【高考一轮】2018课标版文科数学一轮复习 10.5变量的相关关系、统计案例 夯基提能作业本(含答案)

  • 格式:doc
  • 大小:754.29 KB
  • 文档页数:8

下载文档原格式

  / 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五节变量的相关关系、统计案例

A组基础题组

1.已知变量x,y之间具有线性相关关系,其散点图如图所示,回归直线l的方程为=x+,则下列说法正确的是( )

A.>0,<0

B.>0,>0

C.<0,<0

D.<0,>0

2.(2016辽宁沈阳二中一模)某考察团对全国10大城市居民人均工资水平x(千元)与居民人均消费水平y(千元)进行统计调查,y与x具有相关关系,回归方程为=0.66x+1.562,若某城市居民人均消费水平为

7.675(千元),估计该城市人均消费额占人均工资收入的百分比约为( )

A.83%

B.72%

C.67%

D.66%

3.(2016江西南昌十所省重点中学二模)某产品的广告费用x(万元)与销售额y(万元)的统计数据如下表所示,根据表中数据可得回归方程=x+中的=10.6.据此模型预测广告费用为10万元时的销售额为( )

A.112.1万元万元

4.春节期间,“厉行节约,反对浪费”之风悄然吹开,通过随机询问某市100名性别不同的居民是否能做到“光盘”,

附:

K2=则下面的结论正确的是( )

A.有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”

B.在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别无关”

C.在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别有关”

D.有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”

5.(2016湖北优质高中联考)某单位为了了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,

由表中数据得回归直线方程=x+中的=-2,预测当气温为-4 ℃时,用电量为.

6.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮

食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:=0.254x+0.321,由回归直线方

程可知,家庭年收入每增加1万元,年饮食支出平均增加万元.

7.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)

小李这5天的平均投篮命中率为;6号打6小时篮球的投篮命中率为.

8.已知某班n名同学的数学测试成绩(单位:分,满分100分)的频率分布直方图如图所示,其中a,b,c成等差数列,且成绩在[90,100]内的有6人.

(1)求n的值;

(2)规定60分以下为不及格,若不及格的人中女生有4人,而及格的人中,男生比女生少4人,借助独立性检验分析是否有90%的把握认为“本次测试的及格情况与性别有关”?

附:

K2=

9.(2015课标Ⅰ,19,12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费x i和年销售量y i(i=1,2, (8)

数据作了初步处理,得到下面的散点图及一些统计量的值.

(x i-)2(w i-)2(x i-)(y i-) (w i-)(y i-)

6.8

表中w i=,=w i.

(1)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给

出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;

(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(2)的结果回答下列问题:

(i)年宣传费x=49时,年销售量及年利润的预报值是多少?

(ii)年宣传费x为何值时,年利润的预报值最大?

附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为

=,=-.

B组提升题组

10.在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点

(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为( )

A.-1

B.0

C.

D.1

11.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据

(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中的是( )

A.y与x具有正的线性相关关系

B.回归直线过样本点的中心(,)

C.若该大学某女生的身高增加1 cm,则其体重约增加0.85 kg

D.若该大学某女生的身高为170 cm,则可断定其体重必为58.79 kg

12.某炼钢厂废品率x(%)与成本y(元/吨)的线性回归方程为=105.492+42.569x.当成本控制在176.5元

/吨时,可以预计生产的1 000吨钢中,约有吨钢是废品.

13.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.

(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;

(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”.

附:K2=