物理3-4教学案
- 格式:doc
- 大小:7.90 MB
- 文档页数:62
2019-2020年高中物理鲁科版选修3-4教学案:第1章第4节生活中的振动(含答案)1.阻尼振动的机械能不断减少,主要体现在振幅不断减小。
2.受迫振动是在周期性外力作用下的振动,其振动频率等于周期性驱动力的频率。
3.驱动力的频率越接近物体的固有频率,受迫振动振幅越大;当驱动力频率与物体的固有频率相等时,受迫振动振幅最大,这就是共振。
对应学生用书P12阻尼振动[自读教材·抓基础]1.定义指振幅不断减小的振动。
2.产生的原因振动系统克服摩擦力或其他阻力做功,系统的机械能不断减少,振幅不断减小。
3.阻尼振动的振动图像如图1-4-1所示,振幅越来越小,最后停止振动。
图1-4-14.实际应用实际问题中,如果要求系统很快回到平衡位置,就增大阻力;如果希望物体在某一段时间内的运动接近简谐运动,则应减小阻力。
[跟随名师·解疑难]阻尼振动和无阻尼振动的比较振动类型阻尼振动无阻尼振动比较项目产生条件受到阻力作用不受阻力作用(1)物体做阻尼振动时,振幅虽然不断减小,但振动的频率仍由振动系统的结构特点所决定,并不会随振幅的减小而变化。
例如用力敲锣,由于锣受到阻尼作用,振幅越来越小,锣声减弱,但音调不变。
(2)物体做无阻尼振动,并不一定指它不受阻尼,而是指它在振动过程中振幅保持不变。
[学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(小试身手)一单摆做阻尼振动,则在振动过程中()A.振幅越来越小,周期也越来越小B.振幅越来越小,周期不变C.在振动过程中,通过某一位置时,机械能始终不变D.振动过程中,机械能不守恒,周期减小解析:选B因单摆做阻尼振动,根据阻尼振动的定义可知,其振幅越来越小。
而单摆振动过程中的周期是其固有周期,是由本身特点决定的,是不变的,故A、D项错误,B项正确;又因单摆做阻尼振动过程中,振幅逐渐减小,振动的能量也在减小,即机械能在减少,所以C项错。
1.受迫振动(1)驱动力:给振动物体施加的一个周期性的外力。
3简谐运动的回复力和能量理解简谐运动的运动规律,掌握在一加速度、)能定性地说明弹简谐运动的回复力[先填空]1.回复力(1)定义:振动质点受到的总能使其回到平衡位置的力.(2)方向:指向平衡位置.(3)表达式:F=-kx.2.简谐运动的动力学特征如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动.[再判断]1.回复力的方向总是与位移的方向相反.(√)2.回复力的方向总是与速度的方向相反.(×)3.回复力的方向总是与加速度的方向相反.(×)[后思考]1.公式F=-kx中的k是否就是指弹簧的劲度系数?【提示】不一定.做简谐运动的物体,其回复力特点为F=-kx,这是判断物体是否做简谐运动的依据,但k不一定是弹簧的劲度系数.2.弹簧振子从平衡位置到达最大位移处的过程中,回复力如何变化?从最大位移处向平衡位置运动的过程中呢?【提示】由回复力F=-kx可知:从平衡位置到达最大位移处的过程中,回复力逐渐增大,方向一直指向平衡位置.从最大位移处向平衡位置运动的过程中,回复力逐渐减小,方向一直指向平衡位置.[核心点击]1.回复力的性质回复力是根据力的效果命名的,它可以是一个力,也可以是多个力的合力,还可以由某个力的分力提供.如图11-3-1甲所示,水平方向的弹簧振子,弹力充当回复力;如图11-3-1乙所示,竖直方向的弹簧振子,弹力和重力的合力充当回复力;如图11-3-1丙所示,m随M一起振动,m的回复力是静摩擦力.图11-3-12.简谐运动的回复力的特点(1)由F=-kx知,简谐运动的回复力大小与振子的位移大小成正比,回复力的方向与位移的方向相反,即回复力的方向总是指向平衡位置.(2)公式F=-kx中的k指的是回复力与位移的比例系数,而不一定是弹簧的劲度系数,系数k由振动系统自身决定.(3)根据牛顿第二定律得,a=Fm=-km x,表明弹簧振子做简谐运动时振子的加速度大小也与位移大小成正比,加速度方向与位移方向相反.1.弹簧振子在光滑水平面上做简谐运动,在振子向平衡位置运动的过程中()A.振子所受的回复力逐渐增大B.振子的位移逐渐减小C.振子的速度逐渐减小D.振子的加速度逐渐减小E.弹簧的形变量逐渐减小【解析】该题考查的是回复力、加速度、速度随位移的变化关系,应根据牛顿第二定律进行分析.当振子向平衡位置运动时,位移逐渐减小,而回复力与位移成正比,故回复力也减小.由牛顿第二定律a=Fm得加速度也减小.物体向着平衡位置运动时,回复力与速度方向一致,即加速度与速度方向一致,故物体的速度逐渐增大,故正确答案为B、D、E.【答案】BDE2.如图11-3-2所示,分析做简谐运动的弹簧振子m的受力情况.图11-3-2【解析】弹簧振子的简谐运动中忽略了摩擦力,回复力为效果力,受力分析时不分析此力,故振子只受重力、支持力及弹簧给它的弹力.【答案】受重力、支持力及弹簧给它的弹力.3.一质量为m的小球,通过一根轻质弹簧悬挂在天花板上,如图11-3-3所示.图11-3-3(1)小球在振动过程中的回复力实际上是________;(2)该小球的振动是否为简谐运动?【解析】(1)此振动过程的回复力实际上是弹簧的弹力与重力的合力.(2)设振子的平衡位置为O,向下方向为正方向,此时弹簧已经有了一个伸长量h,设弹簧的劲度系数为k,由平衡条件得kh=mg①当振子向下偏离平衡位置的距离为x时,回复力即合外力为F回=mg-k(x+h)②将①代入②式得:F回=-kx,可见小球所受合外力与它的位移的关系符合简谐运动的受力特点,该振动系统的振动是简谐运动.【答案】(1)弹力和重力的合力(2)是简谐运动判断是否为简谐运动的方法(1)以平衡位置为原点,沿运动方向建立直线坐标系.(2)在振动过程中任选一个位置(平衡位置除外),对振动物体进行受力分析.(3)将力在振动方向上分解,求出振动方向上的合力.(4)判定振动方向上合外力(或加速度)与位移关系是否符合F=-kx(或a=-km x),若符合,则为简谐运动,否则不是简谐运动.简谐运动的能量[先填空]1.振动系统(弹簧振子)的状态与能量的对应关系弹簧振子运动的过程就是动能和势能互相转化的过程.(1)在最大位移处,势能最大,动能为零.(2)在平衡位置处,动能最大,势能最小.2.简谐运动的能量特点:在简谐运动中,振动系统的机械能守恒,而在实际运动中都有一定的能量损耗,因此简谐运动是一种理想化的模型.[再判断]1.简谐运动是一种理想化的振动.(√)2.水平弹簧振子运动到平衡位置时,回复力为零,因此能量一定为零.(×)3.弹簧振子位移最大时,势能也最大.(√)[后思考]1.振子经过同一位置时,位移、回复力、加速度、速率、动能各物理量的关系如何?【提示】振子经过同一位置时,位移、回复力、加速度、速率、动能一定相同,但速度不一定相同,方向可能相反.2.振子经过关于平衡位置O对称的两点P、P′时各物理量的关系如何?【提示】位移、回复力、加速度大小相等,方向相反,动能、势能相等,速度大小相等,方向可能相同也可能相反,且振子往复通过一段路程(如OP)所用时间相等,即t OP=t PO.[核心点击]简谐运动的特点如图11-3-4所示的弹簧振子.图11-3-4和动能的变化步调相反.(2)平衡位置是位移、加速度和回复力方向变化的转折点.(3)最大位移处是速度方向变化的转折点.(4)简谐运动的位移与前面学过的位移不同,简谐运动的位移是从平衡位置指向某一位置的有向线段,位移起点是平衡位置,是矢量.4.把一个小球套在光滑细杆上,球与轻弹簧相连组成弹簧振子,小球沿杆在水平方向做简谐运动,它围绕平衡位置O在A、B间振动,如图11-3-5所示,下列结论正确的是()图11-3-5A.小球在O位置时,动能最大,加速度最小B.小球在A、B位置时,动能最小,加速度最大C.小球从A经O到B的过程中,回复力一直做正功D.小球从B到O的过程中,振子振动的能量不断增加E.小球从B到O的过程中,动能增大,势能减小,总能量不变【解析】小球在平衡位置O时,弹簧处于原长,弹性势能为零,动能最大,位移为零,加速度为零,A项正确;在最大位移A、B处,动能为零,加速度最大,B项正确;由A→O,回复力做正功,由O→B,回复力做负功,C项错误;由B→O,动能增加,弹性势能减少,总能量不变,D项错误.E项正确.【答案】ABE5.弹簧振子做简谐运动,其位移x与时间t的关系如图11-3-6所示,则()图11-3-6A.在t=1 s时,速度的值最大,方向为负,加速度为零B.在t=2 s时,速度的值最大,方向为负,加速度为零C.在t=3 s时,速度的值最大,方向为正,加速度最大D.在t=4 s时,速度的值最大,方向为正,加速度为零E.当t=5 s时,速度为零,加速度最大,方向为负【解析】当t=1 s和t=5 s时,位移最大,加速度最大,速度为零,选项A错误,E 正确;当t=2 s时,位移为零,加速度为零,而速度最大,速度方向要看该点切线斜率的正负,t=2 s时,速度为负值,选项B正确;当t=3 s时,位移最大,加速度最大,速度为零,选项C错误;当t=4 s时,位移为零,加速度为零,速度最大,方向为正,选项D正确.【答案】BDE6.如图11-3-7所示为一弹簧振子的振动图象,在A,B,C,D,E,F各时刻中:图11-3-7(1)哪些时刻振子有最大动能?(2)哪些时刻振子有相同速度?(3)哪些时刻振子有最大势能?(4)哪些时刻振子有相同的最大加速度?【解析】由题图知,B,D,F时刻振子在平衡位置,具有最大动能,此时振子的速率最大;A,C,E时刻振子在最大位移处,具有最大势能,此时振子的速度为0.B,F时刻振子向负方向运动,D时刻振子向正方向运动,可知D时刻与B,F时刻虽然速率相同,但方向相反.A,E两时刻振子的位移相同,C时刻振子的位移虽然大小与A,E两时刻相同,但方向相反.由回复力知识可知C时刻与A,E时刻振子受力大小相等,但方向相反,故加速度大小相等,方向相反.【答案】(1)B,D,F时刻振子有最大动能.(2)A,C,E时刻振子速度相同,B,F 时刻振子速度相同.(3)A,C,E时刻振子有最大势能.(4)A,E时刻振子有相同的最大加速度.对简谐运动能量的三点认识(1)决定因素:对于一个确定的振动系统,简谐运动的能量由振幅决定,振幅越大,系统的能量越大.(2)能量获得:系统开始振动的能量是通过外力做功由其他形式的能转化来的.(3)能量转化:当振动系统自由振动后,如果不考虑阻力作用,系统只发生动能和势能的相互转化,机械能守恒.学业分层测评(三)(建议用时:45分钟)[学业达标] 1.简谐运动的特点是()A.回复力跟位移成正比且反向B.速度跟位移成反比且反向C.加速度跟位移成正比且反向D.振幅跟位移成正比E.振幅跟位移无关【解析】由F=-kx,a=Fm=-kxm,可知A,C选项正确.当位移增大时,速度减小,但位移的方向与速度方向可能相同,也可能相反,故B选项不正确.振幅与位移无关,D 不正确,E选项正确.【答案】ACE2.关于做简谐运动物体的平衡位置,下列叙述正确的是()A.是回复力为零的位置B.是回复力产生的加速度改变方向的位置C.是速度为零的位置D.是回复力产生的加速度为零的位置E.是势能最大的位置【解析】平衡位置处,x=0,则回复力F=0,回复力产生的加速度为零,且此处速度最大势能最小,A,D正确,C、E错误.在平衡位置两边位移方向相反,回复力方向相反,对应加速度方向相反,B正确.【答案】ABD3.关于简谐运动,以下说法正确的是()A.回复力可能是物体受到的合外力B.回复力是根据力的作用效果命名的C.振动中位移的方向是不变的D.物体振动到平衡位置时所受合外力一定等于零E.振动中振幅是不变的【解析】回复力可以是某个力,可以是某个力的分力,也可以是几个力的合力,A正确;回复力可以由重力、弹力、摩擦力等各种不同性质的力提供,其效果是使物体回到平衡位置,B正确;位移是从平衡位置指向物体所在位置,其方向是不同的,做简谐运动的物体振幅是不变的.C错误,E正确;物体振动到平衡位置时,所受回复力为零,但合外力不一定为零,D错误.【答案】ABE4.如图11-3-8,所示是某一质点做简谐运动的图象,下列说法正确的是()图11-3-8A.在第1 s内,质点速度逐渐增大B.在第2 s内,质点速度逐渐增大C.在第3 s内,动能转化为势能D.在第4 s内,动能转化为势能E.在第4 s内,加速度逐渐减小【解析】质点在第1 s内,由平衡位置向正向最大位移处运动,做减速运动,所以选项A错误;在第2 s内,质点由正向最大位移处向平衡位置运动,做加速运动,所以选项B 正确;在第3 s内,质点由平衡位置向负向最大位移处运动,动能转化为势能,所以选项C 正确;在第4 s内,质点由负向最大位移处向平衡位置运动加速度减小,速度增大,势能转化为动能,所以选项D错误,E正确.【答案】BCE5.如图11-3-9所示,将弹簧振子从平衡位置拉下一段距离Δx,释放后振子在A、B间振动,且AB=20 cm,振子由A到B的时间为0.1 s.若使振子在AB=10 cm间振动,则振子由A到B的时间为________.图11-3-9【解析】由于周期不变,仍为0.2 s,A到B仍用时0.1 s.【答案】0.1 s6.如图11-3-10所示,一弹簧振子在光滑水平面A,B间做简谐运动,平衡位置为O,已知振子的质量为M.图11-3-10(1)简谐运动的能量取决于________,本题中物体振动时________能和________能相互转化,总________能守恒.(2)若振子运动到B处时将一质量为m的物体放到振子的上面,且它们无相对运动而一起运动,下列说法正确的是()A.振幅不变B.振幅减小C.最大动能不变D.最大动能减少E.振动系统的总能量不变【解析】(1)简谐运动的能量取决于振幅,本题中物体振动时动能和弹性势能相互转化,总机械能守恒.(2)振子运动到B点时速度恰为零,此时放上质量为m的物体,系统的总能量即为此时弹簧储存的弹性势能,由于简谐运动中机械能守恒,所以振幅保持不变,因此A正确,B 错误.由于机械能守恒,最大动能不变,所以C、E正确,D错误.【答案】(1)振幅动弹性势机械(2)ACE7.如图11-3-11所示,在一倾角为θ的光滑斜板上,固定着一根原长为l0的轻质弹簧,其劲度系数为k,弹簧另一端连接着质量为m的滑块,此时弹簧被拉长为l1.现把小球沿斜板向上推至弹簧长度恰好为原长,然后突然释放,求证小球的运动为简谐运动.图11-3-11【解析】松手释放,滑块沿斜板往复运动——振动.而振动的平衡位置是小球开始时静止(合外力为零)的位置.mg sin θ=k(l1-l0)滑块离开平衡位置的距离为x,受力如图所示,滑块受三个力作用,其合力F合=k(l1-l0-x)-mg sin θ,F合=-kx.由此可证小球的振动为简谐运动.【答案】见解析[能力提升]8.公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板.一段时间内货物在竖直方向振动可视为简谐运动,周期为T .竖直向上为正方向,以某时刻为计时起点,其振动图象如图11-3-12所示,则( )图11-3-12A .t =14T 时,货物对车厢底板的压力最小B .t =12T 时,货物对车厢底板的压力最小C .t =34T 时,货物对车厢底板的压力最大D .t =34T 时,货物对车厢底板的压力最小E .t =T 时,货物所受合力为零【解析】 要使货物对车厢底板的压力最大,则车厢底板对货物的支持力最大,则要求货物向上的加速度最大,由振动图象可知在34T 时,货物向上的加速度最大,则C 选项正确;若货物对车厢底板的压力最小,则车厢底板对货物的支持力最小,则要求货物向下的加速度最大,由振动图象可知在T4时,货物向下的加速度最大,所以选项A 正确,B 、D 错误.T时刻物体所受压力与重力等大反向,选项E 正确.【答案】 ACE9.如图11-3-13所示,弹簧上面固定一质量为m 的小球,小球在竖直方向上做振幅为A 的简谐运动,当小球振动到最高点时弹簧正好为原长,则小球在振动过程中( )图 11-3-13A .小球最大动能应小于mgAB .弹簧的弹性势能和小球动能总和保持不变C .弹簧最大弹性势能等于2mgAD .小球在最低点时的弹力大于2mgE .小球在最低点时的弹力等于2mg【解析】 小球的平衡位置kx 0=mg ,x 0=A =mg k ,当到达平衡位置时,有mgA =12m v 2+12kA 2,A 对;机械能守恒,是动能、重力势能和弹性势能之和保持不变,B 错;从最高点到最低点,重力势能全部转化为弹性势能,E p =2mgA ,最低点加速度等于最高点加速度g ,据牛顿第二定律F -mg =mg ,F =2mg ,A 、C 、E 正确.【答案】 ACE10.如图11-3-14所示,一个质量为m 的木块放在质量为M 的平板小车上,它们之间的最大静摩擦力是f m ,在劲度系数为k 的轻质弹簧作用下,沿光滑水平面做简谐运动.为使小车能和木块一起振动,不发生相对滑动,简谐运动的振幅不能大于________.图11-3-14【解析】 小车做简谐运动的回复力是木块对它的静摩擦力.当它们的位移最大时,加速度最大,受到的静摩擦力最大.为了不发生相对滑动,达到最大位移时,小车的最大加速度a =f m M,即系统振动的最大加速度.对整体:达到最大位移时的加速度最大,回复力k ·A =(M +m )a ,则振幅A ≤(M +m )f m kM. 【答案】 (M +m )f m kM11.如图11-3-15所示,一轻弹簧一端固定,另一端连接一物块构成弹簧振子,该物块是由a 、b 两个小物块粘在一起组成的.物块在光滑水平面上左右振动,振幅为A 0,周期为T 0.当物块向右通过平衡位置时,a 、b 之间的粘胶脱开;以后小物块a 振动的振幅和周期分别为A 和T ,则A ________A 0(选填“>”、“<”“=”),T ________T 0(填“>”、“<”“=”).图11-3-15【解析】 (1)弹簧振子振动过程中,机械能守恒,振子经过平衡位置时,弹性势能为零,动能最大,从平衡位置运动到最大位移处时,动能转化为弹性势能.本题中,当粘胶脱开后,物块a 与弹簧连接所构成的新的弹簧振子的机械能减小,新振子到达最大位移处时的弹性势能减小,即振子振动的振幅减小;新的弹簧振子的振幅减小,振子从最大位移处加速运动到平衡位置的距离减小,运动中的加速度比原振子振动时的大,所以运动时间减小,振子振动的周期减小.(T =2πm k,由于振子质量减小导致周期减小) 【答案】 < <12.一质量为m ,侧面积为S 的正方体木块,放在水面上静止(平衡),如图11-3-16所示.现用力向下将其压入水中一段深度后(未全部浸没)撤掉外力,木块在水面上下振动,试判断木块的振动是否为简谐运动.图11-3-16【解析】以木块为研究对象,设静止时木块浸入水中Δx深,当木块被压入水中(x+Δx)后如图所示,则F回=mg-F浮,又F浮=ρgS(Δx+x).由以上两式,得F回=mg-ρgS(Δx+x)=mg-ρgSΔx-ρgSx.mg=ρgSΔx,所以F回=-ρgSx.即F回=-kx(k=ρgS).所以木块的振动为简谐运动.【答案】木块的振动是简谐运动。
第3节光_的_干_涉一、杨氏干涉实验 1.物理史实1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象,开始让人们认识到光的波动性。
2.双缝干涉实验(1)实验过程:让一束平行的完全相同的单色光投射到一个有两条狭缝的挡板上,两狭缝相距很近,两狭缝就成了两个波源,它们的频率、相位和振动方向总是相同的,两个光源发出的光在挡板后面的空间互相叠加发生干涉。
(2)实验现象:在屏上得到明暗相间的条纹。
(3)实验结论:证明光是一种波。
二、光发生干涉的条件 1.干涉条件两列光的频率相同、振动方向相同、相位差恒定。
2.相干光源发出的光能够产生干涉的两个光源。
3.一般情况下很难观察到光的干涉现象的原因由于不同光源发出的光的频率一般不同,即使是同一光源,它的不同部位发出的光也不一定有相同的频率和恒定的相位差,故一般情况下不易观察到光的干涉现象。
1.英国物理学家托马斯·杨于1801年成功地观察到了光的干涉现象。
2.双缝干涉图样:单色光——明暗相间的条纹。
3.干涉条件:两列光的频率相同,振动方向相同,相位差恒定。
4.出现明纹与暗纹的条件:两光源到屏上某点的距离之差等于半波长的偶数倍时出现亮条纹,奇数倍时出现暗条纹。
1.自主思考——判一判(1)直接用强光照射双缝,发生干涉。
(×)(2)若用白光作光源,干涉条纹是明暗相间的条纹。
(×)(3)若用单色光作光源,干涉条纹是明暗相间的条纹。
(√)(4)在双缝干涉实验中单缝屏的作用是为了获得一个线光源。
(√)(5)双缝干涉实验证明光是一种波。
(√)2.合作探究——议一议(1)两只手电筒射出的光束在空间相遇,能否观察到光的干涉现象?提示:不能。
两只手电筒射出的光束在空间相遇,不满足光发生干涉的条件,不能观察到光的干涉现象。
(2)在双缝干涉实验中,如果入射光用白光,在两条狭缝上,一个用红色滤光片(只允许通过红光)遮挡,一个用绿色滤光片(只允许通过绿光)遮挡。
课时12.6惠更斯原理1.知道什么是波面和波线,了解惠更斯原理。
2.认识波的反射现象,并能用惠更斯原理进行解释。
3.认识波的折射现象,并能用惠更斯原理进行解释。
重点难点:波面、波线的概念和惠更斯原理。
以及用惠更斯原理对波的反射规律和折射规律进行解释。
教学建议:本节在已学过的光的反射、折射及回声等知识的基础上,进一步加深对波的特性的理解。
要理解波面、波线等概念及惠更斯原理,并能用惠更斯原理对波的反射规律和折射规律进行解释。
由于这些概念比较抽象,应通过实验演示和日常生活经验来辅助教学。
波的反射和折射是常见的现象,从对现象的研究中概括出规律,再用来解释现象和指导实践,使学生提高学习的兴趣,感受知识的力量。
导入新课:北京天坛的回音壁为圆形,直径为61.5米,周长为193.2米,是用磨砖对缝砌成的,墙面极其光滑整齐。
两个人分东、西方向贴墙而立,一个人靠墙向北说话,无论说话声音多小,也可以使另一人听得清清楚楚,而且声音悠长,堪称奇趣,给人造成一种“天人感应”的神秘气氛。
为什么声音能够传播这么远呢?1.波面和波线任何振动状态①相同的点都组成一个个圆,这些圆叫作②波面,与波面垂直的线代表了波的③传播方向,叫作④波线。
2.惠更斯原理(1)内容:介质中任一波面上的各点,都可以看作可以发射⑤子波的波源,其后任意时刻,这些⑥子波在波前进方向的⑦包络面就是新的波面。
这就是惠更斯原理。
(2)应用:如果知道某时刻一列波的某个⑧波面的位置,还知道⑨波速,利用惠更斯原理可以得到下一时刻这个⑩波面的位置,从而确定波的传播方向。
还可以利用惠更斯原理说明平面波的传播,解释波的衍射。
(3)局限性:惠更斯原理只能解释波的传播方向,不能解释波的强度,所以无法说明衍射现象与狭缝或障碍物的大小的关系。
3.波的反射和折射(1)回声是声波的反射,利用惠更斯原理可以确定反射波的传播方向。
(2)波从一种介质进入另一种介质后传播方向发生偏折的现象叫作波的折射。
第3、4节电磁波谱电磁波的应用无线电波的发射、传播和接收1.在电磁波谱中波长由长到短的排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。
不同的电磁波,频率不同,特性不同,产生机理也不同。
2.要有效地发射电磁波必须具备两个条件:(1)开放电路,(2)足够高的振荡频率。
3.将要传递的信号加到载波上的过程叫调制,调制有调幅和调频两种。
对应学生用书P44电磁波谱电磁波的应用[自读教材·抓基础]1.电磁波谱按波长(或频率)的顺序把所有电磁波排列起来,称之为电磁波谱。
按照波长从长到短依次排列为:无线电波、红外线、可见光、紫外线、X射线、γ射线。
2.不同电磁波的比较波长、频率特点应用无线电波波长大于可见光许多自然过程也辐射无线电波广播和通讯,天体卫星研究红外线所有物体都会发射红外线,热物体的红外线辐射比冷物体强红外线摄影红外线遥感可见光复色光波长(红)――→大小小大(紫)频率⎭⎪⎬⎪⎫太空黑暗天空明亮――→原因没有大气,天空蓝色――→原因短波散射,傍晚阳光红色――→原因短波吸收紫外线能量较高灭菌消毒促进人体对钙的吸收,利用荧光效应防伪X射线对生命物质有较强作用,过量会引起病变,穿透本领强检查人体内部器官、零件内部缺陷γ射线能量很高,破坏生命物质治疗疾病探测金属部件内部缺陷[跟随名师·解疑难]1.电磁波的共性(1)它们在本质上都是电磁波,它们的行为服从相同的规律,各波段之间的区别并没有绝对的意义。
(2)都遵守公式v=λf,它们在真空中的传播速度都是c=3.0×108 m/s。
(3)它们的传播都不需要介质。
(4)它们都具有反射、折射、衍射和干涉的特性。
2.电磁波的个性(1)不同电磁波的频率或波长不同,表现出不同的特性,波长越长越容易产生干涉、衍射现象,波长越短穿透能力越强。
(2)同频率的电磁波,在不同介质中速度不同。
不同频率的电磁波,在同一种介质中传播时,频率越大折射率越大,速度越小。
小专题研究(三) 波的多解问题1.方向性不确定出现多解波总是由波源发出并由近及远地向前传播,波在介质中传播时,介质各质点的振动情况根据波的传播方向是可以确定的,反之亦然。
因此,根据题中的已知条件不能确定波的传播方向或者不能确定质点的振动方向,就会出现多解,然而同学们在解题中往往凭着主观臆断,先入为主地选定某一方向为波的传播方向或是质点的振动方向,这样就会漏掉一个相反方向的可能性解。
2.时间、距离不确定形成多解沿着波的传播方向,相隔一个波长的连续两个相邻的质点振动的步调是完全相同的;在时间上相隔一定周期的前后两个相邻时刻的波形图线是完全相同的,所以,当题中已知条件没有给定传播的时间(波传播的时间Δt 与周期T 之间的大小关系不确定)或是没有给定波的传播距离(波的传播距离Δs 与波长λ之间的大小关系不确定),就会出现多解现象。
同学们在解题时经常只分析传播时间Δt 小于T (或传播距离Δs 小于波长λ)的特解情况,从而造成特解代替通解的漏解现象。
3.两质点间关系不确定形成多解在波的传播方向上,如果两质点间距离不确定或相位之间关系不确定,会形成多解,若不会联想所有的可能性,就会出现漏解。
[例证] 一列简谐横波沿直线传播,在传播方向上有P 、Q 两个质点,它们相距8 m ,当t =0时,P 、Q 的位移恰好是正最大值,且P 、Q 之间只有一个波谷。
t =0.6 s 末时,P 、Q 两点正好都处在平衡位置,且P 、Q 之间只有一个波峰和一个波谷,且波峰距Q 点的距离第一次为λ4,试求:(1)波由P 传至Q ,波的周期; (2)波由Q 传到P ,波的速度;(3)波由Q 传到P ,从t =0时开始观察,哪些时刻P 、Q 间(P 、Q 除外)只有一个质点的位移大小等于振幅。
[解析] (1)由题意,t =0时的波形如图1(a)所示,t =0.6 s 时的波形如图(b)所示:图1若波从P 传向Q ,则t =34T ,从而得T =0.8 s 。
高中物理教案3一3教案
教学目标:学生能够理解物体内能和熵的概念,掌握热容和热传导的相关知识,同时能够应用这些知识解决实际问题。
教学重点:内能和熵的概念、热容和热传导的计算方法。
教学难点:内能和熵的概念的理解和应用。
教学准备:物理教科书、黑板、教学PPT、实验器材。
教学步骤:
一、导入(5分钟)
介绍热力学的基本概念,引入本节课的学习内容。
二、讲解内能和熵(15分钟)
1. 内能和熵的概念
2. 内能和熵的计算方法
3. 内能和熵的应用举例
三、讲解热容和热传导(20分钟)
1. 热容的概念和计算方法
2. 热传导的概念和计算方法
3. 热容和热传导的区别和联系
四、实验演示(15分钟)
进行一个与热容和热传导相关的实验演示,让学生亲自操作并观察实验现象。
五、课堂讨论(10分钟)
让学生分享自己的实验观察结果和解题过程,引导他们互相讨论,澄清疑惑。
六、总结与作业布置(5分钟)
总结本节课的重点内容,并布置相关作业,巩固学生的理解和应用能力。
教学反思:
本节课设计紧扣教学内容,通过理论讲解和实验演示相结合的方式,引导学生理解热力学
的基本概念,培养学生的实验操作能力和问题解决能力。
同时,通过课堂讨论和作业布置,巩固学生的学习成果,提高他们的综合素质。
高中物理必修3第四节教案
【教学内容】:波的性质
【教学目标】:
1. 了解波的定义和分类;
2. 掌握波的传播规律;
3. 能够区分机械波和电磁波。
【教学重点】:
1. 波的定义和分类;
2. 波的传播规律。
【教学难点】:
1. 区分机械波和电磁波。
【教学准备】:
1. 教学课件;
2. 实验器材:弹簧振子、弦波生成器、示波器等。
【教学过程】:
一、导入(5分钟)
通过引入动画或视频等形式,引发学生对波动的兴趣,引出今天学习的内容。
二、讲解(10分钟)
1. 波的定义和分类;
2. 波的传播规律。
三、实验(15分钟)
1. 利用弹簧振子和弦波生成器展示机械波的传播规律;
2. 利用示波器展示电磁波的传播规律。
(教师指导学生观察实验现象,引导学生总结实验结果)
四、讨论(10分钟)
学生分组讨论,探讨机械波和电磁波的区别和联系。
五、小结(5分钟)
总结本节课的重点内容,强调波的定义和传播规律。
【板书设计】:
波的性质
1. 定义和分类
2. 传播规律
3. 机械波 vs 电磁波
【作业布置】:
预习下节课内容,并完成相关习题。
【教学反思】:
本节课通过理论讲解、实验展示和讨论交流等多种方式,使学生全面认识了波的性质,达到了教学目标。
希望学生能在课后加强复习,深化对波的理解。
姓名,年级:时间:第3节简谐运动的回复力和能量1。
如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动.2.回复力是指将振动物体拉回到平衡位置的力,其方向总是指向平衡位置。
3.在简谐运动中,振动系统的机械能守恒,振幅越大,机械能就越大。
4.简谐运动中,在平衡位置处动能最大,势能最小,最大位移处动能为0,势能最大。
一、简谐运动的回复力1.简谐运动如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。
2.回复力使振动物体回到平衡位置的力。
3.回复力的方向总是指向平衡位置.4.回复力的表达式F=-kx。
即回复力与物体的位移大小成正比,“-”号表明回复力与位移方向始终相反,k是一个常数,由简谐运动系统决定。
二、简谐运动的能量1.振动系统(弹簧振子)的状态与能量的对应关系:弹簧振子运动的过程就是动能和势能互相转化的过程.(1)在最大位移处,势能最大,动能为零.(2)在平衡位置处,动能最大,势能最小.2.简谐运动的能量特点:在简谐运动中,振动系统的机械能守恒,而在实际运动中都有一定的能量损耗,因此简谐运动是一种理想化的模型.1.自主思考——判一判(1)回复力的方向总是与位移的方向相反.(√)(2)回复力的方向总是与速度的方向相反。
(×)(3)回复力的方向总是与加速度的方向相反。
(×)(4)水平弹簧振子运动到平衡位置时,回复力为零,因此能量一定为零。
(×)(5)回复力的大小与速度大小无关,速度增大时,回复力可能增大,也可能减小。
(×)2.合作探究—-议一议(1)简谐运动的回复力F=-kx中,k一定是弹簧的劲度系数吗?提示:不一定。
k是一个常数,由简谐运动系统决定。
对于一个特定的简谐运动系统来说k 是不变的,但这个系统不一定是弹簧振子,k也就不一定是劲度系数。
(2)在弹簧振子的运动过程中,弹性势能最大的位置有几个?动能最大的位置有几个?提示:在弹簧振子的运动过程中,弹性势能最大的位置有两个,分别对应于振子运动的最左端和最右端。
第3节单__摆1.单摆是一个理想化模型,在偏角很小的情况下,单摆做简谐运动。
单摆的回复力由重力沿圆弧切向的分力提供。
2.单摆的周期公式为:T=2π lg,此式仅在摆角小于5°时成立,单摆的周期由摆长l 和重力加速度g共同决定,与摆球质量无关。
3.由T=2π lg得g=4π2lT2,根据此式可求出某地的重力加速度。
对应学生用书P8单摆的运动1.定义把一根细线上端固定,下端拴一个小球,线的质量和球的大小可以忽略不计,这种装置叫做单摆。
2.单摆的回复力(1)回复力的来源:摆球的重力沿圆弧切线方向的分力。
(2)回复力的特点:在偏角很小时,单摆的回复力与它偏离平衡位置的位移成正比,方向总指向平衡位置。
3.运动规律单摆在偏角很小时做简谐运动,其振动图像遵循正弦函数规律。
[跟随名师·解疑难]1.单摆是一种理想模型,实际摆可视为单摆的要求是什么?(1)细线形变要求:细线的伸缩可以忽略。
(2)细线与小球质量要求:细线质量与小球质量相比可以忽略。
(3)小球密度要求:小球的密度较大。
(4)线长度要求:球的直径与线的长度相比可以忽略。
(5)受力要求:与小球受到的重力及线的拉力相比,空气对它的阻力可以忽略。
(6)摆角要求:单摆在摆动过程中要求摆角小于5°。
2.单摆做简谐运动的条件判断单摆是否做简谐运动,可分析摆球的受力情况,看回复力是否符合F =-kx 的特点,如图131所示。
图131(1)在任意位置P ,有向线段OP u u u r 为此时的位移x ,重力G 沿圆弧切线方向的分力G 1=G sinθ提供摆球以O 点为中心做往复运动的回复力。
(2)在摆角很小时,sin θ≈θ=xl ,G 1=G sin θ=mg lx ,G 1方向与摆球位移方向相反,所以有回复力F 回=G 1=-mgx l 。
令k =mgl,则F 回=-kx 。
因此,在摆角θ不超过5°时,单摆做简谐运动。
第4节波的衍射和干涉一、波的衍射1.定义:波绕过障碍物继续传播的现象。
2.两种衍射现象(1)在水波槽中,在波源的前方放一个障碍物,使波源振动产生水波。
当障碍物较大时波被阻挡,在靠近障碍物后面没有波,只是在障碍物较远处,波才稍微有些绕到“影子”区域里,如图12-4-1甲所示,虽然发生衍射现象,但不明显。
图12-4-1当障碍物较小时发现波能绕过障碍物继续前进,如同障碍物不存在一样,如图乙所示,衍射现象明显。
(2)在水波槽中,在波源前方放一个有孔的屏,使波源振动产生水波。
当孔较大时发现水波经过孔后在连接波源与孔的两边的两条直线所限制的区域里传播,如图丙所示。
当孔较小时发现孔后的整个区域里传播着以孔为中心的圆形波,如图丁所示,衍射现象明显。
3.发生明显衍射现象的条件只有当缝、孔的宽度或障碍物的尺寸跟波长相差不多,或者比波长更小时,才能观察到明显的衍射现象。
二、波的叠加1.波的叠加原理1.波绕过障碍物继续传播的现象叫做波的衍射。
2.发生明显衍射的条件:缝孔的宽度或障碍物的尺寸跟波长差不多,或者比波长小。
3.波的干涉是指频率相同的两列波叠加,使某些区域的振幅加大,某些区域的振幅减小。
几列波相遇时能够保持各自的运动状态,继续传播,在它们重叠的区域里,介质中的质点同时参与这几列波引起的振动,质点的位移等于这几列波单独传播时引起的位移的矢量和。
图12-4-2表示了分别向右、向左传播的两列波1和2在相遇区域内的叠加过程。
2.波的叠加原理是波具有独立传播性的必然结果,由于总位移是两个位移的矢量和,所以叠加区域的质点的位移可能增大,也可能减小。
两列同相波的叠加,振动加强,振幅增大。
(如图12-4-2所示)两列反相波的叠加,振动减弱,振幅减小。
(如图12-4-3所示)图12-4-2 图12-4-3三、波的干涉1.定义频率相同的两列波叠加时,某些区域的振幅加大、某些区域的振幅减小的现象。
2.稳定干涉条件(1)两列波的频率必须相同。
高中物理选修34教案
教学目标:
1. 了解光线的直线传播原理和规律;
2. 掌握光的直线传播的相关概念和术语;
3. 进一步理解光的反射和折射现象。
教学重点:
1. 光的直线传播的原理和规律;
2. 光的反射和折射现象。
教学难点:
1. 理解光的直线传播原理;
2. 掌握光的反射和折射规律。
教学准备:
1. 教材《物理》选修34;
2. 实验装置:反射和折射的实验装置;
3. 教学软件:相关光学模拟软件。
教学过程:
一、导入(5分钟)
教师通过引入平面镜反射和介绍光线传播的现象,激发学生对光的直线传播的兴趣,引入本节课的教学内容。
二、讲解(10分钟)
1. 讲解光线的直线传播规律,包括光的传播的方向规律和光速的变化规律;
2. 介绍光的反射和折射现象,引导学生理解这两个现象的解释和实际应用。
三、实验操作(15分钟)
学生分组进行平面镜反射和折射实验,观察和记录实验现象,探讨实验结果和总结实验规律。
四、小结(5分钟)
教师总结本节课的内容,强调光的直线传播原理和规律,以及反射和折射现象的重要性和应用。
五、作业布置(5分钟)
布置相关练习题,巩固学生对光的直线传播原理和实验规律的掌握,激发学生继续深入学习光学知识的兴趣。
教学反思:
通过本节课的教学,学生能够初步掌握光的直线传播的原理和规律,了解光的反射和折射现象的基本原理和应用。
同时,通过实验操作,学生能够加深对光学知识的理解和应用能力。
在未来的教学中,可以结合更多实验和案例,帮助学生更全面地理解光的传播规律和现象。
第三、四节 氢原子光谱 原子的能级结构对应学生用书页码1.原子的气体通电后可以发光并产生固定不变的光谱,这种光谱被称为原子光谱。
2.每种原子都有自己特定的原子光谱,不同的原子,其原子光谱不同,因而原子光谱被称为原子的指纹。
3.人们把一系列符合巴耳末公式的光谱线称为巴耳末系,其公式为1λ=R (122-1n 2)。
n =3,4,5……4.由于氢原子光谱是分立的,因此我们猜想原子内部的能量也是不连续的,并把此能量称为原子的能级。
5.氢原子的能级公式为E n =-Rhcn 2,n =1,2,3,其中E 1=-13.6_eV ,这个最低能级对应的状态称为基态,其他状态称为激发态。
6.处于激发态的氢原子是不稳定的,它会向较低的能级跃迁,跃迁时释放出来的能量以光子的形式向外辐射,辐射出来的能量等于两能级间的能量差。
7.巴耳末系是氢原子从n =3,4,5…等能级跃迁到n =2的能级时辐射出来的光谱。
对应学生用书页码1.原子光谱(1)概念:原子的气体通电后可以发光并产生固定不变的光谱,这种光谱被称之为原子光谱。
(2)规律:①每种原子都有自己特定的原子光谱。
②不同的原子,其原子光谱不同,因而,原子光谱被称为原子的“指纹”。
(3)应用:可以通过对光谱的分析鉴别不同的原子,确定物体的化学组成并发现新元素。
2.氢原子的光谱(1)巴耳末系:从氢气放电管可以获得氢原子的光谱,如图3-3-1所示,在可见光区域内,氢原子光谱有四条谱线,它们分别用符号H α、H β、H γ和H δ表示。
图3-3-11885年,巴耳末发现这四条光谱的波长可以用一个很简单的数学公式表示,这个公式叫巴耳末公式。
氢原子光谱在可见光区域和紫外区的14条谱线满足巴耳末公式1λ=R(122-1n2),n=3,4,5,…R称为里德伯常量,实验测得R=1.097×107m-1,巴耳末公式说明氢原子光谱的波长只能取分立值,不能取连续值。
人们把一系列符合巴耳末公式的光谱线统称为巴尔末系。
2019届高三物理二轮复习人教版选修3-4光的反射和折射导学案教学目标1.使学生驾驭三个概念——折射率、全反射临界角和光的色散:两个规律——反射定律、折射定律:两个作图法——反射、折射光路图和成像作图:一个思想——光路可逆思想.2.加强学生对概念、作图、规律的分析应用实力和在光线的动态中分析、推理解决几何光学问题的综合实力.教学重点、难点分析1.重点:反射定律,平面镜成像作图法:折射定律,折射率,全反射和临界角.2.难点:折射定律,全反射和临界角:光的色散.教学过程设计老师活动我们复习几何光学,关于光的反射和折射部分.1.平面镜对光线的限制作用结论:平面镜对光线的作用是:只变更光束的传播方向,不变更光束的散聚性质.两个平面镜对光线的限制作用如何呢?学生活动学生探讨:一个平面镜对光线的限制作用.(1)平面镜对光线有反射作用,反射光与入射光遵循反射定律.(2)一束平行光的状况:入射光方向不变,平面镜转动α角,反射光转动2α角.(3)一束发散光的状况:经平面镜反射后,仍是发散光,且发散程度不变.[例1]若使一束光先后经两平面镜反射后,反射光线与入射光线垂直,这两平面镜应如何放置?我们先探讨一般状况:如图4-1-1所示,两平面镜的夹角为θ,光线经两平面镜反射后,反射光线与入射光线的夹角为α,探讨α与θ的关系.学生解答,作出两平面镜的法线,可以证明:α=180°-2θ探讨:(1)一般状况θ<90°,α=180°-2θ,若θ=45°,则α=90°,(反射光与入射光垂直)若θ=90°,则α=0°(反射光与入射光平行)若θ>90°,则α=2θ-180°(2)两平面镜的夹角确定反射光与入射光的夹角,与这两平面镜的放置位置(这两平面镜是否接触和如何放置)和是否转动无关.结论:两平面镜的夹角确定了对光线方向的限制.一个重要的应用:直角镜使光线按原路返回.2.平面镜的成像特点作平面镜成像光路图的技巧.借助平面镜成像的特点完成光路.探讨:平面镜成等大、正立的虚像,像与物关于镜面对称.先依据平面镜成像有对称性的特点,确定像的位置,再补画入射线和反射线.实际光线画实线并加箭头,镜后的反向延长线要画虚线,虚线不加箭头.如图4-1-2所示,两平面镜夹肯定角度,光线a、b是一点光源发出经两平面镜反射后的两条光线.在图中确定点光源的位置.探讨并叙述作图的过程,如图4-1-3所示.a、b光线的反向延长线交于一点,这一点为点光源在平面镜N中的像S″,依据平面镜的成像特点,延长镜N,找到S″的对称点S′,S′是S″的物,是点光源S在平面镜M中的像,再找到S′对平面镜M的对称点S,从而确定了点光源S的位置.完成光路.上面的问题是两个平面镜的二次成像问题,S′是物S在镜M中的虚像,S″是虚像S′在镜N中再次成的虚像.依据光路可逆原理,假如光线a、b的方向反过来,那么会如何呢?S为经过两次反射后形成的实像.还有一种类型的题,是探讨通过平面镜看到的范围.探讨,依据光的可逆性,经两次反射两束光会聚到一点S,由实像定义,S应为实像.[例2]如图4-1-3所示,AB表示始终立的平面镜,P1P2是水平放置的米尺(有刻度的一面朝着平面镜),MN是屏,三者相互平行,屏MN上的ab表示一条竖直的缝(即a、b之间是透光的).某人眼睛紧贴米尺上的小孔S(其位置见图),可通过平面镜看到米尺的一部分刻度.试在本题的图上用三角板作图求出可看到的部位,并依次写出作图步骤.探讨并作图.作图步骤可如下:(图4-1-5所示)①分别作米尺P1P2、屏Ma、bN对于平面镜AB的对称线(即它们对于平面镜AB的像)P′1P′2、 M′a′、b′N′.②连接S、 a并延长交P′1P′2于某一点,作这一点对于AB在P1P2上的对称点,即为通过平面镜看到米尺刻度的左端.③连接S、b′并延长交P′1P′2于某一点,作这一点对于AB在P1P2上的对称点,即为通过平面镜看到米尺刻度的右端.探讨:(1)还可以用更简洁的方法,即作出眼睛S的像S′,再由S′来确定看到的范围.(2)作出屏和尺的像,人眼看到像的范围即为人眼看到尺的范围.本题的解题思路是什么?边界光线如何确定?两种思路:正向思维,尺发光经平面镜反射进入眼睛的范围即为眼睛所能看到的范围:逆向思维,眼睛相当于发光点,其光照耀到尺上的范围即为能看到的范围.确定边界光线的基本思想是:两点确定一条直线.在匀称介质中光是沿直线传播的,在非匀称介质中,光线发生弯曲,但人眼的感觉光仍是沿直线传播的.所以确定尺和屏的像,由两点一线来确定边界光线.3.光的折射定律复习折射定律和折射率.折射定律:(1)折射光线在入射光线和法线所在的平面上,折射光线和入射光线分居在法线的两侧:(2)入射角的正弦跟折射角的正折射率:(1)光从真空射入某种介质时,入射角的正弦跟折射角这种介质中的速度v之比,n= c/v.探讨平行玻璃板的光路:如图4-1-6所示,平行玻璃板的厚度为d,折射率为n,光线AO以入射角i射到平行玻璃板的一个界面上.(1)画出光路图,(2)证明出射光线与入射光线平行,(3)计算出射光线相对入射光线的侧移量.探讨:作光路图并证明、计算.(1)作光路图,如图4-1-7.(2)证明从略.(3)计算侧移量δ的大小:由几何关系可得δ=OO′·sin(i-r)[例3] (2019年全国高考)在折射率为n、厚度为d的玻璃平板上方的空气中有一点光源S,从S动身的光线SA以角度θ入射到玻璃板上表面,经过玻璃板后,从下表面射出,如图4-1-8所示,若沿此光线传播的光从光源到玻璃板上表面的传播时间与在玻璃板中的传播时间相等,点光源S到玻璃板上表面的垂直距离l应是多少?探讨:(1)经平行玻璃板两次折射后,出射光线与入射光线平行;若是发光点S发出的两束光,经平行板折射后,发散程度不变,反向延长线交于一点,成一正立、等大的虚像.也就是说通常我们透过平板玻璃看到的是景物的虚像.(2)玻璃板的折射率n和入射角i肯定时,侧移量δ的大小和玻璃板的厚度d成正比.当厚度不大时,可以忽视侧移量δ的大小.(3)侧移量δ的大小还和介质的折射率n及入射角i有关.计算:首先要画出光路图,可由折射定律求出折射角,再结合n=c/v和几何关系即可求解.解答:画出光路图,设在玻璃中的折射角为r,光从光源到玻璃板总结:解几何光学问题,首先要正确画出光路图,探讨由光路图反映出的线段和角的关系,结合概念和规律求解.4.全反射问题要明确全反射临界角的概念和发生全反射的条件.复习探讨:全反射临界角:(1)光从光密介质射向光疏介质,当折射角变为90°时的入射角叫临界角;(2)光从折射率为n的介质射向真空时,产生全反射的条件:(1)光必需从光密介质射向光疏介质;(2)入射角必需等于或大于临界角.[例4]某三棱镜的横截面是始终角三角形,如图4-1-9所示,∠A=90°,∠B=30°,∠C=60°,棱镜材料的折射率为n,底面BC涂黑,入射光沿平行于底面BC面,经AB面和AC面折射后出射.求(1)出射光线与入射光线延长线间的夹角δ;(2)为使上述入射光线能从AC面出射,折射率n的最大值为多少?解答:画出光路图如图4-1-10所示.(1)因为入射光平行于BC面,i=60°由几何关系可得:a+β=90°(2)要使有光线从AC面射出,应有sinr≤1:考纲中要求考生驾驭“全反射和临界角”,是B档要求,但不要求进行临界角的计算.本题第一问主要考查折射定律和运用数学手段处理物理问题的实力,要正确作出光路图和弄清几何关系;其次问是考查全反射和临界角的概念及综合分析的实力,本题是探讨折射角≤90°,既应用了全反射临界角的概念,又避开了临界角的计算.5.光的色散白光通过三棱镜,要发生色散,红光偏折角最小,紫光偏折角最大.偏折角从小到大的依次是:红、橙、黄、绿、蓝、紫.我们总结一下从红到紫的依次与哪些物理量变更的依次一样?探讨:从红到紫的方向是:(1)同一介质对不同色光的折射率渐渐增大.(2)在同一介质中不同色光的传播速度渐渐减小.(3)光的频率渐渐增大.(4)在真空中的波长渐渐减小.(5)光子的能量渐渐增大.[例5] 已知水对红光的折射率为4/3,红光在水中的波长与绿光在真空中的波长相等,求红光与绿光在真空中的波长比和在水中的频率比.解答:设光从真空射入水中,在真空中的入射角为i,在水中的折在介质中的速率),和光的波长、频率关系公式v=λf,由于同一种光波长,λ为光在介质中的波长)折射定律是对同一种光来说的,要求两种不同频率的光的波长比和频率比,就须要对折射定律进行扩展,对之给予新的含义.6.试验:测玻璃的折射率探讨并设计试验.某同学的设计:测量一厚度匀称的圆柱形玻璃的折射率.先在一张白纸上作出一与圆形玻璃同半径的圆,圆心为O,将圆形玻璃平放在白纸上,使其边界与所画的圆重合.通过玻璃视察到如图4-1-11所示的P1、P2、P3、P4四个大头针恰好在同始终线上,求该圆柱形玻璃的折射率.用插针法测透亮介质的折射率,方法简洁易行,测量结果精确.关键是做好光路图,确定入射光线和在介质中折射光线.在进行计算测量入射角和折射角时,可以干脆用量角器,也可以将入射角和折射角的正弦值转化成直角三角形中的边长比,用边长比的形式表示折射率.请同学们仿照测玻璃砖折射率的试验,自行设计一个测量玻璃的折射率的试验.解答:P1、P2的连线与圆交于A点,P3、P4的连线与圆交于B点,两线延长相交于O′点,连接OO′,交圆于C点.OO′是两光线的对称轴,连接A、 C(或B、 C),过A点作法线,即得到在空气中的入射角i和在玻璃中的折射角r,如图4-1-12所示.或过圆心O点分别做AO′的垂线垂足为D,AC的垂线垂足为E,。
教科版科学六年级上册第三单元《3-4 改变运输的车轮》教学设计任务目标工具是否完成任务所用时间用力情况水溢出量搬运重物注意:水溢出量用(较多/较少)表示。
活动意图说明:通过两个活动4个任务,让学生在实地测试中感受车轮带给我们的便利。
环节三:拓展(指向目标3)学生活动4:(生活中的杠杆)1.说一说。
观察书本上的三种车轮,它们存在着哪些区别?2.想一想,说一说。
生活中轮轴的应有也有很多,同学们有哪些例子?教师活动41.观察书本上的三种车轮,它们存在着哪些区别?2.教师定义轮轴:车轮是一种轮轴,轮轴由轮和轴组成,生活中轮轴的应有也有很多,如:水龙头、扳手、门等。
3. 提问:生活中轮轴的应有也有很多,同学们有哪些例子?活动意图说明:通过拓展活动,让学生发现车轮的变化,并能够知道这些变化都是科技不断进步所引发的。
环节四:课末练习(根据教学活动选择使用)(指向目标1,2,3)学生活动51.选一选(1)在比较推车和平板运输重物的效果时,为了使实验更加公平,以下做法正确的是()。
A.推车走直线,平板走曲线B.推车运输的重物比平板上的重C.两位推车的同学一位强壮,一位瘦弱D.两种工具同时从起点出发(2)以下机械中,属于轮轴的是()。
A.天平B.剪刀C.扳手D.螺丝刀(3)下列做法不能让运输过程更加省力的做法是()。
A.用带轮子的推车运输B.运输轻一点的物体C.用平板进行运输D.在光滑的场地上推车2.能力提升(1)轮轴是由轮和轴组成的可以共同转动的机械。
标出下列工具的“轮”和“轴”教师活动51.鼓励学生独立完成。
2.全批全改。
第三单元《3-4 改变运输的车轮》导学案标成任务时间量搬运重物注意:水溢出量用(较多/较少)表示。
三、拓展学生活动4:(生活中的杠杆)1.说一说。
观察书本上的三种车轮,它们存在着哪些区别?2.想一想,说一说。
生活中轮轴的应有也有很多,同学们有哪些例子?四、随堂练习1.选一选(1)在比较推车和平板运输重物的效果时,为了使实验更加公平,以下做法正确的是()。
初中物理1到4单元教案一、教学目标1. 了解和掌握物理学的基本概念和基本规律。
2. 培养学生的观察能力、实验能力、思维能力、分析问题和解决问题的能力。
3. 激发学生对物理学的兴趣,培养学生的创新意识和实践能力。
二、教学内容第一单元:声现象1. 声音的产生和传播2. 乐音和噪音3. 声音的利用第二单元:光现象1. 光的传播2. 反射和折射3. 光的色散4. 眼睛和视觉第三单元:物态变化1. 温度和温度计2. 熔化、凝固、汽化、液化、升华、凝华3. 生活中的热现象第四单元:力学基础1. 牛顿三定律2. 重力、弹力、摩擦力3. 压强和浮力4. 功和能量三、教学方法1. 采用问题驱动法,引导学生主动探究问题,培养学生的独立思考能力。
2. 利用实验、观察、讨论等方法,培养学生的动手能力和实验操作能力。
3. 运用多媒体辅助教学,提高学生的学习兴趣和效果。
4. 采用分组合作学习,培养学生的团队协作能力和沟通能力。
四、教学安排1. 每单元安排4-6课时,具体根据学生的实际情况和教学进度进行调整。
2. 每个单元结束后进行一次小测验,检查学生的学习效果。
3. 每个单元安排一次实验课,让学生亲身体验和实践。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况、作业完成情况等。
2. 考试成绩:通过单元测试、期中考试等评价学生的掌握程度。
3. 实验报告:评价学生在实验课上的动手能力和实验报告的撰写水平。
4. 学生反馈:了解学生对教学内容、教学方法的满意度和建议。
六、教学资源1. 教材:人教版《初中物理》2. 实验器材:声现象、光现象、物态变化、力学基础等相关实验器材。
3. 多媒体课件:声现象、光现象、物态变化、力学基础等相关课件。
4. 网络资源:相关物理学网站、视频等。
七、教学反思1. 定期总结教学过程中的优点和不足,不断改进教学方法。
2. 根据学生的反馈,调整教学内容和要求,提高教学效果。
3. 关注学生的个体差异,因材施教,使每个学生都能在物理学上取得良好的成绩。
小专题研究(五) 测定水的折射率的四种方法1.成像法原理:利用水面的反射成像和水面的折射成像。
方法:如图1所示,在一盛满水的烧杯中,紧挨杯口竖直插一直尺,在直尺的对面观察水面,能同时看到直尺在水中的部分和露出水面部分的像,若从点P看到直尺在水下最低点的刻度B的像B′(折射成像)恰好跟直尺在水面上刻度A的像A′(反射成像)重合,读出AC、BC的长,量出烧杯内径d,即可求出水的折射率:n=BC2+d2AC2+d2图12.插针法原理:利用光的折射定律。
方法:如图2所示,取一方木板,在板上画出互相垂直的两条线AB、MN,从它们的交点O处画直线OP(使∠PON<45°),在直线OP上P、Q两点竖直插两枚大头针。
把木板竖直插入水中,使AB与水面相平,MN与水面垂直。
在水面上观察,调整视线使P的像被Q的像挡住,再在木板S、T处各插一枚大针,使S挡住Q、P的像,T挡住S及Q、P的像。
从水中取出木板,画出直线ST,量出图中的角i、r,则水的折射率n=sin i/sin r。
图23.视深法原理:利用视深公式h′=h/n。
方法:在一盛水的烧杯底部放一粒绿豆,在水面上方吊一根针,如图3所示。
调节针的位置,直到针尖在水中的像与看到的绿豆重合,测出针尖距水面距离即为杯中水的视深h′,再测出水的实际深度h ,则水的折射率n =h /h ′。
图34.全反射法原理:利用全反射现象。
方法:在一盛满水的大玻璃缸下面放一发光电珠,如图4所示。
在水面上观察,看到一圆的发光面,量出发光面直径D 及水深h ,则水的折射率n =D 2+4h 2D。
图4[例证] 如图5所示,在水面上放置一个足够大的遮光板,板上有一个半径为r 的圆孔,圆心的正上方h 处放一个点光源S ,在水面下深H 处的底部形成半径为R 的圆形光亮区域(图中未画出)。
测得r =8 cm ,h =6 cm ,H =24 cm ,R =26 cm ,求水的折射率。
图5[解析] 根据光路图,可知sin θ1=r r 2+h 2=0.8,sin θ2=R -rR -r 2+H2=0.6 由折射定律得:n =sin θ1sin θ2得n =43。
第4节相对论的速度变换公式__质能关系对应学生用书P79相对论的速度变换相对论认为,如果一列沿平直轨道高速运行的火车对地面的速度为 u ,车上的人以速度v ′沿着火车前进的方向相对火车运动,那么这个人相对地面的速度v 为v =u +v ′1+uv ′c2。
理解这个公式时请注意:(1)如果车上的人的运动方向与火车的运动方向相反,那么v ′取负值。
(2)如果u ≪c ,v ′≪c ,这时v ′uc 2可忽略不计,这时相对论的速度合成公式可近似变为v =v ′+u 。
(3)如果v ′与u 的方向垂直或成其他角度时,情况比较复杂,上式不适用。
[学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(小试身手)在高速运动的火车上,设车对地面的速度为v ,车上的人以速度u ′沿着火车前进的方向相对火车运动,那么他相对地面的速度u 与u ′+v 的关系是( )1.相对论速度变换公式v =u +v ′1+u v ′c2,当u ≪c ,v ′≪c 时,v =u +v ′,满足经典力学速度合成关系。
2.物体的质量与能量的对应关系:E =mc 2。
3.物体运动质量m 与静质量m 0的关系:m =m 01-(v c )2。
4.运动物体的相对论动能表达式:E k =m 0c 2[11-(v c)2-1]A .u =u ′+vB .u <u ′+vC .u >u ′+vD .以上均不正确解析:选B 按照经典的时空观,u =u ′+v ,而实际上人对地面的速度按照相对论速度公式计算,u =u ′+v1+u ′v c2,因此u 比u ′与v 之和要小,但只有在u ′和v 的大小接近光速时才能观察此差别。
相对论质量和能量[自读教材·抓基础]1.质能关系式E =mc 2。
式中m 是物体的质量,E 是它具有的能量。
由此可见,物体质量越大,其蕴含的能量越大。
能量与质量成正比。
2.相对论质量m =m 01-v 2c2(m 0指静质量);与静质量对应的静能量为E 0=m 0c 2。