第二章-GIS的数据结构(信息工程大学-地理信息系统GIS)
- 格式:ppt
- 大小:2.55 MB
- 文档页数:111
§2.1 地理实体及其描述地理信息系统是以地理实体作为描述、反映现实世界中空间对象的单体。
在地理信息系统中需要描述地理实体的名称、位置、形状、功能等内容,这些内容反映了地理实体的时间、空间和属性三种特性,其中空间特性是地理信息所特有的,也是造成空间数据结构和数据库模型异常复杂的原因所在。
此外,实体间的空间关系对空间查询和分析具有重要意义。
一、地理系统和地理实体介绍地理系统和地理实体的概念。
二、实体的描述及存储介绍空间实体描述的内容,空间数据的基本特征、空间数据类型和空间数据存储方式。
三、实体的空间特征空间特征是地理实体所特有的特征,是GIS数据组织、处理和维护的难点所在,可以从空间维数,空间特征类型和实体类型组合三个方面来考察。
四、实体间的空间关系实体间空间关系对于地理信息系统查询和空间分析具有重要意义。
在此阐述空间关系的类型,和拓扑空间关系的定义、种类、表达及意义。
一、地理系统和地理实体地理信息来源于地理系统。
著名数学家钱学森曾指出:地理系统是一个开放的复杂巨系统。
所谓开放性是指地理系统与其它系统有关联,有物质和信息的交往,不是一个封闭系统;复杂巨系统是指地理系统有成千上万的种类繁多的子系统。
抽象是人们观察和分析复杂事物和现象的常用手段之一。
将地理系统中复杂的地理现象进行抽象得到的地理对象称为地理实体或空间实体、空间目标,简称实体(Entity)。
实体现实世界中客观存在的,并可相互区别的事物。
实体可以指个体,也可以指总体,即个体的集合.抽象的程度与研究区域的大小、规模不同而有所不同,如在一张小比例尺的全国地图中,武汉市被抽象为一个点状实体,抽象程度很大;而在较大比例尺的武汉市地图上,需要将武汉市的街道、房屋详尽地表示出来,武汉市则被抽象为一个由简单点、线、面实体组成的庞大复杂组合实体,其抽象程度较前者而言较小。
所以说,实体是一个具体有概括性、复杂性、相对意义的概念。
返回二、实体的描述和存储从实体需要描述的内容到计算机具体如何存储实体的过程见图2-1-1。
第二章GIS数据结构GIS数据结构是指地理信息系统中用来存储和组织地理数据的数据模型和数据格式。
它们用于描述和管理多种类型的地理数据,包括地理位置、属性信息以及与地理实体相关的其他信息。
在GIS中,数据结构的选择对于数据的查询、分析和可视化都起着至关重要的作用。
常见的GIS数据结构主要有三种:基于栅格的数据结构、基于矢量的数据结构和基于数据库的数据结构。
基于栅格的数据结构是一种二维网格结构,将地理空间划分为一系列的像元,每个像元代表一个固定大小的地理空间单元。
栅格数据结构适用于连续变化的地理现象的表达和分析,如地形高程、气候温度等。
栅格数据结构的优点是简单易用,存储和计算效率较高。
然而,由于其固定的像元大小和离散化的特性,栅格数据结构对于精确定位和表达复杂地理对象的能力有限。
基于矢量的数据结构则是通过点、线和面等几何元素来表示地理对象。
矢量数据结构适用于离散型地理现象的表达和分析,如道路、河流等。
它可以准确地表达地理对象的形状、大小和拓扑关系,并支持各种地理操作,如缓冲区分析、叠加分析等。
矢量数据结构的缺点是数据量较大,处理效率相对较低。
此外,矢量数据在处理连续性地理现象时需要进行插值操作,可能会引入一定的误差。
基于数据库的数据结构利用数据库管理系统来存储和组织地理数据。
数据库系统提供了强大的数据管理和查询功能,可以方便地对地理数据进行存储、查询和更新。
同时,数据库系统还支持空间索引和空间查询优化等功能,提高了地理数据的访问效率。
基于数据库的数据结构可以与其他非地理数据进行关联,支持多种数据类型的存储和查询。
然而,数据库系统对硬件和软件资源有较高的需求,需要相应的数据库管理技术和系统维护工作。
综合来看,选择合适的GIS数据结构需要考虑地理数据的类型、规模和应用需求。
对于连续变化的地理现象,可以选择基于栅格的数据结构;对于离散型地理对象,可以选择基于矢量的数据结构;对于大规模地理数据和复杂的分析需求,可以选择基于数据库的数据结构。
地理信息系统的数据结构地理信息系统(GIS)作为一种用于采集、存储、管理、分析和展示地理空间数据的技术系统,其核心在于数据结构的设计与运用。
数据结构如同 GIS 的骨骼框架,决定了系统如何有效地组织、存储和处理海量的地理信息,以满足各种应用需求。
在探讨地理信息系统的数据结构之前,我们首先要明白地理数据的特点。
地理数据具有空间性、属性性和时间性。
空间性指的是数据与地理位置和空间关系相关;属性性则涵盖了描述地理实体的各种特征信息,如名称、类型、面积等;时间性反映了地理现象随时间的变化。
常见的地理信息系统数据结构主要包括矢量数据结构和栅格数据结构。
矢量数据结构通过点、线、面等几何对象来表示地理实体。
比如,一个城市可以用多边形来表示其边界,道路可以用线来描绘。
矢量数据结构的优点是精度高、数据量小、图形显示质量好,并且能够方便地进行几何变换和拓扑分析。
拓扑分析对于判断地理实体之间的空间关系非常重要,比如相邻、包含等。
然而,矢量数据结构在处理复杂的空间关系和大面积的连续数据时,可能会显得较为繁琐。
相比之下,栅格数据结构将地理空间划分成规则的网格单元,每个单元赋予相应的属性值。
例如,一张卫星影像图可以看作是栅格数据,每个像素都有其代表的颜色或灰度值。
栅格数据结构的优点是处理算法简单,易于与遥感数据结合,适合进行空间分析和模拟。
但它的数据量通常较大,精度相对较低,图形显示可能会有锯齿状。
除了这两种基本的数据结构,还有一种混合数据结构,它结合了矢量和栅格数据结构的优点。
例如,在一些 GIS 应用中,对于重要的地理实体采用矢量数据结构进行精确表示,而对于大面积的背景信息则使用栅格数据结构,以提高数据处理效率。
在实际应用中,选择合适的数据结构取决于多种因素。
如果需要进行精确的几何计算和空间关系分析,矢量数据结构可能更合适;而对于大面积的连续数据,如地形、植被覆盖等,栅格数据结构往往更具优势。
同时,数据的来源、精度要求、处理速度以及存储空间等也是决定数据结构选择的重要考量因素。
地理信息系统的数据结构在当今数字化的时代,地理信息系统(GIS)已经成为了处理和分析地理空间数据的重要工具。
而地理信息系统能够高效运行和发挥作用,离不开其背后强大的数据结构支持。
首先,我们来了解一下什么是地理信息系统的数据结构。
简单来说,数据结构就是数据的组织方式,它决定了数据如何存储、管理和访问。
对于地理信息系统而言,由于其处理的数据具有空间特性,比如位置、形状、大小等,因此数据结构的设计就显得尤为关键。
在地理信息系统中,常见的数据结构有矢量数据结构和栅格数据结构。
矢量数据结构就像是在纸上用线条勾勒出地理对象的轮廓。
它通过点、线、面等几何元素来精确地表示地理实体的位置和形状。
比如,一条河流可以用一系列的点连接成线来表示,一个湖泊可以用一个封闭的多边形来表示。
这种数据结构的优点是精度高、数据量小,并且能够方便地进行几何操作和拓扑分析。
比如,我们可以很容易地计算两个多边形的交集、并集等。
栅格数据结构则像是把地理空间划分成一个个均匀的小格子,然后给每个格子赋予一个值来表示相应的地理信息。
比如,在表示土地利用类型时,每个格子可以表示为森林、农田、城市等。
栅格数据结构的优点是处理简单、易于与遥感影像等数据结合,但其精度相对较低,数据量较大。
除了这两种主要的数据结构,还有一种叫做拓扑数据结构。
拓扑关系是指地理对象之间的空间关系,比如相邻、包含、连接等。
通过建立拓扑数据结构,可以更有效地进行空间查询和分析,比如判断一个点是否在一个多边形内,查找相邻的多边形等。
在实际应用中,选择合适的数据结构取决于具体的需求和数据特点。
如果需要高精度的地理数据表示和复杂的几何分析,矢量数据结构可能更合适;如果需要快速处理大面积的地理数据,并且对精度要求不是特别高,栅格数据结构可能更有优势。
另外,还有一种叫做不规则三角网(TIN)的数据结构。
它是通过将一系列不规则分布的点连接成三角形来逼近地理表面。
TIN 数据结构能够很好地表示地形等连续变化的地理现象,并且在计算坡度、坡向等方面具有优势。