1.1.1 算法的概念
授课时间:第 周 年 月 日(星期 )
教学分析
算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固. 三维目标
1.正确理解算法的概念,掌握算法的基本特点.
2.通过例题教学,使学生体会设计算法的基本思路.
3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣. 重点难点
教学重点:算法的含义及应用.
教学难点:写出解决一类问题的算法.
教学过程
导入新课
思路1(情境导入)
一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法. 思路2(情境导入)
大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步? 答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上. 上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念. 思路3(直接导入)
算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 推进新课 新知探究 提出问题 (1)解二元一次方程组有几种方法?
教学过程
第1课时案例1 辗转相除法与更相减损术
导入新课
思路1(情境导入)
大家喜欢打乒乓球吧,由于东、西方文化及身体条件的不同,西方人喜欢横握拍打球,东方人喜欢直握拍打球,对于同一个问题,东、西方人处理问题方式是有所不同的.在小学,我们学过求两个正整数的最大公约数的方法:先用两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来. 当两个数公有的质因数较大时(如8 251与6 105),使用上述方法求最大公约数就比较困难.下面我们介绍两种不同的算法——辗转相除法与更相减损术,由此可以体会东、西方文化的差异.
思路2(直接导入)
前面我们学习了算法步骤、程序框图和算法语句.今天我们将通过辗转相除法与更相减损术来进一步体会算法的思想.
推进新课
新知探究
提出问题
(1)怎样用短除法求最大公约数?
(2)怎样用穷举法(也叫枚举法)求最大公约数?
(3)怎样用辗转相除法求最大公约数?
(4)怎样用更相减损术求最大公约数?
讨论结果:
(1)短除法
求两个正整数的最大公约数的步骤:先用两个数公有的质因数连续去除,一直除到所得的商是两个互质数为止,然后把所有的除数连乘起来.
(2)穷举法(也叫枚举法)
穷举法求两个正整数的最大公约数的解题步骤:从两个数中较小数开始由大到小列举,直到找到公约数立即中断列举,得到的公约数便是最大公约数.
(3)辗转相除法
辗转相除法求两个数的最大公约数,其算法步骤可以描述如下:
第一步,给定两个正整数m,n.
第二步,求余数r:计算m除以n,将所得余数存放到变量r中.
第三步,更新被除数和余数:m=n,n=r.
新人教版高中数学必修三教案(全册)
第一章算法初步
1.1算法与程序框图
1.1 算法与程序框图(共3课时)
1.1.1算法的概念(第1课时)
【课程标准】通过对解决具体问题过程与步骤的分析(如二元一次方程组求解等问题),体会算法的思想,了解算法的含义.
【教学目标】1.理解算法的概念与特点;
2.学会用自然语言描述算法,体会算法思想;
3.培养学生逻辑思维能力与表达能力.
【教学重点】算法概念以及用自然语言描述算法
【教学难点】用自然语言描述算法
【教学过程】
一、序言
算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础. 在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具. 听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机几乎渗透到了人们生活的所有领域. 那么,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 同时,算法有利于发展有条理的思考与表达的能力,提高逻辑思维能力.
在以前的学习中,虽然没有出现算法这个名词,但实际上在数学教学中已经渗透了大量的算法思想,如四则运算的过程、求解方程的步骤等等,完成这些工作都需要一系列程序化的步骤,这就是算法的思想.
二、实例分析
例1:写出你在家里烧开水过程的一个算法.
解:第一步:把水注入电锅;
第二步:打开电源把水烧开;
第三步:把烧开的水注入热水瓶.
(以上算法是解决某一问题的程序或步骤)
例2:给出求1+2+3+4+5的一个算法.
解:算法1 按照逐一相加的程序进行
第一步:计算1+2,得到3;
第二步:将第一步中的运算结果3与3相加,得到6; 第三步:将第二步中的运算结果6与4相加,得到10; 第四步:将第三步中的运算结果10与5相加,得到15.
新人教版高中数学必修三教案(全册)
第一章算法初步
1.1算法与程序框图
1.1 算法与程序框图(共3课时)
1.1.1算法的概念(第1课时)
【课程标准】通过对解决具体问题过程与步骤的分析(如二元一次方程组求解等问题),体会算法的思想,了解算法的含义.
【教学目标】1.理解算法的概念与特点;
2.学会用自然语言描述算法,体会算法思想;
3.培养学生逻辑思维能力与表达能力.
【教学重点】算法概念以及用自然语言描述算法
【教学难点】用自然语言描述算法
【教学过程】
一、序言
算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础. 在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具. 听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机几乎渗透到了人们生活的所有领域. 那么,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 同时,算法有利于发展有条理的思考与表达的能力,提高逻辑思维能力.
在以前的学习中,虽然没有出现算法这个名词,但实际上在数学教学中已经渗透了大量的算法思想,如四则运算的过程、求解方程的步骤等等,完成这些工作都需要一系列程序化的步骤,这就是算法的思想.
二、实例分析
例1:写出你在家里烧开水过程的一个算法.
解:第一步:把水注入电锅;
第二步:打开电源把水烧开;
第三步:把烧开的水注入热水瓶.
(以上算法是解决某一问题的程序或步骤)
例2:给出求1+2+3+4+5的一个算法.
解:算法1 按照逐一相加的程序进行
第一步:计算1+2,得到3;
第二步:将第一步中的运算结果3与3相加,得到6; 第三步:将第二步中的运算结果6与4相加,得到10; 第四步:将第三步中的运算结果10与5相加,得到15.
人教版高中数学必修3
全册教案
第一章算法初步
1.1 算法与程序框图(共3课时)
1.1.1算法的概念(第1课时)
【课程标准】通过对解决具体问题过程与步骤的分析(如二元一次方程组求解等问题),体会算法的思想,了解算法的含义.
【教学目标】1.理解算法的概念与特点;
2.学会用自然语言描述算法,体会算法思想;
3.培养学生逻辑思维能力与表达能力.
【教学重点】算法概念以及用自然语言描述算法
【教学难点】用自然语言描述算法
【教学过程】
一、序言
算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础. 在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具. 听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机几乎渗透到了人们生活的所有领域. 那么,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 同时,算法有利于发展有条理的思考与表达的能力,提高逻辑思维能力.
在以前的学习中,虽然没有出现算法这个名词,但实际上在数学教学中已经渗透了大量的算法思想,如四则运算的过程、求解方程的步骤等等,完成这些工作都需要一系列程序化的步骤,这就是算法的思想.
二、实例分析
例1:写出你在家里烧开水过程的一个算法.
解:第一步:把水注入电锅;
第二步:打开电源把水烧开;
第三步:把烧开的水注入热水瓶.
(以上算法是解决某一问题的程序或步骤)
例2:给出求1+2+3+4+5的一个算法.
解:算法1 按照逐一相加的程序进行
第一步:计算1+2,得到3;
第二步:将第一步中的运算结果3与3相加,得到6;
第三步:将第二步中的运算结果6与4相加,得到10;
人教版高中数学必修三电子课本篇一:人教版高一数学必修三课本教材word版第一
章算法初步
第一章算法初步
第一节算法与程序框图 1.1.1 算法概念:
实际上,算法对我们来说并不陌生(
回顾二元一次方程组
我们可以归纳出以下步骤: 第一步,???×2,第三步,?,?×2,
得得
?x?2y??1?
?2x?y?1
? ?
的求解过程,
5x?1?
第二步,解?,第四步,解?,
得得
x?y?
1
15 35
5y?3 ?
?x?????y???
1
535第五步,得到方程组的解为
思考,能写出求解一般的二元一次方程组的步骤吗, 对于一般的二元一次方程组
?a1x?b1y?c1?
?a2x?b2y?c2
? ?
其中
a1b2?a2b1?0,可以写出类似的求解步骤:
得
第一步,?×b2,?×b1,第二步,解?
第三步,?×a1,?×a2 第四步,解?
(a1b2?a2b1)x?b2c1?b1c2 ?
得
x?
b2c1?b1c2a1b2?a2b1
得
(a1b2?a2b1)y?a1c2?a2c1 ?
y?
2
a1c2?a2c1a1b2?a2b1得
第五步,得到方程组的解为得
??x????y???
b2c1?b1c2
a1b2?a2b1a1c2?a2c1a1b2?a2b1
上述步骤构成了解二元一次方程组的一个算法,我们可以进一步根据这一算法编制计算机程序,让计算机来解二元一次方程组。
算法? (algorithm)一词出现于12 世纪,指的是用阿拉伯数字进行算术运算的过程。在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。现在,算法通常可以编成计算机程序,让计算机执行并解决问题( 例1 (1)设计一个算法,判断7 是否为质数