计量经济学
- 格式:docx
- 大小:18.23 KB
- 文档页数:4
名词解释1,计量经济学;计量经济学是以经济理论和经济数据的事实为依据,运用数学、统计学的方法,借助计算机为辅助工具,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
2,虚拟变量数据;虚拟变量数据是人们构造的,用来表征政策定性事实的数据。
3,计量经济学检验;计量经济学检验主要是检验模型是否符合计量经济学方法的基本假定。
4,回归平方和;回归平方和用ESS表示,是被解释变量的样本估计值与其平均值得离差平方和5,拟合优度检验;拟合优度检验是指检验模型对样本观测值的拟合程度,用R²表示,该值越接近1,模型对样本观测值拟合得越好。
6,总体回归函数;将总体被解释变量的条件期望表现为解释变量的函数,这个函数称为总体回归函数。
7,样本回归函数;是指被解释变量的样本条件均值也是随解释变量的变化而又规律的变化,如果把被解释变量的样本均值比奥斯为解释变量的某种函数,称这个函数为样本回归函数8,回归方程的显著性检验(F检验);是指对模型中北解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。
9,回归参数的显著性检验(t检验);是指对其他解释变量不变时,某个回归系数对应的解释变量是否对被解释变量有显著影响做出推断。
10, 多重共线性;是指解释变量之间精确的线性关系和解释变量之间近似的线性关系。
11, 完全的多重共线性;是指解释变量的数据矩阵中,至少有一个列向量可以用其余的列向量线性表示。
12,不完全的多重共线性;指对解释变量k X X X ,,,32 ,存在不全为0的数k λλλλ,,,,321 ,使得 033221=+++++i ki k i i v X X X λλλλ ),,2,1(n i =,其中,i v 为解释变量。
13,异方差性;是指随即变量的方差不是确定的常数,即被解释变量观测值的分散程度随解释变量的变化而变化。
14,序列相关性;指总体回归模型的随机误差项之间存在相关关系。
15.滞后效应;是指由于经济活动的惯性,一个经济指标以前的变化态势往往会延续到本期,从而形成被解释变量的当期变化同自身过去取值水平相关的情形。
计量经济学计量经济学是:指通过计量工具来研究具有统计意义的经济问题的经济学科。
计量经济学的工具:数学(如优化理论,微分方程),概率与统计分析,计算机及其应用软件,数据分析等学科的相关知识。
计量经济学的研究对象:经济问题,包括各种经济现象。
经量经济学的研究目的:对所关心的经济问题做适当的经济预测,政策评估,评价或建议1.计量经济学的发展历程:经济学的一个分支学科 1926年挪威经济学家R.Frish 提出Econometrics1930年成立世界计量经济学会 1933年创刊《Econometrica 》20世纪40、50年代的大发展和60年代的扩张20世纪70年代以来非经典(现代)计量经济学的发展2.计量经济学模型的步骤:(1)、理论模型的设计 (2)、样本数据的收集 (3)、模型参数的估计(4)、模型的检验 (5)、计量经济学模型成功的三要素:理论,数据,方法3.随机误差项主要包括下列因素的影响:1)在解释变量中被忽略的因素的影响;2)变量观测值的观测误差的影响;3)模型关系的设定误差的影响; 4)其它随机因素的影响。
4.产生并设计随机误差项的主要原因:(1)理论的含糊性;2)数据的欠缺;3)节省原则。
5.参数的普通最小二乘估计(OLS )给定一组样本观测值(Xi, Yi )(i=1,2,…n )要求样本回归函数尽可能好地拟合这组值.普通最小二乘法(Ordinary least squares, OLS )给出的判断标准是:二者之差的平方和最小。
由于参数的估计结果是通过最小二乘法得到的,故称为普通最小二乘估计量。
6.最小二乘估计量的性质:一个用于考察总体的估计量,可从如下几个方面考察其优劣性:(1)线性性,即它是否是另一随机变量的线性函数;(2)无偏性,即它的均值或期望值是否等于总体的真实值;(3)有效性,即它是否在所有线性无偏估计量中具有最小方差。
这三个准则也称作估计量的小样本性质。
拥有这类性质的估计量称为最佳线性无偏估计量。
计量经济学重点第一章经济计量学的特征及研究范围1、经济计量学的定义P11经济计量学是利用经济理论、数学、统计推断等工具对经济现象进行分析的一门社会科学;2经济计量学运用数理统计学分析经济数据,对构建于数理经济学基础之上的模型进行实证分析,并得出数值结果;2、学习计量经济学的目的计量经济学与其它学科的区别P1-P21计量经济学与经济理论经济理论:提出的命题和假说,多以定性描述为主计量经济学:依据观测或试验,对大多数经济理论给出经验解释,进行数值估计2计量经济学与数理经济学数理经济学:主要是用数学形式或方程或模型描述经济理论计量经济学:采用数理经济学家提出的数学模型,把这些数学模型转换成可以用于经验验证的形式3计量经济学与经济统计学经济统计学:涉及经济数据的收集、处理、绘图、制表计量经济学:运用数据验证结论3、进行经济计量的分析步骤P2-P31建立一个理论假说2收集数据3设定数学模型4设立统计或经济计量模型5估计经济计量模型参数6核查模型的适用性:模型设定检验7检验源自模型的假设8利用模型进行预测4、用于实证分析的三类数据P3-P41时间序列数据:按时间跨度收集到的定性数据、定量数据;2截面数据:一个或多个变量在某一时点上的数据集合;3合并数据:包括时间序列数据和截面数据;一类特殊的合并数据—面板数据纵向数据、微观面板数据:同一个横截面单位的跨期调查数据第二章线性回归的基本思想:双变量模型1、回归分析P18用于研究一个变量称为被解释变量或应变量与另一个或多个变量称为解释变量或自变量之间的关系2、回归分析的目的P18-P191根据自变量的取值,估计应变量的均值;2检验建立在经济理论基础上的假设;3根据样本外自变量的取值,预测应变量的均值;4可同时进行上述各项分析;3、总体回归函数PRFP19-P221概念:反映了被解释变量的均值同一个或多个解释变量之间的关系2表达式:①确定/非随机总体回归函数:EY|Xi =B1+B2XiB1:截距;B2:斜率从总体上表明了单个Y同解释变量和随机干扰项之间的关系②随机/统计总体回归函数:Yi =B1+B2Xi+μiμi:随机扰动项随机误差项、噪声B1+B2Xi:系统/确定性部分μi:非系统/随机部分4、随机误差项P221定义:代表了与被解释变量Y有关但未被纳入模型变量的影响;每一个随机误差项对于Y的影响是非常小的,且是随机的;随机误差项的均值为02性质①误差项代表了未纳入模型变量的影响;②反映人类行为的内在随机性;③代表了度量误差;④反映了模型的次要因素,使得模型描述尽可能简单;5、样本回归函数P22-P251概念:是总体回归函数的近似2表达式①确定/非随机样本回归函数:i =b1+b2Xib 1:截距;b2:斜率②随机/统计样本回归函数:Yi =b1+b2Xi+eiei :残差项残差,ei= Yi-iB1+B2Xi:系统/确定性部分μ:非系统/随机部分6、条件期望与非条件期望1EY|Xi条件期望:在解释变量X给定条件下Y的条件期望,可以通过X给定条件下的条件概率分布得到;2非条件期望:在不考虑其他随机变量取值情况时,某个随机变量的期望值;它可以通过该随机变量的非条件分布或边缘分布得到;6、线性回归模型回归参数为线性B的模型7、回归系数/回归参数线性回归模型中的B参数8、回归系数的估计量bs说明了如何通过样本数据来估计回归系数Bs,计算出的回归系数的值称为样本回归估计值9、随机总体回归函数与随机样本回归函数的关系1随机样本回归函数:从所抽取样本的角度说明了被解释变量Yi 同解释变量Xi及残差ei之间的关系;2随机总体回归函数:从总体的角度说明了被解释变量Yi 同解释变量Xi及随机误差项μ之间的关系;10、关于线性回归的两种解释P25-P261变量线性:应变量的条件均值是自变量的线性函数此解释下的非线性回归:EY= B1+B2Xi2;EY= B1+B2×1/Xi2参数线性:应变量的条件均值是参数B的线性函数此解释下的非线性回归:EY= B1+B22Xi线性回归在教材中指的是参数线性的回归11、多元线性回归的表达式P261确定/非随机总体回归函数:EX=B1+B2X2i+B3X3i+B4X4i2随机/统计总体回归函数:Yi = B1+B2X2i+B3X3i+B4X4i+μi12、最小二乘法OLS法P26-P281最小二乘以残差被解释变量的实际值同拟合值之间的差平方和最小的原则对回归模型中的系数进行估计的方法;1表达式2重要性质①用OLS法得出的样本回归线经过样本均值点:;②残差的均值总为0;③对残值与解释变量的积求和,其值为0,即这两个变量不相关:④对残差与i 估计的Yi的积求和,其值为0,即第三章双变量模型:假设检验1、古典线性回归模型的假设P41-P441回归模型是参数线性的,但不一定是变量线性的:Yi =B1+B2Xi+μi2解释变量X与扰动误差项μ不相关3给定Xi ,扰动项的期望或均值为0:Eμ| Xi=04μi 的方差为常数,或同方差:varμi=σ2每个Y值以相同的方差分布在其均值周围,非这种情况为异方差5无自相关假定:两个误差项之间不相关,covμi ,μj=06回归模型是正确假定的:实证分析的模型不存在设定偏差或设定误差2、OLS估计量运用最小二乘法计算出的总体回归参数的估计量3、普通最小二乘估计量的方差与标准误P44-P461的方差与标准误①方差:②标准误:2的方差与标准误①方差:②标准差:3的计算公式n-2为自由度:独立观察值的个数4:回归标准误,常用于度量估计回归线的拟合优度,值越小,Y的回归值越接近根据回归模型得到的估计值4、OLS估计量的性质P461b1和b2是线性估计量:它们是随机变量Y的线性函数2b1和b2是无偏估计量:Eb1=B1,Eb2=B23Eσ^2=σ^2:误差方差的OLS估计量是无偏的4b 1和b 2是有效估计量:varb 1小于B 1的任意一个线性无偏估计量的方差,varb 2小于B 2的任意一个线性无偏估计量的方差 5、OLS 估计量的抽样分布或概率分布P47-P481新加的假设:在总体回归函数Yi=B 1+B 2X i +μi 中,误差项μi 服从均值为0,方差为σ^2的正态分布:μi ~N0,σ^2 2OLS 估计量服从的分布情况:b 1~NB 1,σ2b1 b 2~NB 2,σ2b26、假设检验P48-P53 1使用公式近似2方法①置信区间法②显着性检验法:对统计假设的检验过程 3几个相关检验①t 检验法:基于t 分布的统计假设检验过程 ②双边检验:备择假设是双边假设的检验 ③单边检验:备择假设是单边假设的检验 7、判定系数r 2P53-P56 1重要公式:TSS=ESS+RSS①总平方和TSS=:真实Y 值围绕其均值的总变异;②解释平方和ESS=:估计的Y值围绕其均值=的变异,也称为回归平方和由解释变量解释的部分③残差平方和RSS=:Y变异未被解释的部分2r2判定系数的定义:度量回归线的拟合程度回归模型对Y变异的解释比例/百分比3r2的性质①非负性②0≤r2≤14r2的计算公式5r的计算公式8、同方差性方差相同9、异方差性方差不同10、BLUE最佳线性无偏估计量,即该估计量是无偏估计量,且在所有的无偏估计量中方差最小11、统计显着拒绝零假设的简称第四章多元回归:估计与假设检验1、三变量线性回归模型EYi =B1+B2Xt+ B3X3tY i =B1+B2X2t+ B3X3t+μi2、偏回归系数B2,B3:1B2:在X3保持不变的情况下,X2单位变动引起Y均值EY的变动量2B3:在X2保持不变的情况下,X3单位变动引起Y均值EY的变动量3、多元线性回归模型的若干假定P73-P74 1回归模型是参数线性的,并且是正确设定的2X2,X3与扰动误差项μ不相关①X2,X3非随机:自动满足②X2,X3随机:必须独立同分布于误差项μ3误差项的期望或均值为0:Eμi=04同方差假定:varμi=σ25误差项μi ,μi无自相关:两个误差项之间不相关,covμi,μji≠j6解释变量X2和X3之间不存在完全共线性,即两个解释变量之间无严格的线性关系X2不能表示为另一变量X3的线性函数7随机误差μ服从均值为0,同方差为σ^2的正态分布:μi~N0,σ2 4、多重共线性问题1完全共线性:解释变量之间存在的精确的线性关系2完全多重共线性:解释变量之间存在着多个精确的线性关系5、多元回归函数的估计P74-P756、OLS估计量的方差与标准误P75-P761b1的方差与标准误2b1的方差与标准误3b3的方差与标准误7、多元判定系数P76-P778、多元回归的假设检验P78 方法类似于第三章9、检验联合假设P80-P811联合假设:H0:B2=B3=0H:R2=0多元回归的总体显着性检验2三变量回归模型的方差分析表2F分布公式10、F与R2之间的重要关系P82-P83 1关系式2R2形式的方差分析表11、设定误差P84会导致模型中遗漏相关变量12、校正判定系数P84-P851作用衡量了解释变量能解释的离差占被解释变量总离差的比例2公式3性质①如果k>1,则≤R2,即随着模型中解释变量个数的增加,校正判定系数越来越小于非校正判定系数②虽然未校正判定系数R2总为正,但校正判定系数可能为负13、受限最小二乘法P86-P871受限模型:B2=B3=02非受限模型:包含了所有相关变量3受限最小二乘法:对受限模型用OLS估计参数4非受限最小二乘法:对非受限模型用OLS估计参数5判定对模型施加限制是否有效的F分布公式14、显着性检验1单个多元回归系数的显着性检验①提出零假设和备择假设;②选择适当的显着性水平;③在零假设为真的情况下,计算t统计量;④将t统计量的绝对值|t|同相应自由度和显着性水平下的临界值相比较;⑤如果t统计量大于临界值,则拒绝零假设;该步骤中务必要使用合适的单边或双边检验;2所有偏斜率系数的显着性检验①零假设:H0:B2=B3=...=Bk=0,即所有的偏回归系数均为0;②备择假设:至少一个偏回归系数不为0;③运用方差分析和F检验;④如果F统计量的值大于相应显着性水平下的临界值,拒绝零假设,否则接受;⑤3在1和2中可以不事先选择好显着性水平,只需得到相应统计量的p值,如果p 值足够小,我们就可以拒绝零假设;第五章回归模型的函数形式1、不同的函数形式P121模型形式斜率强性线性双对数对数—线性线性—对数倒数逆对数2、多元对数线性回归模型P104-P1073、线性趋势模型P1104、多项式回归模型P116-P1175、过原点的回归P1186、标准化变量的回归P120第六章虚拟变量回归模型1、虚拟变量P133-P134因变量受到一些定性变量的影响,这类定性变量称为虚拟变量,用D表示虚拟变量,虚拟变量的取值通常为0和12、虚拟变量陷阱P136引入的虚拟变量个数应该比研究的类别少一个,否则就会造成完全多重共线,即通常说的虚拟变量陷阱3、虚拟变量回归模型的类型包含一个定量变量、一个定性变量的回归模型1只影响截距加法模型2只影响斜率乘法模型3同时影响截距与斜率混合模型4、交互效应P142:交互作用虚拟变量5、分类变量和定性变量这类变量的取值不是一般的数据数值变量或定量变量,它们通常代表所研究的对象是否具有的某种特征;6、方差分析模型ANOVA解释变量仅包含定型变量或虚拟变量的回归模型;7、协方差分析模型ANOCVA回归模型中的解释变量有些是线性的,有些是定量的;8、差别截距虚拟变量包含此变量的模型能够分辨被解释变量的均值在不同类别之间是否相同; 9、差别斜率虚拟变量包含此变量的模型能够分辨不同类别之间被解释变量均值变化率的变化范围第七章模型选择:标准与检验1、好的模型具有的性质P164-P1651简约性:模型应尽可能简单;2可识别性:每个参数只有一个估计值;3拟合优度:用模型中所包含的解释变量尽可能地解释应变量的变化;4理论一致性:构建模型时,必须有一定的理论基础;5预测能力:选择理论预测与实践吻合的模型;2、产生设定误差的原因1研究者对所研究问题的相关理论了解不深2研究者没有关注本领域前期的研究成果3研究者在研究中缺乏相关数据4数据测量时的误差3、设定误差的类型P1651遗漏相关变量:“过低拟合”模型P165-P168实际模型:估计模型:后果:①如果遗漏变量X3与模型中的变量X2相关,则a1和a2是有偏的;也就是说,其均值或期望值与真实值不一致;②a1和a2也是不一致的,即无论样本容量有多大,偏差也不会消失;③如果X2和X3不相关,则b32为零,即a2是无偏的,同时也是一致的;④根据两变量模型得到的误差方差是真实误差方差σ2的有偏估计量;⑤此外,通常估计的a2的方差是真实估计量方差的有偏估计量;即使等于零,这一方差仍然是有偏的;⑥通常的置信区间和假设检验过程不再可靠;置信区间将会变宽,因此可能会“更频繁地”接受零假设:系数的真实值为零;2包括不相关变量:“过度拟合”模型P168-169正确模型:错误模型:后果:①过度拟合模型的估计量是无偏的也是一致的;②从过度拟合方程得到的σ2的估计量是正确的;③建立在t检验和F检验基础上的标准的置信区间和假设检验仍然是有效的;④从过度拟合模型中估计的a是无效的——其方差比真实模型中估计的b的方差大;因此,建立在a的标准误上的置信区间比建立在b的标准误上的置信区间宽,尽管前者的假设检验是有效的;总之,从过度拟合模型中得到的OLS估计量是线性无偏估计量,但不是最优先性无偏估计量;3不正确的函数形式P170-171如果选了错误的函数形式,则估计的系数可能是真实系数的有偏估计量;4度量误差①应变量中度量误差对回归结果的影响i. OLS估计量是无偏的;ii. OLS估计量的方差也是无偏的;iii. 估计量的估计方差比没有度量误差时的大,因为应变量中的误差加入到了误差项中;②解释变量的度量误差对回归结果的影响i. OLS估计量是有偏的;ii. OLS估计量也是不一致的;③解决方法:如果解释变量中存在度量误差,建议使用工具变量或替代变量;4、设定误差的诊断1诊断非相关变量P172-P1742对遗漏变量和不正确函数形式的检验P174-P175①判定系数R2和校正后的R2;②估计的t值;③与先验预期相比,估计系数的符号;3在线性和对数线性模型之间选择:MWD检验P175-P176:线性模型:Y是X的线性函数①设定如下假设;HH:对数线性模型:lnY是X或lnX的线性函数1②估计线性模型,得到Y的估计值③估计线性对数模型,得到lnY的估计值④求⑤做Y对X和的回归,如果根据t检验的系数是统计显着的,则拒绝H0⑥求⑦做lnY对X或lnX和的回归,如果的系数是统计显着的,则拒绝H14回归误差设定检验:RESETP177-P178①根据模型估计出Y值;②把的高次幂,,等纳入模型以获取残差和之间的系统关系;由于上图表明残差和估计的Y值之间可能存在曲线关系,因而考虑如下模型③令从以上模型中得到的为,从前一个方程得到的为,然后利用如下F检验判别从以上方程中增加的是否是统计显着的;④如果在所选的显着水平下计算的F值是统计显着的,则认为原始模型是错误设定的;第八章多重共线性:解释变量相关会有什么后果1、完全多重共线性P183-P185回归模型的某个解释变量可以写成其他解释变量的线性组合;设X2可以写成其他某些解释变量的线性组合,即:X 2=a3X3+a4X4…+akXk至少有一个ai≠0,i= 2,3,…k称存在完全多重共线性2、高度多重共线性P185-P187X2与其他解释变量高度共线性,即可以近似写成其他解释变量的线性组合X 2=a3X3+a4X4…+akXk+i至少有一个ai ≠0,i= 2, 3,…k, vi是随机误差项;3、产生多重共线的原因1时间序列解释变量受同一因素影响经济发展、政治事件、偶然事件、时间趋势经济变量的共同趋势2模型设立:解释变量中含有当期和滞后变量4、多重共线性的理论后果P187-P188OLS估计量仍然是最优无偏估计量1在近似共线性的情形下,OLS估计量仍然是无偏的;2近似共线性并未破坏OLS估计量的最小方差性;3即使在总体回归方程中变量X之间不是线性相关的,但在某个样本中,X变量之间可能线性相关;5、多重共线性的实际后果P188-P1891OLS估计量的方差和标准误较大;2置信区间变宽;3t值不显着;4R2值较高;5OLS估计量及其标准误对数据的微小变化非常敏感6回归系数符号有误;7难以评估各个解释变量对回归平方和ESS或者R2的贡献6、多重共线性的诊断P189-P1921观察回归结果R2较高,F很大,但t值显着的不多;多重共线性的经典特征R2较高,F检验拒绝零假设,但各变量的t检验表明,没有或少有变量系数是统计显着的;2简单相关系数法解释变量两两高度相关;变量相关系数比如超过,则可能存在较为严重的共线性;这一标准并不总是可靠,相关系数较低时,也有可能存在共线性3检查偏相关系数不一定可行4判定系数法辅助回归某个解释变量对其余的解释变量进行回归如果判定系数很大,F检验显着,即X与其他解释变量存在多重共线i5方差膨胀因子7、多重共线性的补救P195-P1981从模型中删除引起共线性的变量①找出引起多重共线性的解释变量,将它排除出去最为简单的克服多重共线性问题的方法;②逐步回归法i. 逐步引入如果拟合优度变化显着—新引入的变量是一个独立解释变量;选择解释变量的原则:a. 调整的R2增加,每个∣t∣增加,则保留引入变量;b. 调整的R2下降,每个∣t∣变化不大,则删除引入变量;ii. 逐步剔除①排除变量时应该注意:i. 由实际经济分析确定变量的相对重要性,删除不太重要的变量;ii. 如果删除变量不当,会导致模型设定误差;2获取额外的数据或新的样本3重新考虑模型4先验信息5变量变换将原模型变换为差分模型可有效消除存在于原模型中的多重共线性一般,增量之间的线性关系远比总量之间的线性关系弱得多; 第九章异方差:如果误差方差不是常数会有什么后果1、异方差的定义随机误差项ui 的方差随着解释变量Xi的变化而变化,即:2、异方差的性质P205-P208OLS估计仍是线性无偏,但不具最小方差1线性性2无偏性3方差式1不具有最小方差,式2具有最小方差3、异方差性的后果P209-P210经典模型假定下,OLS估计量是最优线性无偏估计量BLUE;去掉同方差假定:1OLS估计量仍是线性的;2OLS估计量仍是无偏的;3OLS估计量不再具有最小方差性,即不再是最优有效估计量;4OLS估计量的方差通常是有偏的;5偏差的产生是由于,即不再是真实σ2的无偏估计量;6建立在t分布和F分布之上的置信区间和假设检验是不可靠的,如果沿用传统的检验方法,可能得出错误的结论;4、异方差的检验1图形检验P211-P212e2对一个或多个解释变量或Y的拟合值作图; 2帕克检验Park TestP212-P214假定误差方差与解释变量相关形式:步骤:①做OLS估计求平方,取对数②对ei③做辅助回归④检验零假设:B=023格莱泽检验Glejser TestP214假定误差方差与解释变量相关形式:步骤:①做OLS估计②对e求绝对值i③做辅助回归方程=0④检验零假设:B24怀特检验White TestP215-P216和交叉乘积呈线性关系假定误差方差与X、X2步骤:①OLS估计得残差②做辅助回归③检验统计量5、异方差的修正1加权最小二乘法WLSWeighted Least SquaresP217-P222①方差已知原模型:加权后的模型:误差项的方差为:1加权的权数:②方差未知成比例:i. 误差方差与Xi模型变换:ii. 误差方差与Xi2成比例:模型变换:2怀特异方差校正的标准误P222-P223①如果存在异方差,则对于通过OLS得到的估计量不能进行t检验和F检验;②怀特估计方法③大样本情形下回归标准差和回归系数的一致估计量,可以进行t检验和F检验;第十章自相关:如果误差项相关会有什么结果1、自相关的定义P233按时间或空间顺序排列的观察值之间存在的相关关系;2、自相关的性质P233-P2341若古典线性回归模型中误差项ui不存在自相关Covui,uj=Eui,uj=0,i≠j2若误差项之间存在着依赖关系—ui存在自相关Covui,uj=Eui,uj≠0,i≠j3、产生自相关的原因P235-P2361惯性2设定偏误①模型中遗漏了重要变量;②模型选择了错误的函数形式;i. 从不正确的模型中得到的残差会呈现自相关;ii. 检验是否由于模型设定错误而导致残差自相关的方法:3蛛网现象4数据的加工①在用到季度数据的时间序列回归中,这些数据通常来自于每月数据;这种数据加工方式减弱了每月数据的波动而引进数据的匀滑性;②用季度数据描绘的图形要比用月度数据看来匀滑得多;这种匀滑性本身可能使扰动项中出现自相关;③内插法或外推法:用这些方法加工得到的数据都会给数据带来原始数据没有的系统性,这种系统性可能会造成误差自相关;4、自相关的后果P236-P2371OLS估计得到的仍为线性、无偏估计;2OLS估计不再具有有效性;3OLS估计量的方差有偏:低估了估计量的标准差;4通常所用的t检验和F检验是不可靠的;5计算得到的误差方差是真实σ2的无偏估计量,并且很有可能低估了真实的σ2;6通常计算的R2不能测度真实的R27通常计算的预测方差和标准误也是无效的5、自相关的诊断1图形法—时序图P237-P239①误差u并不频繁地改变符号,而是几个正之后跟着几个负,几个负之后跟着t几个正,则呈正自相关;②扰动项的估计值呈循环型,而是相继若干个正的以后跟着几个负的,表明存在正自相关;③扰动项的估计值呈锯齿型一个正接一个负,随时间逐次改变符号,表明存在负自相关;2检验P239-P242①定义值d值近似1 =-1完全负相关d=42 =0无自相关d=23 =1完全正相关d=0②DW检验的判断准则6、自相关的修正ρ的估计主要方法1ρ=1:一阶差分方法P244假定误差项之间完全正相关 Y t = α+βX t +u tu t = u t-1+tY t - Y t-1= βX t -X t-1+t2从DW 统计量中估计ρP244-P245 3从OLS 残差e t 中估计Cochrane-OrcuttP245-P246①e t = e t-1+t②利用OLS 残差,得的估计量 ③迭代,得的收敛值。
基础计量经济学什么是计量经济学计量经济学是经济学的一个分支,主要研究经济现象和经济理论之间的关系。
它运用数学和统计学的方法来解决经济问题,通过对经济数据的收集、整理和分析,揭示经济现象的规律和原因。
计量经济学的研究对象包括经济增长、劳动力市场、消费行为、投资决策等方面。
通过建立经济模型和进行实证分析,计量经济学可以帮助我们理解经济现象背后的机制,并为经济政策的制定提供依据。
计量经济学的基本原理1. 经济模型经济模型是计量经济学的基础,它是对经济现象和经济理论的简化和抽象。
经济模型通常包括决策者的行为假设、市场机制和均衡条件等要素。
通过建立经济模型,我们可以对经济现象进行定量分析,预测和评估不同政策的效果。
2. 数据收集和整理在计量经济学中,数据的收集和整理是非常重要的一步。
我们需要收集与研究对象相关的数据,并对数据进行清洗和整理,以确保数据的质量和可用性。
常用的数据来源包括统计局、调查问卷、实验室实验等。
3. 变量的测量和定义在计量经济学中,我们需要对研究对象的变量进行测量和定义。
变量的测量可以通过直接观察、问卷调查、实验等方式进行。
变量的定义需要准确明确,以确保研究的可靠性和有效性。
4. 统计分析方法统计分析是计量经济学的核心工具之一。
通过统计分析,我们可以从数据中提取有用的信息,并对经济现象进行定量描述。
常用的统计分析方法包括描述统计、回归分析、时间序列分析等。
5. 假设检验假设检验是计量经济学中的一项重要技术。
通过假设检验,我们可以判断经济模型是否能够解释观察到的现象。
假设检验的过程包括提出假设、选择适当的统计检验方法、计算检验统计量和判断是否拒绝原假设等。
计量经济学的应用计量经济学在实际应用中有着广泛的应用。
以下是一些常见的应用领域:1. 政策评估计量经济学可以帮助评估不同政策的效果。
例如,我们可以通过回归分析来评估某项政策对经济增长的影响,或者评估某项教育政策对学生成绩的影响。
这些评估结果可以为政府制定政策提供参考。
1、什么是计量经济学?计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
2、为什么说计量经济学是经济理论、数学和经济统计学的结合?试述三者之关系。
(同一)3、建立与应用计量经济学模型的主要步骤。
①理论模型的建立;②收集数据,参数估计;③模型检验;④模型应用;4、并说明时间序列数据和横截面数据有和异同?时间序列:同一个统计指标,在同一时间点上,不同的对象所得的数据;横截面积:同一指标,同一对象在不同时间点上所得的数据5、试解释单方程模型和联立方程模型的概念,并举例说明两者之间的联系与区别。
6、常用的样本数据有哪些?(同第四题)1、最基础的:经典单方程计量经济学模型;2、运用最小二乘法,3、最基本假定:简单线性回归;对随机扰动项的假定:①零均值;②同方差;③无自相关4、统计检验:一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度5、后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
6、总体回归函数是对总体变量间关系的定量表述7、样本估计量优劣的最主要的衡量准则:无偏性、有效性与一致性8、Goss-markov定理表明OLS估计量是最佳线性无偏估计量。
9、运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。
10、总体回归函数:将总体被解释变量Y的条件均值表现为解释变量X 的某种函数11、样本回归函数(SRF):将被解释变量Y 的样本条件均值表示为解释变量X 的某种函数。
总体回归函数与样本回归函数的区别与联系12、随机扰动项:被解释变量实际值与条件均值的偏差,代表排除在模型以外的所有因素对Y的影响。
13、引入随机扰动项的原因:未知影响因素的代表●无法取得数据的已知影响因素的代表●众多细小影响因素的综合代表●模型的设定误差●变量的观测误差●变量内在随机性14、为什么要作基本假定:模型中有随机扰动,估计的参数是随机变量,只有对随机扰动的分布作出假定,才能确定所估计参数的分布性质,也才可能进行假设检验和区间估计●只有具备一定的假定条件,所作出的估计才具有较好的统计性质15、拟合优度:样本回归线对样本观测数据拟合的优劣程度,16、可决系数:在总变差分解基础上确定的,模型解释了的变差在总变差中的比重1、多元线性回归模型基本假定:①零均值;②同方差;③无自相关;④不存在相关性2、在检验部分,一方面引入了修正的可决系数,另一方面引入了对多个解释变量是否对被解释变量有显著线性影响关系的联合性F检验,并讨论了F检验与拟合优度检验的内在联系。
1、计量经济学的概念。
计量经济学是经济科学领域内的一门应用科学,以一定的经济理论和实际统计资料为基础,运用数学、统计方法与计算机技术,以建立经济计量模型为主要手段,定量分析研究具有随机特性的经济变量关系。
2、数理经济模型与计量经济模型的区别。
数理:揭示经济活动中各个因素之间的理论关系,用确定性的数学方程加以描述。
计量:揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述。
3、经典计量经济学模型的一般形式。
n i U X X X f Y i K Ki i i i ,,2,1,),,,,,,(2121 =+=βββ4、计量经济学的数据类型。
时间序列数据:按时间先后排列的统计数据。
截面数据:一个或多个变量在某一时点上的数据集合。
合并数据(平行数据):既包含时间序列数据又有截面数据。
5、建立计量经济学模型的步骤。
1)理论模型的设计:①确定模型所包含的变量。
②确定模型的数学形式。
③拟定模型中待估计参数的理论期望值。
2)样本数据的收集:①时间序列数据易引起模型随机误差项产生序列相关。
②截面数据易引起模型随机误差项产生异方差。
③样本数据的质量:完整性、准确性、可比性、一致性。
3)模型参数的估计。
4)模型的检验:①经济意义检验。
②统计检验:拟合优度检验、变量的显著性检验、方程的显著性检验。
③计量经济学检验:序列相关、异方差法(随机误差项)、多重共线性(解释变量)④模型预测检验。
6、计量经济学模型的应用。
1)结构分析;2)经济预测;3)政策评价;4)检验与发展经济理论。
7、如何正确选择解释变量。
作为“变量”的原因:1)据经济理论和经济行为分析;2)考虑数据的可得性;3)考虑入选变量之间的关系。
8、回归分析的目的。
1)根据自变量的取值,估计应变量的均值;2)检验建立在经济理论基础上的假设;3)根据样本外自变量的取值,预测应变量的均值。
9、总体回归函数(PRF)和样本回归函数(SRF)各变量系数名称及函数方程。
计量经济学第一章1、什么是计量经济学计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
2、计量经济学的研究步骤选择变量和数学关系式——模型设定确定变量间的数量关系——估计参数检验所得结论的可靠性——模型检验作经济分析和经济预测——模型应用3、为什么要对参数进行估计一般来说参数是未知的,又是不可直接观测的。
由于随机项的存在,参数也不能通过变量值去精确计算。
只能通过变量样本观测值选择适当方法去估计。
4、模型检验的内容经济意义的检验—所估计的模型与经济理论是否相符统计推断的检验—检验参数估计值是否抽样的偶然结果,包括拟合优度检验,总体显著性检验,变量显著性检验计量经济学检验—是否符合计量经济方法的基本假定,包括异方差性检验,序列相关性检验,多重共线性检验模型预测检验—将模型预测的结果与经济运行的实际对比,包括稳定性检验,预测性能检验5、模型应用有哪些方面经济结构分析,经济预测,政策评价6、数据类型有时间数列数据(同一空间、不同时间)截面数据(同一时间、不同空间)混合数据(面板数据 Panel Data)虚拟变量数据第二章1、注意几个概念和公式Y的条件分布:当解释变量X取某固定值时(条件),Y的值不确定,Y的不同取值形成一定的分布,即Y的条件分布。
Y的条件期望:对于X的每一个取值,对Y所形成的分布确定其期望或均值,称为Y的条件期望或条件均值E(Y|Xi)公式:2、回归线:对于每一个X的取值,都有Y的条件期望E(Y|Xi)与之对应,代表这些Y的条件期望的点的轨迹所形成的直线或曲线,称为回归线。
3、回归函数:应变量Y的条件期望E(Y|Xi)随解释变量X的的变化而有规律的变化,如果把Y的条件期望E(Y|Xi)表现为X的某种函数,这个函数称为回归函数。
4、总体回归函数的概念:假如已知所研究的经济现象的总体应变量Y和解释变量X的每个观测值, 可以计算出总体应变量Y的条件均值E(Y|Xi),并将其表现为解释变量X的某种函数,这个函数称为总体回归函数(PRF)。
第一章绪论第一节计量经济学的含义一、计量经济学计量经济学(Econometrics,又译成经济计量学)是应用经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,挪威经济学家弗里希(R.Frish)将它定义为经济理论、统计学和数学三者的结合。
即以一定的经济理论和实际统计资料为依据,运用数学、统计学方法和计算机技术,通过建立计量经济模型,定量分析经济变量之间的随机因果关系。
二、计量经济学模型模型,是对现实的描述和模拟,对现实的各种不同的描述和模拟方法,就构成了各种不同的模型,例如,语义模型(也称逻辑模型),物理模型、几何模型、数学模型和计算机模拟模型等。
语义模型是用语言来描述现实,例如,对供给不足下的生产活动,我们可以用“产出量是由资本、劳动、技术等投入要素决定的,在一般情况下,随着各种投入要素的增加,产出量也随之增加,但要素的边际产出是递减的”来描述。
物理模型是用简化了的实物来描述现实,例如一栋楼房的模型。
几何模型是用图形来描述现实,例如一个零部件的加工图。
计算机模拟模型是随着计算机技术而发展起来的一种描述现实的方法,在经济研究中有广泛的应用。
数学模型是用数学语言描述现实,也是一种重要的模型方法,由于它能够揭示现实活动中的数量关系,所以具有特殊重要性。
经济数学模型是用数学方法描述经济活动。
根据所采用的数学方法不同、对经济活动揭示的程度不同,构成各类不同的经济数学模型。
在这里,我们着重区分数理经济模型和计量经济模型。
数理经济模型揭示经济活动中各个因素之间的理论关系,用确定性的数学方程加以描述,上述用语言描述的生产活动,可以用生产函数描述如下:Q=f(T,K,L)公式中用Q 表示产出量,T 表示技术,K 表示资本,L 表示劳动。
计量经济模型揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述。
例如,上述生产活动中因素之间的关系,用随机数学方程描述为:5606.04645.0)014.01(01.1K L Q T +⨯=该模型是利用我国国有独立核算工业企业1978到1994年的统计资料,使用计量经济方法得到的,该模型定量地描述了我国国有独立核算工业企业中,技术、资本和劳动投入与产出量之间的数量关系;利用这个计量经济模型可以对生产过程做进一步的深入研究,如要素影响分析、要素需求分析、生产预测、成本分析等等。
1-1什么是计量经济学?它与经济学,统计学,数学的关系是怎样的?计量经济学是在经济理论的指导下,根据实际观测的统计数据,运用数学和统计学的方法,借助计算机技术从事经济关系和经济数量规律的研究,并以建立和应用计量经济模型为核心的一门经济学科。
简单地说,计量经济学是经济学、统计学和数学三科结合而成的交叉型学科。
计量经济模型建立的过程,是综合应用经济理论、统计和数学方法的过程,经济学为其提供理论基础,数学为其提供研究方法。
理论模型的设定和样本数据的收集是直接以经济理论为依据,建立在对研究对象的透彻认识的基础上的,而参数模型的估计和有效性的检验则是统计学和数学方法在经济研究中的具体应用。
没有理论模型和样本数据,统计学和数学方法将无法发挥作用的对象和原料,反过来如果没有统计学和数学提供的方法,原料将无法成为产品。
因此计量经济学广泛涉及了经济学、统计学、数学这三科的理论、原则、方法。
缺一不可。
1-4、建立与应用计量经济学模型的主要步骤有哪些?计量经济学模型主要有哪些应用领域?(1)、设定理论模型,包括选择模型所包含的变量,确定变量之间的数学关系和拟定模型中待估参数的数值范围;收集样本数据,要考虑样本数据的完整性、准确性、可比性和—致性;估计模型参数;检验模型,包括经济意义检验、统计检验、计量经济学检验和模型预测检验。
(1)、结构分析,即研究一个或者几个经济变量发生变化及结构参数的变动对其他变量以至整个经济系统产生何种影响。
其原理是:弹性分析、乘数分析和比较静力分析;经济预测,即进行中短期经济的因果预测。
其原理是:模拟历史,从已经发生的经济活动中找出变化规律;政策评价,即利用计量经济学模型定量分析政策变量变化对经济系统运行的影响,是对不同政策执行情况的“模拟仿真”;检验与发展经济理论,即利用计量经济学模型和实际统计资料实证分析某个理论假说正确与否。
其原理是:如果按照某种经济理论建立的计量经济学模型可以很好地拟合实际观察数据,则意味着该理论是符合客观事实的,否则,则表明该理论不能解释客观事实。
1、计量经济学的概念。
计量经济学是经济科学领域内的一门应用科学,以一定的经济理论和实际统计资料为基础,运用数学、统计方法与计算机技术,以建立经济计量模型为主要手段,定量分析研究具有随机特性的经济变量关系。
2、数理经济模型与计量经济模型的区别。
数理:揭示经济活动中各个因素之间的理论关系,用确定性的数学方程加以描述。
计量:揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述。
3、经典计量经济学模型的一般形式。
4、计量经济学的数据类型。
时间序列数据:按时间先后排列的统计数据。
截面数据:一个或多个变量在某一时点上的数据集合。
合并数据(平行数据):既包含时间序列数据又有截面数据。
5、建立计量经济学模型的步骤。
1)理论模型的设计:①确定模型所包含的变量。
②确定模型的数学形式。
③拟定模型中待估计参数的理论期望值。
2)样本数据的收集:①时间序列数据易引起模型随机误差项产生序列相关。
②截面数据易引起模型随机误差项产生异方差。
③样本数据的质量:完整性、准确性、可比性、一致性。
3)模型参数的估计。
4)模型的检验:①经济意义检验。
②统计检验:拟合优度检验、变量的显着性检验、方程的显着性检验。
③计量经济学检验:序列相关、异方差法(随机误差项)、多重共线性(解释变量)④模型预测检验。
6、计量经济学模型的应用。
1)结构分析;2)经济预测;3)政策评价;4)检验与发展经济理论。
7、如何正确选择解释变量。
作为“变量”的原因:1)据经济理论和经济行为分析;2)考虑数据的可得性;3)考虑入选变量之间的关系。
8、回归分析的目的。
1)根据自变量的取值,估计应变量的均值;2)检验建立在经济理论基础上的假设;3)根据样本外自变量的取值,预测应变量的均值。
9、总体回归函数(PRF)和样本回归函数(SRF)各变量系数名称及函数方程。
10、随机误差项(Ui)的性质或主要内容。
1)代表模型中省略的次要变量;2)奥卡姆剃刀原则;3)样本点的测量误差;4)一些随机因素。
一分钟看完计量经济学!!!------开学后的计量笔记来源:冯子立的日志
建模是计量的灵魂,所以就从建模开始。
一、
建模步骤:A,理论模型的设计: a,选择变量b,确定变量关系c,拟定参数范围
B,样本数据的收集: a,数据的类型b,数据的质量
C,样本参数的估计: a,模型的识别b,估价方法选择
D,模型的检验
a,经济意义的检验1正相关
2反相关等等
b,统计检验:1检验样本回归函数和样本的拟合优度,R的平方即其修正检验
2样本回归函数和总体回归函数的接近程度:单个解释变量显著性即t检验,函数显著性即F检验,接近程度的区间检验
c,模型预测检验1解释变量条件条件均值与个值的预测
2预测置信空间变化
d,参数的线性约束检验:1参数线性约束的检验
2模型增加或减少变量的检验
3参数的稳定性检验:邹氏参数稳定性检验,邹氏预测检验----------主要方法是以F检验受约束前后模型的差异
e,参数的非线性约束检验:1最大似然比检验
2沃尔德检验
3拉格朗日乘数检验---------主要方法使用 X平方分布检验统计量分布特征
f,计量经济学检验
1,异方差性问题:特征:无偏,一致但标准差偏误。
检测方法:图示法,Park与Gleiser 检验法,Goldfeld-Quandt检验法,White检验法-------用WLS修正异方差
2,序列相关性问题:特征:无偏,一致,但检验不可靠,预测无效。
检测方法:图示法,回归检验法,Durbin-Waston检验法,Lagrange乘子检验法-------用GLS或广义差分法修正序列相关性
3,多重共线性问题:特征:无偏,一致但标准差过大,t减小,正负号混乱。
检测方法:先检验多重共线性是否存在,再检验多重共线性的范围-------------用逐步回归法,差分法或使用额外信息,增大样本容量可以修正。
4,随机解释变量问题:随机解释变量与随机干扰项独立----------对OLS没有坏影响。
随机变量与随机干扰项同期相关:有偏但一致-----扩大样本容量可以克服。
随机变量与随机干扰项同期相关:有偏且非一致--------工具变量法可以克服
二、
参数估计量性质的分析:a小样本和大样本性质
b无偏性
c有效性
d一致性
e Gauss-Markov定理
三、
A虚拟解释变量问题
a,加法方式:定性因素对截距的影响
b,乘法方式:定性因素对斜率项产生的影响
c,加法与乘法结合方式:定性应诉对截距和斜率项同时产生影响
B滞后变量问题
a,分布滞后模型:经验加权法,Almon多项式法,Koyck方法---来减少滞后项的数目b,自回归模型:工具变量法,OLS法
C模型设定偏误问题
a,解释变量选取偏误1漏选相关变量:OLS在小样本下有偏,大样本下不一致
2多选无关变量:OLS估计量无偏且一致,但无效
b,模型函数形式选取偏误:OLS有偏非一致且无效
c,1用t检验和f检验检验无关变量
2用RESET检验是否遗漏相关变量或模型函数选取错误
四、
联立方程计量经济学模型的单方程估计
a,工具变量法IV
b,ILS-----ab适用于恰好识别
c,2SLS---适用于恰好识别和过度识别
五、
二元离散选择模型
a,Probit离散选择模型:将随机干扰项的概率分布设定为标准正态分布----用最大似然估计法或GLS
b,Logit离散选择模型:将随机干扰项的概率分布设定为logistic分布得到---用最大似然估计法或GLS
六、
随机时间序列模型:
a,纯自回归AR模型----用Yule-Walker方程或OLS估计
b,纯移动平均MA模型
c,自回归移动平均ARMA模型----bc可以用矩估计法,对非平稳的时间序列检验协整性可用Engle-Granger两步法或直接估计法。
注:此文只是小弟开学读书笔记的总结只能当个工程表,让大家知道所学阶段和所用罢
了
另:据小弟开学后了解的教材方面
最初入门书首推古扎拉蒂的《计量经济学基础》,上下两本,想很快对计量经济学有全方位认识的弟兄可以看这本书的精写版《经济计量学精要》,机械工业出版社,世纪馆书店就有第二版卖,好几十块---想要免费电子版的姐妹们可以联系我==。
伍德里奇的《计量经济学导论》真是讨论风格的啊,适合于中级使用,高级的书最经典的莫过于格林的《计量经济学分析》,还有《Econometrics Introduction》,中国人写的书还是李子奈的《计量经济学》比较清楚,难度中级偏高级。
研究的方面,微观注意面板数据,宏观注意时间序列,面板数据推荐伍德里奇的《横截面与面板数据的经济计量分析》,68元,人大出版社,时间序列推荐汉米尔顿的《时间序列分析》,传说中的经典教材。
在此小弟加一句,尽量对照着英文看中文,因为翻译的很难==。
Stata方面,咱们人大图书馆三层英文借阅室有本《Using Stata》开头的书,据说,所有的stata的书都是以它为模本,在以F222开头的书架好像。
就这么多了,大家一起努力,共同进步!!!。