第二章 第十节
- 格式:ppt
- 大小:5.20 MB
- 文档页数:52
1.(2013·安徽安庆四校联考)如图是函数f (x )的图象,它与x 轴有4个不同的公共点.给出下列四个区间,不能用二分法求出函数f (x )零点的区间是( )A .[-2.1,-1]B .[1.9,2.3]C .[4.1,5]D .[5,6.1]解析:根据二分法的概念,由图象易知,函数f (x )在区间[1.9,2.3]上不能用二分法求出函数的零点.故选B.答案:B2.(2013·惠州一模)已知函数f (x )=3x +x -9的零点为x 0,则x 0所在区间为( ) A.⎣⎢⎡⎦⎥⎤-32,-12 B.⎣⎢⎡⎦⎥⎤-12,12 C.⎣⎢⎡⎦⎥⎤12,32 D.⎣⎢⎡⎦⎥⎤32,52解析:∵函数f (x )=3x +x -9在R 上连续,f ⎝ ⎛⎭⎪⎫32 =27+32 -9<0,f ⎝ ⎛⎭⎪⎫52 =243 +52-9>0, 所以f ⎝ ⎛⎭⎪⎫32 f ⎝ ⎛⎭⎪⎫52 <0,故函数的零点x 0所在区间为⎣⎢⎡⎦⎥⎤32,52,故选D. 答案:DA .(0.6,1.0)B .(1.4,1.8)C .(1.8,2.2)D .(2.6,3.0)答案:C4.设函数f (x )=4sin(2x +1)-x ,则在下列区间中函数f (x )不存在零点的是( )A .[-4,-2]B .[-2,0]C .[0,2]D .[2,4]解析:对于B ,∵f (0)=4sin 1>0,f ⎝ ⎛⎭⎪⎫-π2=4sin(-π+1)+π2=π2-4sin 1<π2-4sin π6=π2-2<0,∴在该区间上存在零点. 对于C ,∵f (2)=4sin 5-2=4sin(5-2π)-2<0,∴在该区间上存在零点.对于D ,∵f (3.5)=4sin 8-3.5=4sin(8-2π)-3.5>0,∴在该区间上也存在零点.故选A.答案:A5.方程||x =cos x 在()-∞,+∞内( )A .没有根B .有且仅有一个根C .有且仅有两个根D .有无穷多个根解析:构造两个函数y =|x |和y =cos x ,在同一个坐标系内画出它们的图象,如图所示,观察知图象有两个公共点,所以已知方程有且仅有两个根.故选C.答案:C6.(2013·重庆十一中学月考) “m ∉(-3,-1)”是“f (x )=3x +m 在区间[0,1]上不存在零点”的________条件( )A .充分不必要B .必要不充分C .充要D .既不充分也不必要解析:f (x )=3x +m 在区间[0,1]上不存在零点,等价于f (0)f (1)>0,即m (3+m )>0,解得m >0或m <-3,即m ∈(-∞,-3)∪(0,+∞).因为m ∈(-∞,-3)∪(0,+∞)⇒m ∉(-3,-1),反之则推不出,故选B.答案:B7.(2012·华南师大附中综合测试)已知函数f (x )=x +2x ,g (x )=x +ln x 的零点分别为x 1,x 2,则x 1,x 2的大小关系是________________.解析:由f (x )=x +2x =0知其零点小于0,∴x 1<0.由g (x )=x +ln x =0知其零点大于0,∴x 2>0.∴x 1<x 2.答案:x 1<x 28.已知函数f (x )=x 2+(1-k )x -k 的一个零点在(2,3)内,则实数k 的取值范围是________.解析:∵Δ=(1-k )2+4k =(1+k )2≥0对一切k ∈R 恒成立,又k =-1时,f (x )的零点x =-1∉(2,3),故要使函数f (x )=x 2+(1-k )x -k 的一个零点在(2,3)内,则必有f (2)·f (3)<0,即(6-3k )·(12-4k )<0,解得2<k <3,∴实数k 的取值范围是(2,3).答案:(2,3)9.已知函数f (x )=⎩⎪⎨⎪⎧ 2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是______________.解析:在坐标系内作出函数 f (x )=⎩⎪⎨⎪⎧2x -1,x >0,-x 2-2x ,x ≤0的图象,发现当0<m <1时,函数f (x )的图象与直线y =m 有3个交点,即函数g (x )=f (x )-m 有3个零点.答案:(0,1)10.右图是用二分法求方程x 5-16x +1=0在[-2,2]的近似解的程序框图,要求解的精确度为0.000 1,①处填的内容是______,②处填的内容是______.答案:f (a )·f (m )<0 ||a -b <0.000 111.已知函数f (x )=4x +m ·2x +1有且仅有一个零点,求m 的取值范围,并求出该零点.11.解析: ∵f (x )=4x +m ·2x +1有且仅有一个零点,即方程(2x )2+m ·2x +1=0仅有一个实根.设2x =t (t >0),则t 2+mt +1=0.①若Δ=0,即m 2-4=0,当m =-2时,t =1;当m =2时,t =-1不合题意,舍去.∴2x =1,x =0符合题意.②若Δ>0,即m >2或m <-2,t 2+mt +1=0有一正一负两根,即t 1t 2<0,这与t 1t 2>0矛盾.∴这种情况不可能.综上可知,m =-2时,f (x )有唯一零点,该零点为x =0.12.(2014·浙江绍兴一中上学期测试)定义域为R 的奇函数f (x )满足f (x +1)=f (x -1),且当x ∈(0,1)时,f (x )=2x -12x +1. (1)求f (x )在[-1,1]上的解析式;(2)当m 取何值时,方程f (x )=m 在(0,1)上有解?解析:(1)当x ∈(-1,0)时,-x ∈(0,1),由f (x )为R 上的奇函数,得f (x )=-f (-x )=-2-x -12-x +1=2x -12x +1,x ∈(-1,0),且f (0)=0,因为f (x )满足f (x +1)=f (x -1),所以f (1)=-f (-1)=-f (1),所以f (1)=f (-1)=0,所以f (x )=⎩⎪⎨⎪⎧ 2x -12x +1,x -1,,0,x ∈{-1,1}.(2)当x ∈(0,1),m =2x -12x +1=1-22x +1,2x ∈(1,2),2x +1∈(2,3),所以22x +1∈⎝ ⎛⎭⎪⎫23,1,所以1-22x +1∈⎝ ⎛⎭⎪⎫0,13,即m ∈⎝ ⎛⎭⎪⎫0,13.。
第二章 第十节 函数模型及其应用一、选择题1.(2012·惠州模拟)某学校开展研究性学习活动,一组同学获得了下面的一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )A .y =2x -2B .y =(12)xC .y =log 2xD .y =12(x 2-1)解析:直线是均匀的,故选项A 不是;指数函数y =(12)x是单调递减的,也不符合要求;对数函数y =log 2x 的增长是缓慢的,也不符合要求;将表中数据代入选项D 中,基本符合要求.答案:D2.某文具店出售羽毛球拍和羽毛球,球拍每副定价20元,羽毛球每个定价5元,该店制定了两种优惠方法:①买一副球拍赠送一个羽毛球;②按总价的92%付款.现某人计划购买4副球拍和30个羽毛球,两种方法中,更省钱的一种是( )A .不能确定B .①②同样省钱C .②省钱D .①省钱解析:方法①用款为4×20+26×5=80+130=210(元) 方法②用款为(4×20+30×5)×92%=211.6(元) ∵210<211.6,故方法①省钱. 答案:D3.某地2002年底人口为500万,人均住房面积为6 m 2,如果该城市人口平均每年增长率为1%.问为使2012年底该城市人均住房面积增加到7 m 2,平均每年新增住房面积至少为________万 m 2.(1.0110≈1.1045)( )A .90B .87C .85D .80解析:到2012年底该城市人口有500×(1+1%)10,则500×1+1%10×7-500×610≈86.6(万 m 2).答案:B4.设甲、乙两地的距离为a (a >0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数图象为()解析:注意到y 为“小王从出发到返回原地所经过的路程”而不是位移,用定性分析法不难得到答案为D.答案:D5.光线通过一块玻璃,其强度要失掉原来的110,要使通过玻璃的光线强度为原来的13以下,至少需要重叠这样的玻璃块数是(lg3=0.477 1)( )A .10B .11C .12D .13解析:设原光线的强度为a ,重叠x 块玻璃后,通过玻璃的光线强度为y ,则y =a (1-110)x (x ∈N *),令y <13a ,即a (1-110)x <13a ,∴(910)x <13,∴x >lg 13lg 910. ∵lg 13lg 910=-lg32lg3-1=-0.477 12×0.477 1-1≈10.4.即x >10.4. 答案:B6.将长度为2的铁丝分成两段,分别围成一个正方形和一个圆,要使正方形与圆的面积之和最小,正方形的周长应为( )A.4π+4B.5π+4C.7π+4D.8π+4解析:设铁丝分成的两段长分别为x ,y (x >0,y >0),x +y =2.面积之和为S =(x4)2+π(y2π)2=116x 2+2-x 24π=π+416πx 2-1πx +1π,当S 取得最小值时,x =8π+4. 答案:D 二、填空题7.(2012·徐州模拟)在不考虑空气阻力的情况下,设火箭的最大速度是v m/s ,燃料的质量为M kg ,火箭(除燃料外)的质量为m kg ,三者之间的函数关系是v =2 000·ln(1+M/m ).当燃料质量是火箭质量的________倍时,火箭的最大速度可达12 km/s. 解析:∵2 000·ln(1+M/m )≤12 000,∴Mm≤e 6-1. 答案:e 6-18.某居民小区收取冬季供暖费,根据规定,住户可以从以下两种方案中任选其一: (1)按照使用面积缴纳,每平方米4元; (2)按照建筑面积缴纳,每平方米3元.李明家的使用面积为60平方米.如果他家选择第(2)种方案缴纳供暖费较少,那么它的建筑面积最多不超过________平方米.解析:按方案(1),李明家需缴240元,故设李明家建筑面积为x 平方米,则3x ≤240,解得x ≤80.答案:809.(2011·湖北高考)里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.解析:由lg1000-lg0.001=6,得此次地震的震级为6级.因为标准地震的振幅为0.001,设9级地震最大振幅为A 9,则lg A 9-lg0.001=9,解得A 9=106,同理5级地震最大振幅A 5=102,所以9级地震的最大振幅是5级的10 000倍.答案:6 10 000 三、解答题10.(2012·盐城模拟)某市出租车的计价标准是:3 km 以内(含3 km)10元;超过3 km 但不超过18 km 的部分1元/km ;超出18 km 的部分2元/km.(1)如果某人乘车行驶了20 km ,他要付多少车费?某人乘车行驶了x km ,他要付多少车费?(2)如果某人付了22元的车费,他乘车行驶了多远?解:(1)乘车行驶了20 km ,付费分三部分,前3 km 付费10(元),3 km 到18 km 付费(18-3)×1=15(元),18 km 到20 km 付费(20-18)×2=4(元),总付费10+15+4=29(元).设付车费y 元,当0<x ≤3时,车费y =10; 当3<x ≤18时,车费y =10+(x -3)=x +7; 当x >18时,车费y =25+2(x -18)=2x -11.(2)付出22元的车费,说明此人乘车行驶的路程大于3 km ,且小于18 km ,前3 km 付费10元,余下的12元乘车行驶了12 km ,故此人乘车行驶了15 km.11.某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 解:(1)当每辆车的月租金定为3 600元时,未租出的车辆数为:3 600-3 00050=12,所以这时租出了88辆车.(2)设每辆车的月租金定为x 元,则租赁公司的月收益为:f (x )=(100-x -3 00050)(x-150)-x -3 00050×50,整理得f (x )=-x 250+162x -21 000=-150(x -4 050)2+307 050.所以,当x =4 050时,f (x )最大,其最大值为f (4 050)=307 050.即当每辆车的月租金定为4 050元时,租赁公司的月收益最大,最大收益为307 050元.12.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式可以近似地表示为y =x 25-48x +8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解:(1)每吨平均成本为yx(万元).则y x =x 5+8 000x -48≥2 x 5·8 000x-48=32, 当且仅当x 5=8 000x,即x =200时取等号.∴年产量为200吨时,每吨平均成本最低为32万元. (2)设年获得总利润为R (x )万元, 则R (x )=40x -y =40x -x 25+48x -8 000=-x 25+88x -8 000=-15(x -220)2+1 680(0≤x ≤210).∵R (x )在[0,210]上是增函数, ∴x =210时,R (x )有最大值为 -15(210-220)2+1 680=1 660. ∴年产量为210吨时,可获得最大利润1 660万元。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业(十三)一、选择题1.(2013·泰安模拟)已知函数f(x)=asin x且f′(π)=2,则a的值为( )(A)1 (B)2 (D)-22.(2013·合肥模拟)若抛物线y=x2在点(a,a2)处的切线与两坐标轴围成的三角形的面积为16,则a=( )(A)4 (B)±4 (C)8 (D)±83.(2013·海口模拟)下列曲线的所有切线构成的集合中,存在无数对互相垂直的切线的曲线是( )(A)f(x)=e x (B)f(x)=x3(C)f(x)=ln x (D)f(x)=sin x4.(2013·青岛模拟)设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线的斜率为( )(A)2 (B)-14(C)4 (D)-125.如图,其中有一个是函数f(x)=13x3+ax2+(a2-1)x+1(a∈R,a≠0)的导函数f′(x)的图象,则f(-1)为( )(A)2 (B)-13 (C)3 (D)-126.(2013·莱芜模拟)已知点P 在曲线x 4y e 1=+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )(A)(0,4π) (B)(,42ππ)(C)(3,24ππ)(D)[3,4ππ)二、填空题7.如图,函数F(x)=f(x)+21x 5的图象在点P 处的切线方程是y =-x +8,则f(5)+f ′(5)=_________.8.设a >0,f(x)=ax 2+bx +c ,曲线y =f(x)在点P(x 0,f(x 0))处切线的倾斜角的取值范围为[0,4π],则点P 到曲线y =f(x)的对称轴的距离的取值范围为___________.9.(能力挑战题)若曲线f(x)=ax 2+lnx 存在垂直于y 轴的切线,则实数a 的取值范围是 . 三、解答题10.求下列各函数的导数: (1)y=(x+1)(x+2)(x+3)..(3)y =e -x sin 2x. 11.已知曲线y=314x 33,(1)求曲线过点P(2,4)的切线方程. (2)求曲线的斜率为4的切线方程.12.(能力挑战题)已知函数f(x)=ax 3+3x 2-6ax -11,g(x)=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0. (1)求a 的值.(2)是否存在k 的值,使直线m 既是曲线y =f(x)的切线,又是曲线y =g(x)的切线?如果存在,求出k 的值;如果不存在,说明理由.答案解析1.【解析】选D.因为f ′(x)=acos x , 所以f ′(π)=acos π=-a=2, 所以a=-2,故选D.2.【解析】选B.y ′=2x,所以在点(a,a 2)处的切线方程为:y-a 2=2a(x-a),令x=0,得y=-a 2;令y=0,得x=12a,所以切线与两坐标轴围成的三角形的面积S=12〓|-a 2|〓|12a|=14|a 3|=16,解得a=〒4.3.【解析】选D.设切点的横坐标为x 1,x 2,则存在无数对互相垂直的切线,即f ′(x 1)·f ′(x 2)=-1有无数对x 1,x 2使之成立,对于A 由于f ′(x)=e x >0,所以不存在f ′(x 1)·f ′(x 2)=-1成立; 对于B 由于f ′(x)=3x 2≥0,所以也不存在f ′(x 1)·f ′(x 2)=-1成立; 对于C 由于f(x)=ln x 的定义域为(0,+≦), ≨f ′(x)=1x>0;对于D,由于f ′(x)=cos x ,所以f ′(x 1)·f ′(x 2)=cos x 1·cos x 2, 若x 1=2m π,m ∈Z,x 2=(2k +1)π,k ∈Z , 则f ′(x 1)·f ′(x 2)=-1恒成立.4.【解析】选C.因为曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,所以 g ′(1)=2.又f ′(x)=g ′(x)+2x,故曲线y=f(x)在点(1,f(1))处的切线的斜率为f ′(1)=g ′(1)+2=4. 5.【解析】选B.≧f ′(x)=x 2+2ax+(a 2-1), ≨导函数f ′(x)的图象开口向上. 又≧a ≠0,≨其图象必为(3).由图象特征知f ′(0)=0,且对称轴x=-a>0, ≨a=-1,故f(-1)=-13.6.【解析】选D.x xx 22x x 4e 4e y .(e 1)e 2e 1'=-=-+++设t=e x ∈(0,+≦),则24t 4y ,1t 2t 1(t )2t'=-=-++++≧1t 2t+≥,≨y ′∈[-1,0),α∈[3,4ππ). 7.【解析】F ′(x)=f ′(x)+25x ,由题意可知F ′(5)=f ′(5)+2=-1, ≨f ′(5)=-3.又点(5,3)在F(x)的图象上,≨f(5)+5=3, ≨f(5)=-2,≨f(5)+f ′(5)=-5. 答案:-58.【解析】≧y =f(x)在点P(x 0,f(x 0))处切线的倾斜角的取值范围为[0,4π],≨0≤f ′(x 0)≤1,即0≤2ax 0+b ≤1.又≧a >0,≨b 2a -≤x 0≤1b 2a-,≨0≤x 0+b 2a ≤12a ,即点P 到曲线y =f(x)的对称轴的距离的取值范围为[0,12a].答案:[0,12a]9.【思路点拨】求出导函数,根据导函数有零点,求a 的取值范围.【解析】由题意该函数的定义域为(0,+≦),且f ′(x)=2ax+1x.因为存在垂直于y 轴的切线,故此时斜率为0,问题转化为x>0时导函数f ′(x)=2ax+1x存在零点的问题.方法一(图象法):再将之转化为g(x)=-2ax 与h(x)=1x存在交点.当a=0时不符合题意,当a>0时,如图1,数形结合可得没有交点,当a<0时,如图2,此时正好有一个交点,故有a<0,应填(-≦,0).方法二(分离变量法):上述也可等价于方程2ax+1x=0在(0,+≦)内有解,显然可得a=212x-∈(-≦,0). 答案:(-≦,0)10.【解析】(1)方法一:y=(x 2+3x+2)(x+3)=x 3+6x 2+11x+6, ≨y ′=3x 2+12x+11.方法二:y ′=[(x+1)(x+2)]′(x+3)+(x+1)(x+2)·(x+3)′ =[(x+1)′(x+2)+(x+1)(x+2)′](x+3)+(x+1)·(x+2) =(x+2+x+1)(x+3)+(x+1)(x+2) =(2x+3)(x+3)+(x+1)(x+2) =3x 2+12x+11. (2)≧21x=-, ≨y ′=22221x 21x 1x 1x ''-(-)()==-(-)(-). (3)y ′=(-e -x )sin 2x +e -x (cos 2x)〓2 =e -x (2cos 2x -sin 2x).11.【解析】(1)设曲线y=314x 33+与过点P(2,4)的切线相切于点A(x 0,13x 03+43),则切线的斜率k=02x x 0y |x ='=,≨切线方程为y-(3014x 33+)=x 02(x-x 0),即y=x 02·x-23x 03+43.≧点P(2,4)在切线上,≨4=2300242x x 33-+,即x 03-3x 02+4=0,≨x 03+x 02-4x 02+4=0, ≨(x 0+1)(x 0-2)2=0, 解得x 0=-1或x 0=2,故所求的切线方程为4x-y-4=0或x-y+2=0. (2)设切点为(x 0,y 0),则切线的斜率为k= x 02=4,x 0=〒2,所以切点为(2,4),(-2,-43), ≨切线方程为y-4=4(x-2)和y+43=4(x+2), 即4x-y-4=0和12x-3y+20=0. 【变式备选】已知函数f(x)=x 3+x-16.(1)求曲线y =f(x)在点(2,-6)处的切线方程.(2)如果曲线y=f(x)的某一切线与直线y=-14x+3垂直,求切点坐标与切线的方程.【解析】(1)可判定点(2,-6)在曲线y =f(x)上. ≧f ′(x)=(x 3+x -16)′=3x 2+1,≨在点(2,-6)处的切线的斜率为k =f ′(2)=13, ≨切线的方程为y =13(x -2)+(-6), 即y =13x -32.(2)≧切线与直线y=-14x+3垂直, ≨切线的斜率k=4.设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 02+1=4, ≨x 0=〒1,≨0000x 1x 1y 14y 18.⎧⎧⎨⎨⎩⎩=,=-,或=-=-≨切点坐标为(1,-14)或(-1,-18),切线方程为y=4(x-1)-14或y=4(x+1)-18. 即y=4x-18或y=4x-14.12.【解析】(1)f ′(x)=3ax 2+6x -6a ,f ′(-1)=0, 即3a -6-6a =0,≨a =-2.(2)存在.≧直线m 恒过定点(0,9),直线m 是曲线y =g(x)的切线,设切点为(x 0,3x 02+6x 0+12), ≧g ′(x 0)=6x 0+6,≨切线方程为y -(3x 02+6x 0+12)=(6x 0+6)(x -x 0),将点(0,9)代入,得 x 0=〒1,当x 0=-1时,切线方程为y =9; 当x 0=1时,切线方程为y =12x +9. 由f ′(x)=0得-6x 2+6x +12=0, 即有x =-1或x =2,当x =-1时,y =f(x)的切线方程为y =-18; 当x =2时,y =f(x)的切线方程为y =9. ≨公切线是y =9.又令f ′(x)=12得-6x 2+6x +12=12, ≨x =0或x =1.当x =0时,y =f(x)的切线方程为y =12x -11; 当x =1时,y =f(x)的切线方程为y =12x -10, ≨公切线不是y =12x +9.综上所述公切线是y=9,此时k=0.关闭Word文档返回原板块。
课时提升作业(十三)一、选择题1.函数y=sin(2x+1)的导数是( )(A)y′=cos(2x+1) (B)y′=2xsin(2x+1)(C)y′=2cos(2x+1) (D)y′=2xcos(2x+1)2.(2013·合肥模拟)若抛物线y=x2在点(a,a2)处的切线与两坐标轴围成的三角形的面积为16,则a=( )(A)4 (B)±4 (C)8 (D)±83.(2013·宝鸡模拟)下列曲线的所有切线构成的集合中,存在无数对互相垂直的切线的曲线是( )(A)f(x)=e x (B)f(x)=x3(C)f(x)=lnx (D)f(x)=sinx4.(2013·赣州模拟)设函数f(x)是定义在R上周期为2的可导函数,若f(2)=2,且=-2,则曲线y=f(x)在点(0,f(0))处的切线方程是( )(A)y=-2x+2 (B)y=-4x+2(C)y=4x+2 (D)y=-x+25.如图,其中有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R,a≠0)的导函数f′(x)的图像,则f(-1)为( )(A)2 (B)- (C)3 (D)-6.(2013·阜阳模拟)如图,函数y=f(x)的图像在点P处的切线方程是y=kx+b,若f(1)-f′(1)=2,则b=( )(A)-1 (B)1 (C)2 (D)-27.(2013·新余模拟)设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为( )(A)4 (B)- (C)2 (D)-8.已知直线y=2x-m是曲线y=ln2x的切线,则m等于( )(A)0 (B)1 (C)(D)-9.等比数列{a n}中,a1=2,a8=4,函数f(x)=x(x-a1)·(x-a2)·…·(x-a8),则f′(0)=( )(A)26 (B)29 (C)212 (D)21510.(2013·安庆模拟)若存在过点(1,0)的直线与曲线y=x3和y=ax2+x-9都相切,则a等于( )(A)-1或- (B)-1或(C)-或- (D)-或7二、填空题11.已知函数f(x)的导函数为f′(x),且满足f(x)=3x2+2xf′(2),则f′(5)=.12.(2013·宜春模拟)若过原点作曲线y=e x的切线,则切点的坐标为,切线的斜率为.13.(2013·镇江模拟)设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为[0,],则点P到曲线y=f(x)的对称轴的距离的取值范围为.14.(能力挑战题)若曲线f(x)=ax2+lnx存在垂直于y轴的切线,则实数a的取值范围是.三、解答题15.(2013·宿州模拟)设函数f(x)=ax-,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.(1)求f(x)的解析式.(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.答案解析1.【解析】选C. y′=cos(2x+1)·(2x+1)′=2cos(2x+1).2.【解析】选B.y′=2x,所以在点(a,a2)处的切线方程为:y-a2=2a(x-a),令x=0,得y=-a2;令y=0,得x=a,所以切线与两坐标轴围成的三角形的面积S=〓|-a2|〓|a|=|a3|=16,解得a=〒4.3.【解析】选D.设切点的横坐标为x1,x2,则存在无数对互相垂直的切线,即f′(x1)·f′(x2)=-1有无数对x1,x2使之成立,对于A由于f′(x)=e x>0,所以不存在f′(x1)·f′(x2)=-1成立;对于B由于f′(x)=3x2≥0,所以也不存在f′(x1)·f′(x2)=-1成立;对于C由于f(x)=lnx的定义域为(0,+≦),≨f′(x)=>0;对于D,由于f′(x)=cosx,所以f′(x1)·f′(x2)=cosx1·cosx2,若x1=2mπ,m∈Z,x2=(2k+1)π,k∈Z,则f′(x1)·f′(x2)=-1恒成立.4.【解析】选B.因为f(x)的周期为2,所以f(0)=f(2)=2.由=-2得=-2,即f′(0)=-2,得f′(0)=-4,故曲线y=f(x)在点(0,2)处的切线方程为y=-4x+2.5.【解析】选B.≧f′(x)=x2+2ax+(a2-1),≨导函数f′(x)的图像开口向上.又≧a≠0,≨其图像必为(3).由图像特征知f′(0)=0,且对称轴x=-a>0,≨a=-1,故f(-1)=-.6.【解析】选C.由函数y=f(x)的图像知,点P(1,f(1)),故f′(1)=k,又f(1)=k+b,由f(1)-f′(1)=2得b=2.7.【解析】选A.因为曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,所以g′(1)=2.又f′(x)=g′(x)+2x,故曲线y=f(x)在点(1,f(1))处的切线斜率为f′(1)=g′(1)+2=4.8.【解析】选B.设切点为(x0,ln2x0),则由y=ln2x得y′=·2=,故即解得9.【解析】选C.因为f′(x)=x′·[(x-a1)·(x-a2)·…·(x-a8)]+x·[(x-a1)·(x-a2)·…·(x-a8)]′,所以f′(0)=(-a1)(-a2)·…·(-a8)=a1·a2·…·a8=(a1·a8)4=84=212.10.【思路点拨】先设出切点坐标,再根据导数的几何意义写出切线方程,最后由点(1,0)在切线上求出切点后再求a的值.【解析】选A.设过点(1,0)的直线与曲线y=x3相切于点(x0,),所以切线方程为y-=3(x-x0),即y=3x-2.又(1,0)在切线上,则x0=0或x0=,当x0=0时,由y=0与y=ax2+x-9相切可得Δ=()2-4a(-9)=0,解得a=-,同理,当x0=时,由y=x-与y=ax2+x-9相切可得a=-1,所以选A.【方法技巧】导数几何意义的应用导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面:(1)已知切点A(x0,f(x0))求斜率k,即求该点处的导数值:k=f′(x0).(2)已知斜率k,求切点A(x1,f(x1)),即解方程f′(x1)=k.(3)已知过某点M(x1,f(x1))(不是切点)的切线斜率为k时,常需设出切点A(x0,f(x0)),利用k=求解.11.【解析】对f(x)=3x2+2xf′(2)求导,得f′(x)=6x+2f′(2).令x=2,得f′(2)=-12.再令x=5,得f′(5)=6〓5+2f′(2)=6.答案:612.【解析】y′=e x,设切点坐标为(x0,y0),则=,即=,≨x0=1,因此切点的坐标为(1,e),切线的斜率为e.答案:(1,e) e13.【解析】≧y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为[0,],≨0≤f′(x0)≤1,即0≤2ax0+b≤1.又≧a>0,≨-≤x0≤,≨0≤x0+≤,即点P到曲线y=f(x)的对称轴的距离的取值范围为[0,].答案:[0,]14.【思路点拨】求出导函数,根据导函数有零点,求a的取值范围.【解析】由题意该函数的定义域为(0,+≦),且f′(x)=2ax+.因为存在垂直于y轴的切线,故此时斜率为0,问题转化为x>0时导函数f′(x)=2ax+存在零点的问题.方法一(图像法):再将之转化为g(x)=-2ax与h(x)=存在交点.当a=0时不符合题意,当a>0时,如图1,数形结合可得没有交点,当a<0时,如图2,此时正好有一个交点,故有a<0,应填(-≦,0).方法二(分离变量法):上述也可等价于方程2ax+=0在(0,+≦)内有解,显然可得a=-∈(-≦,0).答案:(-≦,0)15.【解析】(1)方程7x-4y-12=0可化为y=x-3.当x=2时,y=.又f′(x)=a+,于是解得故f(x)=x-.(2)设P(x0,y0)为曲线上任一点,由y′=1+知曲线在点P(x0,y0)处的切线方程为y-y0=(1+)(x-x0),即y-(x0-)=(1+)(x-x0).令x=0得y=-,从而得切线与直线x=0的交点坐标为(0,-).令y=x得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0),所以点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为S=|-||2x0|=6.故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形的面积为定值,此定值为6.【变式备选】已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线方程.(2)如果曲线y=f(x)的某一切线与直线y=-x+3垂直,求切点坐标与切线的方程.【解析】(1)可判定点(2,-6)在曲线y=f(x)上.≧f′(x)=(x3+x-16)′=3x2+1,≨在点(2,-6)处的切线的斜率为k=f′(2)=13,≨切线的方程为y=13(x-2)+(-6),即y=13x-32.(2)≧切线与直线y=-x+3垂直,≨切线的斜率k=4.设切点的坐标为(x0,y0),则f′(x0)=3+1=4,≨x0=〒1,≨或≨切点坐标为(1,-14)或(-1,-18),切线方程为y=4(x-1)-14或y=4(x+1)-18.即y=4x-18或y=4x-14.。