高考物理名校模拟试题分项解析热点专题电磁感应综合问题.doc
- 格式:doc
- 大小:170.65 KB
- 文档页数:5
电磁感应综合问题1.掌握应用动量定理处理电磁感应问题的思路。
2.掌握应用动量守恒定律处理电磁感应问题的方法。
3.熟练应用楞次定律与法拉第电磁感应定律解决问题。
4.会分析电磁感应中的图像问题。
5.会分析电磁感应中的动力学与能量问题。
电磁感应中的动力学与能量问题1(2024·河北·模拟预测)如图甲所示,水平粗糙导轨左侧接有定值电阻R =3Ω,导轨处于垂直纸面向外的匀强磁场中,磁感应强度B =1T ,导轨间距L =1m 。
一质量m =1kg ,阻值r =1Ω的金属棒在水平向右拉力F 作用下由静止开始从CD 处运动,金属棒与导轨间动摩擦因数μ=0.25,金属棒的v -x 图像如图乙所示,取g =10m/s 2,求:(1)x =1m 时,安培力的大小;(2)从起点到发生x =1m 位移的过程中,金属棒产生的焦耳热;(3)从起点到发生x =1m 位移的过程中,拉力F 做的功。
【答案】(1)0.5N ;(2)116J ;(3)4.75J 【详解】(1)由图乙可知,x =1m 时,v =2m/s ,回路中电流为I =E R +r =BLv R +r=0.5A安培力的大小为F 安=IBL =0.5N (2)由图乙可得v =2x金属棒受到的安培力为F A =IBL =B 2L 2v R +r=x2(N )回路中产生的焦耳热等于克服安培力做的功,从起点到发生x =1m 位移的过程中,回路中产生的焦耳热为Q =W 安=F A x =0+0.52×1J =0.25J金属棒产生的焦耳热为Q 棒=r R +rQ =116J(3)从起点到发生x =1m 位移的过程中,根据动能定理有W F -W 安-μmgx =12mv 2解得拉力F 做的功为W F =4.75J1.电磁感应综合问题的解题思路2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流恒定的情况;(2)功能关系:Q =W 克安(W 克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量)。
压轴题07电磁感应规律的综合应用目录一,考向分析 (1)二.题型及要领归纳 (2)热点题型一以动生电动势为基综合考查导体棒运动的问题 (2)热点题型二以感生电动势为基综合考查导体棒运动的问题 (9)热点题型三以等间距双导体棒模型考动量能量问题 (16)热点题型四以不等间距双导体棒模型考动量定理与电磁规律的综合问题 (21)热点题型五以棒+电容器模型考查力电综合问题 (27)三.压轴题速练 (33)一,考向分析1.本专题是运动学、动力学、恒定电流、电磁感应和能量等知识的综合应用,高考既以选择题的形式命题,也以计算题的形式命题。
2.学好本专题,可以极大地培养同学们数形结合的推理能力和电路分析能力,针对性的专题强化,可以提升同学们解决数形结合、利用动力学和功能关系解决电磁感应问题的信心。
3.用到的知识有:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、闭合电路欧姆定律、平衡条件、牛顿运动定律、函数图像、动能定理和能量守恒定律等。
电磁感应综合试题往往与导轨滑杆等模型结合,考查内容主要集中在电磁感应与力学中力的平衡、力与运动、动量与能量的关系上,有时也能与电磁感应的相关图像问题相结合。
通常还与电路等知识综合成难度较大的试题,与现代科技结合密切,对理论联系实际的能力要求较高。
4.电磁感应现象中的电源与电路(1)产生感应电动势的那部分导体相当于电源。
(2)在电源内部电流由负极流向正极。
(3)电源两端的电压为路端电压。
5.电荷量的求解电荷量q=IΔt,其中I必须是电流的平均值。
由E=n ΔΦΔt、I=ER总、q=IΔt联立可得q=n ΔΦR总,与时间无关。
6.求解焦耳热Q的三种方法(1)焦耳定律:Q=I2Rt,适用于电流、电阻不变。
(2)功能关系:Q=W克服安培力,电流变不变都适用。
(3)能量转化:Q=ΔE(其他能的减少量),电流变不变都适用。
7.用到的物理规律匀变速直线运动的规律、牛顿运动定律、动能定理、能量守恒定律等。
第9课时 电磁感应的综合应用 考点 楞次定律与法拉第电磁感应定律的应用1.求感应电动势的两种方法(1)E =n ΔΦΔt,用来计算感应电动势的平均值. (2)E =Bl v 或E =12Bl 2ω,主要用来计算感应电动势的瞬时值. 2.判断感应电流方向的两种方法(1)利用右手定则,即根据导体在磁场中做切割磁感线运动的情况进行判断.(2)利用楞次定律,即根据穿过闭合回路的磁通量的变化情况进行判断.3.楞次定律中“阻碍”的四种表现形式(1)阻碍磁通量的变化——“增反减同”.(2)阻碍相对运动——“来拒去留”.(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”.(4)阻碍电流的变化(自感现象)——“增反减同”.例1 (多选)(2019·全国卷Ⅰ·20)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图1(a)中虚线MN 所示.一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.t =0时磁感应强度的方向如图(a)所示;磁感应强度B 随时间t 的变化关系如图(b)所示.则在t =0到t =t 1的时间间隔内( )图1A .圆环所受安培力的方向始终不变B .圆环中的感应电流始终沿顺时针方向C .圆环中的感应电流大小为B 0rS 4t 0ρD .圆环中的感应电动势大小为B 0πr 24t 0答案 BC解析 在0~t 0时间内,磁感应强度减小,根据楞次定律可知感应电流的方向为顺时针,圆环所受安培力水平向左,在t 0~t 1时间内,磁感应强度反向增大,感应电流的方向为顺时针,圆环所受安培力水平向右,所以选项A 错误,B 正确;根据法拉第电磁感应定律得E =ΔΦΔt =12πr 2·B 0t 0=B 0πr 22t 0,根据电阻定律可得R =ρ2πr S ,根据欧姆定律可得I =E R =B 0rS 4t 0ρ,所以选项C 正确,D 错误.变式训练1.(多选)(2020·山东等级考模拟卷·12)竖直放置的长直密绕螺线管接入如图2甲所示的电路中,通有俯视顺时针方向的电流,其大小按图乙所示的规律变化.螺线管内中间位置固定有一水平放置的硬质闭合金属小圆环(未画出),圆环轴线与螺线管轴线重合.下列说法正确的是( )图2A .t =T 4时刻,圆环有扩张的趋势 B .t =T 4时刻,圆环有收缩的趋势 C .t =T 4和t =3T 4时刻,圆环内的感应电流大小相等 D .t =3T 4时刻,圆环内有俯视逆时针方向的感应电流 答案 BC解析 t =T 4时刻,线圈中通有俯视顺时针且逐渐增大的电流,则线圈中由电流产生的磁场向下且逐渐增加.由楞次定律可知,圆环有收缩的趋势,A 错误,B 正确;t =3T 4时刻,线圈中通有俯视顺时针且逐渐减小的电流,则线圈中由电流产生的磁场向下且逐渐减小,由楞次定律可知,圆环中的感应电流为俯视顺时针,D 错误;t =T 4和t =3T 4时刻,线圈中电流的变化率一致,即由线圈电流产生的磁场变化率一致,则圆环中的感应电流大小相等,C 正确. 例2 (多选)(2019·山东枣庄市上学期期末)如图3所示,水平放置的半径为2r 的单匝圆形裸金属线圈A ,其内部有半径为r 的圆形匀强磁场区域,磁场的磁感应强度大小为B 、方向竖直向下;线圈A 的圆心和磁场区域的圆心重合,线圈A 的电阻为R .过圆心的两条虚线ab 和cd 相互垂直.一根电阻不计的直导体棒垂直于ab 放置,使导体棒沿ab 从左向右以速度v 匀速通过磁场区域,导体棒与线圈始终接触良好,线圈A 中会有感应电流通过.撤去导体棒,使磁场的磁感应强度均匀变化,线圈A 中也会有感应电流,如果使cd 左侧的线圈中感应电流大小和方向与导体棒经过cd 位置时的相同,则( )图3A .磁场一定增强B .磁场一定减弱C .磁感应强度的变化率为4B v πrD .磁感应强度的变化率为8B v πr答案 AC解析 根据右手定则,导体棒切割磁感线产生的感应电流通过cd 左侧的线圈时的方向是逆时针的,根据楞次定律,使磁场的磁感应强度均匀变化,产生同样方向的感应电流,磁场一定增强,故A 正确,B 错误;导体棒切割磁感线时,根据法拉第电磁感应定律,导体棒经过cd位置时产生的感应电动势E =2Br v ,根据欧姆定律,通过cd 左侧的线圈中感应电流大小I =E R2=4Br v R ;磁场的磁感应强度均匀变化时,根据法拉第电磁感应定律和欧姆定律,ΔB Δt ×r 2πR=4Br v R ,ΔB Δt =4B v πr,故C 正确,D 错误. 变式训练2.(2019·山东济南市3月模拟)在如图4甲所示的电路中,螺线管匝数n =1 000匝,横截面积S =20 cm 2.螺线管导线电阻r =1.0 Ω,R 1=4.0 Ω,R 2=5.0 Ω,C =30 μF.在一段时间内,垂直穿过螺线管的磁场的磁感应强度B 的方向如图甲所示,大小按如图乙所示的规律变化,则下列说法中正确的是( )图4A .螺线管中产生的感应电动势为1.2 VB .闭合K ,电路中的电流稳定后,电容器的下极板带负电C .闭合K ,电路中的电流稳定后,电阻R 1的电功率为2.56×10-2 WD .闭合K ,电路中的电流稳定后,断开K ,则K 断开后,流经R 2的电荷量为1.8×10-2 C 答案 C解析 根据法拉第电磁感应定律:E =n ΔΦΔt =nS ΔB Δt ;解得:E =0.8 V ,故A 错误;根据楞次定律可知,螺线管的感应电流盘旋而下,则螺线管下端相当于电源的正极,则电容器的下极带正电,故B 错误;根据闭合电路欧姆定律,有:I =E R 1+R 2+r=0.08 A ,根据 P =I 2R 1解得:P =2.56×10-2 W ,故C 正确;K 断开后,流经R 2的电荷量即为K 闭合时电容器一个极板上所带的电荷量Q ,电容器两端的电压为:U =IR 2=0.4 V ,流经R 2的电荷量为:Q =CU =1.2×10-5 C ,故D 错误. 考点 电磁感应中的电路与图象问题1.电磁感应现象中的电源与电路(1)产生感应电动势的那部分导体相当于电源.(2)在电源内部电流由负极流向正极.(3)电源两端的电压为路端电压.2.解图象问题的三点关注(1)关注初始时刻,如初始时刻感应电流是否为零,是正方向还是负方向.(2)关注变化过程,看电磁感应发生的过程可以分为几个阶段,这几个阶段分别与哪段图象变化相对应.(3)关注大小、方向的变化趋势,看图线斜率的大小、图线的曲直是否和物理过程对应.3.解图象问题的两个分析方法(1)排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是物理量的正负,排除错误的选项.(2)函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象作出分析和判断,这未必是最简捷的方法,但却是最有效的方法.例3 (多选)(2019·贵州部分重点中学教学质量评测卷(四))长为L 的金属棒OP 固定在顶角为2θ的塑料圆锥体侧面上,ab 为圆锥体底面直径.圆锥体绕其轴OO ′以角速度ω在磁感应强度大小为B 、方向竖直向下的匀强磁场中匀速转动,转动方向如图5所示,下列说法正确的是( )图5A .金属棒上O 点的电势高于P 点B .金属棒上O 点的电势低于P 点C .金属棒OP 两端电势差大小为12Bω2L sin θD .金属棒OP 两端电势差大小为12BωL 2sin 2 θ 答案 AD解析 由右手定则知金属棒OP 在匀速转动过程中切割磁感线产生的感应电动势方向由P 指向O ,在电源内部由电势低处指向电势高处,则金属棒上O 点的电势高于P 点,故A 正确,B 错误.金属棒OP 在匀速转动过程中切割磁感线的有效长度L ′=O ′P =L sin θ,故产生的感应电动势E =BL ′·12ωL ′=12BωL 2sin 2 θ,故C 错误,D 正确. 变式训练3.(2019·安徽宣城市期末调研测试)边界MN 的一侧区域内,存在着磁感应强度大小为B 、方向垂直于光滑水平桌面的匀强磁场.边长为l 的正三角形金属线框abc 粗细均匀,三边阻值相等,a 顶点刚好位于边界MN 上,现使线框围绕过a 点且垂直于桌面的转轴匀速转动,转动角速度为ω,如图6所示,则在ab 边开始转入磁场的瞬间ab 两端的电势差U ab 为( )图6A.13Bl 2ω B .-12Bl 2ω C .-13Bl 2ω D.16Bl 2ω 答案 A 解析 当ab 边刚进入磁场时,ab 部分在切割磁感线,切割长度为两个端点间的距离,即a 、b 间的距离为l ,E =Bl v =Bl lω2=12Bl 2ω;设每个边的电阻为R ,a 、b 两点间的电势差为:U =I ·2R =E 3R ·2R ,故U =13Bωl 2,故A 正确,B 、C 、D 错误. 例4 (多选)(2019·全国卷Ⅱ·21)如图7,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计.虚线ab 、cd 均与导轨垂直,在ab 与cd 之间的区域存在垂直于导轨所在平面的匀强磁场.将两根相同的导体棒PQ 、MN 先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好.已知PQ 进入磁场时加速度恰好为零.从PQ 进入磁场开始计时,到MN 离开磁场区域为止,流过PQ 的电流随时间变化的图像可能正确的是( )图7答案 AD解析 根据题述,PQ 进入磁场时加速度恰好为零,两导体棒从同一位置释放,则两导体棒进入磁场时的速度相同,产生的感应电动势大小相等,若释放两导体棒的时间间隔足够长,在PQ 通过磁场区域一段时间后MN 进入磁场区域,根据法拉第电磁感应定律和闭合电路欧姆定律可知流过PQ 的电流随时间变化的图像可能是A ;若释放两导体棒的时间间隔较短,在PQ 没有出磁场区域时MN 就进入磁场区域,则两棒在磁场区域中运动时回路中磁通量不变,两棒不受安培力作用,二者在磁场中做加速运动,PQ 出磁场后,MN 切割磁感线产生感应电动势和感应电流,且感应电流一定大于I 1,受到安培力作用,由于安培力与速度成正比,则MN 所受的安培力一定大于MN 的重力沿导轨平面方向的分力,所以MN 一定做减速运动,回路中感应电流减小,流过PQ 的电流随时间变化的图像可能是D. 变式训练4.(2019·安徽合肥市第一次质量检测)如图8所示,一有界匀强磁场区域的磁感应强度大小为B ,方向垂直纸面向里,磁场宽度为L ;正方形导线框abcd 的边长也为L ,当bc 边位于磁场左边缘时,线框从静止开始沿x 轴正方向匀加速通过磁场区域.若规定逆时针方向为电流的正方向,则反映线框中感应电流变化规律的图象是( )图8答案 B解析 设导线框运动的加速度为a ,则某时刻其速度v =at ,所以在0~t 1时间内(即当bc 边位于磁场左边缘时开始计时,到bc 边位于磁场右边缘结束),根据法拉第电磁感应定律得:E=BL v =BLat ,电动势为逆时针方向.由闭合电路欧姆定律得:I =BLa R t ,电流为正.其中R 为线框的总电阻.所以在0~t 1时间内,I ∝t ,故A 、C 错误;从t 1时刻开始,ad 边开始切割磁感线,电动势大小E =BLat ,其中t 1<t ≤t 2,电流为顺时针方向,为负,电流I =BLa Rt ,t 1<t ≤t 2,其中I 0=BLa R t 1,电流在t 1时刻方向突变,突变瞬间,电流大小保持I 0=BLa R t 1不变,故B 正确,D 错误.考点电磁感应中的动力学与能量问题1.电荷量的求解电荷量q =I Δt ,其中I 必须是电流的平均值.由E =n ΔΦΔt 、I =E R 总、q =I Δt 联立可得q =n ΔΦR 总,此式不涉及时间.2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流、电阻不变; (2)功能关系:Q =W 克服安培力,电流变或不变都适用;(3)能量转化:Q =ΔE 其他能的减少量,电流变或不变都适用.3.电磁感应综合题的解题策略(1) 电路分析:明确电源与外电路,可画等效电路图.(2) 受力分析:把握安培力的特点,安培力大小与导体棒速度有关,一般在牛顿第二定律方程里讨论,v 的变化影响安培力大小,进而影响加速度大小,加速度的变化又会影响v 的变化.(3) 过程分析:注意导体棒进入磁场或离开磁场时的速度是否达到“收尾速度”.(4) 能量分析:克服安培力做的功,等于把其他形式的能转化为电能的多少.例5 (2019·湖北稳派教育上学期第二次联考)如图9所示,倾角为θ的光滑绝缘斜面上平行于底边的虚线ef 下方有垂直于斜面向下的匀强磁场,磁场的磁感应强度大小为B ,边长为L 的正方形导线框abcd 放在斜面上,线框的电阻为R ,线框的cd 边刚好与ef 重合.无初速度释放线框,当ab 边刚好要进入磁场时,线框的加速度刚好为零,线框的质量为m ,重力加速度为g ,求:图9(1)ab 边刚好要进入磁场时线框的速度大小;(2)从释放线框到ab 边进入磁场时,通过线框横截面的电荷量.答案 (1)mgR sin θB 2L 2 (2)BL 2R解析 (1)ab 边刚好要进入磁场时, mg sin θ=F A =B 2L 2v R解得:v =mgR sin θB 2L 2(2)线框进入磁场的过程中,平均电流为I =E R根据法拉第电磁感应定律有:E =ΔФΔt 通过线框横截面的电荷量q =I Δt =ΔФR =BL 2R.变式训练5.(多选)(2019·辽宁葫芦岛市第一次模拟)如图10甲所示,在MN 、OP 间存在一匀强磁场,t =0时,一正方形光滑金属线框在水平向右的外力F 作用下紧贴MN 从静止开始做匀加速运动,外力F 随时间t 变化的图线如图乙所示,已知线框质量m =1 kg 、电阻R =2 Ω,则( )图10A .线框的加速度大小为2 m/s 2B .磁场宽度为6 mC .匀强磁场的磁感应强度大小为 2 TD .线框进入磁场过程中,通过线框横截面的电荷量为22 C 答案 ACD 解析 整个线框在磁场中运动时只受外力F 作用,则加速度a =F m=2 m/s 2.由题图可知,从线框右边刚进入磁场到右边刚离开磁场,运动的时间为2 s ,磁场的宽度d =12at 12=4 m ,所以选项A 正确,B 错误;当线框全部进入磁场前的瞬间:F 1-F 安=ma ,而F 安=BIL =B 2L 2v R=B 2L 2at R ,线框的宽度L =12at 12=12×2×12 m =1 m ,联立得:B = 2 T ,所以选项C 正确;线框进入磁场过程中,通过线框横截面的电荷量为q =ΔФR =BL 2R =2×122 C =22C ,所以选项D 正确.例6 (2019 ·浙南名校联盟期末)如图11甲所示,在竖直方向上有4条间距相等的水平虚线L 1、L 2、L 3、L 4,在L 1L 2之间、L 3L 4之间存在匀强磁场,大小均为1 T ,方向垂直于虚线所在平面.现有一根电阻为2 Ω的均匀金属丝,首尾相连制成单匝矩形线圈abcd ,连接处接触电阻忽略,宽度cd =L =0.5 m ,线圈质量为0.1 kg ,将其从图示位置由静止释放(cd 边与L 1重合),速度随时间变化的关系如图乙所示,其中0~ t 1时间内图线是曲线,其他时间内都是直线;并且t 1时刻cd 边与L 2重合,t 2时刻ab 边与L 3重合,t 3时刻ab 边与L 4重合,已知t 1~t 2的时间间隔为0.6 s ,整个运动过程中线圈平面始终处于竖直方向(重力加速度g 取10 m/s 2).求:图11(1)线圈匀速运动的速度大小;(2)线圈的长度ad ;(3)在0~t 1时间内通过线圈的电荷量;(4)0~t 3时间内,线圈ab 边产生的热量.答案 (1) 8 m/s (2) 2 m (3) 0.25 C (4) 0.18 J解析 (1) t 2~t 3时间ab 边在L 3L 4内做匀速直线运动,E =BL v 2,F =B E R L ,F =mg 联立解得:v 2=mgR B 2L2=8 m/s , (2)从cd 边出L 2到ab 边刚进入L 3线圈一直做匀加速直线运动,ab 刚进上方磁场时,cd 也应刚进下方磁场,设磁场宽度是d ,由v 2=v 1+gt 得,v 1=2 m/s ,则3d =v 1+v 22t =3 m ,得:d =1 m ,有:ad =2d =2 m ,(3)0~t 1时间内,通过线圈的电荷量为q =ΔΦR =BdL R=0.25 C , (4)在0~t 3时间内由能量守恒得:线圈产生热量Q 总=mg ·5d -12m v 22=1.8 J 故线圈ab 边产生热量Q =110Q 总=0.18 J. 变式训练6.(2019·福建三明市期末质量检测)如图12所示,足够长的光滑导轨倾斜放置,导轨平面与水平面夹角θ=37°,导轨间距L =0.4 m ,其下端连接一个定值电阻R =4 Ω,其他电阻不计.两导轨间存在垂直于导轨平面向下的匀强磁场,磁感应强度B =1 T .一质量为m =0.04 kg 的导体棒ab 垂直于导轨放置,现将导体棒由静止释放,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.图12(1)求导体棒下滑的最大速度;(2)若导体棒从静止加速到v =4 m/s 的过程中,通过R 的电荷量q =0.2 C ,求R 产生的热量值. 答案 (1)6 m/s (2)0.16 J解析 (1)当导体棒所受的合外力为零时,速度最大,则:mg sin θ=BIL ,I =BL v R 联立解得v =6 m/s(2)设该过程中电流的平均值为I ,则q =I ΔtI =ER ,E =BLx Δt 由能量守恒定律可得:mgx sin θ=12m v 2+Q 联立解得:x =2 m ,Q =0.16 J .考点 电磁感应中的动量和能量问题1.电磁感应与动量综合问题往往需要运用牛顿第二定律、动量定理、动量守恒定律、功能关系和能量守恒定律等重要规律,并结合闭合电路欧姆定律等物理规律及基本方法求解.2.动量观点在电磁感应问题中的应用,主要可以解决变力的冲量.所以,在求解导体棒做非匀变速运动的问题时,应用动量定理可以避免由于加速度变化而导致运动学公式不能使用的麻烦,在求解双杆模型问题时,在一定条件下可以利用动量守恒定律避免讨论中间变化状态,而直接求得最终状态.例7 (2019·福建福州市期末质量检测)如图13所示,空间存在一个范围足够大的竖直向下的匀强磁场,磁场的磁感应强度大小为B ;边长为L 的正方形金属框abcd (简称方框)放在光滑的水平地面上,其外侧套着一个与方框边长相同的U 形金属框架MNQP (仅有MN 、NQ 、QP 三条边,简称U 形框),U 形框的M 、P 端的两个触点与方框接触良好且无摩擦,其他地方没有接触.两个金属框每条边的质量均为m ,每条边的电阻均为r .(1)若方框固定不动,U 形框以速度v 0垂直NQ 边向右匀速运动,当U 形框的接触点M 、P 端滑至方框的最右侧时,如图乙所示,求U 形框上N 、Q 两端的电势差U NQ ;(2)若方框不固定,给U 形框垂直NQ 边向右的水平初速度v 0,U 形框恰好不能与方框分离,求方框最后的速度v t 和此过程流过U 形框上NQ 边的电荷量q ;(3)若方框不固定,给U 形框垂直NQ 边向右的初速度v (v >v 0),在U 形框与方框分离后,经过t 时间,方框的最右侧和U 形框的最左侧之间的距离为s .求分离时U 形框的速度大小v 1和方框的速度大小v 2.图13答案 见解析解析 (1)由法拉第电磁感应定律得:E =BL v 0此时电路图如图所示由串并联电路规律,外电阻为R 外=2r +3r ×r 3r +r =114r 由闭合电路欧姆定律得:流过QN 的电流I =E R 外+r=4BL v 015r 所以:U NQ =E -Ir =1115BL v 0; (2)U 形框向右运动过程中,方框和U 形框组成的系统所受合外力为零,系统动量守恒. 依题意得:方框和U 形框最终速度相同,设最终速度大小为v t ;3m v 0=(3m +4m )v t解得:v t =37v 0 对U 形框,由动量定理得:-BL I t =3m v t -3m v 0由q =I t解得:q =12m v 07BL(3)设U 形框和方框分离时速度分别为v 1和v 2,系统动量守恒:3m v =3m v 1+4m v 2 依题意得:s =(v 1-v 2)t联立解得:v 1=37v +4s 7tv 2=37v -3s 7t. 专题突破练级保分练1.(2019·广东珠海市质量监测)如图1所示,使一个水平铜盘绕过其圆心的竖直轴OO ′转动,摩擦等阻力不计,转动是匀速的.现把一个蹄形磁铁水平向左移近铜盘,则( )图1A .铜盘转动将变快B .铜盘转动将变慢C .铜盘仍以原来的转速转动D .因磁极方向未知,无法确定答案 B解析 假设蹄形磁铁的上端为N 极,下端为S 极,铜盘顺时针转动(从OO ′方向看).根据右手定则可以确定此时铜盘中的感应电流方向是从盘心指向边缘.通电导体在磁场中要受到力的作用,根据感应电流的方向和磁场的方向,利用左手定则可以确定磁场对铜盘的作用力的方向是沿逆时针方向,其受力方向与铜盘的转动方向相反,所以铜盘的转动速度将减小.无论怎样假设,铜盘的受力方向始终与转动方向相反.同时,转动过程中,机械能转化为电能,最终转化为内能,所以转得慢了.所以B 正确,A 、C 、D 错误.2.(多选)(2019·福建泉州市期末质量检查)如图2甲所示,匀强磁场垂直穿过矩形金属线框abcd ,磁感应强度B 随时间t 按图乙所示规律变化,下列说法正确的是( )图2A.t1时刻线框的感应电流方向为a→b→c→d→aB.t3时刻线框的感应电流方向为a→b→c→d→aC.t2时刻线框的感应电流最大D.t1时刻线框ab边受到的安培力方向向右答案AD解析t1时刻穿过线框的磁通量向里增加,根据楞次定律可知,线框的感应电流方向为a→b→c→d→a,由左手定则可知,线框ab边受到的安培力方向向右,选项A、D正确;t3时刻穿过线框的磁通量向里减小,可知线框的感应电流方向为a→d→c→b→a,选项B错误;B-t图象的斜率等于磁感应强度的变化率,可知t2时刻磁感应强度的变化率为零,则线框的感应电流为零,选项C错误.3.(多选)(2019·全国卷Ⅲ·19)如图3,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图像中可能正确的是()图3答案AC解析棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到与v0方向相反的安培力的作用而做变减速运动,棒cd受到与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v 1=v 2,这时两相同的光滑导体棒ab 、cd 组成的系统在足够长的平行金属导轨上运动,水平方向上不受外力作用,由动量守恒定律有m v 0=m v 1+m v 2,解得v 1=v 2=v 02,选项A 、C 正确,B 、D 错误.4.(2019·甘肃兰州市第一次诊断)如图4所示,宽为L 的光滑导轨竖直放置,左边有与导轨平面垂直的区域足够大的匀强磁场,磁感应强度为B ,右边有两块水平放置的金属板,两板间距为d .金属板和电阻R 都与导轨相连.要使两板间质量为m 、带电荷量为-q 的油滴恰好处于静止状态,阻值也为R 的金属棒ab 在导轨上的运动情况可能为(金属棒与导轨始终接触良好,导轨电阻不计,重力加速度为g )( )图4A .向右匀速运动,速度大小为2dmg BLqB .向左匀速运动,速度大小为2dmg BLqC .向右匀速运动,速度大小为dmg 2BLqD .向左匀速运动,速度大小为dmg 2BLq答案 A解析 两板间质量为m 、带电荷量为-q 的油滴恰好处于静止状态,则qE =mg ,板间电场强度E =mg q ,方向竖直向下;两板间电压U =Ed =mgd q,且上板带正电、下板带负电.金属棒ab 切割磁感线相当于电源,两金属板与电阻R 并联后接在金属棒两端,则金属棒中电流方向由b 流向a ,U =R R +R·E =12·BL v ,则金属棒ab 在导轨上的运动速度v =2mgd qBL ;据金属棒中电流方向由b 流向a 和右手定则可得,金属棒向右运动.综上,A 正确,B 、C 、D 错误.5.(2019·北京市东城区上学期期末)如图5所示,两光滑水平放置的平行金属导轨间距为L ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处于垂直于纸面向里的匀强磁场中,磁感应强度大小为B .电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计.现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右匀速运动时( )图5A .电容器两端的电压为零B .通过电阻R 的电流为BL v RC .电容器所带电荷量为CBL vD .为保持MN 匀速运动,需对其施加的拉力大小为B 2L 2v R答案 C解析 当导线MN 匀速向右运动时,导线所受的合力为零,说明导线不受安培力,电路中电流为零,故电阻两端没有电压.此时导线MN 产生的感应电动势恒定,根据闭合电路欧姆定律得知,电容器两板间的电压为U =E =BL v ,故A 、B 错误.电容器所带电荷量Q =CU =CBL v ,故C 正确;因匀速运动后MN 所受合力为0,而此时无电流,不受安培力,则无需拉力便可做匀速运动,故D 错误.6.(多选)(2019·湖北稳派教育上学期第二次联考)如图6甲所示,通电直导线MN 和正方形导线框在同一水平面内,ab 边与MN 平行,先给MN 通以如图乙所示的电流,然后再通以如图丙所示的正弦交流电,导线和线框始终保持静止不动,电流从N 到M 为正,已知线框中的磁通量与直导线MN 中的电流成正比,则下列说法正确的是( )图6A .通以如图乙所示的电流时,线框中产生的电流先减小后增大B .通以如图乙所示的电流时,线框中的感应电流方向始终不变C .通以如图丙所示的电流时,0~t 2时间内,线框受到的安培力方向不变D .通以如图丙所示的电流时,t 3 时刻线框受到的安培力为零答案 BD解析 由题意可知,从N 到M 的方向为电流正方向;通以如题图乙所示的电流时,在0~t 1时间内电流方向为从M 到N ,穿过线框abcd 的磁场方向垂直纸面向外,大小在减小,由楞次定律可得,感应电流方向为逆时针,即为abcda ;在t 1时刻后,电流方向为N 到M ,穿过线框abcd 的磁场方向垂直纸面向里,大小在增大,由楞次定律可得,感应电流方向为逆时针,即为abcda ,故电流的方向不变,根据法拉第电磁感应定律有:E =ΔФΔt ,则线框中的感应电流为I =E R =ΔФΔt ×1R ,因线框中的磁通量与直导线MN 中的电流成正比,即ΔФΔt ∝ΔI Δt,则由乙图可知ΔI Δt 一直保持不变,故ΔФΔt不变,则感应电流I 不变,故A 错误,B 正确;通以如题图丙所示的电流时,在0~t 22时间内,导线中电流沿正方向增大,则线框中的磁场向里增大,由楞次定律可知,感应电流方向为逆时针,即为abcda ,根据左手定则可知,ab 边受到的安培力方向向右,cd 边受到的安培力方向向左,根据F =BIL 可知,I 、L 相同,但ab 边离导线近,故ab 边所在处的磁感应强度大于cd 边所在处的磁感应强度,则此时安培力的方向向右;在t 22~t 2时间内,导线中电流沿正方向减小,则线框中的磁场向里减小,由楞次定律可知,感应电流方向为顺时针,即为adcba ;根据左手定则可知,ab 边受到的安培力方向向左,cd 边受到的安培力方向向右,根据F =BIL 可知,I 、L 相同,但ab 边离导线近,故ab 边所在处的磁感应强度大于cd 边所在处的磁感应强度,则此时安培力的方向向左,故在0~t 2时间内线框受到的安培力方向改变,故C 错误;由题图丙可知,在t 3时刻电流为零,根据F =BIL 可知,此时线框受到的安培力为零,故D 正确.7.(2019·湖北十堰市上学期期末)如图7甲所示,导体棒MN 置于水平导轨上,PQMN 所围成的矩形的面积为S ,PQ 之间有阻值为R 的电阻,不计导轨和导体棒的电阻.导轨所在区域内存在沿竖直方向的匀强磁场,规定磁场方向竖直向上为正,在0~2t 0时间内磁感应强度的变化情况如图乙所示,导体棒MN 始终处于静止状态.下列说法正确的是( )图7A .在0~2t 0时间内,导体棒受到的导轨的摩擦力方向先向左后向右,大小不变B .在0~t 0时间内,通过导体棒的电流方向为N 到MC .在t 0~2t 0时间内,通过电阻R 的电流大小为SB 0Rt 0。
高考物理电磁感应现象习题综合题含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:(1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大? 【答案】(1)2sin mgR B L vθ=2)sin sin t gvt v v CgR θθ=+ 【解析】试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流EI R=,棒所受的安培力F BIL =联立可得22B L vF R=,由平衡条件可得F mgsin θ=,解得2mgRsin B L v θ (2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t 则电容器板间电压为 U E BLv ='=此时电容器的带电量为Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q则电路中电流Q C U CBL v i t t t ∆∆∆===∆∆∆,又va t∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθθ==++所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θθ'==+.考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.2.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。
专题12 电磁感应1.(2019·新课标全国Ⅰ卷)空间存在一方向与直面垂直、大小随时间变化的匀强磁场,其边界如图(a )中虚线MN 所示,一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上。
t =0时磁感应强度的方向如图(a )所示。
磁感应强度B 随时间t 的变化关系如图(b )所示,则在t =0到t =t 1的时间间隔内A .圆环所受安培力的方向始终不变B .圆环中的感应电流始终沿顺时针方向C .圆环中的感应电流大小为004B rS t ρD .圆环中的感应电动势大小为200π4B r t【答案】BC【解析】AB 、根据B-t 图象,由楞次定律可知,线圈中感应电流方向一直为顺时针,但在t 0时刻,磁场的方向发生变化,故安培力方向A F 的方向在t 0时刻发生变化,则A 错误,B 正确;CD 、由闭合电路欧姆定律得:E I R =,又根据法拉第电磁感应定律得:22B r E t t φπ∆∆==∆∆,又根据电阻定律得:2rR S πρ=,联立得:004B rS I t ρ=,则C 正确,D 错误。
故本题选BC 。
2.(2019·新课标全国Ⅱ卷)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计。
虚线ab 、cd 均与导轨垂直,在ab 与cd 之间的区域存在垂直于导轨所在平面的匀强磁场。
将两根相同的导体棒PQ 、MN 先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好。
已知PQ 进入磁场时加速度变小恰好为零,从PQ 进入磁场开始计时,到MN 离开磁场区域为止,流过PQ 的电流随时间变化的图像可能正确的是【答案】AD【解析】于PQ进入磁场时加速度为零,AB.若PQ出磁场时MN仍然没有进入磁场,则PQ出磁场后至MN进入磁场的这段时间,由于磁通量φ不变,无感应电流。
由于PQ、MN同一位置释放,故MN进入磁场时与PQ进入磁场时的速度相同,所以电流大小也应该相同,A正确B错误;CD.若PQ出磁场前MN已经进入磁场,由于磁通量φ不变,PQ、MN均加速运动,PQ出磁场后,MN由于加速故电流比PQ进入磁场时电流大,故C正确D错误。
专题28 电磁感应综合问题目录题型一电磁感应中的图像问题 (1)类型1 动生问题的图像 (2)类型2 感生问题的图像 (3)类型3 动力学图像 (4)题型二电磁感应中的电路问题 (5)类型1动生电动势的电路问题 (6)类型2感生电动势的电路问题 (7)题型三电磁感应中电荷量的计算 (9)题型四电磁感应中的平衡和动力学问题 (11)题型五电磁感应中的能量问题 (16)题型一电磁感应中的图像问题1.两类题型(1)由给定的电磁感应过程选出正确的图像。
(2)由给定的图像分析电磁感应过程,定性或定量求解相应的物理量或推断出其他图像。
常见的图像有B-t图、Φ-t图、E-t图、i-t图、v-t图及F-t图等。
2.解题关键弄清初始条件、正负方向的对应变化范围、所研究物理量的函数表达式、进出磁场的转折点等是解决此类问题的关键。
3.解题步骤(1)明确图像的种类,即是B-t图还是Φ-t图,或者E-t图、I-t图等。
(2)分析电磁感应的具体过程。
(3)用右手定则或楞次定律确定方向的对应关系。
(4)结合法拉第电磁感应定律、闭合电路欧姆定律、牛顿运动定律等知识写出相应的函数关系式。
(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等。
(6)画图像或判断图像。
类型1 动生问题的图像【例1(2022·河北唐山市模拟)如图所示,在直角梯形区域内存在垂直纸面向里的匀强磁场,BC=CD=2AB=2L。
高为2L、宽为L的矩形金属闭合线圈由图中位置以向右的恒定速度匀速通过磁场区域,其长边始终与CD平行。
以线圈中逆时针方向为电流正方向,线圈在通过磁场过程中电流随时间变化的关系为()【例2】(2022·首都师范大学附属中学高三月考)铁路上使用一种电磁装置向控制中心传输信号以确定火车的位置,能产生匀强磁场的磁体被安装在火车首节车厢下面,如图所示(俯视图).当磁体经过安放在两铁轨间的线圈时,便会产生一个电信号,通过和线圈相连的电压传感器被控制中心接收,从而确定火车的位置.现一列火车以加速度a驶来,则电压信号关于时间的图像为()【例3】如图,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab边和cd边刚进入磁场的时刻.线框下落过程形状不变,ab边始终保持与磁场水平边界线OO′平行,线框平面与磁场方向垂直.设OO′下方磁场区域足够大,不计空气阻力影响,则下列图像不可能反映线框下落过程中速度v随时间t变化的规律的是()类型2 感生问题的图像【例2(多选)(2022·河南六市联合调研)如图甲所示,一正方形金属线圈放置在水平桌面上,其左半边处于竖直方向的匀强磁场中,匀强磁场的磁感应强度B随时间t变化的规律如图乙所示(竖直向下为B的正方向),而线圈始终保持静止。
高考物理压轴题专题复习——电磁感应现象的两类情况的推断题综合附答案解析一、电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt-【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图所示,线圈工件加工车间的传送带不停地水平传送长为L ,质量为m ,电阻为R 的正方形线圈,在传送带的左端线圈无初速地放在以恒定速度v 匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v 后,线圈与传送带始终相对静止,并通过一磁感应强度为B 、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离L 不变,匀强磁场的宽度为3L ,求:(1)每个线圈通过磁场区域产生的热量Q .(2)在某个线圈加速的过程中,该线圈通过的距离S 1和在这段时间里传送带通过的距离S 2之比.(3)传送带每传送一个线圈,电动机多消耗的电能E (不考虑电动机自身的能耗)【答案】(1)232B L vQ R= (2) S 1:S 2=1:2 (3)E=mv 2+2B 2L 3v/R【解析】 【分析】 【详解】(1)线圈匀速通过磁场,产生的感应电动势为E=BLv ,则每个线圈通过磁场区域产生的热量为223()22BLv L B L vQ Pt R v R===(2)对于线圈:做匀加速运动,则有S 1=vt /2 对于传送带做匀速直线运动,则有S 2=vt 故S 1:S 2=1:2(3)线圈与传送带的相对位移大小为2112vts s s s ∆=-== 线圈获得动能E K =mv 2/2=fS 1传送带上的热量损失Q /=f (S 2-S 1)=mv 2/2送带每传送一个线圈,电动机多消耗的电能为E =E K +Q +Q /=mv 2+2B 2L 3v/R 【点睛】本题的解题关键是从能量的角度研究电磁感应现象,掌握焦耳定律、E=BLv 、欧姆定律和能量如何转化是关键.3.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求:(1)当线圈的对角线ac 刚到达gf 时的速度大小;(2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少?【答案】(1)1224mgR v B L = (2)322442512m g R Q mgL B L =-【解析】 【详解】(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:112E B Lv =⨯感应电流:11E I R=由力的平衡得:12BI L mg ⨯= 解以上各式得:1224mgRv B L =(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势2222E B Lv =⨯感应电流:22E I R=由力的平衡得:222BI L mg ⨯= 解以上各式得:22216mgRv B L =设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:22122mg L Q mv ⨯-=解以上各式得:322442512m g R Q mgL B L=-4.如图,光滑金属轨道POQ 、´´´P O Q 互相平行,间距为L ,其中´´O Q 和OQ 位于同一水平面内,PO 和´´P O 构成的平面与水平面成30°。
高考物理电磁学知识点之电磁感应专项训练解析附答案(6)一、选择题1.如图甲所示,光滑导轨水平放置在与水平方向夹角为60°的斜向下的匀强磁场中,匀强磁场的磁感应强度B随时间t的变化规律如图乙所示(规定斜向下为正方向),导体棒ab垂直导轨放置,除电阻R的阻值外,其余电阻不计,导体棒ab在水平外力F作用下始终处于静止状态.规定a→b的方向为电流的正方向,水平向右的方向为外力F的正方向,则在0~t1时间内,选项图中能正确反映流过导体棒ab的电流i和导体棒ab所受水平外力F随时间t变化的图象是()A.B.C.D.2.如图所示,A、B是相同的白炽灯,L是自感系数很大、电阻可忽略的自感线圈。
下面说法正确的是()A.闭合开关S瞬间,A、B灯同时亮,且达到正常B.闭合开关S瞬间,A灯比B灯先亮,最后一样亮C .断开开关S 瞬间,P 点电势比Q 点电势低D .断开开关S 瞬间,通过A 灯的电流方向向左3.磁卡的磁条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈.当以速度v 0刷卡时,在线圈中产生感应电动势,其E -t 关系如图所示.如果只将刷卡速度改为02v ,线圈中的E -t 关系图可能是( )A .B .C .D .4.一个简易的电磁弹射玩具如图所示,线圈、铁芯组合充当炮筒,硬币充当子弹。
现将一个金属硬币放在铁芯上(金属硬币半径略大于铁芯半径),电容器刚开始时处于无电状态,先将开关拨向1,电容器充电,再将开关由1拨向2瞬间,硬币将向上飞出。
则下列说法正确的是( )A .当开关拨向1时,电容器上板带负电B .当开关由1拨向2时,线圈内磁感线方向向上C .当开关由1拨向2瞬间,铁芯中的磁通量减小D .当开关由1拨向2瞬间,硬币中会产生向上的感应磁场5.如图甲所示,竖直长直导线与其右侧固定的矩形线框位于同一平面内,通过长直导线中的电流i 随时间t 变化的规律如图乙所示(取向下为电流正方向),关于线框中的感应电流及线框受到的安培力,下列说法正确的是( )A .0~4T 时间内感应电流沿逆时针方向B .在2T t 时线框中的电流改变方向C .3~44T T 时间内线框中的感应电流大小不变D .3~44T T 时间内线框受到的安培力方向保持不变6.有一种自行车,它有能向自行车车头灯泡供电的小型发电机,其原理示意图如图甲所示,图中N ,S 是一对固定的磁极,磁极间有一固定的绝缘轴上的矩形线圈,转轴的一端有一个与自行车后轮边缘结束的摩擦轮.如图乙所示,当车轮转动时,因摩擦而带动摩擦轮转动,从而使线圈在磁场中转动而产生电流给车头灯泡供电.关于此装置,下列说法正确的是( )A .自行车匀速行驶时线圈中产生的是直流电B .小灯泡亮度与自行车的行驶速度无关C .知道摩擦轮与后轮的半径,就可以知道后轮转一周的时间里摩擦轮转动的圈数D .线圈匝数越多,穿过线圈的磁通量的变化率越大7.如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R .金属棒ab 与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下.现使磁感应强度随时间均匀减小,ab 始终保持静止,下列说法正确的是( )A .ab 中的感应电流方向由b 到aB .ab 中的感应电流逐渐减小C .ab 所受的安培力保持不变D .ab 所受的静摩擦力逐渐减小8.如图所示,在PO 、QR 区域中存在着磁感应强度大小相等、方向相反的匀强磁场、磁场方向均垂直于纸面.一导线框abcdefa 位于纸面内,框的邻边都相互垂直,bc 边与磁场的边界P 重合,导线框与磁场区域的尺寸如图所示.从t =0时刻开始,线框匀速横穿两个磁场区域.以a→b→c→d→e→f为线框中的电动势ε的正方向,以下四个ε-t关系示意图中正确的是( )A.B.C.D.9.某兴趣小组探究断电自感现象的电路如图所示。
2021年高考物理100考点最新模拟题千题精练(选修3-2)第五部分 交变电流专题5.15 变压器与电磁感应综合问题一、选择题1.(2019吉林东北师大附中测试)如图,单匝矩形导线框abcd 与匀强磁场乖直,线框电阻不计,线框绕与cd 边重合的同定转轴以恒定角速度从图示位置开始匀速转动,理想变压器匝数比为n 1:n 2.开关S 断开时,额定功率为P 的灯泡L 1正常发光,电流表示数为I ,电流表内阻不计,下列说法正确的是( )A. 线框中产生的电流为正弦式交变电流B. 线框从图中位置转过π/4时,感应电动势瞬时值为P/IC. 灯泡L 1的额定电压等于12n Pn ID. 如果闭合开关S ,则电流表示数变大 【参考答案】.ABD【解析】线框绕垂直于磁场方向的轴匀速转动,线框中产生的是电流为正弦式交变电流,选项A 正确;线框从中性面转动,当转动π/4时,感应电动势的瞬时值表达式为2P/I ·sin45°=P/I ,选项B 正确;原线圈两端的电压U 1= P/I ,由变压器变压公式,副线圈两端的电压U 2=21n n U 1=21n Pn I,选项C 错误;S 闭合,副线圈电阻变小,输出功率变大,输入功率变大,由P=UI 可知原线圈电流变大,即电流表示数变大,选项D 正确。
2.(2019随州质量检测)(多选)如图所示,MN 和PQ 为处于同一水平面内的两根平行的光滑金属导轨,垂直导轨放置金属棒ab 与导轨接触良好。
N 、Q 端接理想变压器的初级线圈,理想变压器的输出端有三组次级线圈,分别接有电阻元件R 、电感元件L 和电容元件C 。
在水平金属导轨之间加竖直向下的匀强磁场,若用I R 、I L 、I c 分别表示通过R 、L 和C 的电流,则下列判断中正确的是( ) A .在ab 棒匀速运动且ab 棒上的电流已达到稳定后,I R ≠0、I L ≠0、I C =0B.在ab棒匀速运动且ab棒上的电流已达到稳定的,I R=0、I L=0、I C=0C.若ab棒在某一中心位置附近做v=v m sin ωt的运动,则I R≠0、I L≠0、I C≠0D.若ab棒匀加速运动,则I R≠0、I L≠0、I C=0【参考答案】BCD【名师解析】在ab棒匀速运动过程中,ab棒产生恒定的感应电动势,左边原线圈中产生恒定的电流,形成恒定的磁场,穿过右侧的三个副线圈的磁通量不变,则副线圈中没有感应电动势产生,所以I R=0、I L=0、I C=0,故A错误,B正确;若ab棒在某一中心位置附近做简谐运动,原线圈中产生正弦式交变电流,副线圈中将有感应电流产生,故I R≠0、I L≠0、I C≠0,故C正确;若ab棒匀加速运动,原线圈中感应电流均匀增大,穿过副线圈的磁通量均匀增大,副线圈中产生恒定的感应电动势,由于电容器有隔直的特性,I C=0,而电感线圈有通直的特性,I L≠0,故I R≠0、I L≠0、I C=0,故D正确。
高考物理电磁感应现象压轴难题综合题含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==设cd 杆运动距离为d x +∆22BL xq r r∆Φ∆== 解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求:(1)当线圈的对角线ac 刚到达gf 时的速度大小;(2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少?【答案】(1)1224mgR v B L = (2)322442512m g R Q mgL B L=- 【解析】 【详解】(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:112E B Lv =⨯感应电流:11E I R=由力的平衡得:12BI L mg ⨯= 解以上各式得:1224mgRv B L =(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势2222E B Lv =⨯感应电流:22E I R=由力的平衡得:222BI L mg ⨯= 解以上各式得:22216mgRv B L =设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:22122mg L Q mv ⨯-=解以上各式得:322442512m g R Q mgL B L =-3.电源是通过非静电力做功把其它形式的能转化为电势能的装置,在不同的电源中,非静电力做功的本领也不相同,物理学中用电动势E 来表明电源的这种特性。
【2014高考真题】1.(2014上海)17.如图,匀强磁场垂直于软导线回路平面,由于磁场发生变化,回路变为圆形。
则磁场()(A)逐渐增强,方向向外(B)逐渐增强,方向向里(C)逐渐减弱,方向向外(D)逐渐减弱,方向向里2.【2014·新课标全国卷Ⅰ】在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是()A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化3.【2014·新课标全国卷Ⅰ】如图(a)所示,线圈ab、cd绕在同一软铁芯上.在ab线圈中通以变化的电流,用示波器测得线圈cd 间电压如图(b)所示.已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab 中电流随时间变化关系的图中,可能正确的是( )4.【2014·江苏卷】 如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B .在此过程中,线圈中产生的感应电动势为( ) A.Ba 22Δt B.nBa 22Δt C.nBa 2Δt D.2nBa 2Δt【答案】B【解析】 根据法拉第电磁感应定律知E =n ΔΦΔt =n ΔB ·S Δt,这里的S 指的是线圈在磁场中的有效面积,即S =a 22,故E =n (2B -B )S Δt =nBa 22Δt,因此B 项正确. 5.【2014·山东卷】 如图所示,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好,在向右匀速通过M 、N 两区的过程中,导体棒所受安培力分别用F M 、F N 表示.不计轨道电阻.以下叙述正确的是( )A .F M 向右B .F N 向左C .F M 逐渐增大D .F N 逐渐减小6.【2014·四川卷】 如图所示,不计电阻的光滑U 形金属框水平放置,光滑、竖直玻璃挡板H 、P 固定在框上,H 、P 的间距很小.质量为0.2 kg 的细金属杆CD 恰好无挤压地放在两挡板之间,与金属框接触良好并围成边长为1 m 的正方形,其有效电阻为0.1 Ω.此时在整个空间加方向与水平面成30°角且与金属杆垂直的匀强磁场,磁感应强度随时间变化规律是B =(0.4-0.2t ) T ,图示磁场方向为正方向.框、挡板和杆不计形变.则( )A .t =1 s 时,金属杆中感应电流方向从C 到DB .t =3 s 时,金属杆中感应电流方向从D 到CC .t =1 s 时,金属杆对挡板P 的压力大小为0.1 ND .t =3 s 时,金属杆对挡板H 的压力大小为0.2 N【答案】AC【解析】 由于B =(0.4-0.2 t ) T ,在t =1 s 时穿过平面的磁通量向下并减少,则根据楞次定律可以判断,金属杆中感应电流方向从C 到D ,A 正确.在t =3 s 时穿过平面的磁通量向上并增加,则根据楞次定律可以判断,金属杆中感应电流方向仍然是从C 到D ,B 错误.由法拉第电磁感应定律得E =ΔΦΔt =ΔB ΔtS sin 30°=0.1 V ,由闭合电路的欧姆定律得电路电流I =E R=1 A ,在t =1 s 时,B =0.2 T ,方向斜向下,电流方向从C 到D ,金属杆对挡板P 的压力水平向右,大小为F P =BIL sin 30°=0.1 N ,C 正确.同理,在t =3 s 时,金属杆对挡板H 的压力水平向左,大小为F H =BIL sin 30°=0.1 N ,D 错误.7.【2014·安徽卷】 英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场.如图所示,一个半径为r 的绝缘细圆环水平放置,环内存在竖直向上的匀强磁场B ,环上套一带电荷量为+q 的小球.已知磁感应强度B 随时间均匀增加,其变化率为k ,若小球在环上运动一周,则感生电场对小球的作用力所做功的大小是( )A .0 B.12r 2qk C .2πr 2qk D .πr 2qk8.【2014·全国卷】 很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒.一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐.让条形磁铁从静止开始下落.条形磁铁在圆筒中的运动速率( )A .均匀增大B .先增大,后减小C .逐渐增大,趋于不变D .先增大,再减小,最后不变9.【2014·广东卷】 如图8所示,上下开口、内壁光滑的铜管P 和塑料管Q 竖直放置,小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块( )A .在P 和Q 中都做自由落体运动B .在两个下落过程中的机械能都守恒C .在P 中的下落时间比在Q 中的长D .落至底部时在P 中的速度比在Q 中的大【答案】C【解析】 磁块在铜管中运动时,铜管中产生感应电流,根据楞次定律,磁块会受到向上的磁场力,因此磁块下落的加速度小于重力加速度,且机械能不守恒,选项A 、B 错误;磁块在塑料管中运动时,只受重力的作用,做自由落体运动,机械能守恒,磁块落至底部时,根据直线运动规律和功能关系,磁块在P 中的下落时间比在Q 中的长,落至底部时在P 中的速度比在Q 中的小,选项C 正确,选项D 错误.10.【2014·江苏卷】 如图所示,在线圈上端放置一盛有冷水的金属杯,现接通交流电源,过了几分钟,杯内的水沸腾起来.若要缩短上述加热时间,下列措施可行的有( )A .增加线圈的匝数B .提高交流电源的频率C .将金属杯换为瓷杯D .取走线圈中的铁芯11. 【2014·新课标Ⅱ卷】 半径分别为r 和2r 的同心圆形导轨固定在同一水平面内,一长为r 、质量为m 且质量分布均匀的直导体棒AB 置于圆导轨上面,BA 的延长线通过圆导轨中心O ,装置的俯视图如图所示.整个装置位于一匀强磁场中,磁感应强度的大小为B ,方向竖直向下.在内圆导轨的C 点和外圆导轨的D 点之间接有一阻值为R 的电阻(图中未画出).直导体棒在水平外力作用下以角速度ω绕O 逆时针匀速转动,在转动过程中始终与导轨保持良好接触.设导体棒与导轨之间的动摩擦因数为μ,导体棒和导轨的电阻均可忽略.重力加速度大小g .求(1)通过电阻R 的感应电流的方向和大小:(2)外力的功率.【答案】 (1)从C 端流向D 端 3ωBr 22R(2)32μmg ωr +9ω2B 2r 44R【解析】 (1)在Δt 时间内,导体棒扫过的面积为ΔS =12ωΔt [(2r )2-r 2]① 根据法拉第电磁感应定律,导体棒上感应电动势的大小为ε=B ΔS Δt② 根据右手定则,感应电流的方向是从B 端流向A 端.因此,通过电阻R 的感应电流的方向是W f =f (l 1+l 2)⑨在Δt 时间内,消耗在电阻R 上的功为W R =I 2R Δt ⑩根据能量转化和守恒定律知,外力在Δt 时间内做的功为W =W f +W R ⑪外力的功率为P =W Δt⑫ 由④至12式得P =32μmg ωr +9ω2B 2r 44R⑬ 12.【2014·安徽卷】 (16分)如图1所示,匀强磁场的磁感应强度B 为0.5 T ,其方向垂直于倾角θ为30°的斜面向上.绝缘斜面上固定有“A”形状的光滑金属导轨的MPN (电阻忽略不计),MP 和NP 长度均为2.5 m ,MN 连线水平,长为3 m .以MN 中点O 为原点、OP 为x 轴建立一维坐标系Ox .一根粗细均匀的金属杆CD ,长度d 为3 m ,质量m 为1 kg 、电阻R 为0.3 Ω,在拉力F 的作用下,从MN 处以恒定速度v =1 m/s 在导轨上沿x 轴正向运动(金属杆与导轨接触良好).g 取10 m/s 2.图1图2(1)求金属杆CD 运动过程中产生的感应电动势E 及运动到x =0.8 m 处电势差U CD ;(2)推导金属杆CD 从MN 处运动到P 点过程中拉力F 与位置坐标x 的关系式,并在图2中画出Fx 关系图像;(3)求金属杆CD 从MN 处运动到P 点的全过程产生的焦耳热.对应的电阻R 1为R 1=l d R ,电流I =Blv R 1杆受的安培力F 安=BIl =7.5-3.75x根据平衡条件得F =F 安+mg sin θF=12.5-3.75x(0≤x≤2)画出的Fx图像如图所示.(3)外力F所做的功W F等于Fx图线下所围的面积,即W F=5+12.52×2 J=17.5 J而杆的重力势能增加量ΔE p=mg sin θ故全过程产生的焦耳热Q=W F-ΔE p=7.5 J13.【2014·北京卷】(20分)导体切割磁感线的运动可以从宏观和微观两个角度来认识.如图所示,固定于水平面的U形导线框处于竖直向下的匀强磁场中,金属直导线MN在与其垂直的水平恒力F作用下,在导线框上以速度v做匀速运动,速度v与恒力F方向相同;导线MN始终与导线框形成闭合电路.已知导线MN电阻为R,其长度L恰好等于平行轨道间距,磁场的磁感应强度为B.忽略摩擦阻力和导线框的电阻.(1) 通过公式推导验证:在Δt时间内,F对导线MN所做的功W等于电路获得的电能W电,也等于导线MN中产生的热量Q;(2)若导线MN的质量m=8.0 g、长度L=0.10 m,感应电流I=1.0 A,假设一个原子贡献一个自由电子,计算导线MN中电子沿导线长度方向定向移动的平均速率v e(下表中列出一些你可能会用到的数据);(3)经典物理学认为,金属的电阻源于定向运动的自由电子和金属离子(即金属原子失去电子后的剩余部分)的碰撞.展开你想象的翅膀,给出一个合理的自由电子的运动模型;在此基础上,求出导线MN中金属离子对一个自由电子沿导线长度方向的平均作用力f的表达式.【答案】(1)略(2)7.8×10-6 m/s(3)=evB【解析】(1)导线产生的感应电动势E=BLv因为一个金属原子贡献一个电子,所以导线MN中的自由电子数也是N. 导线MN单位体积内的自由电子数n=NSL 其中,S为导线MN的横截面积.因为电流I=nv e Se 所以v e=InSe=ILNe=ILμmN A e解得v e=7.8×10-6 m/s.(3)下列解法的共同假设:所有自由电子(简称电子,下同)以同一方式运动.方法一:动量解法设电子在第一次碰撞结束至下一次碰撞结束之间的运动都相同,经历的时间为Δt,电子的动量变化为零.因为导线MN的运动,电子受到沿导线方向的洛伦兹力f洛的作用f洛=evB沿导线方向,电子只受到金属离子的作用力和f洛作用,所以I f-f洛Δt=0因为电流不变,所以假设电子以速度v e相对导线做匀速直线运动.因为导线MN的运动,电子受到沿导线方向的洛伦兹力f洛的作用f洛=evB沿导线方向,电子只受到金属离子的平均作用力f和f洛作有,二力平衡,即f=f洛=evB.14.【2014·江苏卷】如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L,长为3d,导轨平面与水平面的夹角为θ,在导轨的中部刷有一段长为d的薄绝缘涂层.匀强磁场的磁感应强度大小为B,方向与导轨平面垂直.质量为m的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端.导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为R,其他部分的电阻均不计,重力加速度为g.求:(1)导体棒与涂层间的动摩擦因数μ;(2)导体棒匀速运动的速度大小v;(3)整个运动过程中,电阻产生的焦耳热Q.【答案】 (1)tan θ (2)mgR sin θB 2L 215.【2014·天津卷】 如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L =0.4 m .导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN ,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁场感应度大小均为B =0.5 T .在区域Ⅰ中,将质量m 1=0.1 kg ,电阻R 1=0.1 Ω的金属条ab 放在导轨上,ab 刚好不下滑.然后,在区域Ⅱ中将质量m 2=0.4 kg ,电阻R 2=0.1 Ω的光滑导体棒cd 置于导轨上,由静止开始下滑.cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab 、cd 始终与导轨垂直且两端与导轨保持良好接触,取g =10 m/s 2,问(1)cd 下滑的过程中,ab 中的电流方向; (2)ab 刚要向上滑动时,cd 的速度v 多大;(3)从cd 开始下滑到ab 刚要向上滑动的过程中,cd 滑动的距离x =3.8 m ,此过程中ab 上产生的热量Q 是多少?(3)设cd 棒的运动过程中电路中产生的总热量为Q 总,由能量守恒有m 2gx sin θ=Q 总+12m 2v 2⑦又Q =R 1R 1+R 2Q 总⑧ 解得Q =1.3 J16.【2014·浙江卷】 某同学设计一个发电测速装置,工作原理如图所示.一个半径为R =0.1 m 的圆形金属导轨固定在竖直平面上,一根长为R 的金属棒OA ,A 端与导轨接触良好,O 端固定在圆心处的转轴上.转轴的左端有一个半径为r =R3的圆盘,圆盘和金属棒能随转轴一起转动.圆盘上绕有不可伸长的细线,下端挂着一个质量为m =0.5 kg 的铝块.在金属导轨区域内存在垂直于导轨平面向右的匀强磁场,磁感应强度B =0.5 T .a 点与导轨相连,b 点通过电刷与O 端相连.测量a 、b 两点间的电势差U 可算得铝块速度.铝块由静止释放,下落h=0.3 m时,测得U=0.15 V.(细线与圆盘间没有滑动,金属棒、导轨、导线及电刷的电阻均不计,重力加速度g取10 m/s2)第24题图(1)测U时,与a点相接的是电压表的“正极”还是“负极”?(2)求此时铝块的速度大小;(3)求此下落过程中铝块机械能的损失.17.(2014上海).(14分)如图,水平面内有一光滑金属导轨,其MN、PQ边的电阻不计,MP边的电阻阻值R=1.5Ω,MN与MP的夹角为1350,PQ与MP垂直,MP边长度小于1m。
2021年高考物理100考点最新模拟题千题精练(选修3-2)第四部分电磁感应专题4.43 电磁感应综合问题(能力篇)一.选择题1.(2019安徽蚌埠二中最后一卷)如图所示,在竖直向上磁感应强度为B的匀强磁场中有光滑金属轨道,分别由水平部分CD、PQ和倾斜部分DE、QM组成,轨道间距为L,倾斜部分倾角为α,垂直水平轨道放置质量为m电阻为r的金属棒a,垂直倾斜轨道放置质量为m的电阻为R的金属棒b,导轨电阻不计,为保证金属棒b静止不动,给金属棒a施加作用力F使其做匀速运动,则()A. 导体棒a向左运动,速度大小为B. 导体棒a向左运动,速度大小为C. 作用力F做功的功率为D. 作用力F做功的功率为【参考答案】BD【名师解析】以b棒为研究对象进行受力分析,如图所示,平衡时有F A=BIL=mgtanθ,设a棒的速度为v,根据E=BLv和I=可得I=,解得速度大小为v=tanα,故A 错误、B 正确;以a 棒为研究对象,匀速运动时拉力F=BIL=mgtanθ,根据功率计算公式可得作用力F 做功的功率为P=Fv=tan 2α,故C 错误、D 正确。
【关键点拨】以b 棒为研究对象进行受力分析,根据共点力的平衡条件结合闭合电路的欧姆定律、法拉第电磁感应定律求解a 棒速度大小;以a 棒为研究对象,根据共点力的平衡条件求解拉力大小,根据P=Fv 计算拉力功率.对于电磁感应问题研究思路常常有两条:一条从力的角度,重点是分析安培力作用下导体棒的平衡问题,根据平衡条件列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,根据动能定理、功能关系等列方程求解.2.如图所示,固定在水平面上的光滑平行金属导轨,间距为L ,右端接有阻值R 的电阻,空间存在方向竖直向上、磁感应强度为B 的匀强磁场.质量为m 、电阻为r 的导体棒ab 与固定弹簧相连,放在导轨上.初始时刻,弹簧恰处于自然长度.给导体棒水平向右的初速度v 0,导体棒开始沿导轨往复运动,在此过程中,导体棒始终与导轨垂直并保持良好接触.已知导体棒的电阻r 与定值电阻R 的阻值相等,不计导轨电阻,则下列说法中正确的是( )A .导体棒开始运动的初始时刻受到的安培力向左B .导体棒开始运动的初始时刻导体棒两端的电压U =BLv 0C .导体棒开始运动后速度第一次为零时,系统的弹性势能E p =12mv 20D .导体棒最终会停在初始位置,在导体棒整个运动过程中,电阻R 上产生的焦耳热Q =14mv 20【参考答案】.AD【名师解析】根据楞次定律,导体棒向右运动,感应电流的方向为a 到b ,再根据左手定则,导体棒受到的安培力方向水平向左,选项A 正确;导体棒开始运动的初始时刻,导体棒产生的感应电动势为BLv 0,而导体棒两端的电压为路端电压,大小为BLv 0R R +r=BLv 02,选项B 错误;根据动能定理,W 安+W 弹=12mv 20,所以W 弹<12mv 20,而W 弹等于弹簧的弹性势能,故E p <12mv 20,选项C 错误;最终机械能全部转化为电阻的内能,导体棒r 和电阻R 产生的内能都是14mv 20,选项D 正确.二.计算题1.(10分)(2020年6月北京海淀二模)功是物理学中非常重要的概念,通过做功的过程可以实现能量转化。
专题11 电磁感应问题目录近年真题对比考向一法拉第电磁感应定律的理解和应用问题带电粒子在有界磁场中运动考向二电磁感应的综合问题命题规律解密名校模拟探源易错易混速记【命题意图】考查法拉第电磁感应定律综合应用问题,意在考查考生分析问题,通过图象获取有用信息的能力和应用数学知识解决问题的能力。
电磁感应中的电路、法拉第电磁感应定律、能量转换及电量的计算等知识点,意在考查考生对电磁感应电路的分析以及对电磁感应中功能关系的正确理解和应用2022年高考考查的内容较大概率以法拉第电磁感应定律的理解及其应用为核心,侧重要注重法拉第电磁感应定律的理解及应用。
有时还与实际生活、生产科技相结合,考查考生利用物理知识分析解决实际问题的能力。
【考查要点】主要考相法拉第电磁感应定律、楞次定律、闭合电路欧姆定律、功和功率、焦耳定律、能量守恒定律、功能关系、动能定理等,既有以选择题形式出现的,也有计算题的形式。
【课标链接】①理解法拉第电磁感应定律、楞次定律②能分析电磁感应中的电路问画出等效电路图。
能用力学中的能量守恒定律、功能关系、动能定理分析电磁感应问题。
考向一法拉第电磁感应定律的理解和应用问题带电粒子在有界磁场中运动1. (2023海南卷)汽车测速利用了电磁感应现象,汽车可简化为一个矩形线圈abcd,埋在地下的线圈分别为1、2,通上顺时针(俯视)方向电流,当汽车经过线圈时()A. 线圈1、2产生的磁场方向竖直向上B. 汽车进入线圈1过程产生感应电流方向为abcdC. 汽车离开线圈1过程产生感应电流方向为abcdD. 汽车进入线圈2过程受到的安培力方向与速度方向相同【答案】C【解析】由题知,埋在地下的线圈1、2通顺时针(俯视)方向的电流,则根据右手定则,可知线圈1、2产生的磁场方向竖直向下,A 错误;汽车进入线圈1过程中,磁通量增大,根据楞次定律可知产生感应电流方向为adcb (逆时针),B 错误;汽车离开线圈1过程中,磁通量减小,根据楞次定律可知产生感应电流方向为abcd (顺时针),C 正确;汽车进入线圈2过程中,磁通量增大,根据楞次定律可知产生感应电流方向为adcb (逆时针),再根据左手定则,可知汽车受到的安培力方向与速度方向相反,D 错误。
(word完整版)高中物理电磁感应习题及答案解析(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高中物理电磁感应习题及答案解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高中物理电磁感应习题及答案解析(word版可编辑修改)的全部内容。
1.图12—2,甲、乙两图为与匀强磁场垂直放置的两个金属框架,乙图除了一个电阻为零、自感系数为L 的线圈外,其他部分与甲图都相同,导体AB 以相同的加速度向右做匀加速直线运动。
若位移相同,则( )A .甲图中外力做功多B .两图中外力做功相同C .乙图中外力做功多D .无法判断2.图12-1,平行导轨间距为d ,一端跨接一电阻为R ,匀强磁场磁感强度为B ,方向与导轨所在平面垂直。
一根足够长的金属棒与导轨成θ角放置,金属棒与导轨的电阻不计。
当金属棒沿垂直于棒的方向以速度v 滑行时,通过电阻R 的电流强度是( )A .Bdv RB .sin Bdv RθC .cos Bdv Rθ D .sin Bdv R θ3.图12-3,在光滑水平面上的直线MN 左侧有垂直于纸面向里的匀强磁场,右侧是无磁场空间。
将两个大小相同的铜质矩形闭合线框由图示位置以同样的速度v 向右完全拉出匀强磁场。
已知制作这两只线框的铜质导线的横截面积之比是1:2.则拉出过程中下列说法中正确的是( )A .所用拉力大小之比为2:1B .通过导线某一横截面的电荷量之比是1:1C .拉力做功之比是1:4D .线框中产生的电热之比为1:24. 图12—5,条形磁铁用细线悬挂在O 点。
2012年全国各地百套模拟试题精选分类解析专题十一 电磁感应A .I m 变大,T 变小B .I m 变大,T 不变C .I m 变小,T 变小D .Im 不变,E 变大 【答案】A2.【2012•四川模拟】如图甲所示, MN 左侧有一垂直纸面向里的匀强磁场。
现将一边长为l 、质量为m 、电阻为R 的正方形金属线框置于该磁场中,使线框平面与磁场垂直,且bc 边与磁场边界MN 重合。
当t=0时,对线框施加一水平拉力F ,使线框由静止开始向右做匀加速直线运动;当t=t 0时,线框的ad 边与磁场边界MN 重合。
图乙为拉力F 随时间变化的图线。
由以上条件可知,磁场的磁感应强度B 的大小为 A .B =.B =C .B =.B =【答案】B【解析】由题述和题图,利用牛顿第二定律可知,F 0=ma ,3F 0-BIl=ma ,I=Blv/R ,v=at 0,联立解得B =B 正确。
3.【2012•安徽期末】如右图所示,在匀强磁场B 中放一电阻不计的平行金属导轨,导轨跟固定的大导体矩形环M 相连接,导轨上放一根金属导体棒ab 并与导轨紧密接触,磁感应线垂直于导轨所在平面。
若导体棒匀速地向右做切割a dF 03F 0甲乙××××××B ××××磁感线的运动,则在此过程中M所包围的固定闭合小矩形导体环N中电流表内()(2)有自下而上的恒定电流B.产生自上而下的恒定电流C.电流方向周期性变化D.没有感应电流【答案】D【解析】导体棒匀速向右运动的过程中,根据法拉第电磁感应定律可知,M中产生稳定的电流,则通过N中的磁通量保持不变,故N中无感应电流产生,选项D正确。
4.【2012•广东模拟】北半球地磁场的竖直分量向下.如图所示,在北京某中学实验室的水平桌面上,放置边长为L的正方形闭合导体线圈abcd,线圈的ab边沿南北方向,ad边沿东西方向.下列说法中正确的是( )A.若使线圈向东平动,则b点的电势比a点的电势低B.若使线圈向北平动,则a点的电势比b点的电势低C.若以ab为轴将线圈向上翻转,则线圈中感应电流方向为a→b→c→d→aD.若以ab为轴将线圈向上翻转,则线圈中感应电流方向为a→d→c→d→a【答案】C.【解析】由右手定则知,若使线圈向东平动,线圈的ab边和cd边切割磁感线,c(b)点电势高于d(a)点电势,故A错误;同理知B错.若以ab为轴将线圈向上翻转,穿过线圈平面的磁通量将变小,由楞次定律可判得线圈中感应电流方向为a→b→c→d→a,C对.5.【2012•湖南期末】如图所示,甲是闭合铜线框,乙是有缺口的铜线框,丙是闭合的塑料线框,它们的正下方都放置一薄强磁铁,现将甲、乙、丙拿至相同高度H处同时释放(各线框下落过程中不翻转),则以下说法正确的是( )A.三者同时落地B.甲、乙同时落地,丙后落地C.甲、丙同时落地,乙后落地D.乙、丙同时落地,甲后落地【答案】D.【解析】甲是铜线框,在下落过程中产生感应电流,所受的安培力阻碍它的下落,故所需的时间长;乙是没有闭合的回路,丙是塑料线框,故都不会产生感应电流,它们做自由落体运动,故D 正确.6.【2012•江苏苏北四市一模】如图所示,两个完全相同的矩形导线框A 、B 在靠得很近的竖直平面内,线框的对应边相互平行。
专题01 感应电流方向的判断1.(2017广西崇左摸底)如图A、B为两个相同的环形线圈,共轴并靠近放置.当A线圈中通有如图(a)所示的变化电流i,则()A.在t1到t2时间内A、B两线圈相吸B.在t2到t3时间内A、B两线圈相斥C.t1时刻两线圈间作用力为零D.t2时刻两线圈间吸力最大【参考答案】ABC在t2时刻,线圈A中的电流最小,而磁通量的变化率是最大的,所以线圈B感应电流也是最大,但A、B间的相互作用力最小,故D错误;2.(2016·广东华附、广雅、省实、深中四校联考)如图1所示的匀强磁场中有一个矩形闭合导线框。
在下列四种情况下,线框中会产生感应电流的是( )A.如图甲所示,保持线框平面始终与磁感线平行,线框在磁场中左右运动B.如图乙所示,保持线框平面始终与磁感线平行,线框在磁场中上下运动C.如图丙所示,线框绕位于线框平面内且与磁感线垂直的轴线AB转动D.如图丁所示,线框绕位于线框平面内且与磁感线平行的轴线CD转动【参考答案】C3.(2016福建质检)法拉第在1831年发现了“磁生电”现象。
如图,他把两个线圈绕在同一个软铁环上,线圈A和电池连接,线圈B用导线连通,导线下面平行放置一个小磁针。
实验中可能观察到的现象是A.用一节电池作电源小磁针不偏转,用十节电池作电源小磁针会偏转B.线圈B匝数较少时小磁针不偏转,匝数足够多时小磁针会偏转C.线圈A和电池连接瞬间,小磁针会偏转D.线圈A和电池断开瞬间,小磁针不偏转【参考答案】.C4.恒定的匀强磁场中有一圆形闭合线圈,线圈平面垂直于磁场方向,下列运动能够使穿过线圈的磁通量发生变化的是A.线圈沿自身所在的平面做匀速运动B.线圈沿自身所在的平面做变速运动C. 线圈绕任一直径匀速转动D. 线圈绕任一直径变速转动【参考答案】CD【名师解析】:线圈沿自身所在的平面匀速还是变速运动,穿过线圈的磁通量都不发生变化,选项AB错误。
线圈绕任一直径匀速或变速转动穿过线圈的磁通量都发生变化,选项CD 正确。
2017届高三物理百所名校速递分项汇编系列专题10 电磁感应一、选择题1.【2017·安徽省黄山市屯溪一中高三第二次月考】如图所示,在磁感应强度B=1.0 T的匀强磁场中,金属杆PQ在外力F作用下在粗糙U形导轨上以速度v=2 m/s向右匀速滑动,两导轨间距离l=1.0 m,电阻R=3.0 Ω,金属杆的电阻r=1.0 Ω,导轨电阻忽略不计,则下列说法正确的是A.通过R的感应电流的方向为由a到dB.金属杆PQ切割磁感线产生的感应电动势的大小为2.0 VC.金属杆PQ受到的安培力大小为0.5 ND.外力F做功的数值等于电路产生的焦耳热2.【2017·黑龙江省大庆市高三上学期第一次质量检测】如图甲为磁感强度B随时间t的变化规律,磁场方向垂直纸面,规定向里的方向为正。
在磁场中有一细金属圆环,平面位于纸面内,如图乙所示。
令I1、I2、I3分别表示Oa、ab、bc段的感应电流,F1、F2、F3分别表示金属环上很小一段导体受到的安培力。
下列说法不正确的是A.I1沿逆时针方向,I2沿顺时针方向B.I2沿顺时针方向,I3沿顺时针方向C.F1方向指向圆心,F2方向指向圆心D.F2方向背离圆心向外,F3方向指向圆心3.【2017·吉林省长春市高三质量检测】磁流体发电机,又叫等离子体发电机,图中的燃烧室在3000K的高温下将气体全部电离为电子和正离子,即高温等离子体.高温等离子体经喷管提速后以1000m/s进人矩形发电通道.发电通道有垂直于喷射速度方向的匀强磁场,磁感应强度B=6T.等离子体发生偏转,在两极间形成电势差.已知发电通道长a=50cm,宽b=20cm,高d=20cm,等离子体的电阻率ρ=2Ω·m.则以下判断中正确的是( )A发电机的电动势为1200VB因正离子带电量未知,故发电机的电动势不能确定C当外接电阻为8Ω时,发电机的效率最高D当外接电阻为4Ω时,发电机输出功率最大4.【2017·浙江省温州中学高三10月模拟】如图甲所示,匀强磁场垂直纸面向里,磁感应强度的大小为B,磁场在y轴方向足够宽,在x轴方向宽度为a.一直角三角形导线框ABC(BC边的长度为a)从图示位置向右匀速穿过磁场区域,以逆时针方向为电流的正方向,在图乙中感应电流i、BC两端的电压u BC与线框移动的距离x的关系图象正确的是5.【2017·河南省开封市高三上学期定位考试】如图甲所示,面积S=1 m2的导体圆环内通有垂直于圆平面向里的磁场,磁场的磁感应强度B随时间t变化的关系如图乙所示(B取向里为正),以下说法正确的是()A.环中产生逆时针方向的感应电流B.环中产生顺时针方向的感应电流C.环中产生的感应电动势大小为1 VD.环中产生的感应电动势大小为2 V6.【2017·浙江省名校协作体高三上学期联考】下列说法正确的是A .牛顿最早通过理想斜面实验得出力不是维持物体运动的原因B .万有引力定律中的引力常量由牛顿测定C .库仑定律中的平方反比关系由库仑通过库仑扭称实验获得D .奥斯特首先发现了磁场对电流的作用规律7.【2017·浙江省名校协作体高三上学期联考】如图所示为航母上电磁弹射装置的等效电路图(俯视图),使用前先给超级电容器C 充电,弹射时,电容器释放储存电能所产生的强大电流经过导体棒EF ,EF 在磁场(方向垂直纸面向外)作用下加速。
专题18 电磁感应一.选择题1. (2019广东惠州第一次调研)目前无线电力传输已经比较成熟,如图所示为一种非接触式电源供应系统 。
这种系统基于电磁感应原理可无线传输电力,两个感应线圈可以放置在左右相邻或上下相对的位置,原理示意图如图所示。
利用这一原理,可以实现对手机进行无线充电。
下列说法正确的是A .若A 线圈中输入电流,B 线圈中就会产生感应电动势 B .只有A 线圈中输入变化的电流,B 线圈中才会产生感应电动势C .A 中电流越大,B 中感应电动势越大D .A 中电流变化越快,B 中感应电动势越大 【参考答案】BD【命题意图】本题考查电磁感应、法拉第电磁感应定律及其相关知识点。
2.(2019广东七校联考)如图所示,竖直长导线通有恒定电流,一矩形线圈abcd 可绕其竖直对称轴O 1O 2转动。
当线圈绕轴以角速度ω沿逆时针(沿轴线从上往下看)方向匀速转动,从图示位置开始计时,下列说法正确的是( )A .t =0时,线圈产生的感应电动势最大B .0~ωπ2时间内,线圈中感应电流方向为abcda C .t =ωπ2时,线圈的磁通量为零,感应电动势也为零 D .线圈每转动一周电流方向改变两次【参考答案】B D【命题意图】本题考查直线电流产生的磁场、安培定则、法拉第电磁感应定律、楞次定律及其相关知识点。
3. (2019广东惠州调研)如图所示,在磁感应强度B=1.0 T的匀强磁场中,质量m=1kg的金属杆PQ在水平向右的外力F作用下沿着粗糙U形导轨以速度v=2 m/s向右匀速滑动,U形导轨固定在水平面上,两导轨间距离l=1.0 m,金属杆PQ与U形导轨之间的动摩擦因数,电阻R=3.0 Ω,金属杆的电阻r =1.0 Ω,导轨电阻忽略不计,取重力加速度,则下列说法正确的是A.通过R的感应电流的方向为由d到aB.金属杆PQ切割磁感线产生的感应电动势的大小为2.0 VC.金属杆PQ受到的外力F的大小为2.5 ND.外力F做功的数值大于电路上产生的焦耳热【参考答案】BD【命题意图】本题考查电磁感应、右手定则、法拉第电磁感应定律、闭合电路欧姆定律、安培力、平衡条件、功能关系及其相关知识点。
专题19 电磁感应综合问题
一.选择题
1. (2018江西南昌三模)如图甲所示,在MN、OP之间存在一匀强磁场,t=0时,一正方形光滑金属线框在水平向右的外力F作用下紧贴MN从静止开始做匀加速运动,外力F随时间变化的图线如图乙所示。
已知线框的质量m=1kg,电阻R=2Ω。
则
A.磁场宽度为4m B T
C.线框穿过磁场过程中,通过线框的电荷量为2C D.线框穿过磁场过程中,线框产生的热量为1J 【参考答案】.AB
【命题意图】本题考查电磁感应、力图像及其相关的知识点。
【方法归纳】(1)根据法拉第电磁感应定律,当回路内磁通量变化率为△Φ/△t 时,产生的感应电动势为E=△Φ/△t,由闭合电路欧姆定律,回路内产生的感应电流I=E/R ,通过回路的电荷量q=I △t ,联立解得q=△Φ/R 。
因此,当回路内磁通量变化△Φ时,可以利用q=△Φ/R 计算。
【解题思路】(1)R 、R 2并联,电阻R 并=
2
2
R R R R +⋅=5Ω(1分)
设电流表满偏,则电压表示数为:U =LR 并=1.5V 〉1V (2分) 故:只能是电压表满偏,电流表安全工作 则电流表示数为:I =
并
满R U =0.2A (1分)
电路外电阻:R 外=R 并+R 1=8Ω MN 两端电压为:U MN =IR 外(1分) 代入数据解得:U MN =1.6V (1分)
(其他合理解法,参照给分)
2.(2018高考天津理综)真空管道超高速列车的动力系统是一种将电能直接转换成平动动能的装置。
图1是某种动力系统的简化模型,图中粗实线表示固定在水平面上间距为l 的两条平行光滑金属导轨,电阻忽略不计,ab 和cd 是两根与导轨垂直,长度均为l ,电阻均为R 的金属棒,通过绝缘材料固定在列车底部,并与导轨良好接触,其间距也为l ,列车的总质量为m 。
列车启动前,ab 、cd 处于磁感应强度为B 的匀强磁场中,磁场方向垂直于导轨平面向下,如图1所示,为使列车启动,需在M 、N 间连接电动势为E 的直流电源,电源内阻及导线电阻忽略不计,列车启动后电源自动关闭。
(1)要使列车向右运行,启动时图1中M、N哪个接电源正极,并简要说明理由;
(2)求刚接通电源时列车加速度a的大小;
(3)列车减速时,需在前方设置如图2所示的一系列磁感应强度为B的匀强磁场区域,磁场宽度和相邻磁场间距均大于l。
若某时刻列车的速度为0v,此时ab、cd均在无磁场区域,试讨论:要使列车停下来,前方至少需要多少块这样的有界磁场?
【名师解析】
(1)M接电源正极,列车要向右运动,安培力方向应向右,根据左手定则,接通电源后,金属棒中电流方向由a到b,由c到d,故M接电源正极。
5.(12分)(2019福建泉州四校联考)如图(俯视图),虚线右侧有竖直向下的磁感应强度为B=0.5T的匀强磁场,边长为L=0.4m,质量为m=0.5kg的正方形导线框起初静止在光滑水平地面上。
从t=0时刻起,用水平恒力F向右拉线框从图示位置开始运动,此后线框运动的v—t图像如右图所示。
求:
(1)恒力F的大小;
(2)线框进入磁场过程中感应电流的大小;
(3)线框进入磁场过程中线框产生的热量。
【名师解析】(12分)(1)在0-0.4s内线框在拉力F作用下,做初速度为0的匀加速度直线运动,由v-t 图求出加速度,由牛顿第二定律求拉力F的大小;(2)线框匀速进入磁场,由平衡条件得,可以求出感应电流的大小;(3)线框匀速进入磁场过程中,由能量守恒定律得:,即可求解产生的热量.
6.【加试题】(8分)(2019浙江杭州八中质检)涡流制动是一种利用电磁感应原理工作的新型制动方式,它的基本原理如图甲所示.水平面上固定一块铝板,当一竖直方向的条形磁铁在铝板上方几毫米高度上水平经过时,铝板内感应出的涡流会对磁铁的运动产生阻碍作用.涡流制动是磁悬浮列车在高速运行时进行制动的一种方式.某研究所制成如图乙所示的车和轨道模型来定量模拟磁悬浮列车的涡流制动过程.车厢下端安装有电磁铁系统,能在长为L1=0.6m,宽L2=0.2m的矩形区域内产生竖直方向的匀强磁场,磁感应强度可随车速的减小而自动增大(由车内速度传感器控制),但最大不超过B1=2T,将铝板简化为长大于L1,宽也为L2的单匝矩形线圈,间隔铺设在轨道正中央,其间隔也为L2,每个线圈的电阻为R1=0.1Ω,导线粗细忽略不计.在某次实验中,模型车速度为v=20m/s时,启动电磁铁系统开始制动,车立即以加速度a1=2m/s2做匀减速直线运动,当磁感应强度增加到B1时就保持不变,直到模型车停止运动.已知模型车的总质量为m1=36kg,空气阻力不计.不考虑磁感应强度的变化引起的电磁感应现象以及线圈激发的磁场对电磁铁产生磁场的影响.
(1)电磁铁的磁感应强度达到最大时,模型车的速度为多大?
(2)模型车的制动距离为多大?
(3)为了节约能源,将电磁铁换成若干个并在一起的永磁铁组,两个相邻的磁铁磁极的极性相反,且将线圈改为连续铺放,如图丙所示,已知模型车质量减为m2=20kg,永磁铁激发的磁感应强度恒为B2=0.1T,每个线圈匝数为N=10,电阻为R2=1Ω,相邻线圈紧密接触但彼此绝缘.模型车仍以v=20m/s的初速度开始减速,为保证制动距离不大于80m,至少安装几个永磁铁?
【名师解析】.
(2)x 1=v2-v12
2a1⑥ ……1分
由第(1)问的方法同理得到磁感应强度达到最大以后模型车任意速度v 时,安培力的大小为分F =B12L12v
R1
⑦
对速度v 1后模型车的减速过程用动量定理得
⑧
⑨
x=x 1+x 2⑩。