高三大一轮复习讲义数学文课时作业:正弦定理和余弦定理的应用北师大 含解析
- 格式:doc
- 大小:181.00 KB
- 文档页数:8
第6讲 正弦定理和余弦定理基础知识整合1.正弦定理asin A=01bsin B=02csin C=2R , 其中2R 为△ABC 外接圆的直径.变式:a =032R sin A ,b =042R sin B ,c =052R sin C .a ∶b ∶c =06sin A ∶07sin B ∶08sin C .2.余弦定理a 2=09b 2+c 2-2bc cos A ;b 2=10a 2+c 2-2ac cos B ; c 2=11a 2+b 2-2ab cos C .变式:cos A =12b 2+c 2-a 22bc ;cos B =13a 2+c 2-b 22ac ;cos C =14a 2+b 2-c 22ab.sin 2A =sin 2B +sin 2C -2sin B sin C cos A .3.在△ABC 中,已知a ,b 和A 时,三角形解的情况图形关系式解的个数A 为锐角a <b sin A15无解a =b sin A16一解b sin A <a <b17两解a ≥b18一解A 为钝角或直角a >b19一解a ≤b20无解4.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =2112ac sin B =2212ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径).1.三角形内角和定理 在△ABC 中,A +B +C =π; 变形:A +B 2=π2-C2. 2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sinA +B2=cos C 2;(4)cos A +B 2=sin C 2. 3.三角形中的射影定理 在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ; c =b cos A +a cos B .1.(2019·北京西城模拟)已知△ABC 中,a =1,b =2,B =45°,则A 等于( ) A .150° B .90° C .60° D .30°答案 D解析 由正弦定理,得1sin A =2sin45°,得sin A =12.又a <b ,∴A <B =45°.∴A =30°.故选D.2.(2019·安徽马鞍山一模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =3,b =2,A =60°,则c =( )A.12B .1C. 3 D .2答案 B解析 ∵a =3,b =2,A =60°,∴由余弦定理a 2=b 2+c 2-2bc cos A ,得3=4+c 2-2×2×c ×12,整理得c 2-2c +1=0,解得c =1.故选B.3.(2019·安徽合肥模拟)在△ABC 中,A =60°,AB =2,且△ABC 的面积为32,则BC 的长为( )A.32B . 3C .2 3D .2答案 B解析 因为S =12AB ·AC sin A =12×2×32AC =32,所以AC =1,所以BC 2=AB 2+AC 2-2AB ·AC cos60°=3.所以BC = 3.4.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc=( )A .6B .5C .4D .3答案 A解析 ∵a sin A -b sin B =4c sin C ,∴由正弦定理,得a 2-b 2=4c 2,即a 2=4c 2+b 2.由余弦定理,得cos A =b 2+c 2-a 22bc =b 2+c 2-4c 2+b 22bc =-3c 22bc =-14,∴bc=6.故选A.5.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.答案 4解析 由3sin A =2sin B 及正弦定理,得3a =2b ,所以b =32a =3.由cos C =a 2+b 2-c22ab ,得-14=22+32-c22×2×3,解得c =4.6.在△ABC 中,AB =6,∠A =75°,∠B =45°,则AC =________.答案 2解析 因为∠A =75°,∠B =45°,所以∠C =60°,由正弦定理可得AC sin45°=6sin60°,解得AC =2.核心考向突破考向一 利用正、余弦定理解三角形例1 (1)(2018·全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( )A .4 2B .30 C.29 D .2 5答案 A解析 因为cos C =2cos 2C 2-1=2×⎝ ⎛⎭⎪⎫552-1=-35,所以AB 2=BC 2+AC 2-2BC ·AC ·cos C=1+25-2×1×5×⎝ ⎛⎭⎪⎫-35=32,所以AB =4 2.选A.(2)(2019·沧州七校联考)已知在△ABC 中,a =5,b =15,∠A =30°,则c =( ) A .2 5 B . 5 C .25或 5 D .均不正确答案 C解析 ∵a sin A =bsin B ,∴sin B =b sin A a =155·sin30°=32. ∵b >a ,∴B =60°或120°.若B =60°,则C =90°,∴c =a 2+b 2=2 5. 若B =120°,则C =30°,∴a =c = 5.解三角形问题的技巧(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.①应用正弦定理求角时容易出现增解或漏解的错误,要根据条件和三角形的限制条件合理取舍.②求角时易忽略角的范围而导致错误,因此需要根据大边对大角,大角对大边的规则,画图进行判断.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角规则进行判断.[即时训练] 1.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定 答案 C解析 由正弦定理,得b sin B =csin C ,∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.2.(2019·浙江高考)在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上.若∠BDC =45°,则BD =________,cos ∠ABD =________.答案1225 7210解析 如图,易知sin ∠C =45,cos ∠C =35.在△BDC 中,由正弦定理可得 BD sin ∠C =BCsin ∠BDC,∴BD =BC ·sin∠Csin ∠BDC =3×4522=1225.由∠ABC =∠ABD +∠CBD =90°,可得cos ∠ABD =cos(90°-∠CBD )=sin ∠CBD =sin[π-(∠C +∠BDC )] =sin(∠C +∠BDC )=sin ∠C ·cos∠BDC +cos ∠C ·sin∠BDC =45×22+35×22=7210. 考向二 利用正、余弦定理判断三角形形状 例2 (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,则△ABC 的形状为( )A .等边三角形B .直角三角形C .钝角三角形D .不确定答案 A解析 ∵a 2+b 2-c 2=ab ,∴cos C =a 2+b 2-c 22ab =12,又0<C <π,∴C =π3,又由2cos A sin B=sin C ,得sin(B -A )=0,∴A =B ,故△ABC 为等边三角形.(2)在△ABC 中,a ,b ,c 分别表示三个内角A ,B ,C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),则该三角形的形状为( )A .直角三角形B .等边三角形C .等腰三角形或直角三角形D .等腰直角三角形解析 ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ), ∴(a 2+b 2)(sin A cos B -cos A sin B ) =(a 2-b 2)(sin A cos B +cos A sin B ), ∴a 2cos A sin B =b 2sin A cos B , ∴sin 2A cos A sinB =sin 2B sin A cos B , ∴sin A cos A =sin B cos B , ∴sin2A =sin2B ,∴A =B 或A +B =π2,即△ABC 是等腰三角形或直角三角形.三角形形状的判定方法(1)通过正弦定理和余弦定理,化边为角(如a =2R sin A ,a 2+b 2-c 2=2ab cos C 等),利用三角变换得出三角形内角之间的关系进行判断.此时注意一些常见的三角等式所体现的内角关系,如sin A =sin B ⇔A =B ;sin(A -B )=0⇔A =B ;sin2A =sin2B ⇔A =B 或A +B =π2等.(2)利用正弦定理、余弦定理化角为边,如sin A =a 2R ,cos A =b 2+c 2-a 22bc等,通过代数恒等变换,求出三条边之间的关系进行判断.提醒:(1)注意无论是化边还是化角,在化简过程中出现公因式不要约掉,否则会有漏掉一种形状的可能.(2)在判断三角形形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响.[即时训练] 3.(2019·陕西安康模拟)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析 ∵b cos C +c cos B =a sin A ,∴由正弦定理,得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin A =sin 2A .又sin A >0,∴sin A =1,又A ∈(0,π),∴A =π2,故△ABC 为直角三角形.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若c b<cos A ,则△ABC 为( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .等边三角形答案 A解析 根据正弦定理得c b =sin Csin B<cos A ,即sin C <sin B cos A ,∵A +B +C =π,∴sin C =sin(A +B )<sin B cos A ,整理得sin A cos B <0,又三角形中sin A >0,∴cos B <0,∴π2<B <π.∴△ABC 为钝角三角形.精准设计考向,多角度探究突破 考向三 正、余弦定理的综合应用 角度1 三角形面积问题例3 (1)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3,S △ABC =22,则b 的值为( )A .6B .4C .2D .2或3答案 D解析 因为S △ABC =22=12bc sin A ,sin A =223,且A ∈⎝ ⎛⎭⎪⎫0,π2,所以bc =6,cos A =13,又因为a =3,由余弦定理,得9=b 2+c 2-2bc cos A =b 2+c 2-4,所以b 2+c 2=13,可得b =2或b =3.(2)(2019·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________. 答案 6 3解析 由余弦定理,得b 2=a 2+c 2-2ac cos B .又b =6,a =2c ,B =π3,∴36=4c 2+c 2-2×2c 2×12,∴c =23,∴a =43,∴S △ABC =12ac sin B =12×43×23×32=6 3.(3)(2020·合肥八中模拟)在古希腊数学家海伦的著作《测地术》中记载了著名的海伦公式,利用三角形的三条边长求三角形面积,若三角形的三边长分别为a ,b ,c ,则其面积S =p p -a p -b p -c ,这里p =12(a +b +c ).已知在△ABC 中,BC =6,AB =2AC ,则其面积取最大值时,sin A =________.答案 35解析 已知在△ABC 中,BC =6,AB =2AC , 所以a =6,c =2b ,所以p =12(6+b +2b )=3+3b2,△ABC 的面积S =p p -a p -b p -c=⎝ ⎛⎭⎪⎫3+3b 2⎝ ⎛⎭⎪⎫3b 2-3⎝ ⎛⎭⎪⎫3b 2+3-b ⎝ ⎛⎭⎪⎫3+3b 2-2b=⎝ ⎛⎭⎪⎫3+3b 2⎝ ⎛⎭⎪⎫3b 2-3⎝ ⎛⎭⎪⎫b 2+3⎝ ⎛⎭⎪⎫3-b 2 =⎝ ⎛⎭⎪⎫9b 24-9⎝ ⎛⎭⎪⎫9-b 24 =3-116b 2-202+16.故当b 2=20时,S 有最大值, 所以b =25,c =45,cos A =b 2+c 2-a 22bc =45,所以sin A =35.三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.[即时训练] 5.(2018·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b sin C +c sin B =4a sin B sin C ,b 2+c 2-a 2=8,则△ABC 的面积为________.答案233解析 根据题意,结合正弦定理可得sin B sin C +sin C sin B =4sin A sin B sin C ,所以sin A =12,结合余弦定理可得2bc cos A =8,所以A 为锐角,所以cos A =32,所以bc =833,所以△ABC 的面积为S =12bc sin A =12×833×12=233.6.(2020·福建三明质量检查)△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且b =3(a cos B +b cos A ),b +c =8.(1)求b ,c ;(2)若BC 边上的中线AD =72,求△ABC 的面积.解 (1)由正弦定理,得 sin B =3(sin A cos B +sin B cos A ),所以sin B =3sin(A +B ),因为A +B +C =π, 所以sin(A +B )=sin(π-C )=sin C , 所以sin B =3sin C , 所以b =3c ,又b +c =8, 所以b =6,c =2.(2)在△ABD 和△ACD 中,由余弦定理,得c 2=AD 2+BD 2-2AD ·BD ·cos∠ADB ,b 2=AD 2+CD 2-2AD ·CD ·cos∠ADC .因为∠ADB +∠ADC =π, 所以cos ∠ADB =-cos ∠ADC ,又因为b =6,c =2,BD =DC =a 2,AD =72,所以a 2=31,所以cos ∠BAC =b 2+c 2-a 22bc =38,又因为∠BAC ∈(0,π),所以sin ∠BAC =558. 所以△ABC 的面积S △ABC =12bc sin ∠BAC =3554.角度2 三角形中的范围问题例4 (1)(2019·江西赣州模拟)在锐角△ABC 中,若B =2A ,则ba的取值范围是( ) A .(2,6) B .(1,2) C .(2,3) D .(3,6)答案 C解析 ∵B =2A ,∴b a =sin Bsin A=2cos A .又△ABC 为锐角三角形,∴A +B =3A >π2,B =2A <π2,∴π6<A <π4,∴22<cos A <32,∴2<ba< 3.故选C. (2)(2018·北京高考)若△ABC 的面积为34(a 2+c 2-b 2),且∠C 为钝角,则∠B =________;c a的取值范围是________.答案π3(2,+∞) 解析 依题意有12ac sin B =34(a 2+c 2-b 2)=34×2ac cos B ,则tan B =3,∵0<∠B <π,∴∠B =π3.c a =sin C sin A =sin ⎝ ⎛⎭⎪⎫2π3-A sin A =12+3cos A 2sin A =12+32·1tan A, ∵∠C 为钝角,∴2π3-∠A >π2,又∠A >0,∴0<∠A <π6,则0<tan A <33,∴1tan A >3,故c a >12+32×3=2. ∴c a的取值范围为(2,+∞).解三角形问题中,求解某个量(式子)的取值范围是命题的热点,其主要解决思路是: 要建立所求量(式子)与已知角或边的关系,然后把角或边作为自变量,所求量(式子)的值作为函数值,转化为函数关系,将原问题转化为求函数的值域问题.这里要利用条件中的范围限制,以及三角形自身范围限制,尽量把角或边的范围(也就是函数的定义域)找完善,避免结果的范围过大.[即时训练] 7.(2019·山东实验中学等四校联考)如图所示,边长为1的正三角形ABC 中,点M ,N 分别在线段AB ,AC 上,将△AMN 沿线段MN 进行翻折,得到右图所示的图形,翻折后的点A 在线段BC 上,则线段AM 的最小值为________.答案 23-3解析 设AM =x ,∠AMN =α,则BM =1-x , ∠AMB =180°-2α,∴∠BAM =2α-60°, 在△ABM 中,由正弦定理可得AMsin ∠ABM=BMsin ∠BAM,即x32=1-xsin 2α-60°, ∴x =3232+sin 2α-60°,∴当2α-60°=90°,即α=75°时,x 取得最小值为3232+1=23-3,即线段AM 的最小值为23-3.8.(2019·陕西第三次教学质量检测)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且(a +b +c )(a +b -c )=3ab .(1)求角C 的值;(2)若c =2,且△ABC 为锐角三角形,求a +b 的取值范围. 解 (1)由题意知(a +b +c )(a +b -c )=3ab , ∴a 2+b 2-c 2=ab ,由余弦定理可知,cos C =a 2+b 2-c 22ab =12,又C ∈(0,π),∴C =π3.(2)由正弦定理可知,asin A=bsin B =2sinπ3=433,即 a =433sin A ,b =433sin B , ∴a +b =433(sin A +sin B )=433⎣⎢⎡⎦⎥⎤sin A +sin ⎝ ⎛⎭⎪⎫2π3-A =23sin A +2cos A =4sin ⎝⎛⎭⎪⎫A +π6,又△ABC 为锐角三角形,∴⎩⎪⎨⎪⎧0<A <π2,0<B =2π3-A <π2,即π6<A <π2, 则π3<A +π6<2π3, ∴23<4sin ⎝⎛⎭⎪⎫A +π6≤4,综上a +b 的取值范围为(23,4]. 角度3 正、余弦定理解决平面几何问题例5 (2019·南宁模拟)如图,在△ABC 中,∠B =π3,AB =8,点D在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.解 (1)由cos ∠ADC =17知sin ∠ADC =437,于是sin ∠BAD =sin(∠ADC -∠B ) =sin ∠ADC ·cos π3-cos ∠ADC ·sin π3=437×12-17×32=3314. (2)在△ABD 中,由正弦定理,得BD =AB ·sin∠BAD sin ∠ADB =AB ·sin∠BADsin π-∠ADC =8×3314437=3.在△ABC 中,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+52-2×8×5×12=49.所以AC =7.平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之,若研究最值,常使用函数思想.[即时训练] 9.(2020·河北唐山期末)如图,在梯形ABCD中,∠A=∠D=90°,M为AD 上一点,AM=2MD=2,∠BMC=60°.(1)若∠AMB=60°,求BC的长;(2)设∠DCM=θ,若MB=4MC,求tanθ.解(1)由∠BMC=60°,∠AMB=60°,得∠CMD=60°.在Rt△ABM中,MB=2AM=4;在Rt△CDM中,MC=2MD=2.在△MBC中,由余弦定理,得BC2=MB2+MC2-2MB·MC·cos∠BMC=12,所以BC=2 3.(2)因为∠DCM=θ,所以∠ABM=60°-θ,0°<θ<60°.在Rt△MCD中,MC=1sinθ,在Rt△MAB中,MB=2sin60°-θ,由MB=4MC,得2sin(60°-θ)=sinθ,所以3cosθ-sinθ=sinθ,即2sinθ=3cosθ,整理可得tan θ=32.(2018·江苏高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________.答案 9解析 依题意画出图形,如图所示. 易知S △ABD +S △BCD =S △ABC ,即12c sin60°+12a sin60°=12ac sin120°, ∴c +a =ac ,∴1a +1c=1,∴4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c =5+c a +4a c ≥9,当且仅当c a =4a c ,即a =32,c =3时取“=”. 答题启示利用基本不等式破解三角形中的最值问题时,当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值.对点训练(2019·山东烟台模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知2(tan A +tan B )=tan A cos B +tan Bcos A. (1)证明:a +b =2c ; (2)求cos C 的最小值. 解 (1)证明:由题意知2⎝⎛⎭⎪⎫sin A cos A +sin B cos B =sin A cos A cos B +sin B cos A cos B,化简得2(sin A cos B +sin B cos A )=sin A +sin B ,即2sin(A +B )=sin A +sin B .因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C ,从而sin A +sin B =2sin C .由正弦定理,得a +b =2c .(2)由(1)知c =a +b2,所以cos C =a 2+b 2-c 22ab=a 2+b 2-⎝⎛⎭⎪⎫a +b 222ab=38⎝ ⎛⎭⎪⎫a b +b a -14≥34-14=12, 当且仅当a =b 时,等号成立. 故cos C 的最小值为12.。
第四章 三角函数、解三角形第六节 正弦定理和余弦定理A 级·基础过关 |固根基|1.在△ABC 中,若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴tan B =1.∵0°<B <180°,∴B =45°.故选B .2.在△ABC 中,2a cos A +b cos C +c cos B =0,则角A 的大小为( ) A .π6B .π3C .2π3D .5π6解析:选C 由余弦定理得,2a cos A +b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =0,即2a cos A +a =0,∴cos A =-12,又A ∈(0,π),∴A =2π3.故选C .3.(2021届宝鸡一模)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos B =34,则△ABC 的面积等于( ) A .37 B .372C .9D .92解析:选B ∵b =7,c =4,cos B =34,∴sin B =1-cos 2B =74,∴由余弦定理b 2=a 2+c 2-2ac cos B ,可得7=a 2+16-2×a ×4×34,整理可得a 2-6a +9=0,解得a =3,∴S △ABC =12ac sin B =12×3×4×74=372.故选B . 4.(2021届湘东六校联考)若△ABC 的三个内角满足6sin A =4sin B =3sin C ,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .以上都有可能解析:选C 由题意,利用正弦定理可得6a =4b =3c ,则可设a =2k ,b =3k ,c =4k ,k >0,则cos C=4k 2+9k 2-16k 22×2k ×3k<0,所以C 是钝角,所以△ABC 是钝角三角形,故选C .5.(2021届昆明市高三诊断测试)在平面四边形ABCD 中,∠D =90°,∠BAD =120°,AD =1,AC =2,AB =3,则BC =( )A . 5B . 6C .7D .2 2解析:选C 如图,在△ACD 中,∠D =90°,AD =1,AC =2,所以∠CAD =60°.又∠BAD =120°,所以∠BAC =∠BAD -∠CAD =60°.在△ABC 中,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC cos ∠BAC =7,所以BC =7.故选C .6.(2021届湖北部分重点中学联考)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,cos A a +cos Bb =sin C c ,若b 2+c 2-a 2=85bc ,则tan B 的值为( ) A .-13B .13C .-3D .3解析:选C 因为cos A a +cos B b =sin C c ,所以由正弦定理得cos A sin A +cos B sin B =sin C sin C =1,即1tan A +1tan B =1.又b 2+c 2-a 2=85bc ,所以由余弦定理a 2=b 2+c 2-2bc cos A ,可得cos A =45,则sin A =1-cos 2A =35,则tan A =sin A cos A =34,解得tan B =-3,故选C .7.(2021届四川五校联考)在△ABC 中,角A 的平分线交BC 于点D ,BD =2CD =2,则△ABC 面积的最大值为( )A .3 2B .2 2C .3D .4解析:选C 如图,由BD =2CD =2,知BC =3,由角平分线定理,得AB AC =BDCD =2,设AC =x ,∠BAC =2α,α∈⎝⎛⎭⎫0,π2,则AB =2x ,由余弦定理,得32=4x 2+x 2-2·2x ·x ·cos 2α,即x 2=95-4cos 2α.S △ABC =12·2x ·x ·sin 2α=x 2·sin 2α=9sin 2α5-4cos 2α=9×2sin αcos α5-4×(cos 2α-sin 2α)=9·2tan α1+tan 2α5-4·1-tan 2α1+tan 2α=18tan α1+9tan 2α=181tan α+9tan α≤1821tan α·9tan α=3,当且仅当1tan α=9tan α,即tan α=13时取等号,故△ABC 面积的最大值为3.8.(2021届合肥调研)在△ABC 中,A =2B ,AB =73,BC =4,CD 平分∠ACB 交AB 于点D ,则线段AD 的长为________.解析:解法一:因为A =2B ,BC =4,所以由正弦定理AC sin B =BC sin A ,得AC sin B =4sin 2B =42sin B cos B,所以cos B =2AC 且AC >2,由余弦定理AC 2=BC 2+AB 2-2BC ·AB cos B ,得AC 2=42+⎝⎛⎭⎫732-2×4×73×2AC ,即9AC 3-193AC +336=0,得(AC -3)(3AC -7)(3AC +16)=0,解得AC =73或AC =3.当AC =73时,△ABC为等腰三角形,且cos B =67,2B =2∠ACB =A ,由三角形内角和定理A +B +∠ACB =π,得B =π4,与cos B=67矛盾,舍去;当AC =3时,由三角形的角平分线定理,得AD BD =AC BC ,即AD 73-AD =34,解得AD =1.综上可得,AD =1.解法二:因为A =2B ,BC =4,所以由正弦定理AC sin B =BC sin A ,得AC sin B =4sin 2B =42sin B cos B ,所以cosB =2AC ,则cos A =cos 2B =2cos 2B -1=8AC2-1.在△ABC 中,sin C =sin(A +B )=sin A cos B +cos A sin B ,由正弦定理可得AC cos A +BC cos B =AB ,即AC ·⎝⎛⎭⎫8AC 2-1+4·2AC =73,解得AC =-163(舍去)或AC =3,由三角形的角平分线定理,得AD BD =AC BC ,即AD 73-AD =34,解得AD =1.答案:19.(年天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a ,3c sin B =4a sin C .(1)求cos B 的值; (2)求sin ⎝⎛⎭⎫2B +π6的值. 解:(1)在△ABC 中,由正弦定理b sin B =csin C,得b sin C =c sin B ,又由3c sin B =4a sin C ,得3b sin C=4a sin C ,即3b =4a .又因为b +c =2a ,得到b =43a ,c =23a .由余弦定理可得,cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14. (2)由(1)可得,sin B =1-cos 2B =154, 从而sin 2B =2sin B cos B =-158,cos 2B =cos 2B -sin 2B =-78, 故sin ⎝⎛⎭⎫2B +π6=sin 2B cos π6+cos 2B sin π6=-158×32-78×12=-35+716. 10.(2021届石家庄摸底)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,b cos A +22a =c ,D 是BC 边上的点.(1)求角B ;(2)若AC =7,AD =5,DC =3,求AB 的长. 解:(1)由b cos A +22a =c 及正弦定理,得sin B cos A +22sin A =sin C ,即sin B cos A +22sin A =sin(A +B ),所以sin B cos A +22sin A =sin A cos B +cos A sin B ,即22sin A =sin A cos B .∵sin A ≠0,∴cos B =22,∴B =π4.(2)在△ADC 中,AC =7,AD =5,DC =3,∴cos ∠ADC =AD 2+DC 2-AC 22AD ·DC =52+32-722×5×3=-12,∴∠ADC =2π3.在△ABD 中,AD =5,B =π4,∠ADB =π3,由AB sin ∠ADB =ADsin B ,得AB =AD ·sin ∠ADB sin B =5×sin π3sin π4=5×3222=562. 11.(年江苏卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b =2,cos B =23,求c 的值;(2)若sin A a =cos B2b ,求sin ⎝⎛⎭⎫B +π2的值. 解:(1)因为a =3c ,b =2,cos B =23,由余弦定理cos B =a 2+c 2-b 22ac ,得23=(3c )2+c 2-(2)22×3c ×c,即c 2=13.所以c =33. (2)因为sin A a =cos B2b,由正弦定理a sin A =b sin B ,得cos B 2b =sin Bb ,所以cos B =2sin B ,从而cos 2B =(2sin B )2,即cos 2B =4(1-cos 2B ),故cos 2B =45.因为sin B >0,所以cos B =2sin B >0, 从而cos B =255.因此sin ⎝⎛⎭⎫B +π2=cos B =255. B 级·素养提升 |练能力|12.(2021届惠州调研)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且内角满足sin A -sin B +sin Csin C =sin Bsin A +sin B -sin C .(1)求角A ;(2)若△ABC 的外接圆半径为1,求△ABC 的面积S 的最大值. 解:(1)由题意及正弦定理可得a -b +c c =ba +b -c,化简得b 2+c 2-a 2=bc ,由余弦定理得cos A =b 2+c 2-a 22bc ,∴cos A =bc 2bc =12.又0<A <π,∴A =π3. (2)记△ABC 外接圆的半径为R ,由正弦定理得a sin A =2R ,即a =2R sin A =2sin π3=3,由余弦定理得3=b 2+c 2-bc ≥2bc -bc =bc , 即bc ≤3(当且仅当b =c 时取等号),故S =12bc sin A ≤12×3×32=334(当且仅当b =c 时取等号),即△ABC 的面积S 的最大值为334.13.(年全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sin A +C2=b sin A . (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 解:(1)由题设及正弦定理,得sin A sin A +C2=sin B sin A . 因为sin A ≠0,所以sin A +C 2=sin B .由A +B +C =180°,可得sinA +C 2=cosB 2,故cos B 2=2sin B 2cos B2.因为cos B 2≠0,故sin B 2=12,因此B =60°.(2)由题设及(1)知,△ABC 的面积S △ABC =12ac sin B =34a .由正弦定理得a =c sin A sin C =sin (120°-C )sin C =32tan C +12.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°.由(1)知,A +C =120°, 所以30°<C <90°,故12<a <2,从而38<S △ABC <32.所以△ABC 面积的取值范围是⎝⎛⎭⎫38,32. 14.(2021届长春市第二次质量监测)如图,在△ABC 中,AB =3,∠ABC =30°,cos ∠ACB =74. (1)求AC 的长;(2)作CD ⊥BC ,连接AD ,若AD ∶CD =2∶3,求△ACD 的面积. 解:(1)因为cos ∠ACB =74,所以sin ∠ACB =34, 由正弦定理得AC =ABsin ∠ACB·sin ∠ABC =2.(2)因为CD ⊥BC ,所以∠ACD =90°-∠ACB ,所以cos ∠ACD =sin ∠ACB =34.设AD =2m ,则CD =3m .由余弦定理得AD 2=AC 2+CD 2-2×AC ×CD cos ∠ACD ,即4m 2=4+9m 2-2×2×3m ×34,解得m =1或m =45.当m =1时,CD =3,sin ∠ACD =74,S △ACD =12·AC ·CD ·sin ∠ACD =374; 当m =45时,CD =125,sin ∠ACD =74,S △ACD =12·AC ·CD sin ∠ACD =375.综上,△ACD 的面积为374或375.。
考点32 正弦定理、余弦定理的应用【命题解读】高考对正弦定理和余弦定理的考查较为灵活,题型多变,往往以小题的形式独立考查正弦定理或余弦定理,以解答题的形式综合考查定理的综合应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换等结合考查,试题难度控制在中等或以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等.【基础知识回顾】1.仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).2.方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).3.方向角:相对于某一正方向的水平角.(1)北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③).(2)北偏西α,即由指北方向逆时针旋转α到达目标方向.(3)南偏西等其他方向角类似.区分两种角(1)方位角:从正北方向起按顺时针转到目标方向线之间的水平夹角.(2)方向角:正北或正南方向线与目标方向线所成的锐角.4.坡角与坡度(1)坡角:坡面与水平面所成的二面角的度数(如图④,角θ为坡角).(2)坡度:坡面的铅直高度与水平长度之比(如图④,i为坡度).坡度又称为坡比.1.为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩A,B(如图),要测量A,B两点的距离,测量人员在岸边定出基线BC ,测得BC =50 m ,∠ABC =105°,∠BCA =45°.就可以计算出A ,B 两点的距离为____________.A .20 2 mB .302 mC .402 mD .502 m【答案】:D【解析】:由正弦定理得,则AB =502(m ).2. 如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2 min ,从D 沿着DC 走到C 用了3 min .若此人步行的速度为每分钟50 m ,则该扇形的半径为________m .A .503B .505C .507D .5011【答案】:C【解析】连结OC ,在△OCD 中,OD =100,CD =150,∠CDO =60°,由余弦定理可得OC 2=1002+1502-2×100×150×12=17 500,解得OC =507(m ).3. 如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距8 2 n mile .此船的航速是__________n mile /h .A .16B .32C .64D .128【答案】:B【解析】:设航速为v n mile /h ,在△ABS 中,AB =12v ,BS =8 2 n mile ,∠BSA =45°,由正弦定理,得82sin30°=12v sin45°, ∴ v =32 n mile /h .4. 某渔轮在航行中不幸遇险,发出呼叫信号,我海军舰艇在A 处获悉后,立即测出该渔轮在方位角为45°距离为10海里的C 处,并测得渔轮正沿方位角为105°的方向,以9海里/小时的速度向小岛靠拢,我海军舰艇立即以21海里/小时的速度前去营救,则舰艇靠近渔轮所需的时间为____________小时. A .12 B .23C .34D .1【答案】:B【解析】:如图,设舰艇在B ′处靠近渔轮,所需的时间为t 小时,则AB ′=21t ,CB ′=9t .在△AB ′C 中,根据余弦定理,则有 AB ′2=AC 2+B ′C 2-2AC ·B ′C cos120°, 可得212t 2=102+81t 2+2·10·9t ·12.整理得360t 2-90t -100=0,解得t =23或t =-512(舍去).故舰艇需23小时靠近渔轮.考向一利用正弦、余弦定理解决距离及角度问题例1、某市电力部门需要在A ,B 两地之间架设高压电线,因地理条件限制,不能直接测量A ,B 两地距离. 现测量人员在相距 3 km 的C ,D 两地(假设A ,B ,C ,D 在同一平面上),测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(如图),假如考虑到电线的自然下垂和施工损耗等原因,实际所须电线长度大约应该是A ,B 距离的43倍,问施工单位至少应该准备多长的电线?【解析】:在△ACD 中,由已知可得∠CAD =30°,所以AC = 3 km .在△BCD 中,由已知可得,∠CBD=60°.sin75°=sin(45°+30°)=6+24. 由正弦定理,BC =3sin75°sin60°=6+22. cos75°=cos(45°+30°)=6-24. 在△ABC 中,由余弦定理AB 2=AC 2+BC 2-2AC·BC cos ∠BCA=32+⎝ ⎛⎭⎪⎫6+222-23·6+22·cos75°=5 . 所以AB =5,故施工单位应该准备电线长为43 5 km变式1、如图,有一段河流,河的一侧是以O 为圆心,半径为103 m 的扇形区域OCD ,河的另一侧是一段笔直的河岸l ,岸边有一烟囱AB (不计B 离河岸的距离),且OB 的连线恰好与河岸l 垂直,设OB 与圆弧的交点为E .经测量,扇形区域和河岸处于同一水平面,在点C ,点O 和点E 处测得烟囱AB 的仰角分别为45°,30°和60°. (1) 求烟囱AB 的高度;(2) 如果要在CE 间修一条直路,求CE 的长.【解析】:(1) 设AB 的高度为h .在△CAB 中,因为∠ACB =45°,所以CB =h .在△OAB 中,因为∠AOB =30°,∠AEB =60°, 所以OB =3h ,EB =33h .由题意得3h -3h3=103,解得h =15. 故烟囱AB 的高度为15 m .(2) 在△OBC 中,cos ∠COB =OC 2+OB 2-BC 22OC ·OB=300+225×3-2252×103×153=56. 所以在△OCE 中,CE 2=OC 2+OE 2-2OC ·OE ·cos ∠COE =300+300-600×56=100.故CE 的长为10 m .变式2、在海岸A 处,发现北偏东45°方向,距离A 为(3-1) nmile 的B 处有一艘走私船,在A 处北偏西75°的方向,距离A 为2 nmile 的C 处的缉私船奉命以10 3 nmile /h 的速度追截走私船.此时,走私船正以10 nmile /h 的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?【解析】: 如题图所示,注意到最快追上走私船且两船所用时间相等,若在D 处相遇,则可先在△ABC 中求出BC ,再在△BCD 中求∠BCD .设缉私船用t h 在D 处追上走私船,则有CD =103t ,BD =10t ,在△ABC 中, ∵ AB =3-1,AC =2,∠BAC =120°,∴ 由余弦定理得BC 2=AB 2+AC 2-2AB·AC ·cos ∠BAC =(3-1)2+22-2·(3-1)·2·cos120°=6, ∴ BC =6.∵ cos ∠CBA =BC 2+AB 2-AC 22BC·AB =6+(3-1)2-426·(3-1)=22, ∴ ∠CBA =45°,即B 在C 正东.∵ ∠CBD =90°+30°=120°,在△BCD 中,由正弦定理得 sin ∠BCD =BD ·sin ∠CBD CD =10t sin120°103t =12, ∴ ∠BCD =30°.即缉私船沿北偏东60°方向能最快追上走私船.变式3、如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2 h 追上,此时到达C 处. (1) 求渔船甲的速度; (2) 求sin α的值.【解析】:(1) 依题意知,∠BAC =120°,AB =12海里,AC =10×2=20海里,∠BCA =α.在△ABC 中,由余弦定理, 得BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC=122+202-2×12×20×cos120°=784,解得BC =28海里. 所以渔船甲的速度为BC2=14海里/小时.(2) 在△ABC 中,因为AB =12海里,∠BAC =120°,BC =28海里,∠BCA =α, 由正弦定理,得AB sin α=BCsin120°.即sin α=AB ·sin120°BC=12×3228=3314. 方法总结:(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.考向二 正余弦定理在三角形中的运用例2、(2015南京、盐城、徐州二模)如图,在△ABC 中,D 是BC 上的一点.已知∠B =60°,AD =2,AC =10,DC =2,则AB =________.【答案】263【解析】、在△ACD 中,因为AD =2,AC =10,DC =2,所以cos ∠ADC =2+4-102×2×2=-22,从而∠ADC=135°,所以∠ADB =45°.在△ADB 中,AB sin45°=2sin60°,所以AB =2×2232=263变式1、(2015南通、扬州、淮安、连云港二调)如图,在△ABC 中,AB =3,AC =2,BC =4,点D 在边BC 上,∠BAD =45°,则tan ∠CAD 的值为________.【答案】8+157【解析】、 从构造角的角度观察分析,可以从差的角度(∠CAD =∠A -45°),也可以从和的角度(∠A =∠CAD+45°),所以只需从余弦定理入手求出∠A 的正切值,问题就迎刃而解了.解法1 在△ABC 中,AB =3,AC =2,BC =4,由余弦定理可得cos A =32+22-422×3×2=-14,所以tan A =-15,于是tan ∠CAD =tan(A -45°)=tan A -tan45°1+tan A tan45°=8+157.解法 2 由解法1得tan A =-15.由tan(45°+∠CAD )=-15得tan45°+tan ∠CAD1-tan45°tan ∠CAD =-15,即1+tan ∠CAD 1-tan ∠CAD =-15,解得tan ∠CAD =8+157.变式2、(2017徐州、连云港、宿迁三检)如图,在ABC △中,已知点D 在边AB 上,3AD DB =,4cos 5A =,5cos 13ACB ∠=,13BC =. (1)求cos B 的值; (2)求CD 的长.B D解析:(1)在ABC △中,4cos 5A =,(0,π)A ∈,所以3sin 5A ==.同理可得,12sin 13ACB ∠=. 所以cos cos[π()]cos()B A ACB A ACB =-+∠=-+∠sin sin cos cos A ACB A ACB =∠-∠312451651351365=⨯-⨯=. (2)在ABC △中,由正弦定理得,1312sin 203sin 135BC AB ACB A=∠=⨯=. 又3AD DB =,所以154BD AB ==. 在BCD △中,由余弦定理得,CD ===变式3、(2016徐州、连云港、宿迁三检)如图,在梯形ABCD 中,已知AD ∥BC ,AD =1,BD =210,∠CAD =π4,tan ∠ADC =-2.(1) 求CD 的长;(2) 求△BCD 的面积.解析: (1)因为tan ∠ADC =-2,且∠ADC ∈(0,π),所以sin ∠ADC =255,cos ∠ADC =-55.所以sin ∠ACD =sin ⎝⎛⎭⎫π-∠ADC -π4=sin ⎝⎛⎭⎫∠ADC +π4=sin ∠ADC ·cos π4+cos ∠ADC ·sin π4=1010,(6分)在△ADC 中,由正弦定理得CD =AD ·sin ∠DACsin ∠ACD =5(2) 因为AD ∥BC, 所以cos ∠BCD =-cos ∠ADC =55,sin ∠BCD =sin ∠ADC =255 在△BDC 中,由余弦定理得BD 2=BC 2+CD 2-2BC ·CD ·cos ∠BCD ,得BC 2-2BC -35=0,解得BC =7, (12分)所以S △BCD =12BC ·CD ·sin ∠BCD =12×7×5×255=7.变式4、(2017年苏北四市模拟)如图,在四边形ABCD 中,已知AB =13,AC =10,AD =5,CD =65,AB →·AC →=50.(1) 求cos ∠BAC 的值;(2) 求sin ∠CAD 的值; (3) 求△BAD 的面积.解析: (1) 因为AB →·AC →=||A B →||A C →cos ∠BAC ,所以cos ∠BAC =AB →·AC→||A B →||A C→=5013×10=513.(2) 在△ADC 中,AC =10,AD =5,CD =65.由余弦定理,得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =102+52-(65)22×10×5=35. 因为∠CAD ∈(0,π),所以sin ∠CAD =1-cos 2∠CAD =1-⎝⎛⎭⎫352=45.(3) 由(1)知,cos ∠BAC =513. 因为∠BAC ∈(0,π),所以sin ∠BAC =1-cos 2∠BAC =1-⎝⎛⎭⎫5132=1213.从而sin ∠BAD =sin(∠BAC +∠CAD )=sin ∠BAC cos ∠CAD +cos ∠BAC sin ∠CAD =1213×35+513×45=5665.所以S △BAD =12AB ·AD ·sin ∠BAD =12×13×5×5665方法总结:正余弦定理主要就是研究三角形综合的边与角的问题,许多题目中往往给出多边形,因此,就要根据题目所给的条件,标出边和角,合理的选择三角形,尽量选择边和角都比较多的条件的三角形,然后运用正余弦定理解决。
第六节 正弦定理和余弦定理1.正弦定理a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径. 由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C . 2.余弦定理a 2=b 2+c 2-2bc cos_A ;b 2=a 2+c 2-2ac cos_B ;c 2=a 2+b 2-2ab cos_C . 余弦定理可以变形:cos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab .3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sin B =12ab sin C ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径);(4)S =p (p -a )(p -b )(p -c )⎝⎛⎭⎫其中p =12(a +b +c ). 提醒:1.辨明两个易误点(1)在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解或无解,所以要注意分类讨论.(2)在判断三角形形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.2.在△ABC 中常有以下结论: (1)∠A +∠B +∠C =π.(2)在三角形中大边对大角,大角对大边.(3)任意两边之和大于第三边,任意两边之差小于第三边.(4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C2;cosA +B 2=sin C2.(5)tan A +tan B +tan C =tan A ·tan B ·tan C . (6)∠A >∠B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .1.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)在△ABC 中,若sin A >sin B ,则A >B .( )(2)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( ) (3)在△ABC 中,有sin A =sin(B +C ).( ) (4)在△ABC 中,a sin A =a +b -c sin A +sin B -sin C.( )(5)在△ABC 中,若a 2+b 2<c 2,则△A BC 为钝角三角形.( ) (6)公式S =12ab sin C 适合求任意三角形的面积.( )(7)在三角形中已知两边和一角就能求三角形的面积.( ) 答案:(1)√ (2)× (3)√ (4)√ (5)√ (6)√ (7)√2.(教材习题改编)在△ABC 中,若sin 2 A +sin 2 B <sin 2 C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不能确定解析:选C 由正弦定理,得a 2R =sin A ,b 2R =sin B ,c2R =sin C ,代入得到a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,所以C 为钝角,所以该三角形为钝角三角形.3.(教材习题改编)在△ABC 中,A =45°,C =30°,c =6,则a 等于( ) A .3 2 B .6 2 C .2 6D .3 6解析:选B 由正弦定理得a sin A =c sin C ,所以a =6sin 45°sin 30°=12=6 2.4.(教材习题改编)在△ABC 中,已知A =60°, B =75°, c =20, 则a =____________. 解析:C =180°-(A +B )=180°-(60°+75°)=45°. 由正弦定理,得a =c sin A sin C =20×sin 60°sin 45°=10 6.答案:10 65.(2018·潍坊检测)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,若cos B =45,a =10,△ABC 的面积为42,则c =________.解析:依题意可得sin B =35,又S △ABC =12ac sin B =42,则c =14.答案:14正弦定理、余弦定理的应用 [析考情]正、余弦定理的应用原则(1)正弦定理是一个连比等式,在运用此定理时,只要知道其比值或等量关系就可以通过约分达到解决问题的目的,在解题时要学会灵活运用.(2)运用余弦定理时,要注意整体思想的运用. [提能力]【典例】 (2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________.解析:方法一 由2b cos B =a cos C +c cos A 及正弦定理, 得2sin B cos B =sin A cos C +sin C cos A . ∴2sin B cos B =sin(A +C ). 又A +B +C =π, ∴A +C =π-B .∴2sin B cos B =sin(π-B )=sin B . 又sin B ≠0,∴cos B =12,∴B =π3.方法二 ∵在△ABC 中,a cos C +c cos A =b ,∴条件等式变为2b cos B =b , ∴cos B =12.又0<B <π,∴B =π3.答案:π3[刷好题]1.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b =( )A .14B .6C .14D . 6解析:选D b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,所以b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,b =6,故选D .2.(2017·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.解析:如图,由正弦定理,得3sin 60°=6sin B ,∴sin B =22. 又c >b ,∴B =45°, ∴A =180°-60°-45°=75°.答案:75°利用正、余弦定理判断三角形形状 [明技法]判断三角形形状的常用技巧 若已知条件中有边又有角,则(1)化边:通过因式分解,配方等得出边的相应关系,从而判断三角形的形状. (2)化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论.[提能力]【典例】 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sinA ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .锐角三角形D .不确定解析:选B 依据题设条件的特点,由正弦定理,得sin B cos C +cos B sin C =sin 2A ,有sin(B +C )=sin 2A ,从而sin(B +C )=sin A =sin 2A ,解得sin A =1,∴A =π2,故选B .[母题变式1] 本例的条件变为:若2sin A cos B =sin C ,那么△ABC 一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形D .正三角形解析:选B 方法一 由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B ,选B .方法二 由正弦定理得2a cos B =c ,再由余弦定理得 2a ·a 2+c 2-b 22ac=c ⇒a 2=b 2⇒a =b .[母题变式2] 本例的条件变为:若a cos A =b cos B ,那么△ABC 一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形D .等腰或直角三角形解析:选D 由正弦定理,得sin A cos A =sin B cos B ⇒sin 2A =sin 2B ,因为2A,2B ∈(0,π),所以2A =2B 或2A =π-2B,即A =B 或A +B =π2.[刷好题](2018·桂林模拟)在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰或直角三角形解析:选D 由已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C , 得b 2[sin(A -B )+sin C ]=a 2[sin C -sin(A -B )], 即b 2sin A cos B =a 2cos A sin B , 即sin 2 B sin A cos B =sin 2 A cos A sin B ,所以sin 2B =sin 2A ,由于A ,B 是三角形的内角, 故0<2A <2π,0<2B <2π,故只可能2A =2B 或2A =π-2B ,即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形.与三角形面积有关的问题 [明技法]三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. [提能力]【典例】 (2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解:(1)由题设得12ac sin B =a 23sin A ,即12c sin B =a3sin A .由正弦定理得12sin C sin B =sin A3sin A .故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12.所以B +C =2π3,故A =π3.由题意得12bc sin A =a 23sin A ,a =3,所以bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9.由bc =8,得b +c =33. 故△ABC 的周长为3+33. [刷好题](2017·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2.(1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 解:(1)由已知可得tan A =-3,所以A =2π3.在△ABC 中,由余弦定理得28=4+c 2-4c cos 2π3, 即c 2+2c -24=0,解得c =-6(舍去),c =4. (2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6.故△ABD 面积与△ACD 面积的比值为12AB ·AD ·sin π612AC ·AD =1.又△ABC 的面积为12×4×2sin ∠BAC =23,所以△ABD 的面积为 3.。
正弦定理、余弦定理一、选择题1.(2021·全国卷甲)在△ABC中,已知B=120°,AC=,AB=2,则BC=( ) A.1 B. C. D.3D [法一:由余弦定理AC2=AB2+BC2-2AB·BC cos B,得BC2+2BC-15=0,解得BC=3或BC=-5(舍去).故选D.法二:由正弦定理=,得sin C=,从而cos C=(C是锐角),所以sin A=sin[π-(B +C)]=sin(B+C)=sin B cos C+cos B sin C=×-×=.又=,所以BC=3.故选D.]2.在△ABC中,已知C=,b=4,△ABC的面积为2,则c=( )A.2 B.2 C.2 D.B [由S=ab sin C=2a×=2,解得a=2.由余弦定理得c2=a2+b2-2ab cos C=12,故c=2.]3.对于△ABC,有如下命题,其中正确的是( )A.若sin 2A=sin 2B,则△ABC为等腰三角形B.若sin A=cos B,则△ABC为直角三角形C.若sin2A+sin2B+cos2C<1,则△ABC为钝角三角形D.若AB=,AC=1,B=30°,则△ABC的面积为C [对于A项,∵sin 2A=sin 2B,∴A=B或2A+2B=π,即A+B=,∴△ABC是等腰三角形或直角三角形,故A错误;对于B项,∵sin A=cos B,∴A-B=或A+B=,∴△ABC不一定是直角三角形,故B错误;对于C项,sin2A+sin2B<1-cos2C=sin2C,∴a2+b2<c2,∴△ABC为钝角三角形C正确;对于D项,由正弦定理,得sin C==,且AB>AC,∴C=60°或C=120°,∴A=90°或A=30°,∴S△ABC=AC·AB sin A=或,D不正确.故选C.]4.(2020·全国卷Ⅲ)在△ABC中,cos C=,AC=4,BC=3,则cos B=( )A. B. C. D.A [由余弦定理得AB2=AC2+BC2-2AC×BC×cos C=16+9-2×4×3×=9,AB=3,所以cos B==,故选A.]5.在△ABC中,cos2=(a,b,c分别为角A,B,C的对边),则△ABC的形状为( )A.等边三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形B [由cos2=得=+,∴cos B=,又cos B=,∴=,∴a2+b2=c2,∴△ABC是直角三角形,故选B.]6.(2021·毕节模拟)在△ABC中,角A,B,C的对边分别为a,b,c,已知a =,△ABC的周长为5+,(sin B-sin C)2=sin2A-sin B sin C,则△ABC的面积为( )A. B. C. D.C [由题意可得:a=,△ABC的周长为5+,可得b+c=5,因为(sin B-sin C)2=sin2A-sin B sin C,由正弦定理及余弦定理可得:b2+c2-a2=bc=2bc cos A,因为A∈(0,π),所以cos A=,A=,a2=(b+c)2-2bc-2bc cos A,所以10=25-2bc-bc,所以bc=5,所以S△ABC=bc sin A=×5×=,故选C.]二、填空题7.(2019·全国卷Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B=0,则B=________. [∵b sin A+a cos B=0,∴=.由正弦定理,得-cos B=sin B,∴tan B=-1.又B∈(0,π),∴B=.]8.(2021·全国卷乙)记△ABC的内角A,B,C的对边分别为a,b,c,面积为.B=60°,a2+c2=3ac,则b=________.2 [由题意得S△ABC=ac sin B=ac=,则ac=4,所以a2+c2=3ac=3×4=12,所以b2=a2+c2-2ac cos B=12-2×4×=8,则b=2.]9.(2021·浙江高考)在△ABC中,∠B=60°,AB=2,M是BC的中点,AM=2,则AC=________;cos∠MAC=________.2 [法一:由∠B=60°,AB=2,AM=2,及余弦定理可得BM=4,因为M为BC 的中点,所以BC=8.在△ABC中,由余弦定理可得AC2=AB2+BC2-2BC·AB·cos∠B =4+64-2×8×2×=52,所以AC=2,所以在△AMC中,由余弦定理得cos∠MAC===.法二:由∠B=60°,AB=2,AM=2,及余弦定理可得BM=4,因为M为BC的中点,所以BC=8.过点C作CD⊥BA交BA的延长线于点D,则BD=4,AD=2,CD=4.所以在Rt△ADC中,AC2=CD2+AD2=48+4=52,得AC=2.在△AMC中,由余弦定理得cos∠MAC===.]三、解答题10.(2019·北京高考)在△ABC中,a=3,b-c=2,cos B=-.(1)求b,c的值;(2)求sin(B-C)的值.[解] (1)由余弦定理b2=a2+c2-2ac cos B,得b2=32+c2-2×3×c×.因为b=c+2,所以(c+2)2=32+c2-2×3×c×.解得c=5.所以b=7.(2)由cos B=-得sin B=.由正弦定理得sin C=sin B=.在△ABC中,∠B是钝角,所以∠C为锐角.所以cos C==.所以sin(B-C)=sin B cos C-cos B sin C=.11.(2020·全国卷Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知cos2+cos A=.(1)求A;(2)若b-c=a,证明:△ABC是直角三角形.[解] (1)由已知得sin2A+cos A=,即cos2A-cos A+=0.所以=0,cos A=.由于0<A<π,故A=.(2)证明:由正弦定理及已知条件可得sin B-sin C=sin A.由(1)知B+C=,所以sin B-sin=sin .即sin B-cos B=,sin=.由于0<B<,故B=.从而△ABC是直角三角形.1.(2021·南宁模拟)若△ABC的内角A,B,C所对的边分别为a,b,c,已知b sin 2A=a sin B,且c=2b,则等于( )A. B. C. D.D [由b sin 2A=a sin B及正弦定理得2sin B sin A cos A=sin A sin B,又sin A sin B≠0,∴cos A=.又c=2b,由余弦定理得a2=b2+c2-2bc cos A=b2+4b2-4b2×=3b2,∴=3,从而=,故选D.]2.(2021·唐山模拟)在△ABC中,角A,B,C的对边分别为a,b,c,a=2,b=3,c=4,设AB边上的高为h,则h等于( )A. B. C. D.D [cos A===,则sin A==,∴h=b sin A=3×=,故选D.]3.在△ABC中,角A,B,C的对边分别为a,b,c,且a2-(b-c)2=(2-)bc,sinA sin B=cos2,BC边上的中线AM的长为.(1)求角A和角B的大小;(2)求△ABC的面积.[解] (1)由a2-(b-c)2=(2-)bc,得a2-b2-c2=-bc,∴cos A==,又0<A<π,∴A=.由sin A sin B=cos2,得sin B=,即sin B=1+cos C,则cos C<0,即C为钝角,∴B为锐角,且B+C=,则sin=1+cos C,化简得cos=-1,解得C=,∴B=.(2)由(1)知,a=b,在△ACM中,由余弦定理得AM2=b2+-2b··cos C=b2++=()2,解得b=2,故S△ABC=ab sin C=×2×2×=.1.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,满足cos2A-cos2B +cos2C=1+sin A sin C,且sin A+sin C=1,则△ABC的形状为( ) A.等边三角形B.等腰直角三角形C.顶角为150°的等腰三角形D.顶角为120°的等腰三角形D [∵cos2A-cos2B+cos2C=1+sin A sin C,∴(1-sin2A)-(1-sin2B)+(1-sin2C)=1+sin A sin C,∴可得sin2A+sin2C-sin2B=-sin A sin C,∴根据正弦定理得a2+c2-b2=-ac,∴由余弦定理得cos B===-,∵B∈(0°,180°),∴B=120°,∵sin2B=sin2A+sin2C+sin A sin C.∴变形得=(sin A+sin C)2-sin A sin C,又∵sin A+sin C=1,得sin A sin C=,∴上述两式联立得sin A=sin C=,∵0°<A<60°,0°<C<60°,∴A=C=30°,∴△ABC是顶角为120°的等腰三角形,故选D.]2.(2020·北京高考)在△ABC中,a+b=11,再从条件①、条件②这两个条件中选择一个作为已知,求:(1)a的值;(2)sin C和△ABC的面积.条件①:c=7,cos A=-;条件②:cos A=,cos B=.[解] 选条件①:c=7,cos A=-,且a+b=11.(1)在△ABC中,由余弦定理,得cos A===-,解得a=8.(2)∵cos A=-,A∈(0,π),∴sin A=.在△ABC中,由正弦定理,得=,∴sin C===.∵a+b=11,a=8,∴b=3,∴S△ABC=ab sin C=×8×3×=6.若选条件②:cos A=,cos B=,且a+b=11.(1)∵A∈(0,π),B∈(0,π),cos A=,cos B=,∴sin A=,sin B=.在△ABC中,由正弦定理,可得=,∴===.又∵a+b=11,∴a=6,b=5.(2)sin C=sin[π-(A+B)]=sin(A+B)=sin A cos B+cos A sin B=×+×==.∴S△ABC=ab sin C=×6×5×=.。
6讲 正弦定理和余弦定理课时作业1.(2020·广东广雅中学模拟)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 所对的边,若3b cos C =c (1-3cos B ),则sin C ∶sin A =( )A .2∶3B .4∶3C .3∶1D .3∶2答案 C解析 由正弦定理得3sin B cos C =sin C -3sin C cos B,3sin(B +C )=sin C ,因为A +B +C =π,所以B +C =π-A ,所以3sin A =sin C ,所以sin C ∶sin A =3∶1,故选C.2.(2019·南昌模拟)在△ABC 中,已知C =π3,b =4,△ABC 的面积为23,则c =( )A .27B .7C .2 2D .2 3答案 D解析 由S =12ab sin C =2a ×32=23,解得a =2,由余弦定理得c 2=a 2+b 2-2ab cos C=12,故c =2 3.3.(2019·兰州市实战考试)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( )A.24B .-24C.34 D .-34答案 B解析 由题意得,b 2=ac =2a 2,所以b =2a ,所以cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24,故选B. 4.(2019·广西南宁模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ac =3,且a =3b sin A ,则△ABC 的面积等于( )A.12 B .32 C .1 D .34答案 A解析 ∵a =3b sin A ,∴由正弦定理得sin A =3sin B sin A ,∴sin B =13.∵ac =3,∴△ABC的面积S =12ac sin B =12×3×13=12.故选A.5.在△ABC 中,角A ,B ,C 所对的边的长分别为a ,b ,c ,若a sin A +b sin B <c sin C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定答案 C解析 根据正弦定理可得a 2+b 2<c 2.由余弦定理,得cos C =a 2+b 2-c 22ab<0,故C 是钝角.6.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B,则B =( ) A.π6 B .π4C.π3D .3π4答案 C 解析 因为c -b c -a =sin A sin C +sin B ,所以c -b c -a =a c +b,即(c -b )(c +b )=a (c -a ),所以a 2+c 2-b 2=ac ,所以cos B =12,又B ∈(0,π),所以B =π3.7.(2019·大连双基测试)△ABC 中,AB =2,AC =3,B =60°,则cos C =( ) A.33 B .±63C .-63D .63答案 D解析 由正弦定理得AC sin B =ABsin C,∴sin C =AB ·sin B AC =2×sin60°3=33,又AB <AC ,∴0<C <B =60°,∴cos C =1-sin 2C =63.故选D. 8.(2018·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2B .π3C.π4 D .π6答案 C解析 由题可知S △ABC =12ab sin C =a 2+b 2-c 24,所以a 2+b 2-c 2=2ab sin C .由余弦定理得a2+b 2-c 2=2ab cos C ,∴sin C =cos C .∵C ∈(0,π),∴C =π4.故选C.9.(2019·江西新八校第二次联考)我国南宋著名数学家秦九韶提出了由三角形三边求三角形面积的“三斜求积”,设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,面积为S ,则“三斜求积”公式为S =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222,若a 2sin C =2sin A ,(a +c )2=6+b 2,则用“三斜求积”公式求得△ABC 的面积为( )A.32B . 3 C.12 D .1答案 A解析 因为a 2sin C =2sin A ,所以a 2c =2a ,所以ac =2, 因为(a +c )2=6+b 2,所以a 2+c 2+2ac =6+b 2, 所以a 2+c 2-b 2=6-2ac =6-4=2, 从而△ABC 的面积为S △ABC =14×⎣⎢⎡⎦⎥⎤22-⎝ ⎛⎭⎪⎫222=32,故选A. 10.(2019·南阳模拟)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a,3sin A =5sin B ,则C =( )A.π3 B .3π4C.5π6D .2π3答案 D解析 因为3sin A =5sin B ,所以由正弦定理可得:3a =5b ,所以a =5b3.又b +c =2a ,所以c =2a -b =7b3,不妨取b =3,则a =5,c =7,所以cos C =a 2+b 2-c 22ab =52+32-722×5×3=-12.因为C ∈(0,π),所以C =2π3. 11.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,b =2,则△ABC 的面积的最大值是( )A .1B . 3C .2D .4答案 B解析 ∵2b cos B =a cos C +c cos A ,∴2sin B cos B =sin A cos C +sin C cos A =sin(A +C )=sin B .∵0<B <π,∴cos B =12,∴B =π3.∵cos B =a 2+c 2-b 22ac =12,b =2,∴a 2+c 2-4=ac .∵a 2+c 2≥2ac ,∴2ac -4≤ac ,即ac ≤4,当且仅当a =c 时等号成立,∴S △ABC =12ac sin B≤12×4×32=3,故△ABC 的面积的最大值为 3. 12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A. 5 B .3 C.10 D .4答案 B解析 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C ,∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.故选B.13.(2020·北京海淀模拟)在△ABC 中,A =2π3,a =3c ,则bc =________.答案 1解析 由题意知sin 2π3=3sin C ,∴sin C =12,又0<C <π3,∴C =π6,从而B =π6,∴b =c ,故b c=1.14.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________. 答案π3解析 解法一:由2b cos B =a cos C +c cos A 及正弦定理, 得2sin B cos B =sin A cos C +sin C cos A . ∴2sin B cos B =sin(A +C ). 又A +B +C =π,∴A +C =π-B . ∴2sin B cos B =sin(π-B )=sin B . 又sin B ≠0,∴cos B =12.∴B =π3.解法二:∵在△ABC 中,a cos C +c cos A =b , ∴条件等式变为2b cos B =b ,∴cos B =12.又0<B <π,∴B =π3.15.(2019·杭州模拟)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )·sin C ,则△ABC 的面积的最大值为________.答案3解析 因为a =2,(2+b )(sin A -sin B )=(c -b )sin C ,所以根据正弦定理,得(a +b )(a-b )=(c -b )c ,所以a 2-b 2=c 2-bc ,所以b 2+c 2-a 2=bc ,根据余弦定理,得cos A =b 2+c 2-a 22bc=12,因为A ∈(0,π),故A =π3.因为b 2+c 2-bc =4,所以4=b 2+c 2-bc ≥2bc -bc =bc (当且仅当b =c =2时取等号),所以△ABC 的面积S △ABC =12bc sin A =34bc ≤34×4=3,所以△ABC 的面积的最大值为 3.16.已知在△ABC 中,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.答案152104解析 依题意作出图形,如图所示, 则sin ∠DBC =sin ∠ABC .由题意知AB =AC =4,BC =BD =2, 则sin ∠ABC =154,cos ∠ABC =14. 所以S △BDC =12BC ·BD ·sin∠DBC=12×2×2×154=152.因为cos ∠DBC =-cos ∠ABC =-14=BD 2+BC 2-CD 22BD ·BC =8-CD 28,所以CD =10.由余弦定理,得cos ∠BDC =4+10-42×2×10=104. 17.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sinB sinC .(1)求A ;(2)若2a +b =2c ,求sin C .解 (1)由已知得sin 2B +sin 2C -sin 2A =sinB sinC , 故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12.因为0°<A <180°,所以A =60°. (2)由(1)知B =120°-C ,由题设及正弦定理,得2sin A +s in(120°-C )=2sin C , 即62+32cos C +12sin C =2sin C , 可得cos(C +60°)=-22. 因为0°<C <120°,所以sin(C +60°)=22, 故sin C =sin(C +60°-60°)=sin(C +60°)cos60°-cos(C +60°)sin60°=6+24. 18.(2019·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a,3c sin B =4a sin C .(1)求cos B 的值; (2)求sin ⎝⎛⎭⎪⎫2B +π6的值. 解 (1)在△ABC 中,由正弦定理b sin B =csin C ,得b sin C =c sin B .由3c sin B =4a sin C , 得3b sin C =4a sin C ,即3b =4a ,所以b =43a .因为b +c =2a ,所以c =23a .由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14.(2)由(1)可得sin B =1-cos 2B =154, 从而sin2B =2sin B cos B =-158, cos2B =cos 2B -sin 2B =-78,故sin ⎝ ⎛⎭⎪⎫2B +π6=sin2B cos π6+cos2B sin π6=-158×32-78×12=-35+716. 19.(2019·河南安阳一模)如图,在圆内接四边形ABCD 中,AB =2,AD =1,3BC =3BD cos α+CD sin β.(1)求角β的大小;(2)求四边形ABCD 周长的取值范围. 解 (1)∵3BC =3BD cos α+CD sin β, ∴3sin ∠BDC =3sin βcos α+sin αsin β, ∴3sin(α+β)=3sin βcos α+sin αsin β, ∴3(sin αcos β+sin βcos α) =3sin βcos α+sin αsin β,∴3sin αcos β=sin αsin β,∴tan β=3, 又β∈(0,π),∴β=π3.(2)根据题意,得∠BAD =2π3,由余弦定理,得BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD=4+1-2×2×1×cos 2π3=7,又BD 2=CB 2+CD 2-2CB ·CD cos β =(CB +CD )2-3CB ·CD ≥(CB +CD )2-3(CB +CD )24=(CB +CD )24,∴CB +CD ≤27,又CB +CD >7,∴四边形ABCD 的周长AB +BC +CD +DA 的取值范围为(3+7,3+27].20.(2019·河南联考)如图,在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知c =4,b =2,2c cos C =b ,D ,E 分别为线段BC 上的点,且BD =CD ,∠BAE =∠CAE .(1)求线段AD 的长; (2)求△ADE 的面积.解 (1)因为c =4,b =2,2c cos C =b ,所以cos C =b 2c =14.由余弦定理得cos C =a 2+b 2-c 22ab =a 2+4-164a =14,所以a =4,即BC =4. 在△ACD 中,CD =2,AC =2,所以AD 2=AC 2+CD 2-2AC ·CD ·cos∠ACD =6,所以AD = 6. (2)因为AE 是∠BAC 的平分线,所以S △ABE S △ACE =12AB ·AE ·sin∠BAE12AC ·AE ·sin∠CAE =AB AC=2,又S △ABE S △ACE =BE EC ,所以BEEC=2, 所以EC =13BC =43,DE =2-43=23.又cos C =14,所以sin C =1-cos 2C =154.所以S △ADE =12DE ·AC ·sin C =156.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
课时作业(二十三) 正弦定理和余弦定理的应用A 级1.如果在测量中,某渠道斜坡坡度为34,设α为坡角,那么cos α等于( )A.35 B.45 C.34D.432.在某次测量中,在A 处测得同一平面方向的B 点的仰角是50°,且到A 的距离为2,C 点的俯角为70°,且到A 的距离为3,则B 、C 间的距离为( )A.16B.17C.18D.193.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m4.(2012·潍坊模拟)如图,设A 、B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 m D.2522m 5.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为( )A.1762海里/小时B .346海里/小时 C.1722海里/小时D .342海里/小时6.已知A 、B 两地的距离为10 km ,B 、C 两地的距离为20 km ,现测得∠ABC =120°,则A 、C 两地的距离为________km.7.(2012·潍坊模拟)如图,一艘船上午9∶30在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10∶00到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距82n mile.此船的航速是________n mile/h.8.江岸边有一炮台高30 m,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.9.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是______米.10.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为106米(如图所示),旗杆底部与第一排在一个水平面上.若国歌长度约为50秒,升旗手应以多大的速度匀速升旗?11.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,求电视塔的高度.B级1.(2012·潍坊模拟)海事救护船A在基地的北偏东60°,与基地相距1003海里,渔船B 被困海面,已知B距离基地100海里,而且在救护船A正西方,则渔船B与救护船A的距离是()A.100海里B.200海里C.100海里或200海里D.1003海里2.(2012·西安模拟)如图,货轮在海上以35n mile/h的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为152°的方向航行.为了确定船位,在B点处观测到灯塔A的方位角为122°.半小时后,货轮到达C点处,观测到灯塔A的方位角为32°,则此时货轮与灯塔之间的距离为________n mile.3.(2012·黄岗模拟)如图,一船在海上由西向东航行,在A处测得某岛M的方位角为北偏东α角,前进4 km后在B处测得该岛的方位角为北偏东β角.已知该岛周围3.5 km范围内有暗礁,现该船继续东行.(1)若α=2β=60°,问该船有无触礁危险?如果没有,请说明理由;如果有,那么该船自B处向东航行多少距离会有触礁危险?(2)当α与β满足什么条件时,该船没有触礁危险?答案课时作业(二十三)A 级1.B 因为tan α=34,则sin α=34cos α,代入sin 2α+cos 2α=1得:cos α=45.2.D 因∠BAC =120°,AB =2,AC =3. ∴BC 2=AB 2+AC 2-2AB ·AC cos ∠BAC =4+9-2×2×3×cos 120°=19. ∴BC =19.3.A 设水柱高度是h m ,水柱底端为C ,则在△ABC 中,A =60°,AC =h ,AB =100,BC =3h ,根据余弦定理得,(3h )2=h 2+1002-2·h ·100·cos 60°,即h 2+50h -5 000=0,即(h -50)(h +100)=0,即h =50,故水柱的高度是50 m. 4.A ∠B =180°-45°-105°=30°. 在△ABC 中,由AB sin 45°=50sin 30°得AB =100×22=50 2 m. 5.A 如图所示,在△PMN 中,PM sin 45°=MNsin 120°,∴MN =68×32=346,∴v =MN 4=1726(海里/小时).6.解析: 如图所示, 由余弦定理可得:AC 2=100+400-2×10×20×cos 120°=700, ∴AC =107(km). 答案: 1077.解析: 设航速为v n mile/h在△ABS 中,AB =12v ,BS =82,∠BSA =45°,由正弦定理得:82sin 30°=12v sin 45°,∴v =32.答案: 328.解析: 如图,OM =AO tan 45°=30(m), ON =AO tan 30°=33×30=103(m), 由余弦定理得, MN =900+300-2×30×103×32=300=103(m). 答案: 10 39.解析: 在△BCD 中,CD =10,∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°,BC sin 45°=CD sin 30°,BC =CD sin 45°sin 30°=10 2. 在Rt △ABC 中,tan 60°=ABBC,AB =BC tan 60°=10 6. 答案: 10 610.解析: 在△BCD 中,∠BDC =45°,∠CBD =30°,CD =106, 由正弦定理,得BC =CD sin 45°sin 30°=203;在Rt △ABC 中,AB =BC sin 60°=203×32=30(米). 所以升旗速度v =AB t =3050=0.6(米/秒).11.解析: 如图,设电视塔AB 的高为x m , 则在Rt △ABC 中,由∠ACB =45°得BC =x . 在Rt △ABD 中,∠ADB =30°, ∴BD =3x .在△BDC 中,由余弦定理,得 BD 2=BC 2+CD 2-2BC ·CD ·cos 120°, 即(3x )2=x 2+402-2·x ·40·cos 120°, 解得x =40,∴电视塔高为40米.B 级1.C 设基地位于O 处,根据正弦定理可知 OB sin A =OA sin B ,∴sin B =sin A OB ·OA =12100×1003=32. ∴B =60°或120°.当B =60°时,∠BOA =90°,A =30°, BA =2OB =200(海里),当B =120°时,A =∠AOB =30°, ∴OB =AB =100(海里),故渔船B 与救护船A 的距离是100海里或200海里.2.解析: 在△ABC 中,∠ABC =152°-122°=30°,C =180°-152°+32°=60°, A =180°-30°-60°=90°, BC =352n mile ,∴AC =352sin 30°=354(n mile).答案:3543.解析: (1)作MC ⊥AB ,垂足为C ,由已知α=60°,β=30°, 所以∠ABM =120°, ∠AMB =30°, 所以BM =AB =4, ∠MBC =60°,所以MC =BM ·sin 60°=23<3.5, 所以该船有触礁的危险.设该船自B 处向东航行至点D 有触礁危险, 则MD =3.5,CD =MD 2-MC 2=3.52-(23)2=0.5(km),所以,BD =BC -DC =1.5(km),所以,该船自B 处向东航行1.5 km 会有触礁危险. (2)设CM =x ,在△MAB 中,由正弦定理得, AB sin ∠AMB = BMsin ∠MAB ,即4sin (α-β)=BM cos α,BM =4cos αsin (α-β),而x =BM ·sin ∠MBC =BM ·cos β=4cos αcos βsin (α-β),所以,当x >3.5, 即4cos αcos βsin (α-β)>72,即cos αcos βsin (α-β)>78时,该船没有触礁危险.。