备考中考数学专题复习水平测试题及答案解析(经典珍藏版):16菱形、矩形、正方形
- 格式:pdf
- 大小:357.56 KB
- 文档页数:19
矩形、菱形、正方形一、填空题1.矩形的两条对角线的一个交角为60°,两条对角线的长度的和为8cm,则这个矩形的一条较长边为cm.2.边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是cm.3.正方形的一条对角线长为2,则它的面积为.4.已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为cm2.二、选择题5.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形6.平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD7.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°8.如图,沿虚线EF将平行四边形ABCD剪开,则得到的四边形ABFE是()A.梯形 B.平行四边形C.矩形 D.菱形三、解答题9.如图,菱形的对角线BD,AC的长分别是6和8,求菱形的周长与面积.10.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.11.如图,菱形ABCD中,BE⊥AD,BF⊥CD,E、F为垂足,AE=ED,求∠EBF的度数.12.如图,四边形ABCD是矩形,E是AB上一点,且DE=AB,过C作CF⊥DE,垂足为F.(1)猜想:AD与CF的大小关系;(2)请证明上面的结论.13.已知:如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:△ABC是等腰三角形;(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,证明你的结论.14.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.矩形、菱形、正方形参考答案与试题解析一、填空题1.矩形的两条对角线的一个交角为60°,两条对角线的长度的和为8cm,则这个矩形的一条较长边为2cm.【考点】矩形的性质.【分析】根据矩形的性质推出OA=OB,证出等边△OAB,求出BA,根据勾股定理求出BC即可得到答案.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OD=OB,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=AC=2(cm),∵四边形ABCD是矩形,∴AB=CD=2cm,∠ABC=90°,在△ABC中,由勾股定理得:BC===2(cm),∴AD=BC=2(cm).故答案是:2.【点评】本题主要考查对矩形的性质,等边三角形的性质和判定,勾股定理等知识点的理解和掌握,能求出AB的长是解此题的关键.2.边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是8 cm.【考点】勾股定理;菱形的性质.【专题】压轴题.【分析】根据菱形的对角线互相垂直平分,得已知对角线的一半是3.根据勾股定理,得要求的对角线的一半是4,则另一条对角线的长是8.【解答】解:在菱形ABCD中,AB=5,AC=6,因为对角线互相垂直平分,所以∠AOB=90°,AO=3,在RT△AOB中,BO==4,∴BD=2BO=8.【点评】注意菱形对角线的性质:菱形的对角线互相垂直平分.熟练运用勾股定理.3.正方形的一条对角线长为2,则它的面积为 2 .【考点】正方形的性质.【专题】计算题.【分析】根据正方形的性质利用勾股定理可求得其边长,从而就不难求得其面积.【解答】解:由题意得,正方形的边长为,故面积为2.故答案为2.【点评】主要考查到正方形的性质和面积的求法.要注意:正方形的对角线和正方形的两条相邻的边构成等腰直角三角形.4.已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为24 cm2.【考点】菱形的性质.【专题】计算题.【分析】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【解答】解:由已知得,菱形的面积等于两对角线乘积的一半即:6×8÷2=24cm2.故答案为:24.【点评】此题主要考查菱形的面积等于两条对角线的积的一半.二、选择题5.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形【考点】菱形的判定;矩形的判定;正方形的判定.【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的性质以及之间的相互联系.【解答】解:A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.【点评】本题考查的是普通概念,熟练掌握基础的东西是深入研究的必要准备.6.平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD【考点】矩形的判定;平行四边形的性质.【专题】证明题;压轴题.【分析】根据对角线相等的平行四边形是矩形判断.【解答】解:A、是邻边相等,可得到平行四边形ABCD是菱形,故不正确;B、是对角线相等,可推出平行四边形ABCD是矩形,故正确;C、是对角线互相垂直,可得到平行四边形ABCD是菱形,故不正确;D、无法判断.故选B.【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.7.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°【考点】翻折变换(折叠问题).【专题】压轴题.【分析】根据折叠的性质,对折前后角相等.【解答】解:根据题意得:∠2=∠3,∵∠1+∠2+∠3=180°,∴∠2=(180°﹣50°)÷2=65°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=180°﹣65°=115°.故选B.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.8.如图,沿虚线EF将平行四边形ABCD剪开,则得到的四边形ABFE是()A.梯形 B.平行四边形C.矩形 D.菱形【考点】剪纸问题.【专题】操作型.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:由于EF的位置是不确定的,只能得到所求的四边形的一组对边平行,所以是梯形.故选A.【点评】本题主要考查学生的动手能力及空间想象能力.三、解答题9.如图,菱形的对角线BD,AC的长分别是6和8,求菱形的周长与面积.【考点】菱形的性质.【分析】根据菱形的对角线可以求得菱形ABCD的面积,根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOB中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.【解答】解:菱形的对角线BD,AC的长分别是6和8,则菱形的面积为×6×8=24,菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴AB==5,故菱形的周长为20,答:菱形的周长为20,面积为24.【点评】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.10.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.【考点】正方形的判定;三角形中位线定理;平行四边形的判定.【专题】证明题.【分析】通过中位线定理得出GF∥EH且GF=EH,所以四边形EGFH是平行四边形;当添加了条件EF ⊥BC,且EF=BC后,通过对角线相等且互相垂直平分(EF⊥GH,且EF=GH)就可证明是正方形.【解答】证明:(1)∵G,F分别是BE,BC的中点,∴GF∥EC且GF=EC.又∵H是EC的中点,EH=EC,∴GF∥EH且GF=EH.∴四边形EGFH是平行四边形.(2)连接GH,EF.∵G,H分别是BE,EC的中点,∴GH∥BC且GH=BC.又∵EF⊥BC且EF=BC,又∵EF⊥BC,GH是三角形EBC的中位线,∴GH∥BC,∴EF⊥GH,又∵EF=GH.∴平行四边形EGFH是正方形.【点评】主要考查了平行四边形的判定和正方形的性质.正方形对角线的特点是:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角.11.如图,菱形ABCD中,BE⊥AD,BF⊥CD,E、F为垂足,AE=ED,求∠EBF的度数.【考点】菱形的性质.【专题】计算题.【分析】首先连接BD,根据菱形的四条边都相等,可得AB=BC=CD=AD;又由BE⊥AD,AE=ED,可得AB=AD=BD,所以∠A=60°,可得∠ADC=120°,即可得∠EBF的度数.【解答】解:连接BD,∵BE⊥AD,AE=ED,∴AB=BD,∵四边形ABCD是菱形,∴AB=BC=CD=AD,AD∥BC,AB∥CD,∴AB=AD=BD,∴∠A=60°,∴∠ADC=120°,∵BE⊥AD,BF⊥CD,∴∠BED=∠BFD=90°,∴∠EBF=60°.【点评】此题考查了菱形的性质:菱形的四条边都相等.还考查了线段垂直平分线的性质.此题比较简单,解题要细心.12.如图,四边形ABCD是矩形,E是AB上一点,且DE=AB,过C作CF⊥DE,垂足为F.(1)猜想:AD与CF的大小关系;(2)请证明上面的结论.【考点】矩形的性质;全等三角形的判定与性质.【专题】探究型.【分析】由全等三角形的判定定理直接可证△ADE≌△FCD,即证AD=CF.【解答】解:(1)AD=CF.(2分)(2)证明:∵四边形ABCD是矩形,∴CD∥AE,AB=CD,∴∠AED=∠FDC,∵DE=AB,∴DE=AB=CD.又∵CF⊥DE,∴∠CFD=∠A=90°.(4分)∴△ADE≌△FCD(AAS).(5分)∴AD=CF.(6分)【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.13.已知:如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:△ABC是等腰三角形;(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,证明你的结论.【考点】全等三角形的判定与性质;正方形的判定.【专题】几何综合题.【分析】先利用HL判定Rt△BDF≌Rt△CDE,从而得到∠B=∠C,即△ABC是等腰三角形;由已知可证明它是矩形,因为有一组邻边相等即可得到四边形AFDE是正方形.【解答】(1)证明:∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,又∵,∴Rt△BDF≌Rt△CDE(HL),∴∠B=∠C.∴△ABC是等腰三角形;(2)解:四边形AFDE是正方形.证明:∵∠A=90°,DE⊥AC,DF⊥AB,∴四边形AFDE是矩形,又∵Rt△BDF≌Rt△CDE,∴DF=DE,∴四边形AFDE是正方形.【点评】此题主要考查学生对全等三角形的判定和性质及正方形的判定方法的掌握情况.判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.14.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【考点】矩形的判定.【专题】几何综合题.【分析】(1)根据平行线性质和角平分线性质,以及由平行线所夹的内错角相等易证.(2)根据矩形的判定方法,即一个角是直角的平行四边形是矩形可证.【解答】(1)证明:∵CE平分∠ACB,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO.(2)解:当点O运动到AC的中点时,四边形AECF是矩形.理由:∵EO=FO,点O是AC的中点.∴四边形AECF是平行四边形,∵CF平分∠BCA的外角,∴∠4=∠5,又∵∠1=∠2,∴∠2+∠4=×180°=90°.即∠ECF=90°,∴四边形AECF是矩形.【点评】本题涉及矩形的判定定理,解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论.。
2024成都中考数学复习专题矩形、菱形、正方形的性质与判定基础题1. (2023上海)在四边形ABCD中,AD∥BC,AB=C D.下列说法能使四边形ABCD为矩形的是()A. AB∥CDB. AD=BCC. ∠A=∠BD. ∠A=∠D2. (2023自贡)如图,边长为3的正方形OBCD两边与坐标轴正半轴重合,点C的坐标是()A. (3,-3)B. (-3,3)C. (3,3)D. (-3,-3)第2题图3. (2022玉林)若顺次连接四边形ABCD各边的中点所得的四边形是正方形,则四边形ABCD 的两条对角线AC,BD一定是()A. 互相平分B. 互相垂直C. 互相平分且相等D. 互相垂直且相等4. (2023深圳)如图,在平行四边形ABCD中,AB=4,BC=6,将线段AB水平向右平移a 个单位长度得到线段EF,若四边形ECDF为菱形时,则a的值为()第4题图A. 1B. 2C. 3D. 45. (2023十堰)如图,将四根木条用钉子钉成一个矩形框架ABCD,然后向左扭动框架,观察所得四边形的变化.下面判断错误的是()A. 四边形ABCD由矩形变为平行四边形B. 对角线BD的长度减小C. 四边形ABCD的面积不变D. 四边形ABCD的周长不变第5题图6. 如图,菱形ABCD中,点E,F分别为AB,BC的中点,EF=2,BD=8,则该菱形的面积为()第6题图A. 12B. 16C. 20D. 327. (2023杭州)如图,矩形ABCD的对角线AC,BD相交于点O.若∠AOB=60°,则ABBC=()A. 12 B.3-12 C.32 D.33第7题图8. (2023大庆)将两个完全相同的菱形按如图方式放置,若∠BAD=α,∠CBE=β,则β=()第8题图A. 45°+12α B. 45°+32αC. 90°-12αD. 90°-32α 9. (2023河北)如图,在Rt △ABC 中,AB =4,点M 是斜边BC 的中点,以AM 为边作正方形AMEF .若S 正方形AMEF =16,则S △ABC =( ) A. 4 3 B. 8 3 C. 12 D. 16第9题图10. [新考法—条件开放](2023齐齐哈尔)如图,在四边形ABCD 中,AD =BC ,AC ⊥BD 于点O .请添加一个条件:________,使四边形ABCD 成为菱形.第10题图 11. (2023怀化)如图,点P 是正方形ABCD 的对角线AC 上的一点,PE ⊥AD 于点E ,PE =3.则点P 到直线AB 的距离为________.第11题图12. (2023绍兴)如图,在菱形ABCD 中,∠DAB =40°,连接AC ,以点A 为圆心,AC 长为半径作弧,交直线AD 于点E ,连接CE ,则∠AEC 的度数是________.第12题图13. (2023河南)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为________.14. [新考法—条件开放](2023十堰)如图,▱ABCD 的对角线AC ,BD 交于点O ,分别以点B ,C 为圆心,12AC ,12BD 长为半径画弧,两弧交于点P ,连接BP ,CP . (1)试判断四边形BPCO 的形状,并说明理由;(2)请说明当▱ABCD 的对角线满足什么条件时,四边形BPCO 是正方形?第14题图15. 如图,在平行四边形ABCD 中,点E ,F 分别在边BC ,AD 上,且BE =DF ,连接AE ,CF ,EH ⊥CF 于点H ,FG ⊥AE 于点G .(1)判断四边形EGFH 的形状,并说明理由;(2)若AE =5,tan ∠DAE =2,EG =2GF ,求AG 的长.第15题图拔高题16. (2022青羊区模拟)我们规定菱形与正方形接近程度称为“接近度”,设菱形相邻两个内角的度数分别为α,β,将菱形的“接近度”定义为|α-β|,于是|α-β|越小,菱形越接近正方形.第16题图①若菱形的一个内角为80°,则该菱形的“接近度”为________;②当菱形的“接近度”等于________时,菱形是正方形.课时2基础题1. (2023湘潭)如图,菱形ABCD中,连接AC,BD,若∠1=20°,则∠2的度数为()A. 20°B. 60°C. 70°D. 80°第1题图2. 如图,在菱形ABCD中,AC,BD为菱形的对角线,∠DBC=60°,BD=10,点F为BC 中点,则EF的长为()第2题图A. 3B. 4C. 5D. 63. 如图所示,将一张矩形纸片沿虚线对折两次,当剪刀与纸片的夹角∠ABC=45°时,已知AB=4 cm,则剪下来图形的周长为()第3题图A. 4 cmB. 4 2 cmC. 16 cmD. 16 2 cm4. (2022青岛改编)如图,O 为正方形ABCD 对角线AC 的中点,△ACE 为等边三角形.若AB =2,则OE 的长度为________.第4题图5. [新考法—数学文化](2023内江)出入相补原理是我国古代数学的重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的重要内容之一.如图,在矩形ABCD 中,AB =5,AD =12,对角线AC 与BD 交于点O ,点E 为BC 边上的一个动点,EF ⊥AC ,EG ⊥BD ,垂足分别为点F ,G ,则EF +EG =________.第5题图6. (2023天津)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.第6题图(1)△ADE 的面积为________;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为________.7. (2023内江)如图,在△ABC 中,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交CE 的延长线于点F .(1)求证:F A =BD ;(2)连接BF ,若AB =AC ,求证:四边形ADBF 是矩形.第7题图8. (2023兰州)如图,矩形ABCD的对角线AC与BD相交于点O,CD∥OE,直线CE是线段OD的垂直平分线,CE分别交OD,AD于点F,G,连接DE.(1)判断四边形OCDE的形状,并说明理由;(2)当CD=4时,求EG的长.第8题图拔高题9. (2023绍兴改编)如图,在矩形ABCD中,O为对角线BD的中点,∠ABD=60°,动点E 在线段OB上,动点F在线段OD上,点E,F同时从点O出发,分别向终点B,D运动,且始终保持OE=OF.点E关于AD,AB的对称点为E1,E2;点F关于BC,CD的对称点为F1,F2.当E,F,O三点重合时,当点E,F分别为OB,OD的中点时,当E,F分别运动到B,D两点时,四边形E1E2F1F2形状的变化依次是()第9题图A. 菱形→平行四边形→矩形B. 菱形→矩形→菱形C. 平行四边形→矩形→平行四边形D. 平行四边形→菱形→正方形10. (2023武侯区二诊节选)如图①,在矩形ABCD中,AD=nAB(其中n>1),点P是AD边上一动点(点P不与点A重合),点E是AB边的中点,连接PE,将矩形ABCD沿直线PE进行翻折,其顶点A翻折后的对应点为O,连接PO并延长,交BC边于点F(点F不与点C重合),过点F作∠PFC的平分线FG,交矩形ABCD的边于点G.(1)求证:PE∥FG;(2)如图②,在点P运动过程中,若E,O,G三点在同一条直线上时,点G与点D刚好重合,求n的值.图①图②第10题图参考答案与解析1. C2. C 【解析】∵正方形的边长为3,∴DC =BC =3,DC 与BC 分别垂直于y 轴和x 轴.∵点C 在第一象限,∴点C 的坐标为(3,3).3. D 【解析】如解图,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 的中点,则EH ∥DB ∥GF ,HG ∥AC ∥EF ,EF =12 AC ,FG =12BD ,∴四边形EFGH 为平行四边形.要使其为正方形,即EF ⊥FG ,FE =FG ,则AC ⊥BD ,AC =BD ,即对角线一定互相垂直且相等.第3题解图4. B 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,CE ∥FD ,CD =AB =4.∵将线段AB 水平向右平移得到线段EF ,∴AB ∥EF ∥CD ,∴四边形ECDF 为平行四边形,当CD =CE =4时,▱ECDF 为菱形,此时a =BE =BC -CE =6-4=2.5. C 【解析】将四根木条用钉子钉成一个矩形框架ABCD ,然后向左扭动框架,∵两组对边的长度分别相等,∴四边形ABCD 是平行四边形,故A 正确,∵向左扭动框架,∴BD 的长度减小,故B 正确;∵平行四边形ABCD 的底不变,高变小了,∴平行四边形ABCD 的面积变小,故C 错误;∵平行四边形ABCD 的四条边长度不变,∴四边形ABCD 的周长不变,故D 正确.6. B 【解析】如解图,连接AC ,∵点E ,F 分别为AB ,BC 的中点,∴EF 是△ABC 的中位线,∴AC =2EF =4.∵四边形ABCD 是菱形,∴AC ⊥BD ,∴S 菱形ABCD =12 AC ·BD =12×4×8=16.第6题解图7. D 【解析】∵四边形ABCD 是矩形,∴OA =OB =OC =OD ,∠ABC =90°,∴∠OBC =∠OCB .∵∠AOB =60°,∴∠ACB =12 ∠AOB =30°,∴AB BC =tan ∠ACB =tan 30°=33. 8. D 【解析】∵四边形ABCD 和四边形BGHF 是完全相同的菱形,∴∠DBE =∠BAD =α,AB =AD ,∠ABD =∠CBD =∠CBE +∠DBE =β+α.∴∠ADB =∠ABD =β+α.∵∠BAD +∠ADB +∠ABD =180°,∴α+β+α+β+α=180°,∴β=90°-32α. 9. B 【解析】∵S 正方形AMEF =16,∴AM =4.∵M 是斜边BC 的中点,∴AM 是Rt △ABC 斜边上的中线,∴BC =2AM =8.在Rt △ABC 中,由勾股定理,得AC =BC 2-AB 2 =43 ,∴S △ABC =12 AB ·AC =12×4×43 =83 . 10. AD ∥BC (答案不唯一) 【解析】当AD ∥BC ,AD =BC 时,四边形ABCD 为平行四边形,又∵AC ⊥BD ,∴四边形ABCD 是菱形.11. 3 【解析】如解图,过点P 作PF ⊥AB 于点F ,∵四边形ABCD 是正方形,AC 是对角线,∴∠DAC =∠BAC .∵PE ⊥AD ,PF ⊥AB ,∴∠AEP =∠AFP .∵AP =AP ,∴△AEP ≌△AFP (AAS),∴PE =PF .∵PE =3,∴点P 到直线AB 的距离为PF =3.第11题解图12. 10°或80° 【解析】如解图,以点A 为圆心,AC 长为半径作弧,交直线AD 于点E 和E ′.在菱形ABCD 中,∠DAC =∠BAC ,∵∠DAB =40°,∴∠DAC =20°.∵AC =AE ,∴∠AEC =(180°-20°)÷2=80°.∵AE ′=AC ,∴∠AE ′C =∠ACE ′=10°.综上所述,∠AEC 的度数是10°或80°.第12题解图 13. 2或2 +1 【解析】分两种情况,①当∠DNM =90°时,如解图①,则MN ∥AB ,∴AN BM=AD BD.∵M 是BD 的中点,∴BD =2BM ,∴AD =2AN =2;②当∠DMN =90°时,如解图②,连接BN ,∵M 是BD 的中点,∠DMN =90°,∴BN =DN =AB 2+AN 2 =12+12 =2 ,∴AD =2 +1.综上所述,AD 的长为2或2 +1.图①图②第13题解图14. 解:(1)四边形BPCO 为平行四边形.理由如下:由作法得,BP =12 AC ,CP =12BD , ∵四边形ABCD 为平行四边形,∴OC =12 AC ,OB =12BD, ∴OC =BP ,OB =CP ,∴四边形BPCO 为平行四边形.(2)当▱ABCD 的对角线垂直且相等时,四边形BPCO 为正方形.理由:∵AC ⊥BD ,∴四边形BPCO 为矩形,∵AC =BD ,∴OB =OC ,∴四边形BPCO 为正方形.15. 解:(1)四边形EGFH 是矩形.理由如下:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC .∵BE =DF ,∴AD -DF =BC -BE ,∴AF =CE ,∴四边形AECF 是平行四边形,∴AE ∥CF ,∴∠AEH +∠FHE =180°.∵EH ⊥CF ,FG ⊥AE ,∴∠FGE =∠FHE =∠GEH =90°,∴四边形EGFH 是矩形;(2)∵FG ⊥AE ,∴∠AGF =90°.在Rt △AGF 中,tan ∠DAE =GF AG=2, ∴GF =2AG .∵EG =2GF ,∴EG =4AG .∵AE =AG +EG =5,∴AG =1,即AG 的长为1.16. 20°;0° 【解析】①∵菱形相邻两个内角的度数和为180°,∴α+β=180°,即80°+β=180,解得β=100°,∴该菱形的“接近度”为|α-β|=|80°-100°|=20°;②∵当α=β=90°时,菱形是正方形,∴|α-β|=0°时,菱形是正方形.课时21. C 【解析】∵四边形ABCD 是菱形,∴AB ∥CD ,AC ⊥BD ,∴∠DCA =∠1=20°,∴∠2=90°-∠DCA =70°.2. C 【解析】∵四边形ABCD 是菱形,∴BC =DC ,BE =DE ,∵∠DBC =60°,∴△BDC是等边三角形,∴CD =BD =10.∵点F 为BC 中点,∴EF =12CD =5. 3. D 【解析】由折叠可知,剪下的图形两条对角线互相垂直且平分,此时图形为菱形,∵∠ABC =45°,∴剪下的图形有一个角为90°,∴有一个角为90°的菱形是正方形,∵AB =4 cm ,根据勾股定理得BC =42 cm ,故剪下来图形的周长为4×42 =16 2 cm. 4. 6 【解析】∵四边形ABCD 为正方形,AB =2,∴AC =22 .∵O 为正方形ABCD 对角线AC 的中点,△ACE 为等边三角形,∴∠AOE =90°,∴AC =AE =22 ,AO =2 ,∴OE=6 .5. 6013【解析】如解图,连接OE ,∵四边形ABCD 是矩形,∴∠BAD =90°, AB =CD =5,AD =BC =12.在Rt △ABD 中,BD =AB 2+AD 2 =13.∴AC =BD =13.∵AC 与BD 交于点O ,∴AO =CO =BO =DO =132 .∵S △BCO =14 S 四边形ABCD =14×12×5=15,∴S △BCO =S △BEO +S △CEO =12 BO ·EG +12 CO ·EF =12 ×132 (EG +EF )=15,∴EF +EG =15×413 =6013.第5题解图6. (1)3 【解析】(1)如解图,过点E 作EM ⊥AD 于点M ,∵△ADE 是等腰三角形,EA =ED =52 ,AD =3,∴AM =12 AD =32,∴EM =AE 2-AM 2 =(52)2-(32)2 =2,∴S △ADE =12 AD ·EM =12 ×3×2=3. (2)13 【解析】如解图,延长EM 交AG 于点N ,∵∠BAD =∠AME =90°,∴AB ∥NE ,∴∠ABF =∠FEN ,∠BAF =∠ENF .又∵点F 为BE 中点,∴BF =EF ,∴△AFB ≌△NFE ,∴EN =BA =3.由(1)知,EM =2,∴NM =1.∵∠NMD =∠ADC =90°,且M 为AD 中点,∴NM ∥GD ,∴NM 为△AGD 的中位线,∴GD =2NM =2,∴AG =AD 2+GD 2 =13 .第6题解图7. 证明:(1)∵AF ∥BC ,∴∠AFE =∠DCE .又∵E 是AD 的中点,∴AE =DE .在△AFE 和△DCE 中,∵ ⎩⎪⎨⎪⎧∠AFE =∠DCE ,∠AEF =∠DEC ,AE =DE ,∴△AFE≌△DCE,∴AF=DC.又∵D是BC的中点,∴BD=CD,∴AF=BD;(2)∵AB=AC,∴△ABC是等腰三角形.又∵D是BC的中点,∴∠ADB=90°,由(1)知F A=BD,又∵F A∥BD,∴四边形ADBF是平行四边形.又∵∠ADB=90°,∴四边形ADBF是矩形.8. 解:(1)四边形OCDE为菱形,理由如下:∵CE是线段OD的垂直平分线,∴OF=DF,OC=DC.∵CD∥OE,∴∠EOF=∠CDF.∵∠EFO=∠CFD,∴△OFE≌△DFC,∴OE=CD,∴四边形OCDE是平行四边形.又∵OC=CD,∴四边形OCDE是菱形;(2)∵四边形ABCD是矩形,∴DO=OC=OA,由(1)可知,OC=DC,∴OC=DO=CD,∴△OCD 是等边三角形,∴∠DCO =∠CDO =60°,∴∠FDG =90°-60°=30°.∵四边形OCDE 是菱形,∴∠DEC =∠DCE =30°,∠CGD =90°-∠DCE =60°,∴∠EDG =30°,∴DG =EG .∵CD =4,∴tan ∠DCG =DG CD =DG 4, ∴DG =4·tan 30°=4×33 =433, ∴EG =433. 9. B 【解析】∵四边形ABCD 为矩形,∠ABD =60°,∴∠CDF =60°,∠EDA =∠CBD =30°.∵OE =OF ,O 为对角线BD 的中点,∴DF =EB .由对称的性质得DF =DF 2,BF =BF 1,BE =BE 2,DE =DE 1,∠F 2DC =∠CDF =60°,∠EDA =∠E 1DA =30°,∠F 1BC =∠FBC =30°,∴E 1F 2=E 2F 1,∠E 1DB =60°,∠F 1BD =60°,∴DE 1∥BF 1,∴E 1F 2∥E 2F 1,∴四边形E 1E 2F 1F 2是平行四边形,如解图①,当E ,F ,O 三点重合时,DO =BO ,∴DE 1=DF 2=AE 1=AE 2,即E 1E 2=E 1F 2,∴四边形E 1E 2F 1F 2是菱形,如解图②,当E ,F 分别为OB ,OD 的中点时,设DB =4,则DF 2=DF =1,DE 1=DE =3,在Rt △ABD 中,AB =2,AD =23 ,连接AE ,易得AE =32 AB =3 ,根据对称性可得AE 1=AE =3 ,∵AD 2=12,DE 21 =9,AE 21 =3,即AD 2=AE 21 +DE 21 ,∴△DE 1A 是直角三角形,且∠E 1=90°,∴四边形E 1E 2F 1F 2是矩形;如解图③,当F ,E 分别与D ,B 重合时,△BE 1D ,△BDF 1都是等边三角形,则四边形E 1E 2F 1F 2是菱形,∴在这三个位置时,四边形E 1E 2F 1F 2形状的变化依次是菱形→矩形→菱形.图①图②图③第9题解图10. (1)证明:由翻折知,∠APE=∠OPE,∵FG平分∠PFC,∴∠PFG=∠CFG.∵AD∥BC,∴∠APF=∠CFP,∴∠EPF=∠PFG,∴PE∥FG;(2)解:由翻折知,EA=EO,∠EOP=90°.∵E,O,D三点在同一条直线上,∴∠DOF=∠EOF=∠C=90°.又∵DF=DF,∠OFG=∠CFG,∴△DOF≌△DCF(AAS),∴DO=DC=AB.∵E是AB的中点,∴设EA=EB=EO=a,∴OD=CD=AB=2a,∴DE=OE+OD=3a.在Rt△ADE中,由勾股定理,得AD2+AE2=DE2,∴AD=(3a)2-a2=22a.∵AD=nAB,∴22a=2na,∴n=2.。
中考数学专题训练:矩形、菱形、正方形(附参考答案)1.下列命题正确的是( )A .正方形的对角线相等且互相平分B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .一组邻边相等的四边形是菱形2.如图,D ,E ,F 分别是△ABC 各边的中点,则以下说法错误的是( )A .△BDE 和△DCF 的面积相等B .四边形AEDF 是平行四边形C .若AB =BC ,则四边形AEDF 是菱形D .若∠A =90°,则四边形AEDF 是矩形3.如图,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,CE ,DF 交于点G ,连接AG .下列结论:①CE =DF ;②CE ⊥DF ;③∠AGE =∠CDF .其中正确的结论是( )A .①②B .①③C .②③D .①②③4.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E 为BC 的中点,连接EO 并延长交AD 于点F ,∠ABC =60°,BC =2AB .下列结论:①AB ⊥AC ;②AD =4OE ;③四边形AECF 是菱形;④S △BOE =14S △ABC .其中正确结论的个数是( )A .4B .3C .2D .15.如图,在矩形ABCD中,AB=6 cm,BC=9 cm,点E,F分别在边AB,BC上,AE=2 cm,BD,EF交于点G.若G是EF的中点,则BG的长为______cm.6.如图,在菱形ABCD中,AC,BD为菱形的对角线,∠DBC=60°,BD=10,点F为BC的中点,则EF的长为_____.7.已知四边形ABCD是正方形,点E在边DA的延长线上,连接CE交AB于点G,过点B作BM⊥CE,垂足为点M,BM的延长线交AD于点F,交CD的延长线于点H.(1)如图1,求证:CE=BH;(2)如图2,若AE=AB,连接CF,在不添加任何辅助线情况下,请直接写出图2中的四个三角形(△AEG除外),使写出的每个三角形都与△AEG全等.8.如图,在菱形ABCD中,E,F,G,H分别是AB,BC,CD,AD上的点,且BE =BF=CG=AH.若菱形的面积等于24,BD=8,则EF+GH=_____.9.如图,在矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.10.(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC 到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.参考答案1.A 2.C 3.A 4.D5.√13 6.5 7.(1)证明略 (2)略8.6解析:如图,连接AC ,交BD 于点O ,∵四边形ABCD 是菱形,BD =8,∴AB =BC =AD =CD ,AC ⊥BD ,AO =OC =12AC ,BO =OD =12BD =4. ∵S 菱形ABCD =12AC ·BD =24,∴AC =6,∴AO =3,∴AB =√AO 2+BO 2=5=AD .∵BE =BF =CG =AH ,∴AE =CF =DH =DG ,∴BE AE =BF CF ,∴EF ∥AC .同理可得GH ∥AC ,设BE =BF =CG =AH =a ,则有DH =5-a ,∵EF ∥AC ,∴△BEF ∽△BAC ,∴BE AB =EF AC ,即a 5=EF 6,∴EF =65a ,同理可得DH DA =GH CA ,即5−a 5=GH 6,∴GH =6-65a ,∴EF +GH =6.9.(1)证明略(2)与△OBF相似的三角形有△ECF,△BAF,理由略(3)DE=3+√1910.(1)证明:∵四边形ABCD是矩形,∴∠C=∠ADE=90°,∴∠CDF+∠DFC=90°.∵AE⊥DF,∴∠DGE=90°,∴∠CDF+∠AED=90°,∴∠AED=∠DFC,∴△ADE∽△DCF.(2)证明:∵四边形ABCD是正方形,∴AD=DC,AD∥BC,∠ADE=∠DCF=90°.∵AE=DF,∴Rt△ADE≌Rt△DCF(HL),∴DE=CF.∵CH=DE,∴CF=CH.∵点H在BC的延长线上,∴∠DCH=∠DCF=90°.又∵DC=DC,∴△DCF≌△DCH(SAS),∴∠DFC=∠H.∵AD∥BC,∴∠ADF=∠DFC,∴∠ADF=∠H.(3)解:如图3,延长BC至点G,使CG=DE=8,连接DG,∵四边形ABCD是菱形,∴AD=DC,AD∥BC,∴∠ADE=∠DCG,∴△ADE≌△DCG(SAS),∴∠DGC=∠AED=60°,AE=DG. ∵AE=DF,∴DG=DF,∴△DFG是等边三角形,∴FG=DF=11.∵CF+CG=FG,∴CF=FG-CG=11-8=3,即CF的长为3.。
2019届初三数学中考复习矩形、菱形、正方形专项复习练习1.已知平行四边形ABCD,AC,BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A.∠BAC=∠DCA B.∠BAC=∠DACC.∠BAC=∠ABD D.∠BAC=∠ADB2. 如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=( )A.5 B.4 C.3.5 D.33. 如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为( )A.2 B.3 C. 3 D.2 34. 如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是( )A.AB=AD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC5. 下列说法:①四边相等的四边形一定是菱形;②顺次连接矩形各边中点形成的四边形一定是正方形;③对角线相等的四边形一定是矩形;④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.其中正确的有( )A.4个 B.3个 C.2个 D.1个6. 如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=2,BD=2,则菱形ABCD的面积为( )A.2 2 B. 2 C.6 2 D.8 27. 如图,矩形ABCD的对角线AC与BD相交于点O,C E∥BD,DE∥AC,AD=23,DE=2,则四边形OCED 的面积( )A.2 3 B.4 C.4 3 D.88. 如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC =23,∠AEO=120°,则FC的长度为( )A.1 B.2 C. 2 D. 39. 如图,矩形纸片ABCD中,AD=4 cm,把纸片沿直线AC折叠,点B落在点E处,AE交DC于点O,若AO=5 cm,则AB的长为( )A.6 cm B.7 cm C.8 cm D.9 cm10. 如图,在△ABC中,点D是边BC上的点,(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是( )A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形11. 如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE,将△ADE沿AE对折至△AFE,延长EF 交边BC于G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC =3.6.其中正确结论的个数是( )A.2个B.3个C.4个D.5个12. 在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为_______________________.13. 在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是___________.14. 如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为_______.15. 如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是____.16. 如图,在△ABC中,∠ACB=90°,点D,E分别是BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE,AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.参考答案:1---11 CBDCC AAACD D12. 45°或105°13. ①③④14. 3015.2 216. 解:(1)在△ABC中,点D,E分别是边BC,AB上的中点,∴DE是△ABC的中位线,∴DE∥AC,DE=12 AC,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE(2)当∠B=30°时,四边形ACEF为菱形.理由:在△ABC中,∠B=30°,∠ACB=90°,∴∠BAC=60°,AC=12AB=AE,∴△AEC为等边三角形,∴AC=CE,又∵四边形ACEF为平行四边形.∴四边形ACEF为菱形2019-2020学年数学中考模拟试卷一、选择题1.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=2.已知二次函数y=(x+m)2–n的图象如图所示,则一次函数y=mx+n与反比例函数y=mnx的图象可能是()A. B. C. D.3.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①③④B.②④C.①②③D.①②③④4.下列所述图形中,是中心对称图形,但不是轴对称图形的是A.正三角形B.平行四边形C.正五边形D.圆5.在的环湖越野赛中,甲乙两选手的行程(单位:)随时间(单位:)变化的图象如图所示,根据图中提供的信息,下列说法中,错误的是:( )A.出发后1小时,两人行程均为;B.出发后1.5小时,甲的行程比乙多;C.两人相遇前,甲的速度小于乙的速度;D.甲比乙先到达终点.6.下列运算正确的是()A. B. C. D.7.在数列3、12、30、60……中,请你观察数列的排列规律,则第5个数是( )A.75 B.90 C.105 D.1208.估计的值应在()A.8和9之间B.9和10之间C.10和11之间D.11和12之间9.下列形状的地砖中,不能把地面作既无缝隙又不重叠覆盖的地砖是()A.正三角形B.正方形C.正五边形D.长方形10.下列说法正确的个数是()①一组数据的众数只有一个②样本的方差越小,波动性越小,说明样本稳定性越好③一组数据的中位数一定是这组数据中的某一数据④数据:1,1,3,1,1,2的众数为4 ⑤一组数据的方差一定是正数.A.0个B.1个C.2个D.4个11.八年级6班的一个互助学习小组组长收集并整理了组员们讨论如下问题时所需的条件:如图所示,在四边形ABCD中,点E、F分别在边BC、AD上,____,求证:四边形AECF是平行四边形. 你能在横线上填上最少且简捷的条件使结论成立吗?条件分别是:①BE=DF;②∠B=∠D;③BAE=∠DCF;④四边形ABCD是平行四边形.其中A、B、C、D四位同学所填条件符合题目要求的是()A.①②③④B.①②③C.①④D.④12.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A .43π-B .83π-C .83π-D .843π- 二、填空题13.在实数范围内分解因式:24x -=______________________.14.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=________.15.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是__________.16.如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于_____. 17.如图,已知第一象限内的点A 在反比例函数上,第二象限的点B 在反比例函数上,且OA ⊥OB ,,则k 的值为________________ .18.从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是________ 三、解答题19.某贮水塔在工作期间,每小时的进水量和出水量都是固定不变的.从凌晨4点到早8点只进水不出水,8点到12点既进水又出水,14点到次日凌晨只出水不进水.下图是某日水塔中贮水量y (立方米)与x (时)的函数图象.(1)求每小时的进水量;(2)当8≤x≤12时,求y与x之间的函数关系式;(3)从该日凌晨4点到次日凌晨,当水塔中的贮水量不小于28立方米时,直接写出x的取值范围.20.某小区应政府号召,开展节约用水活动,效果显著.为了了解该小区节水情况,随机对小区的100户居民节水情况进行抽样调查,其中3月份较2月份的节水情况如图所示.(1)补全统计图;(2)计算这100户居民3月份较2月份的平均节水量;(3)已知该小区共有5000户居民,根据上面的计算结果,估计该小区居民3月份较2月份共节水多少吨?21.如图,在Rt△ABC中,∠C=90°,D是AC边上一点,tan∠DBC=43,且BC=6,AD=4.求cosA的值.22.已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.23.定义:若一个三角形一条边上的高长为这条边长的一半,则称该三角形为这条边上的“半高”三角形,这条高称为这条边上的“半高”,如图,△ABC是BC边上的“半高”三角形.点P在边AB上,PQ∥BC交AC于点Q,PM⊥BC于点M,QN⊥BC于点N,连接MQ.(1)请证明△APQ为PQ边上的“半高”三角形.(2)请探究BM,PM,CN之间的等量关系,并说明理由;(3)若△ABC的面积等于16,求MQ的最小值24.“全民阅读”活动,是中央宣传部、中央文明办和新闻出版总署贯彻落实关于建设学习型社会要求的一项重要举措.读书必须要讲究方法,只有按照一定的方法去阅读,才能取得事半功倍的效果.常用的阅读方法有:A.圈点批注法;B.摘记法;C.反思法:D.撰写读后感法;E.其他方法.某县某中学张老师为了解本校学生使用不同阅读方法读书的情况,随机抽取部分本校中学生进行了调查,通过数据的收集、整理绘制成以下不完整的统计图表,请根据图表中的信息解答下列问题:中学生阅读方法情况统计表(1)请你补全图表中的a,b,c数据:a=,b=,c=;(2)若该校共有中学生960名,估计该校使用“反思法”读书的学生有人;(3)小明从以上抽样调查所得结果估计全县6000名中学生中有1200人采用“撰写读后感法”读书,你同意小明的观点吗?请说明你的理由.(4)该校决定从本次抽取的“其他方法”4名学生(记为甲,乙,丙,丁)中,随机选择2名成为学校阅读宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.25.(某中学九年级学生共600人,其中男生320人,女生280人.该校对九年级所有学生进行了一次体育模拟测试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成如下的统计表:(1)a=; b=;(2)若将该表绘制成扇形统计图,那么Ⅲ类所对应的圆心角是°;(3)若随机抽取的学生中有64名男生和56名女生,请解释“随机抽取64名男生和56名女生”的合理性;(4)估计该校九年级学生体育测试成绩是40分的人数.【参考答案】*** 一、选择题二、填空题 13.()()22x x +- 14.85° 15.47° 16.3517. 18.14三、解答题19.(1)每小时的进水量为5立方米;(2)当8≤x≤12时,y =3x+1;(3)3792x 剟. 【解析】 【分析】(1)由4点到8点只进水时,水量从5立方米上升到25立方米即能求每小时进水量;(2)由图象可得,8≤x≤12时,对应的函数图象是线段,两端点坐标为(8,25)和(12,37),用待定系数法即可求函数关系式;(3)由(2)的函数关系式即能求在8到12点时,哪个时间开始贮水量不小于28立方米,且能求出每小时的出水量;14点后贮水量为37立方米开始每小时减2立方米,即能求等于28立方米的时刻 【详解】解:(1)∵凌晨4点到早8点只进水,水量从5立方米上升到25立方米 ∴(25﹣5)÷(8﹣4)=5(立方米/时) ∴每小时的进水量为5立方米.(2)设函数y =kx+b 经过点(8,25),(12,37)8251237k b k b +=⎧⎨+=⎩解得:31k b =⎧⎨=⎩∴当8≤x≤12时,y =3x+1 (3)∵8点到12点既进水又出水时,每小时水量上升3立方米 ∴每小时出水量为:5﹣3=2(立方米) 当8≤x≤12时,3x+1≥28,解得:x≥9 当x >14时,37﹣2(x ﹣14)≥28,解得:x≤372∴当水塔中的贮水量不小于28立方米时,x 的取值范围是9≤x≤372【点睛】本题考查了一次函数的应用,解题关键是理解图象中横纵坐标代表的意义并结合题意分析图象的每个分段函数.20.(1)见解析;(2)这100户居民3月份较2月份的平均节水量为1.48 t ;(3)估计该小区5000户居民3月份较2月份共节水7400 t.【解析】【分析】(1)从图中可获得节水量在0.4-0.8t 的有5户,0.8-1.2t 的有20户,1.6-2.0t 的有30户,2.0-2.4t 的有10户,样本共100户,可求得节水1.2-1.6t 的有35户,补全图形即可;(2)运用加权平均数公式把组中值当作每组数据,户数看成权,可求得平均节水量;(3)利用样本估计总体可得结果.【详解】解:(1)100-5-20-30-10=35(户).∴节水1.2~1.6吨的有35户.补全统计图如下.(2)由统计图得每小组中的组中值分别为0.40.82+=0.6,0.8 1.22+=1.0,1.2 1.62+=1.4,1.6 2.02+=1.8,2.0 2.42+=2.2, 所以这100户居民3月份较2月份的平均节水量 =0.65 1.020 1.435 1.830 2.210100⨯+⨯+⨯+⨯+⨯=1.48(t). 答:这100户居民3月份较2月份的平均节水量为1.48 t;(3)由题意可得1.48×5000=7400(t).答:估计该小区5000户居民3月份较2月份共节水7400 t.【点睛】本题考查从统计图表中获取信息的能力,加权平均数的应用和统计中用样本估计总体的思想.21 【解析】【分析】先在Rt △BDC 中,利用锐角三角函数的定义求出CD 的长,由AC=AD+DC 求出AC 的长,然后在Rt △ABC 中,根据勾股定理求出AB 的长,从而求出 cosA 的值.【详解】解:在Rt △BDC 中, tan ∠DBC=43, 且BC=6 , ∴ tan ∠DBC=DC BC =6DC =43, ∴CD=8,∴AC=AD+DC=12,在Rt △ABC 中,,∴ cosA =ACAB =5. 【点睛】本题主要考查解直角三角形.熟练掌握三角函数的定义是解题的关键.22.(1)见解析;(2【解析】【分析】(1)根据一元二次方程根的判别式和非负数的性质即可得到结论;(2)根据勾股定理和一元二次方程根的判别式解方程即可得到结论.【详解】(1)∵△=[﹣(m+2)]2﹣4×2m=(m ﹣2)2≥0,∴不论m 为何值,该方程总有两个实数根;(2)∵AB 、AC 的长是该方程的两个实数根,∴AB+AC =m+2,AB•AC=2m ,∵△ABC 是直角三角形,∴AB 2+AC 2=BC 2,∴(AB+AC )2﹣2AB•AC=BC 2,即(m+2)2﹣2×2m=32,解得:m ,∴m又∵AB•AC=2m ,m 为正数,∴m【点睛】本题考查了一元二次方程根的判别式,勾股定理,熟练掌握勾股定理是解题的关键.23.(1)见解析;(2)2PM =BM+CN ,理由见解析;(3)5. 【解析】【分析】(1)根据平行相似,证明△APQ ∽△ABC ,利用相似三角形对应边的比等于对应高的比:PQ AK BC AR =,由“半高”三角形的定义可结论;(2)证明四边形PMNQ 是矩形,得PQ =MN ,PM =KR ,代入AR =12BC ,可得结论;(3)先根据△ABC 的面积等于16,计算BC 和AR 的长,设MN =x ,则BM+CN =8﹣x ,PM =QN =12(8﹣x ),根据勾股定理表示MQ ,配方可得最小值.【详解】(1)证明:如图,过A 作AR ⊥BC 于R ,交PQ 于K ,∵△ABC 是BC 边上的“半高”三角形,∴AR =12BC , ∵PQ ∥BC ,∴△APQ ∽△ABC , ∴PQ AK BC AR=, ∴AK AR 1PQ BC 2==, ∴AK =12PQ , ∴△APQ 为PQ 边上的“半高”三角形.(2)解:2PM =BM+CN ,理由是:∵PM ⊥BC ,QN ⊥BC ,∴∠PMN =∠MNQ =∠MPQ =90°,∴四边形PMNQ 是矩形,∴PQ =MN ,PM =KR ,∵AK =12PQ ,AR =12BC , ∴AK+RK =12(BM+MN+CN ), 12PQ+PM =12BM+12MN+12CN , ∴2PM =BM+CN ;(3)解:∵△ABC 的面积等于16, ∴12BC AR ⋅=16, ∵AR =12BC , 1122BC BC ⋅⋅=16, BC =8,AR =4,设MN =x ,则BM+CN =8﹣x ,PM =QN =12(8﹣x ),∵MQ ==∴当x =85时,MQ 有最小值是5.【点睛】本题是三角形的综合题,考查的是新定义:“半高”三角形,涉及到相似三角形的性质和判定、三角形面积、勾股定理及新定义的理解和运用等知识,解决问题的关键是作辅助线解决问题.24.(1)32,8,10%;(2)96;(3)1200人;(4)16. 【解析】【分析】(1)先根据“摘记法”的频数及其频率求得总人数,再根据频数、频率与总数间的关系可得a 、b 、c 的值;(2)总人数乘以样本中“反思法”学生所占比例可得;(3)利用总人数乘以撰写读后感法的百分比即可解答(4)用树状图表示出四人中随机抽取两人有12种可能,即可解答【详解】解:(1)本次调查的学生有:20÷25%=80,a =80×40%=32,b =80×(100﹣40﹣25﹣20﹣5)%=80×10%=8,c =(100﹣40﹣25﹣20﹣5)%=10%,故答案为:32,8,10%;(2)若该校共有中学生960名,估计该校使用“反思法”读书的学生有:960×10%=96人,故答案为:96;(3)同意小明的观点;理由如下:全县6000名中学生中采用“撰写读后感法”读书的有:6000×20%=1200人;(4)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能, ∴抽取两人恰好是甲和乙的概率是21=126.【点睛】此题考查树状图法,扇形统计图,解题关键在于看懂图中数据25.(1)a =54;b =0.45; (2)72°;(3)“随机抽取64名男生和56名女生”比较合理;(4)该校九年级学生体育测试成绩是40分的人数约为180人.【解析】【分析】(1)先利用一类的频数除以频率计算出总频数c,再用总频数减去其余三类,即可得到a,再用a的频数除以总频数即可得到b(2)圆周角为360°,第三类占总数的0.2,所以第三类的圆心角=360°×0.2(3)根据九年级学生共600人,其中男生320人,女生280人进行反推即可解答(4)利用总人数乘频率即可解答【详解】(1)总频数=36÷0.3=120,a的频数=总频数-36-24-6=54,b频率=54÷120=0.45,a=54;b=0.45;(2)0.2×360°=72°;(3)∵6432056280== 120600120600,,∴“随机抽取64名男生和56名女生”比较合理;(4)0.3×600=180(人)答:该校九年级学生体育测试成绩是40分的人数约为180人.【点睛】此题考查了频数分布表,圆周角,用样本估计总体,熟练掌握运算法则是解题关键2019-2020学年数学中考模拟试卷一、选择题1.一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=﹣15x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2m2.下列等式一定成立的是()A.2a﹣a=1 B.a2•a3=a5C.(2ab2)3=2a3b6D.x2﹣2x+4=(x﹣2)23.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为()A.20元B.42元C.44元D.46元4.二次函数y=x2+bx的对称轴为直线x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A.0<t<5 B.﹣4≤t<5 C.﹣4≤t<0 D.t≥﹣45.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4,则△CEF的周长为()A.8B.9.5C.10D.11.56.关于的一元二次方程有两个相等的实数根,那么的值是()A. B. C. D.7.如图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=( )A.20°B.25°C.35°D.40°8.如图1,等边△ABD与等边△CBD的边长均为2,将△ABD沿AC方向向右平移k个单位到△A′B′D′的位置,得到图2,则下列说法:①阴影部分的周长为4;②当k=当k;正确的是( )A.①B.①②C.①③D.①②③9.若x是不等于1的实数,我们把11x-称为x的差倒数,如2的差倒数是11x-=﹣1,﹣1的差倒数为11(1) --=12,现已知x1=13,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2019的值为()A.﹣13B.﹣2 C.3 D.410.如图,已知直线y=34x﹣6与x轴、y轴分别交于B、C两点,A是以D(0,2)为圆心,2为半径的圆上一动点,连结AC、AB,则△ABC面积的最小值是()A.26 B.24 C.22 D.2011.华为手机Mate X在5G网络下能达的理论下载速度为603 000 000B/s,3秒钟内就能下载好1GB的电影,将603 000 000用科学计数法表示为()A.603×610B.6.03×810C.60.3×710D.0.603×91012.如图,在△ABC中,AC=BC,∠C=90°,折叠△ABC使得点C落在AB边上的E处,连接DE、CE,下列结论:①△DEB是等腰直角三角形;②AB=AC+CD;③BE BDAC AB;④S△CDE=S△BDE.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题13.定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线被称为:“直角抛物线”.如图,直线l:y=15x+b经过点M(0,14),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…B n(n,y n) (n为正整数),依次是直线l上的点,第一个抛物线与x轴正半轴的交点A1(x1,0)和A2(x2,0),第二个抛物线与x轴交点A2(x2,0)和A3(x3,0),以此类推,若x1=d(0<d<1),当d为_____时,这组抛物线中存在直角抛物线.14.如图,点为等边内一点,若,,,则的度数是__________.15.如图,正三角形ABC的边长为2,点A,B的圆上,点C在圆内,将正三角形ABC绕点A 逆时针旋转,当边AC第一次与圆相切时,旋转角为_____.16.抛物线 221y x =-的顶点坐标是________.17.命题“若a =b ,则a 3=b 3.”是真命题.它的逆命题“若a 3=b 3,则a =b”是_____(填真或假)命题.18.如图,直线y 1=mx 经过P(2,1)和Q(-4,-2)两点,且与直线y 2=kx +b 交于点P ,则不等式kx +b >mx >-2的解集为_________________.三、解答题19.关于x 的一次函数y =ax+b 与反比例函数y =k x(x >0)的图象交于点A (m ,4)和点B (4,1). (1)求m 的值和反比例函数的解析式;(2)求一次函数的解析式.20.如图1,在平面直角坐标系xOy 中,A (0,4),B (8,0),C (8,4).(1)试说明四边形AOBC 是矩形.(2)在x 轴上取一点D ,将△DCB 绕点C 顺时针旋转90°得到△D'CB'(点D'与点D 对应).①若OD =3,求点D'的坐标.②连接AD'、OD',则AD'+OD'是否存在最小值,若存在,请直接写出最小值及此时点D'的坐标;若不存在,请说明理由.21.抛物线L :y =a (x ﹣x 1)(x ﹣x 2)(常数a≠0)与x 轴交于点A (x 1,0),B (x 2,0),与y 轴交于点C ,且x 1•x 2<0,AB =4,当直线l :y =﹣3x+t+2(常数t >0)同时经过点A ,C 时,t =1.(1)点C 的坐标是 ;(2)求点A ,B 的坐标及L 的顶点坐标;(3)在如图2 所示的平面直角坐标系中,画出L 的大致图象;(4)将L 向右平移t 个单位长度,平移后y 随x 的增大而增大部分的图象记为G ,若直线l 与G 有公共点,直接写出t 的取值范围.22.从沈阳到大连的火车原来的平均速度是180千米/时,经过两次提速后平均速度为217.8干米/时,这两次提速的百分率相同.(1)求该火车每次提速的百分率;(2)填空:若沈阳到大连的铁路长396千米,则第一次提速后从甲地到乙地所用的时间比提速前少用了小时.23.立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.(1)当10≤x<60时,求y关于x的函数表达式;(2)九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?24.如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规作∠ABC的平分线,交AC于点D(保留作图痕迹,不要求写作法和证明);(2)在(1)作出的图形中,若∠A=30°,BC,则点D到AB的距离等于.25.设a ,b 是任意两个不等实数,我们规定满足不等式a≤x≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b].对于一个函数,如果它的自变量x 与函数值y 满足:当m≤x≤n 时,有m≤y≤n,我们就称此函数闭区间[m ,n]上的“闭函数”.如函数y =﹣x+4.当x =1时,y =3;当x =3时,y =1,即当1≤x≤3时,有1≤y≤3,所以说函数y =﹣x+4是闭区间[1,3]上的“闭函数”(1)反比例函数2019y x是闭区间[1,2019]上的“闭函数”吗?请判断并说明理由. (2)若二次函数y =x 2﹣2x ﹣k 是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx+b (k≠0)是闭区间[m ,n]上的“闭函数”,求此函数的解析式(用含m ,n 的代数式表示).【参考答案】***一、选择题二、填空题13.1120、1320、32014.150°15.75°16.(0,-1)17.真18.-4<x <2三、解答题19.(1)m =1,y =4x ;(2)y =﹣x+5; 【解析】【分析】(1)把B 点坐标代入反比例函数解析式,即可求出m 的值,从而求出反比例函数的解析式和m 的值;(2)求得A 点坐标,进而把A 、B 点的坐标代入一次函数y =kx+b 的解析式,就可求出a 、b 的值,从而求得一次函数的解析式.【详解】(1)∵点B (4,1)在反比例函数y =k x (x >0)的图象上, ∴1=4k , ∴k =4. ∴反比例函数的解析式为y =4x∵点A(m,4)在反比例函数y=4x的图象上,∴4=4m,∴m=1.(2)点A(1,4)和点B(4,1)在一次函数y=ax+b的图象上,∴4 41 a ba b+=⎧⎨+=⎩解得15 ab=-⎧⎨=⎩∴一次函数的解析式为y=﹣x+5.【点睛】本题考查了反比例函数和一次函数的交点问题,能够熟练运用待定系数法求得函数的解析式是解题的关键.20.(1)见解析;(2)①D'的坐标为(4,9),②AD'+OD',点D'的坐标是(4,2).【解析】【分析】(1)根据矩形的判定证明即可;(2)①当点D在原点右侧时,根据旋转的性质和矩形的性质解答即可;②当点D在原点左侧时,根据旋转的性质和矩形的性质解答即可.【详解】(1)∵A(0,4),B(8,0),C(8,4).∴OA=4,BC=4,OB=8,AC=8,∴OA=BC,AC=OB,∴四边形AOBC是平行四边形,∵∠AOB=90°,∴▱AOBC是矩形;(2)∵▱AOBC是矩形,∴∠ACB=90°,∠OBC=90°,∵△D'CB'将△DCB绕点C顺时针旋转90°得到(点D'与点D对应),∴∠D'B'C=∠DBC=90°,B'C=BC=4,D'B'=DB,∠BCB'=90°,即点B'在AC边上,∴D'B'⊥AC,①如图1,当点D在原点右侧时:D'B'=DB=8﹣3=5,∴点D'的坐标为(4,9);②如图2,当点D在原点左侧时:D'B'=DB=8+3=11,∴点D'的坐标为(4,15),综上所述:点D'的坐标为(4,9)或(4,15).AD'+OD',点D'的坐标是(4,2).【点睛】此题考查四边形的综合题,关键是根据旋转的性质和矩形的性质解答.21.(1) 点C的坐标是(0,3); (2)A(1,0),B(﹣3,0),L的顶点坐标为(﹣1,4);(3)见解析;(4)t≥1 2【解析】【分析】(1)把t=1代入y=﹣3x+t+2,令x=0,求得相应的y值,即可得到点C的坐标;(2)根据待定系数法,可得函数解析式;(3)根据描点法,可得函数图象;(3)根据平移规律,可得G的解析式,根据函数与不等式的关系,可得答案.【详解】(1)直线的解析式为y=﹣3x+3,当x=0时,y=3,即C点坐标为(0,3),故答案为:(0,3);(2)当y=0时,﹣3x+3=0,解得x1=1,即A(1,0),由点A(x1,0),B(x2,0),且x1•x2<0,AB=4,得1﹣x2=4,解得x2=﹣3,即B(﹣3,0);L:y=a(x﹣1)(x+3),将C(0,3)坐标代入L,得a=﹣1,∴L的解析式为y=﹣(x﹣1)(x+3),即y=﹣(x+1)2+4,∴L的顶点坐标为(﹣1,4);(3)函数图象如图所示:;(4)L向右平移t个单位的解析式为y=﹣(x+1﹣t)2+4,a=﹣1<0,当x≤t﹣1时,y随x的增大而增大.若直线l与G有公共点时,则有当x=﹣1+t时,G在直线l的上方,即﹣(t﹣1+1﹣t)2+4≥﹣3(t﹣1)+t+2,解得t≥12.【点睛】本题考查了二次函数综合题,解(1)的关键是利用自变量与函数值的对应关系;解(2)的关键是待定系数法;解(3)的关键是描点法,解(4)的关键是利用函数值的大小得出不等式,还利用了函数图象平移的规律.22.(1)该火车每次提速的百分率为10%.(2)0.2.【解析】【分析】(1)设该火车每次提速的百分率为x,根据提速前的速度及经两次提速后的速度,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)利用第一次提速后的速度=提速前的速度×(1+提速的百分率)可求出第一次提速后的速度,再利用少用的时间=两地间铁路长÷提速前的速度﹣两地间铁路长÷第一次提速后的速度,即可求出结论.【详解】(1)设该火车每次提速的百分率为x,依题意,得:180(1+x)2=217.8,解得:x1=0.1=10%,x2=﹣2.1(舍去),答:该火车每次提速的百分率为10%;(2)第一次提速后的速度为180×(1+10%)=198(千米/时),第一次提速后从甲地到乙地所用的时间比提速前少用的时间为396396180198-=0.2(小时),故答案为:0.2.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.(1)y=150﹣x;(2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.【解析】【分析】(1)若购买x双(10<x<60),每件的单价=140﹣(购买数量﹣10),依此可得y关于x的函数关系式;(2)①设第一批购买x双,则第二批购买(100﹣x)双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则60≤100﹣x<75;当40<x<60时,则40<100﹣x<60.②把两次的花费与第一次购买的双数用函数表示出来.【详解】解:(1)购买x双(10<x<60)时,y=140﹣(x﹣10)=150﹣x.故y关于x的函数关系式是y=150﹣x;(2)①设第一批购买x双,则第二批购买(100﹣x)双.当25<x≤40时,则60≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,解得x1=30,x2=40;当40<x<60时,则40<100﹣x<60,则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,解得x=30或x=70,但40<x<60,所以无解;答:第一批购买数量为30双或40双.②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,∴x=26时,w有最小值,最小值为9144元;当40<x<60时,w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,∴x=41或59时,w有最小值,最小值为9838元,综上所述:第一次买26双,第二次买74双最省钱,最少9144元.【点睛】考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.24.(1)作图见解析;(2)1.【解析】【分析】(1)根据角平分线的尺规作图可得;(2)作DE⊥AB于E,设DE=DC=x,由∠A=30°,BC AD=2DE=2x,AB=2BC=由BC2+AC2=AB2得到关于x的方程,解之可得.【详解】(1)如图所示,BD即为所求;。
初三中考数学复习矩形、菱形与正方形专项练习题1.正方形具有而菱形不一定具有的性质是()A.四条边都相等B.对角线互相垂直平分C.对角线相等D.对角线平分一组对角2.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF 的周长为()A.14B.15C.16D.173. 若矩形ABCD的邻边长分别是1,2,则BD的长是()A. 3 B. 5 C. 3 D.2 54. 在下列性质中,矩形具有而平行四边形不一定具有的是( )A.对边相等 B.对角相等 C.对角线相等 D.对边平行5. 如果矩形的一个内角的平分线把矩形的一边分成了3cm和5cm的两部分,则矩形的较短边长为()A.3cm B.5cm C.3cm或5cm D.以上都不对6. 如图所示,菱形ABCD中,E,F,G,H分别是菱形四边形的中点,连结EG与FH交于点O,则图中的菱形共有()A.4个B.5个C.6个D.7个7.如图所示,已知菱形ABCD中,AE⊥BC于点E,若S菱形ABCD=24,且AE=4,则CD等于()A.12 B.8 C.6 D.28. 如图,▱ABCD的周长为16cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为()A.2cm B.4cm C.6cm D.8cm9.已知菱形的周长为16 cm,一条对角线长为4 cm,则菱形的四个角分别为()A.30°,150°,30°,150°B.60°,120°,60°,120°C.45°,135°,45°,135°D.以上都不对10. 如图,F为正方形ABCD的边AD上一点,CE⊥CF交AB的延长线于点E,若正方形ABCD的面积为64,△CEF的面积为50,则△CBE的面积为()A.20 B.24 C.25 D.2611.如图,菱形ABCD中,对角线AC,BD相交于点O,不添加任何辅助线,请添加一个条件________,使四边形ABCD是正方形(填一个即可).12.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD 于点F,连结EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正确结论的序号是________.13.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20cm,则其对角线长为________,矩形的面积为________.14.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4cm,BD=8cm,则这个菱形的面积是________cm2.15.如图,矩形ABCD中,点E,F分别是AB,CD的中点,连结DE和BF,分别取DE,BF的中点M,N,连结AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为________.16.如图,▱ABCD的对角线相交于点O,请你添加一个条件________,使▱ABCD 是矩形.17.如图所示,在菱形ABCD中,∠C=108°,AD的垂直平分线交对角线BD 于点P,垂足为E,连结AP,则∠APB=________度.18.如图所示,菱形ABCD中,∠B=60°,AB=2,E,F分别是BC,CD的中点,连结AE,EF,AF,则△AEF的周长为________.19. 如图所示,将两条宽度相同的纸条交叉重叠放在一起,则重叠部分ABCD 是________形,若纸条宽DE=4cm,CE=3cm,则四边形ABCD的面积为________.20. 如图,在正方形ABCD中,E是对角线BD上任意一点,过点E作EF⊥BC 于点F,作EG⊥CD于点G,若正方形ABCD的周长为a,则四边形EFCG的周长为________.21. 如图,在Rt△ABC中,∠C=90°,∠A,∠B的平分线相交于点D,过点D作DE⊥BC于点E,DF⊥AC于点F.求证:四边形CEDF是正方形.22. 如图所示,在菱形ABCD中,对角线AC,BD的长分别为a,b,AC,BD 相交于点O.(1) 用含a,b的代数式表示菱形ABCD的面积S;(2) 若a=3cm,b=4cm,求菱形ABCD的面积和周长.23. 如图所示,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD 交AD的延长线于点F.请你猜想CE与CF的大小有什么关系,并说明理由.24. 如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是点E,F,并且DE=DF,求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.25. 如图,在正方形ABCD中,E为AD上一点,BF平分∠CBE交CD于点F.求证:BE=CF+AE.参考答案:1---10 CCBCC BCDBB 11. ∠BAD=90°12.①②④⑤13.40 cm4003cm214. 1615. 2616. AO=BO17. 7218. 3319. 菱20 cm220. a 221. 证明:过点D作DG⊥AB于点G,∵∠C=90°,DE⊥BC,DF⊥AC,∴四边形DECF是矩形,∵BD平分∠ABC,DG⊥AB,DE⊥BC,∴DE=DG.同理:DG=DF,∴DE=DF,∴四边形CEDF是正方形22. 解:(1) S=ab(2) 菱形ABCD的面积为6 cm2,周长为10 cm23. 解:CE=CF.理由如下:∵S菱形ABCD=CE·AB=CF·AD,且AD=AB,∴CE=CF.24. 证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,又∵DE=DF,DE⊥AB,DF⊥BC,∴∠DEA=∠DFC=90°,∴△ADE≌△CDF(AAS)(2)由(1)知AD=DC,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形25. 证明:延长DC至点E′,使CE′=AE,连结BE′,易证△ABE≌△CBE′,∴BE =BE′,AE=CE′,∠CBE′=∠ABE.再证∠BFC=∠E′BF=∠ABE+∠EBF,∴BE′=E′F,∴BE=E′F=CF+CE′=CF+AE。
一、选择题9.(2019·苏州)如图,菱形ABCD 的对角线AC 、BD 交于点O ,AC =4,BD =16将△ABO 沿点A 到点C 的方向平移,得到△A 'B 'O '.当点A '与点C 重合时,点A 与点B '之问的距离为 ( ) A .6 B .8 C .10 D .12(第9题)【答案】C【解析】∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =OC 12=AC =2,OB =OD 12=BD =8,∵△ABO 沿点A 到点C 的方向平移,得到△A 'B 'O ',点A '与点C 重合,∴O 'C =OA =2,O 'B '=OB =8,∠CO 'B '=90°, ∴AO '=AC +O 'C =6,∴AB'===10,故选C .10.(2019·温州)如图,在矩形ABCD 中,E 为AB 中点,以BE 为边作正方形BEFG ,边EF 交CD 于点H ,在边BE 上取点M 使BM=BC ,作MN ∥BG 交CD 于点L ,交FG 于点N .欧几里得在《几何原本》中利用该图解释了(a+b)(a-b)=a 2-b 2.现以点F 为圆心,FE 为半径作圆弧交线段DH 于点P ,连结EP ,记△EPH 的面积为S 1,图中阴影部分的面积为S 2.若点A ,L ,G 在同一直线上,则12S S 的值为 ( )A.2 B.3 C.4 D.6【答案】C【解析】如图,连接ALGL ,PF .由题意:S 矩形AMLD =S 阴=a 2﹣b 2,PH=22-a b ,∵点A ,L ,G 在同一直线上,AM ∥GN ,∴△AML ∽△GNL ,∴=,∴=,整理得a =3b ,∴===,故选C .9.(2019·绍兴)正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D ,在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积 ( )A.先变大后变小B.先变小后变大C.一直变大D.保持不变10. (2019·烟台)如图,面积为24的ABCD 中,对角线BD 平分,过点D 作交BC 的延长线于点E ,6DE =,则sin DCE ∠的值为( ).A .2425B .45C .34D .1225【答案】A【解析】连接AC ,交BD 于点F ,过点D 作DM CE ⊥,垂足为M因为四边形ABCD 是平行四边形, 所以F 是BD 的中点,AD//BC , 所以DBC ADB ∠=∠,因为BD 是 ABC ∠的平分线, 所以ABD DBC ∠=∠, 所以ABD ADB ∠=∠, 所以AB AD =,所以□ABCD 是菱形, 所以AC BD ⊥, 又因为DE BD ⊥, 所以AC//DE ,因为AC//DE ,F 是BD 的中点, 所以C 是BE 的中点,所以132CF DE ==, 因为四边形ABCD 是菱形, 所以26AC FC ==,2ABCD AC BDS ⨯=菱形, FADB所以222486ABCDS BD AC⨯===菱形, 所以142BF BD ==, 在Rt △BFD 中,由勾股定理得5BC ==,因为四边形ABCD 是菱形, 所以5DC BC ==,因为ABCD S BC DM =⨯菱形 所以245ABCDS DM BC==菱形, 在Rt △DCM 中,24sin 25DM DCE DC ∠==. 6.(2019·江西)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有( )A.3种B.4种C.5种D.6种【答案】B【解题过程】具体拼法有4种,如图所示:4.(2019·株洲)对于任意的矩形,下列说法一定正确的是() A .对角线垂直且相等B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形 【答案】C 【解析】根据矩形的性质可知,矩形的对角线相等但不一定垂直,所以选项A 是错误的;矩形相邻的边互相垂直,对边互相平行,所以选项B 是错误的;矩形的四个角都是直角,所以四个角都相等是正确的;矩形既是轴对称图形,又是中心对称图形,所以选项D 是错误的;故选C.3. (2019·娄底)顺次连接菱形四边中点得到的四边形是( )A 平行四边形B . 菱形C . 矩形D . 正方形 【答案】C【解析】如图:菱形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,∴EH ∥FG ∥BD ,EH =FG = 12 BD ;EF ∥HG ∥AC ,EF =HG =12 AC , 故四边形EFGH 是平行四边形, 又∵AC ⊥BD ,∴EH ⊥EF ,∠HEF =90° ∴四边形EFGH 是矩形. 故选C .10.(2019·安徽)如图,在正方形ABCD 中,点E 、F 将对角线AC 三等分,且AC=12.点P 在正方形的边上,则满足PE+PF=9的点P 的个数是A. 0B. 4C. 6D. 8【答案】D【解题过程】如图,作点F 关于CD 的对称点F /,连接PF /、PF ,则PE +PF =EF /,根据两点之间线段最知可知此时PE +PF 的值最小.过点E 作EH ⊥FF /,垂足为点H ,FF’交CD 于点G ,易知△EHF 、△CFG 是等腰直角三角形,∴EH =FH =FG =F’G=2EF =,∴EF’=9.根据正方形的对称性可知正方形ABCD 的每条边上都有一点P 使得PE +PF 最小值.连接DE 、DF ,易求得DE +DF =>9,CE +CF =12>0,故点P 位于点B 、D 时,PE +PF >9,点P 位于点A 、C 时,PE +PF >9,∴该正方形每条边上都有2处点使得PE +PF =9,共计点P 有8处.1.(2019·无锡)下列结论中,矩形具有而菱形不一定具有的性质是() A.内角和为360° B.对角线互相平分 C.对角线相等 D.对角线互相垂直 【答案】C【解析】本题考查了矩形的性质、菱形的性质,矩形的对角线相等且平分,菱形的对角线垂直且平分,所以矩形具有而菱形不具有的为对角线相等,故选C .2. (2019·泰安)如图,矩形ABCD 中,AB =4,AD =2,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB,则PBB的最小值是A.2B.4C.2D.22【答案】D【解析】∵F为EC上一动点,P为DF中点,∴点P的运动轨迹为△DEC的中位线MN,∴MN∥EC,连接ME,则四边形EBCM为正方形,连接BM,则BM⊥CE,易证BM⊥MN,故此时点P与点M重合,点F与点C重合,BP取到最小值,在Rt△BCP中,BP=22BC CP=22.3.(2019·眉山)如图,在矩形ABCD中AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC于点F,则DE的长是A.1 B.74C.2 D.125【答案】B【解析】连接CE,∵四边形ABCD是矩形,∴∠ADC=90°,OC=OA,AD=BC=8,DC=AB=6,∵EF⊥AC,OA=OC,∴AE=CE,在Rt△DEC中,DE2+DC2=CE2,即DE2+36=(8-DE)2,解得:x=74,故选B.4.(2019·攀枝花)下列说法错误的是()A.平行四边形的对边相等B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.正方形既是轴对称图形、又是中心对称图形【答案】B【解析】对角线相等的四边形不一定是矩形,如等腰梯形.故选B.5.(2019·攀枝花)如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE折叠到AF ,延长EF 交DC 于G 。
中考数学真题《矩形菱形正方形》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(39题)一 、单选题1.(2023·湖南·统考中考真题)如图,菱形ABCD 中 连接AC BD , 若120∠=︒,则2∠的度数为( )A .20︒B .60︒C .70︒D .80︒2.(2023·湖南常德·统考中考真题)如图1 在正方形ABCD 中 对角线AC BD 、相交于点O E F 分别为AO DO 上的一点 且EF AD ∥ 连接,AF DE .若15FAC ∠=︒,则AED ∠的度数为( )A .80︒B .90︒C .105︒D .115︒3.(2023·湖南常德·统考中考真题)下列命题正确的是( )A .正方形的对角线相等且互相平分B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .一组邻边相等的四边形是菱形4.(2023·浙江·统考中考真题)如图,在菱形ABCD 中 160AB DAB =∠=︒,,则AC 的长为( )A .12 B .1 C 3D 35.(2023·上海·统考中考真题)在四边形ABCD 中 ,AD BC AB CD =∥.下列说法能使四边形ABCD 为矩形的是( )A .AB CD B .AD BC = C .A B ∠=∠D .A D ∠=∠6.(2023·浙江宁波·统考中考真题)如图,以钝角三角形ABC 的最长边BC 为边向外作矩形BCDE 连结,AE AD 设AED △ ABE ACD 的面积分别为12,,S S S 若要求出12S S S --的值 只需知道( )A .ABE 的面积B .ACD 的面积C .ABC 的面积D .矩形BCDE 的面积7.(2023·湖南·统考中考真题)如图所示 在矩形ABCD 中 AB AD > AC 与BD 相交于点O 下列说法正确的是( )A .点O 为矩形ABCD 的对称中心B .点O 为线段AB 的对称中心C .直线BD 为矩形ABCD 的对称轴 D .直线AC 为线段BD 的对称轴8.(2023·四川宜宾·统考中考真题)如图,边长为6的正方形ABCD 中 M 为对角线BD 上的一点 连接AM 并延长交CD 于点P .若PM PC =,则AM 的长为( )A .()331B .()3332C .)631D .()6332 9.(2023·四川乐山·统考中考真题)如图,菱形ABCD 的对角线AC 与BD 相交于点O E 为边BC 的中点 连结OE .若68AC BD ==,,则OE =( )A .2B .52C .3D .410.(2023·甘肃武威·统考中考真题)如图,将矩形ABCD 对折 使边AB 与DC BC 与AD 分别重合 展开后得到四边形EFGH .若2AB = 4BC =,则四边形EFGH 的面积为( )A .2B .4C .5D .611.(2023·浙江绍兴·统考中考真题)如图,在矩形ABCD 中 O 为对角线BD 的中点 60ABD ∠=︒.动点E 在线段OB 上 动点F 在线段OD 上 点,E F 同时从点O 出发 分别向终点,B D 运动 且始终保持OE OF =.点E 关于,AD AB 的对称点为12,E E 点F 关于,BC CD 的对称点为12,F F .在整个过程中 四边形1212E E F F 形状的变化依次是( )A .菱形→平行四边形→矩形→平行四边形→菱形B .菱形→正方形→平行四边形→菱形→平行四边形C .平行四边形→矩形→平行四边形→菱形→平行四边形D .平行四边形→菱形→正方形→平行四边形→菱形12.(2023·重庆·统考中考真题)如图,在正方形ABCD 中 O 为对角线AC 的中点 E 为正方形内一点 连接BE BE BA = 连接CE 并延长 与ABE ∠的平分线交于点F 连接OF 若2AB =,则OF 的长度为( )A .2B 3C .1D 2二 解答题13.(2023·湖南怀化·统考中考真题)如图,矩形ABCD 中 过对角线BD 的中点O 作BD 的垂线EF分别交AD BC 于点E F .(1)证明:BOF DOE ≌△△(2)连接BE DF 证明:四边形EBFD 是菱形.14.(2023·湖北随州·统考中考真题)如图,矩形ABCD 的对角线AC BD 相交于点O ,DE AC CE BD .(1)求证:四边形OCED 是菱形(2)若32BC DC ==, 求四边形OCED 的面积.15.(2023·湖南永州·统考中考真题)如图,已知四边形ABCD 是平行四边形其对角线相交于点O 3,8,5OA BD AB ===.(1)AOB 是直角三角形吗?请说明理由(2)求证:四边形ABCD 是菱形.16.(2023·新疆·统考中考真题)如图,AD 和BC 相交于点O 90ABO DCO ∠=∠=︒ OB OC =.点E F 分别是AO DO 的中点.(1)求证:OE OF =(2)当30A ∠=︒时 求证:四边形BECF 是矩形.17.(2023·云南·统考中考真题)如图,平行四边形ABCD 中 AE CF 、分别是BAD BCD ∠∠、的平分线且E F 、分别在边BC AD 、上 AE AF =.(1)求证:四边形AECF 是菱形(2)若60ABC ∠=︒ ABE 的面积等于3 求平行线AB 与DC 间的距离.18.(2023·四川遂宁·统考中考真题)如图,四边形ABCD 中 AD BC ∥ 点O 为对角线BD 的中点 过点O 的直线l 分别与AD BC 所在的直线相交于点E F .(点E 不与点D 重合)(1)求证:DOE BOF ≌(2)当直线l BD ⊥时 连接BE DF 试判断四边形EBFD 的形状 并说明理由.19.(2023·浙江嘉兴·统考中考真题)如图,在菱形ABCD 中 AE BC ⊥于点E AF CD ⊥于点F连接EF(1)求证:AE AF =(2)若=60B ∠︒ 求AEF ∠的度数.20.(2023·湖北鄂州·统考中考真题)如图,点E 是矩形ABCD 的边BC 上的一点 且AE AD =.(1)尺规作图(请用2B 铅笔):作DAE ∠的平分线AF 交BC 的延长线于点F 连接DF .(保留作图痕迹 不写作法)(2)试判断四边形AEFD 的形状 并说明理由.21.(2023·吉林长春·统考中考真题)将两个完全相同的含有30︒角的直角三角板在同一平面内按如图所示位置摆放.点A E B D 依次在同一直线上 连结AF CD .(1)求证:四边形AFDC 是平行四边形(2)己知6cm BC 当四边形AFDC 是菱形时.AD 的长为__________cm .22.(2023·湖南张家界·统考中考真题)如图,已知点A D C B 在同一条直线上 且AD BC = AE BF ==.CE DF(1)求证:AE BF∥=时求证:四边形DECF是菱形.(2)若DF FC23.(2023·湖南郴州·统考中考真题)如图,四边形ABCD是平行四边形.(1)尺规作图作对角线AC的垂直平分线MN(保留作图痕迹)(2)若直线MN分别交AD BC于E F两点求证:四边形AFCE是菱形AC BD交于点O分别以点,B C为圆心24.(2023·湖北十堰·统考中考真题)如图,ABCD的对角线,11,22AC BD 长为半径画弧 两弧交于点P 连接,BP CP .(1)试判断四边形BPCO 的形状 并说明理由(2)请说明当ABCD 的对角线满足什么条件时 四边形BPCO 是正方形?25.(2023·四川内江·统考中考真题)如图,在ABC 中 D 是BC 的中点 E 是AD 的中点 过点A 作AF BC ∥交CE 的延长线于点F .(1)求证:AF BD =(2)连接BF 若AB AC = 求证:四边形ADBF 是矩形.26.(2023·湖南岳阳·统考中考真题)如图,点M 在ABCD 的边AD 上 BM CM = 请从以下三个选项中①12∠=∠ ①AM DM = ①34∠∠= 选择一个合适的选项作为已知条件 使ABCD 为矩形.(1)你添加的条件是_________(填序号)(2)添加条件后 请证明ABCD 为矩形.27.(2023·四川乐山·统考中考真题)如图,在Rt ABC △中 90C ∠=︒ 点D 为AB 边上任意一点(不与点A B 重合) 过点D 作DE BC ∥ DF AC ∥ 分别交AC BC 于点E F 连接EF .(1)求证:四边形ECFD 是矩形(2)若24CF CE ==, 求点C 到EF 的距离.28.(2023·浙江台州·统考中考真题)如图,四边形ABCD 中 AD BC ∥ A C ∠=∠ BD 为对角线.(1)证明:四边形ABCD 是平行四边形.(2)已知AD AB > 请用无刻度的直尺和圆规作菱形BEDF 顶点E F 分别在边BC AD 上(保留作图痕迹 不要求写作法).三 填空题29.(2023·黑龙江齐齐哈尔·统考中考真题)如图,在四边形ABCD 中 AD BC = AC BD ⊥于点O .请添加一个条件:______ 使四边形ABCD 成为菱形.30.(2023·辽宁大连·统考中考真题)如图,在菱形ABCD 中 AC BD 、为菱形的对角线60,10DBC BD ︒∠== 点F 为BC 中点,则EF 的长为_______________.31.(2023·福建·统考中考真题)如图,在菱形ABCD 中 1060AB B ︒=∠=,,则AC 的长为___________.32.(2023·浙江绍兴·统考中考真题)如图,在菱形ABCD 中 40DAB ∠=︒ 连接AC 以点A 为圆心 AC 长为半径作弧 交直线AD 于点E 连接CE ,则AEC ∠的度数是________.33.(2023·甘肃武威·统考中考真题)如图,菱形ABCD 中 60DAB ∠=︒ BE AB ⊥ DF CD ⊥ 垂足分别为B D 若6cm AB =,则EF =________cm .34.(2023·山东聊城·统考中考真题)如图,在ABCD 中 BC 的垂直平分线EO 交AD 于点E 交BC 于点O 连接BE CE 过点C 作CF BE ∥ 交EO 的延长线于点F 连接BF .若8AD = 5CE =,则四边形BFCE 的面积为______..35.(2023·湖北十堰·统考中考真题)如图,在菱形ABCD 中 点E F G H 分别是AB BC CD AD 上的点 且BE BF CG AH === 若菱形的面积等于24 8BD =,则EF GH +=___________________.36.(2023·四川内江·统考中考真题)出入相补原理是我国古代数学的重要成就之一 最早是由三国时期数学家刘徽创建.“将一个几何图形 任意切成多块小图形 几何图形的总面积保持不变 等于所分割成的小图形的面积之和”是该原理的重要内容之一 如图,在矩形ABCD 中 5AB = 12AD = 对角线AC 与BD 交于点O 点E 为BC 边上的一个动点 EF AC ⊥ EG BD ⊥ 垂足分别为点F G ,则EF EG +=___________.37.(2023·山东滨州·统考中考真题)如图,矩形ABCD 的对角线,AC BD 相交于点O 点,E F 分别是线段,OB OA 上的点.若,5,1,3AE BF AB AF BE ====,则BF 的长为___________.38.(2023·山东枣庄·统考中考真题)如图,在正方形ABCD 中 对角线AC 与BD 相交于点O E 为BC 上一点 7CE = F 为DE 的中点 若CEF △的周长为32,则OF 的长为___________.39.(2023·浙江台州·统考中考真题)如图,矩形ABCD 中 4AB = 6AD =.在边AD 上取一点E 使BE BC = 过点C 作CF BE ⊥ 垂足为点F ,则BF 的长为________.参考答案一 单选题1.(2023·湖南·统考中考真题)如图,菱形ABCD 中 连接AC BD , 若120∠=︒,则2∠的度数为( )A .20︒B .60︒C .70︒D .80︒【答案】C 【分析】根据菱形的性质可得,BD AC AB CD ⊥∥,则1,290ACD ACD ∠=∠∠+∠=︒ 进而即可求解.【详解】解:①四边形ABCD 是菱形①,BD AC AB CD ⊥∥①1,290ACD ACD ∠=∠∠+∠=︒①120∠=︒①2902070∠=︒-︒=︒,故选:C .【点睛】本题考查了菱形的性质 熟练掌握是菱形的性质解题的关键.2.(2023·湖南常德·统考中考真题)如图1 在正方形ABCD 中 对角线AC BD 、相交于点O E F 分别为AO DO 上的一点 且EF AD ∥ 连接,AF DE .若15FAC ∠=︒,则AED ∠的度数为( )A .80︒B .90︒C .105︒D .115︒【答案】C 【分析】首先根据正方形的性质得到45OAD ODA ∠=∠=︒ AO DO = 然后结合EF AD ∥得到OE OF = 然后证明出()SAS AOF DOE △≌△ 最后利用三角形内角和定理求解即可.【详解】①四边形ABCD 是正方形①45OAD ODA ∠=∠=︒ AO DO =①EF AD ∥①45OEF OAD ∠=∠=︒ 45OFE ODA ∠=∠=︒①OEF OFE ∠=∠①OE OF =又①90AOF DOE ∠=∠=︒ AO DO =①()SAS AOF DOE △≌△①15ODE FAC ∠=∠=︒①30ADE ODA ODE ∠=∠-∠=︒①180105AED OAD ADE ∠=︒-∠-∠=︒故选:C .【点睛】此题考查了正方形的性质 全等三角形的性质和判定 等腰直角三角形三角形的性质等知识 解题的关键是熟练掌握以上知识点.3.(2023·湖南常德·统考中考真题)下列命题正确的是( )A .正方形的对角线相等且互相平分B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .一组邻边相等的四边形是菱形【答案】A【分析】根据正方形 平行四边形 矩形 菱形的各自性质和构成条件进行判断即可.【详解】A 正方形的对角线相等且互相垂直平分 描述正确B 对角互补的四边形不一定是平行四边形 只是内接于圆 描述错误C 矩形的对角线不一定垂直 但相等 描述错误D 一组邻边相等的平行四边形才构成菱形 描述错误.故选:A .【点睛】本题考查平行四边形 矩形 菱形 正方形的性质和判定 解题的关键是熟悉掌握各类特殊四边形的判定和性质.4.(2023·浙江·统考中考真题)如图,在菱形ABCD 中 160AB DAB =∠=︒,,则AC 的长为( )A .12B .1C 3D 3【答案】D 【分析】连接BD 与AC 交于O .先证明ABD △是等边三角形 由AC BD ⊥ 得到1302OAB BAD ∠=∠=︒ 90AOB ∠=︒ 即可得到1122OB AB == 利用勾股定理求出AO 的长度 即可求得AC 的长度.【详解】解:连接BD 与AC 交于O .①四边形ABCD 是菱形①AB CD ∥ AB AD = AC BD ⊥ 12AO OC AC ==①60DAB ∠=︒ 且AB AD =①ABD △是等边三角形①AC BD ⊥ ①1302OAB BAD ∠=∠=︒ 90AOB ∠=︒ ①1122OB AB == ①2222111322AO AB OB ⎛⎫-= ⎪⎭=-⎝ ①23AC AO ==故选:D .【点睛】此题主要考查了菱形的性质 勾股定理 等边三角形的判定和性质 30︒角所对直角边等于斜边的一半 关键是熟练掌握菱形的性质.5.(2023·上海·统考中考真题)在四边形ABCD 中 ,AD BC AB CD =∥.下列说法能使四边形ABCD 为矩形的是( )A .AB CD B .AD BC = C .A B ∠=∠D .A D ∠=∠【答案】C【分析】结合平行四边形的判定和性质及矩形的判定逐一分析即可.【详解】A :AB CD ,AD BC AB CD =∥∴ABCD 为平行四边形而非矩形故A 不符合题意B :AD BC = ,AD BC AB CD =∥∴ABCD 为平行四边形而非矩形故B 不符合题意C :AD BC ∥180A B ∴∠+∠=︒A B ∠=∠∴90A B ∠=∠=︒AB CD =∴ABCD 为矩形故C 符合题意D :AD BC ∥180A B ∴∠+∠=︒A D ∠=∠180D B ∴∠+∠=︒∴ABCD 不是平行四边形也不是矩形故D 不符合题意故选:C .【点睛】本题主要考查平行线的性质 平行四边形的判定和性质及矩形的判定等知识 熟练掌握以上知识并灵活运用是解题的关键.6.(2023·浙江宁波·统考中考真题)如图,以钝角三角形ABC 的最长边BC 为边向外作矩形BCDE 连结,AE AD 设AED △ ABE ACD 的面积分别为12,,S S S 若要求出12S S S --的值 只需知道( )A .ABE 的面积B .ACD 的面积C .ABC 的面积D .矩形BCDE 的面积【答案】C【分析】过点A 作FG BC ∥ 交EB 的延长线于点F DC 的延长线于点G 易得:,,FG BC AF BE AG CD =⊥⊥ 利用矩形的性质和三角形的面积公式 可得1212BCDES S S +=矩形 再根据1212ABC ABC BCDE BCDE S S S S S S S -=+-=+矩形矩形 得到12ABC S S S S -=- 即可得出结论.【详解】解:过点A 作FG BC ∥ 交EB 的延长线于点F DC 的延长线于点G①矩形BCDE①,,BC BE BC CD BE CD ⊥⊥=①,FG BE FG CD ⊥⊥①四边形BFGC 为矩形①,,FG BC AF BE AG CD =⊥⊥①1211,22S BE AF S CD AG =⋅=⋅①()12111222BCDE BE AF AG BE B S C S S =+=⋅=+矩形又1212ABC ABC BCDE BCDE S S S S S S S -=+-=+矩形矩形①121122ABC ABC BCDE BCDE S S S S S S S =+---=矩形矩形 ①只需要知道ABC 的面积即可求出12S S S --的值故选C .【点睛】本题考查矩形的性质 求三角形的面积.解题的关键是得到1212BCDES S S +=矩形 7.(2023·湖南·统考中考真题)如图所示 在矩形ABCD 中 AB AD > AC 与BD 相交于点O 下列说法正确的是( )A .点O 为矩形ABCD 的对称中心B .点O 为线段AB 的对称中心C .直线BD 为矩形ABCD 的对称轴D .直线AC 为线段BD 的对称轴【答案】A 【分析】由矩形ABCD 是中心对称图形 对称中心是对角线的交点 线段AB 的对称中心是线段AB 的中点 矩形ABCD 是轴对称图形 对称轴是过一组对边中点的直线 从而可得答案.【详解】解:矩形ABCD 是中心对称图形 对称中心是对角线的交点 故A 符合题意线段AB 的对称中心是线段AB 的中点 故B 不符合题意矩形ABCD 是轴对称图形 对称轴是过一组对边中点的直线故C D 不符合题意故选A【点睛】本题考查的是轴对称图形与中心对称图形的含义 矩形的性质 熟记矩形既是中心对称图形也是轴对称图形是解本题的关键.8.(2023·四川宜宾·统考中考真题)如图,边长为6的正方形ABCD 中 M 为对角线BD 上的一点 连接AM 并延长交CD 于点P .若PM PC =,则AM 的长为( )A .()331B .()3332C .)631D .()6332 【答案】C【分析】先根据正方形的性质 三角形全等的判定证出ADM CDM ≅ 根据全等三角形的性质可得DAM DCM ∠=∠ 再根据等腰三角形的性质可得CMP DCM ∠=∠ 从而可得30DAM ∠=︒ 然后利用勾股定理 含30度角的直角三角形的性质求解即可得. 【详解】解:四边形ABCD 是边长为6的正方形6,90,45AD CD ADC ADM CDM ∴==∠=︒∠=∠=︒在ADM △和CDM 中 45DM DM ADM CDM AD CD =⎧⎪∠=∠=︒⎨⎪=⎩()SAS ADM CDM ∴≅DAM DCM ∴∠=∠PM PC =CMP DCM ∴∠=∠22APD CMP DCM DCM DAM ∴∠=∠+∠=∠=∠又18090APD DAM ADC ∠+∠=︒-∠=︒30DAM ∴∠=︒设PD x =,则22AP PD x == 6PM PC CD PD x ==-=-2236AD AP PD x ∴=-= 解得3x =663PM x ∴=-=- 243AP x ==(()43623631AM AP PM ∴=-=-= 故选:C .【点睛】本题考查了正方形的性质 勾股定理 含30度角的直角三角形的性质 等腰三角形的性质等知识点 熟练掌握正方形的性质是解题关键.9.(2023·四川乐山·统考中考真题)如图,菱形ABCD 的对角线AC 与BD 相交于点O E 为边BC 的中点 连结OE .若68AC BD ==,,则OE =( )A .2B .52C .3D .4【答案】B 【分析】先由菱形的性质得AC BD ⊥ 116322OC AC ==⨯= 118422OB BD ==⨯= 再由勾股定理求出5BC = 然后由直角 三角形斜边的中线等于斜边的一半求解.【详解】解:①菱形ABCD①AC BD ⊥ 116322OC AC ==⨯= 118422OB BD === ①由勾股定理 得225BC OB OC =+=①E 为边BC 的中点 ①1155222OE BC ==⨯= 故选:B .【点睛】本考查菱形的性质 勾股定理 直角三角形的性质 熟练掌握菱形的性质 直角三角形的性质是解题的关键.10.(2023·甘肃武威·统考中考真题)如图,将矩形ABCD 对折 使边AB 与DC BC 与AD 分别重合 展开后得到四边形EFGH .若2AB = 4BC =,则四边形EFGH 的面积为( )A .2B .4C .5D .6【答案】B 【分析】由题意可得四边形EFGH 是菱形 2FH AB == 4GE BC == 由菱形的面积等于对角线乘积的一半即可得到答案.【详解】解:①将矩形ABCD 对折 使边AB 与DC BC 与AD 分别重合 展开后得到四边形EFGH①EF GH ⊥ EF 与GH 互相平分①四边形EFGH 是菱形①2FH AB == 4GE BC ==①菱形EFGH 的面积为1124422FH GE ⋅=⨯⨯=. 故选:B【点睛】此题考查了矩形的折叠 菱形的判定和性质等知识 熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.11.(2023·浙江绍兴·统考中考真题)如图,在矩形ABCD 中 O 为对角线BD 的中点 60ABD ∠=︒.动点E 在线段OB 上 动点F 在线段OD 上 点,E F 同时从点O 出发 分别向终点,B D 运动 且始终保持OE OF =.点E 关于,AD AB 的对称点为12,E E 点F 关于,BC CD 的对称点为12,F F .在整个过程中 四边形1212E E F F 形状的变化依次是( )A .菱形→平行四边形→矩形→平行四边形→菱形B .菱形→正方形→平行四边形→菱形→平行四边形C .平行四边形→矩形→平行四边形→菱形→平行四边形D .平行四边形→菱形→正方形→平行四边形→菱形【答案】A【分析】根据题意 分别证明四边形1212E E F F 是菱形 平行四边形 矩形 即可求解.【详解】①四边形ABCD 是矩形①AB CD ∥ 90BAD ABC ∠=∠=︒①60BDC ABD ∠=∠=︒ 906030ADB CBD ∠=∠=︒-︒=︒①OE OF = OB OD =①DF EB =①对称①21DF DF BF BF ==, 21,BE BE DE DE ==①1221E F E F =①对称①260F DC CDF ∠=∠=︒ 130EDA E DA ∠=∠=︒①160E DB ∠=︒同理160F BD ∠=︒①11DE BF ∥①1221E F E F ∥①四边形1212E E F F 是平行四边形如图所示当,,E F O 三点重合时 DO BO =①1212DE DF AE AE ===即1212E E E F =①四边形1212E E F F 是菱形如图所示 当,E F 分别为,OD OB 的中点时设4DB =,则21DF DF == 13DE DE ==在Rt △ABD 中 2,23AB AD ==连接AE AO①602ABO BO AB ∠=︒==,①ABO 是等边三角形①E 为OB 中点①AE OB ⊥ 1BE = ①22213AE - 根据对称性可得13AE AE =①2221112,9,3AD DE AE ===①22211AD AE DE =+①1DE A 是直角三角形 且190E ∠=︒①四边形1212E E F F 是矩形当,F E 分别与,D B 重合时 11,BE D BDF 都是等边三角形,则四边形1212E E F F 是菱形①在整个过程中 四边形1212E E F F 形状的变化依次是菱形→平行四边形→矩形→平行四边形→菱形 故选:A .【点睛】本题考查了菱形的性质与判定 平行四边形的性质与判定 矩形的性质与判定 勾股定理与勾股定理的逆定理 轴对称的性质 含30度角的直角三角形的性质 熟练掌握以上知识是解题的关键. 12.(2023·重庆·统考中考真题)如图,在正方形ABCD 中 O 为对角线AC 的中点 E 为正方形内一点 连接BE BE BA = 连接CE 并延长 与ABE ∠的平分线交于点F 连接OF 若2AB =,则OF 的长度为( )A .2B 3C .1D 2【答案】D 【分析】连接AF 根据正方形ABCD 得到AB BC BE == 90ABC ∠=︒ 根据角平分线的性质和等腰三角形的性质 求得45BFE ∠=︒ 再证明ABF EBF ≌ 求得90AFC ∠=︒ 最后根据直角三角形斜边上的中点等于斜边的一半 即可求出OF 的长度.【详解】解:如图,连接AF四边形ABCD 是正方形AB BE BC ∴== 90ABC ∠=︒ 222AC ==BEC BCE ∴∠=∠1802EBC BEC ∴∠=︒-∠290ABE ABC EBC BEC ∴∠=∠-∠=∠-︒ BF 平分ABE ∠1452ABF EBF ABE BEC ∴∠=∠=∠=∠-︒45BFE BEC EBF ∴∠=∠-∠=︒在BAF △与BEF △,AB EB ABF EBF BF BF =⎧⎪∠=∠⎨⎪=⎩()SAS BAF BEF ∴△≌△45BFE BFA ∴∠=∠=︒90AFC BAF BFE ∴∠=∠+∠=︒O 为对角线AC 的中点122OF AC ∴= 故选:D .【点睛】本题考查了等腰三角形的判定和性质 三角形内角和定理 正方形的性质 直角三角形特征 作出正确的辅助线 求得45BFE ∠=︒是解题的关键.二 解答题13.(2023·湖南怀化·统考中考真题)如图,矩形ABCD 中 过对角线BD 的中点O 作BD 的垂线EF 分别交AD BC 于点E F .(1)证明:BOF DOE ≌△△(2)连接BE DF 证明:四边形EBFD 是菱形.【答案】(1)见解析 (2)见解析【分析】(1)根据矩形的性质得出AD BC ∥,则12,34∠=∠∠=∠ 根据O 是BD 的中点 可得BO DO = 即可证明()AAS BOF DOE ≌△△(2)根据BOF DOE ≌△△可得ED BF = 进而可得四边形EBFD 是平行四边形 根据对角线互相垂直的四边形是菱形 即可得证.【详解】(1)证明:如图所示①四边形ABCD 是矩形①AD BC ∥①12,34∠=∠∠=∠①O 是BD 的中点①BO DO =在BOF 与DOE 中1234BO DO ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS BOF DOE ≌△△(2)①BOF DOE ≌△△①ED BF =又①ED BF ∥①四边形EBFD 是平行四边形①EF BD ⊥①四边形EBFD 是菱形.【点睛】本题考查了矩形的性质 全等三角形的性质与判定 菱形的判定 熟练掌握特殊四边形的性质与判定是解题的关键.14.(2023·湖北随州·统考中考真题)如图,矩形ABCD 的对角线AC BD 相交于点O ,DE AC CE BD .(1)求证:四边形OCED 是菱形(2)若32BC DC ==, 求四边形OCED 的面积.【答案】(1)见解析 (2)3【分析】(1)先根据矩形的性质求得OC OD = 然后根据有一组邻边相等的平行四边形是菱形分析推理 (2)根据矩形的性质求得OCD 的面积 然后结合菱形的性质求解.【详解】(1)解:①DE AC CE BD ∥,∥ ①四边形OCED 是平行四边形又①矩形ABCD 中 OC OD =①平行四边形OCED 是菱形(2)解:矩形ABCD 的面积为326BC DC ⋅=⨯=①OCD 的面积为13642⨯= ①菱形OCED 的面积为3232⨯=. 【点睛】本题考查矩形的性质 菱形的判定 属于中考基础题 掌握矩形的性质和菱形的判定方法 正确推理论证是解题关键.15.(2023·湖南永州·统考中考真题)如图,已知四边形ABCD 是平行四边形 其对角线相交于点O 3,8,5OA BD AB ===.(1)AOB 是直角三角形吗?请说明理由(2)求证:四边形ABCD 是菱形.【答案】(1)AOB 是直角三角形 理由见解析.(2)见解析【分析】(1)根据平行四边形对角线互相平分可得142BO BD == 再根据勾股定理的逆定理 即可得出结论(2)根据对角线互相垂直的平行四边形是菱形 即可求证.【详解】(1)解:AOB 是直角三角形 理由如下:①四边形ABCD 是平行四边形 ①142BO BD ==①222222345OA OB AB +=+==①AOB 是直角三角形.(2)证明:由(1)可得:AOB 是直角三角形①90AOB ∠=︒即AC BD ⊥①四边形ABCD 是平行四边形①四边形ABCD 是菱形.【点睛】本题主要考查了平行四边形的性质 勾股定理的逆定理 菱形的判定 解题的关键是掌握平行四边形对角线互相平分 对角线互相垂直的平行四边形是菱形.16.(2023·新疆·统考中考真题)如图,AD 和BC 相交于点O 90ABO DCO ∠=∠=︒ OB OC =.点E F 分别是AO DO 的中点.(1)求证:OE OF =(2)当30A ∠=︒时 求证:四边形BECF 是矩形.【答案】(1)见解析 (2)见解析【分析】(1)直接证明()ASA AOB DOC ≌△△ 得出OA OD = 根据E F 分别是AO DO 的中点 即可得证(2)证明四边形BECF 是平行四边形 进而根据30A ∠=︒ 推导出BOE △是等边三角形 进而可得BC EF = 即可证明四边形BECF 是矩形.【详解】(1)证明:在AOB 与DOC △中90ABO DCO OB OCAOB DOC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩①()ASA AOB DOC ≌△△①OA OD =又①E F 分别是AO DO 的中点①OE OF =(2)①OB OC OF OE ==,①四边形BECF 是平行四边形 22BC OB EF OE ==,①E 为AO 的中点 90∠=︒ABO①EB EO EA ==①30A ∠=︒①60BOE ∠=︒①BOE △是等边三角形①OB OE =①BC EF =①四边形BECF 是矩形.【点睛】本题考查了全等三角形的性质与判定 等边三角形的性质与判定 矩形判定 熟练掌握以上知识是解题的关键.17.(2023·云南·统考中考真题)如图,平行四边形ABCD 中 AE CF 、分别是BAD BCD ∠∠、的平分线 且E F 、分别在边BC AD 、上 AE AF =.(1)求证:四边形AECF 是菱形(2)若60ABC ∠=︒ ABE 的面积等于3 求平行线AB 与DC 间的距离.【答案】(1)证明见解析 (2)3【分析】(1)先证AD BC ∥ 再证AE FC 从而四边形AECF 是平行四边形 又AE AF = 于是四边形AECF 是菱形(2)连接AC 先求得60BAE DAE ABC ∠∠∠===︒ 再证AC AB ⊥9030ACB ABC EAC ∠∠∠=︒-=︒= 3AB AC= 得3AB AC = 再证AE BE CE == 从而根据面积公式即可求得AC =43 【详解】(1)证明:①四边形ABCD 是平行四边形①AD BC ∥ BAD BCD ∠∠=①BEA DAE ∠∠=①AE CF 、分别是BAD BCD ∠∠、的平分线①BAE DAE ∠∠==12BAD ∠ BCF ∠=12BCD ∠①DAE BCF BEA ∠∠∠==①AE FC①四边形AECF 是平行四边形①AE AF =①四边形AECF 是菱形(2)解:连接AC①AD BC ∥ 60ABC ∠=︒①180120BAD ABC ∠∠=︒-=︒①60BAE DAE ABC ∠∠∠===︒①四边形AECF 是菱形①EAC ∠=1230DAE ∠=︒①90BAC BAE EAC ∠∠∠=+=︒①AC AB ⊥ 9030ACB ABC EAC ∠∠∠=︒-=︒=①AE CE = tan 30tan AB ACB AC ︒=∠=3AB AC= ①3AB AC = ①BAE ABC ∠∠=①AE BE CE ==①ABE 的面积等于43 ①211338322ABC S AC AB AC AC AC =⋅=== ①平行线AB 与DC 间的距离AC =43【点睛】本题考查了平行四边形的判定及性质 菱形的判定 角平分线的定义 等腰三角形的判定 三角函数的应用以及平行线间的距离 熟练掌握平行四边形的判定及性质 菱形的判定 角平分线的定义 等腰三角形的判定 三角函数的应用以及平行线间的距离等知识是解题的关键.18.(2023·四川遂宁·统考中考真题)如图,四边形ABCD 中 AD BC ∥ 点O 为对角线BD 的中点 过点O 的直线l 分别与AD BC 所在的直线相交于点E F .(点E 不与点D 重合)(1)求证:DOE BOF ≌(2)当直线l BD ⊥时 连接BE DF 试判断四边形EBFD 的形状 并说明理由.【答案】(1)见解析 (2)四边形EBFD 为菱形 理由见解析【分析】(1)根据AAS 证明DOE BOF ≌即可(2)连接EB FD 根据DOE BOF ≌ 得出ED BF = 根据ED BF ∥ 证明四边形EBFD 为平行四边形 根据EF BD ⊥ 证明四边形EBFD 为菱形即可.【详解】(1)证明:①点O 为对角线BD 的中点①BO DO =①AD BC ∥①ODE OBF ∠=∠ OED OFB ∠=∠在DOE 和BOF 中ODE OBF OED OFB BO DO ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS DOE BOF ≌(2)解:四边形EBFD 为菱形 理由如下:连接EB FD 如图所示:根据解析(1)可知 DOE BOF ≌①ED BF =①ED BF ∥①四边形EBFD 为平行四边形①l BD ⊥ 即EF BD ⊥①四边形EBFD 为菱形.【点睛】本题主要考查了三角形全等的判定和性质 菱形的判定 平行线的性质 解题的关键是熟练掌握三角形全等的判定方法和菱形的判定方法.19.(2023·浙江嘉兴·统考中考真题)如图,在菱形ABCD 中 AE BC ⊥于点E AF CD ⊥于点F 连接EF(1)求证:AE AF =(2)若=60B ∠︒ 求AEF ∠的度数.【答案】(1)证明见解析 (2)60︒【分析】(1)根据菱形的性质的三角形全等即可证明AE AF =.(2)根据菱形的性质和已知条件可推出BAD ∠度数 再根据第一问的三角形全等和直角三角形的性质可求出BAE ∠和DAF ∠度数 从而求出EAF ∠度数 证明了等边三角形AEF 即可求出AEF ∠的度数.【详解】(1)证明:菱形ABCD,AB AD B D ∴=∠=∠又,AE BC AF CD ⊥⊥90AEB AFD ∴∠=∠=︒.在AEB △和AFD △中AEB AFD B DAB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)ABE ADF ∴≌.AE AF ∴=.(2)解:菱形ABCD180B BAD ∴∠+∠=︒=60B ∠︒120BAD ∴∠=︒.又90,60AEB B ∠=︒∠=︒30BAE =∴∠︒.由(1)知ABE ADF ≌30BAE DAF ∴∠=∠=︒.120303060EAF ∴∠=︒-︒-︒=︒. =AE AFAEF ∴等边三角形.60AEF ∴∠=︒.【点睛】本题考查了三角形全等 菱形的性质 等边三角形的性质 解题的关键在于熟练掌握全等的方法和菱形的性质.20.(2023·湖北鄂州·统考中考真题)如图,点E 是矩形ABCD 的边BC 上的一点 且AE AD =.(1)尺规作图(请用2B 铅笔):作DAE ∠的平分线AF 交BC 的延长线于点F 连接DF .(保留作图痕迹 不写作法)(2)试判断四边形AEFD 的形状 并说明理由.【答案】(1)见解析 (2)四边形AEFD 是菱形 理由见解析【分析】(1)根据题意结合尺规作角平分线的方法作图即可(2)根据矩形的性质和平行线的性质得出DAF AFE ∠=∠ 结合角平分线的定义可得EFA EAF ∠=∠,则AE EF = 然后根据平行四边形和菱形的判定定理得出结论.【详解】(1)解:如图所示:(2)四边形AEFD 是菱形理由:①矩形ABCD 中 AD BC ∥①DAF AFE ∠=∠①AF 平分DAE ∠①DAF EAF ∠=∠①EFA EAF ∠=∠①AE EF =①AE AD =①AD EF =①AD EF ∥①四边形AEFD 是平行四边形又①AE AD =①平行四边形AEFD 是菱形.【点睛】本题主要考查了尺规作角平分线 矩形的性质 平行线的性质 等腰三角形的判定 平行四边形的判定以及菱形的判定等知识 熟练掌握相关判定定理和性质定理是解题的关键.21.(2023·吉林长春·统考中考真题)将两个完全相同的含有30︒角的直角三角板在同一平面内按如图所示位置摆放.点A E B D 依次在同一直线上 连结AF CD .(1)求证:四边形AFDC 是平行四边形(2)己知6cm BC 当四边形AFDC 是菱形时.AD 的长为__________cm .【答案】(1)见解析 (2)18【分析】(1)由题意可知ACB DFE △≌△易得AC DF = 30CAB FDE ∠=∠=︒即AC DF ∥ 依据一组对边平行且相等的四边形是平行四边形可证明(2)如图,在Rt ACB △中 由30︒角所对的直角边等于斜边的一半和直角三角形锐角互余易得212cm AB BC == 60ABC ∠=︒ 由菱形得对角线平分对角得30CDA FDA ∠=∠=︒ 再由三角形外角和易证BCD CDA ∠=∠即可得6cm BC BD 最后由AD AB BD =+求解即可.【详解】(1)证明:由题意可知ACB DFE △≌△AC DF =∴ 30CAB FDE ∠=∠=︒AC DF ∥∴四边形AFDC 地平行四边形(2)如图,在Rt ACB △中 90ACB ∠=︒ 30CAB ∠=︒ 6cm BC212cm AB BC ∴== 60ABC ∠=︒四边形AFDC 是菱形AD ∴平分CDF ∠30CDA FDA ∴∠=∠=︒ABC CDA BCD ∠=∠+∠603030BCD ABC CDA ∴∠=∠-∠=︒-︒=︒BCD CDA ∴∠=∠6cm BC BD ∴==18cm AD AB BD ∴=+=故答案为:18.【点睛】本题考查了全等三角形的性质 平行四边形的判定 菱形的性质 30︒角所对的直角边等于斜边的一半和直角三角形锐角互余 三角形外角及等角对等边 解题的关键是熟练掌握相关知识综合求解. 22.(2023·湖南张家界·统考中考真题)如图,已知点A D C B 在同一条直线上 且AD BC = AE BF = CE DF =.。
2021中考临考专题训练:矩形、菱形一、选择题1. 下列说法,正确的个数有 ()①正方形既是菱形又是矩形;②有两个角是直角的四边形是矩形;③菱形的对角线相等;④对角线互相垂直平分且相等的四边形是正方形.A.1个B.2个C.3个D.4个2. 已知菱形的边长为3,较短的一条对角线的长为2,则该菱形较长的一条对角线的长为()A.2B.2C.4D.23. (2020·四川甘孜州)如图,菱形ABCD中,对角线AC,BD相交于点O,E 为AB的中点.若菱形ABCD的周长为32,则OE的长为( )A.3 B.4 C.5 D.64. 如图所示,P是菱形ABCD的对角线AC上一动点,过P垂直于AC的直线交菱形ABCD的边于M、N两点,设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象的大致形状是()5. (2020·黄冈)若菱形的周长为16,高为2,则菱形两邻角的度数之比为()A.4∶1 B.5∶1 C.6∶1 D.7∶16. (2020·广州)如图5,矩形ABCD的对角线AC、BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为( )C DFE OBA图5 A .485 B .325 C .245 D .1257. (2020·泰安)如图,矩形ABCD 中,AC ,BD 相交于点O ,过点B 作BF ⊥AC 交CD 于点F ,交AC 于点M ,过点D 作DE ∥BF 交AB 于点E ,交AC 于点N ,连接FN ,EM .则下列结论:① DN ﹦BM ;②EM ∥FN ;③AE ﹦FC ;④当AO ﹦AD 时,四边形DEBF 是菱形.其中,正确结论的个数是( ) A .1个 B .2个 C . 3个 D .4个AB CDEFOMN 8. (2020·达州)如图,∠BOD =45°,BO=DO ,点A 在OB 上,四边形ABCD 是矩形,连接AC 、BD 交于点E ,连接OE 交AD 于点F .下列4个判断:①OE 平分∠BOD ;②OF=BD ;③DF=AF ;④若点G 是线段OF 的中点,则△AEG 为等腰直角三角形.正确判断的个数是( ) A.4 B.3 C.2 D.1二、填空题9. 如图,矩形ABCD 的对角线AC 与BD 相交于点O ,∠ADB=30°,AB=4,则OC= .10. 如图,矩形ABCD 中,AC ,BD 交于点O ,M ,N 分别为BC ,OC 的中点.若DCA B F EOMN=4,则AC的长为.11. 如图,菱形ABCD的边长为10 cm,DE⊥AB,sin A=,则这个菱形的面积= cm2.12. 如图,矩形ABCD的面积是15,边AB的长比AD的长大2,则AD的长是________.13. 如图,在菱形ABCD中,E、F分别是AD、BD的中点,若EF=2,则菱形ABCD的周长为________.14. (2020·四川甘孜州)如图,有一张长方形纸片ABCD,AB=8cm,BC=10cm,点E为CD上一点,将纸片沿AE折叠,BC的对应边B'C'恰好经过点D,则线段DE的长为__________cm.15. 如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE.如果∠ADB =30°,则∠E=________度.16. 如图,在矩形纸片ABCD中,AB=6,BC=10.点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A 恰落在线段BF 上的点H 处.有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG +DF =FG . 其中正确的是______________.(把所有正确结论的序号都选上)三、解答题17. 如图,将等腰三角形ABC 绕顶点B 按逆时针方向旋转α到△A 1BC 1的位置,AB 与A 1C 1相交于点D ,AC 与A 1C 1,BC 1分别交于点E ,F . (1)求证:△BCF ≌△BA 1D ;(2)当∠C=α时,判断四边形A 1BCE 的形状,并说明理由.18. 如图,对折矩形纸片ABCD ,使AB 与DC 重合,得到折痕MN ,将纸片展平;再一次折叠,使点D 落到MN 上的点F 处,折痕AP 交MN 于E ;延长PF 交AB 于G .求证: (1)△AFG ≌△AFP ; (2)△APG 为等边三角形.19. 如图,在四边形ABCD 中,BD 为一条对角线,AD ∥BC ,AD=2BC ,∠ABD=90°,E 为AD 的中点,连接BE. (1)求证:四边形BCDE 为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.20. 如图,在平行四边形ABCD中,点O是边BC的中点,连接DO并延长,交AB的延长线于点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=50°,则当∠BOD=°时,四边形BECD是矩形.21. 如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD、CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.22. 如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和点G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.23. 如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,将△ABE沿BE折叠得到△FBE,且点F落在矩形ABCD的内部,连接AF,BF,EF,过点F作GF⊥AF交AD于点G,设ADAE=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示ADAB的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.24. 如图,在菱形ABCD中,AB=5,sin∠ABD=55,点P是射线BC上一点,连接AP交菱形对角线BD于点E,连接EC.(1)求证:△ABE≌△CBE;(2)如图①,当点P在线段BC上时,且BP=2,求△PEC的面积;(3)如图②,当点P在线段BC的延长线上时,若CE⊥EP,求线段BP的长.2021中考临考专题训练:矩形、菱形-答案一、选择题1. 【答案】B2. 【答案】C3. 【答案】B【解析】本题考查了菱形的性质和直角三角形斜边上的中线性质.∵四边形ABCD 是菱形,∴AB =BC =CD =DA .∵菱形ABCD 的周长为32,∴AB =8.∵AC ⊥BD ,E 为AB 的中点,∴OE =AB =4.故选B .4. 【答案】C 【解析】本题考查菱形的性质、相似三角形的性质、函数的图象和二次函数的图象和性质. 解题思路:设AC 、BD 交于点O ,由于点P 是菱形ABCD的对角线AC 上一动点,所以0<x <2.当0<x <1时,△AMN ∽△ABD ⇒APAO =MN BD ⇒x 1=MN 1⇒MN =x ⇒y =12x 2.此二次函数的图象开口向上,对称轴是x =0,此时y 随x 的增大而增大. 所以B 和D 均不符合条件.当1<x <2时,△CMN∽△CBD ⇒CP CO =MN BD ⇒2-x 1=MN 1⇒MN =2-x ⇒y =12x(2-x)=-12x 2+x.此二次函数的图象开口向下,对称轴是x =1,此时y 随x 的增大而减小. 所以A 不符合条件.综上所述,只有C 是符合条件的.5. 【答案】B【解析】本题考查了菱形的性质及锐角三角函数等知识.由菱形的周长为16可得其边长为4,而高为2,即转化为已知某一直角三角形的斜边为4,一直角边为2,求该直角三角形的锐角.由sin α=2142,可得锐角α=30°,所以该菱形的两邻角为150°和30°,两邻角之比5∶1,因此本题选B . 6. 【答案】C【解析】本题考查了矩形的性质,由勾股定理可得AC=10,再由矩形的对角线相等且互相平分的性质可得,OA=OD=5. △ABD 的面积为24,OA 为△ABD 的中线,由中线等分面积可得,△AOD 的面积为12.再由等面积法即可得OE+EF 的值.过程如下:∵AOE EOD AOD S S S ∴111222OA OE OD EF 即11551222OE EF ,∴OE+EF=245,因此本题选C .7. 【答案】D【解析】本题考查了矩形的性质、三角形全等的条件与性质、等边三角形的条件与性质、平行四边形的条件与性质以及菱形的判定方法,因为四边形ABCD 是矩形,所以AB=CD ,AD=BC ,AD ∥BC ,所以∠DAN=∠BCM.因为BF ⊥AC ,DE ∥BF ,所以DE ⊥AC ,即∠AND=∠CMB=90°,所以△ADN ≌△CBM ,所以DN=BM ,∠AND=∠CBM ,则△ADE ≌△CBF ,所以AE=CF 、DE=BF ,所以NE=MF ,即①②③都是正确的,由AE=CF 、AB=CD ,所以BE=DF ,所以四边形AEBF 是平行四边形. 因为四边形ABCD 是矩形,所以AO=DO ,因为当AO ﹦AD 时,AO=DO=AO ,所以△ADO 是等边三角形,所以∠AND=∠BDE=30°,所以∠BDE=∠ABD=30°,所以DE=BE ,所以四边形DEBF 是菱形,则④也是正确的,因此本题选D . 8. 【答案】A【解析】由矩形的性质可知:BE=DE=BD ,∠OAD=∠BAD=90°,在△ODE 和△OBE 中,BO=DO ,BE=DE ,OE=OE ,所以△ODE ≌△OBE ,∠OED=∠OEB=90°,∠OBD=∠ODB=67.5°,∠BOE=∠DOE=22.5°,故①正确;在R t △AOD 中,∠BOD=45°,∴OA=AD ,在R t △ABD 中,∠BAD=90°,∠OBD=67.5°,所以∠BDA=22.5°,在△BDA 和△FOA 中,∠BDA=∠FOA ,OA=AD ,∠OAD=∠BAD=90°,所以△BDA ≌△FOA ,所以OF=BD ,故②正确;如答图,过点F 作FQ ⊥OD 于点Q ,由角平分线的性质得AF=FQ ,由题可知∠ADO=45°,所以△FDQ 是等腰直角三角形即DF=AF ,故③正确;如答图,AG=OG=OF ,所以OG=DE ,由题意可得△OAG ≌△DAE ,所以∠OAG=∠DAE ,AG=AE ,又由∠OAG +∠GAF=90°可得∠GAE=90°,所以△GAE 是等腰直角三角形,故④正确.二、填空题9. 【答案】4 [解析]由题意可知,四边形ABCD 为矩形,则AC=BD ,OC=AC.已知∠ADB=30°,故在Rt △ABD 中,BD=2AB=8,∴AC=BD=8,OC=AC=4.10. 【答案】1611. 【答案】60[解析]菱形的面积可以用边长×高,即AB ×DE 计算,在Rt △ADE中,∵AD=10,sin A=,∴DE=6,∴菱形的面积为60 cm 2.12. 【答案】3【解析】本题主要考查了一元二次方程的实际应用问题. 设AD =x ,由题知,AB =x +2,又∵矩形ABCD 的面积为15,则x(x +2)=15,得到x 2+2x -15=0,解得,x 1=-5(舍) , x 2=3,∴AD =3.13. 【答案】16 【解析】∵E ,F 分别是AD ,BD 的中点,∴AB =2EF =4,∴菱形ABCD 周长是4AB =16.14. 【答案】5【解析】本题考查了矩形的性质,轴对称的性质,勾股定理.∵长方形纸片ABCD ,AB =8,BC =10,∴AB '=8,AD =10,B 'C '=10.在R t △ADB '中,由勾股定理,得DB '=6.∴DC '=4. 设DE =x ,则CE =C 'E =8-x .在R t △C 'DE 中,由勾股定理,得DE 2=EC '2+DC '2GQD C AB F E O即x 2=(8-x )2+42.∴x =5.即线段DE 的长为5cm .461088-x x 108C'B'D A BCE15. 【答案】15 【解析】如解图,连接AC.∵四边形ABCD 是矩形,∴AD =BC ,AC =BD ,又∵AB =BA ,∴△DAB ≌△CBA(SSS ),∴∠ACB =∠ADB =30°,∵CE =BD ,∴AC =CE ,∴∠E =∠CAE =12∠ACB =15°.解图16. 【答案】①③④ 【解析】由折叠的性质得,∠CBE =∠FBE ,∠ABG =∠FBG ,∴∠EBG =∠FBE +∠FBG =12×90°=45°,故①正确;由折叠的性质得,BF =BC =10,BA =BH =6,∴HF =BF -BH =4,AF =BF 2-BA 2=102-62=8,设GH =x ,则GF =8-x ,在Rt △GHF 中,x 2+42=(8-x)2,∴x =3,∴GF =5,∴AG =3,同理在Rt △FDE 中,由FD 2=EF 2-ED 2,得ED =83,EF =103,∴EDFD =43≠AB AG =2,∴△DEF 与△ABG 不相似,故②不正确;S △ABG =12×3×6=9,S △FGH =12×3×4=6,∴S △ABG S △FGH =96=32,故③正确;∵AG =3,DF =AD -AF =2,∴FG=5,∴AG +DF =FG =5,故④正确.综上,答案是①③④.三、解答题17. 【答案】解:(1)证明:∵△ABC 是等腰三角形,B 是顶点, ∴AB=BC ,∠A=∠C ,∵将等腰三角形ABC 绕顶点B 按逆时针方向旋转α到△A 1BC 1的位置, ∴A 1B=AB=BC ,∠A 1=∠A=∠C ,∠A 1BD=∠CBC 1.在△BCF 与△BA 1D 中,∴△BCF≌△BA1D.(2)四边形A1BCE是菱形.理由如下:∵将等腰三角形ABC绕顶点B按逆时针方向旋转α到△A1BC1的位置,∴∠A1=∠A,∵∠ADE=∠A1DB,∴∠AED=∠A1BD=α,∵∠AED=∠C=α,∴A1E∥BC.∵∠AED=∠A1=α,∴A1B∥CE.∴四边形A1BCE是平行四边形,又∵A1B=BC,∴四边形A1BCE是菱形.18. 【答案】证明:(1)∵对折矩形纸片ABCD,使AB与CD重合,得到折痕MN,∴MN∥AB,M,N分别为AD,BC中点,由平行线的性质可知PF=GF.由折叠的性质得∠PF A=∠GF A=90°,∴△AFG≌△AFP(SAS).(2)∵△AFG≌△AFP,∴AP=AG,∠2=∠3.又∵∠2=∠1,∴∠1=∠2=∠3.又∵∠1+∠2+∠3=90°,∴3∠2=90°,∴∠2=30°,∠P AG=2∠2=60°,∴△APG 为等边三角形.19. 【答案】解:(1)证明:∵E为AD的中点,AD=2BC,∴BC=ED,∵AD∥BC,∴四边形BCDE是平行四边形,∵∠ABD=90°,AE=DE,∴BE=ED,∴四边形BCDE是菱形.(2)∵AD∥BC,AC平分∠BAD,∴∠BAC=∠DAC=∠BCA,∴BA=BC=1,∵AD=2BC=2,∴sin∠ADB=,∴∠ADB=30°,∴∠DAC=∠BAD=30°,∠ADC=2∠ADB=60°.∴∠ACD=90°.在Rt△ACD中,AD=2,CD=1,∴AC=.20. 【答案】解:(1)证明:∵平行四边形ABCD,∴AE∥DC,∴∠EBO=∠DCO,∠BEO=∠CDO,∵点O是边BC的中点,∴BO=CO,∴△EBO≌△DCO(AAS),∴EO=DO,∴四边形BECD是平行四边形.(2)100[解析]若四边形BECD为矩形,则BC=DE,BD⊥AE,又AD=BC,∴AD=DE.根据等腰三角形的性质,可知∠ADB=∠EDB=40°,故∠BOD=180°-∠ADE=100°.21. 【答案】(1)证明:∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,AE =AC ,∠BAC =∠DAE ,(1分)∵AB =AC ,∴AD =AB =AE =AC ,∠EAC =∠DAB ,在△AEC 和△ADB 中∵⎩⎨⎧AD = AE∠EAC =∠DAB AB =AC,∴△AEC ≌△ADB(SAS ).(3分)(2)解:当四边形ADFC 是菱形时,AC =DF ,AC ∥DF ,∴∠BAC =∠ABD ,又∵∠BAC =45°,∴∠ABD =45°,(5分)又∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,∴∠DAB =90°,(6分)又∵AB =2,由勾股定理可得:BD =AD 2+AB 2=2AB =22,在菱形ADFC 中,DF =AD =AB =2,∴BF =BD -DF =22-2.(8分)22. 【答案】(1)证明:∵四边形ABCD 是矩形,∴DC ∥AB ,AD ∥BC ,∠DCB =90°.(1分) ∵EF ∥AB ,GH ∥AD ,∴EF ∥CD ,GH ∥BC ,∴四边形PFCH 是矩形,(2分)∴∠PHC =∠PFC =90°,PH =CF ,HC =PF ,(3分)∴△PHC ≌△CFP(SAS ).(4分)(2)证明:(1)由(1)知AB ∥EF ∥CD ,AD ∥GH ∥BC ,∴四边形PEDH 和四边形PGBF 都是平行四边形,∵四边形ABCD 是矩形,∴∠D =∠B =90°,∴四边形PEDH 和四边形PGBF 都是矩形,∴S 矩形PEDH =S 矩形PGBF .(8分)【解法提示】同(1)证法一样可得,△ACD ≌△CAB ,△APE ≌△PAG ,△PHC ≌△CFP ,∴S △ACD -S △AEP -S △PCH =S △CAB -S △PGA -S △CFP ,∴S 四边形PEDH =S 四边形PFBG .23. 【答案】(1)证明:由折叠性质得AE =FE ,∴∠EAF =∠EF A ,∵GF ⊥AF ,∴∠EAF +∠FGA =∠EF A +∠EFG =90°,∴∠FGA =∠EFG ,∴EG =EF ,∴AE =GE ;(2)解:如解图①,当点F 落在AC 上时,设AE =a ,则AD =na ,解图①由对称性得BE ⊥AF ,∴∠ABE +∠BAC =90°,∵∠DAC +∠BAC =90°,∴∠ABE =∠DAC ,又∵∠BAE =∠D =90°,∴△ABE ∽△DAC , ∴AB DA =AE DC ,∵AB =DC ,∴AB 2=AD ·AE =na ·a =na 2,∵AB >0,∴AB =na ,∴AD AB =na na=n ; (3)解:若AD =4AB ,则AB =n 4a , 如解图②,当点F 落在线段BC 上时,EF =AE =AB =a .解图②此时n 4a =a ,∴n =4,∴当点F 落在矩形内部时,n >4.∵点F 落在矩形的内部,点G 在AD 上,∴∠FCG <∠BCD ,∴∠FCG <90°.①若∠CFG =90°,则点F 落在AC 上,由(2)得AD AB =n ,即4AB AB =n ,∴n =16;②如解图③,若∠CGF =90°,则∠CGD +∠AGF =90°,解图③∵∠F AG +∠AGF =90°,∴∠CGD =∠F AG =∠ABE .∵∠BAE =∠D =90°,∴△ABE ∽△DGC ,∴AB DG =AE DC ,∵DG =AD -AE -EG =na -2a =(n -2)a ,∴AB ·DC =DG ·AE ,即(n 4a )2=(n -2)a ·a ,解得n 1=8+42,n 2=8-42<4(不合题意,舍去).综上所述,当n =16或n =8+42时,以点F ,C ,G 为顶点的三角形是直角三角形.24. 【答案】(1)证明:∵四边形ABCD 是菱形,∴AB =BC ,∠ABE =∠CBE .在△ABE 和△CBE 中,AB =BC ,∠ABE =∠CBE ,BE =BE ,∴△ABE ≌△CBE (SAS);(2)解:如解图①,连接AC 交BD 于点O ,分别过点A 、E 作BC 的垂线,垂足分别为点H 、F ,解图①∵四边形ABCD 是菱形,∴AC ⊥BD ,∵AB =5,sin ∠ABD =55,∴AO =OC =5,∴BO =OD =25, ∴AC =25,BD =45, ∵12AC ·BD =BC ·AH ,即12×25×45=5AH ,∴AH =4,∵AD ∥BC ,∴△AED ∽△PEB , ∴AE PE =AD BP, ∴AE +PE PE =AD +BP BP ,即AP PE =5+22=72,∴AP =72PE ,又∵EF ∥AH ,∴△EFP ∽△AHP ,∴EF AH =PE AP ,∴EF =PE AP ·AH =PE 72PE×4=87,∴S △PEC =12PC ·EF =12×(5-2)×87=127;(3)解:如解图②,连接AC 交BD 于点O ,解图②∵△ABE ≌△CBE ,CE ⊥PE ,∴∠AEB =∠CEB =45°,∴AO =OE =5,∴DE =OD -OE =25-5=5,BE =3 5. ∵AD ∥BP ,∴△ADE ∽△PBE ,∴AD BP =DE BE ,∴5BP=535,∴BP=15.。
矩形菱形正方形【基础知识回顾】一、矩形:1、定义:有一个角是角的平行四边形叫做矩形2、矩形的性质:⑴矩形的四个角都⑵矩形的对角线3、矩形的判定:⑴用定义判定⑵有三个角是直角的是矩形⑶对角线相等的是矩形【名师提醒:1、矩形是对称图形,对称中心是,矩形又是对称图形,对称轴有条2、矩形被它的对角线分成四个全等的三角形和两对全等的三角形3、矩形中常见题目是对角线相交成600或1200角时,利用直角三角形、等边三角形等图形的性质解决问题】二、菱形:1、定义:有一组邻边的平行四边形叫做菱形2、菱形的性质:⑴菱形的四条边都⑵菱形的对角线且每条对角线3、菱形的判定:⑴用定义判定⑵对角线互相垂直的是菱形⑶四条边都相等的是菱形【名师提醒:1、菱形既是对称图形,也是对称图形,它有条对称轴,分别是2、菱形被对角线分成四个全等的三角形和两对全等的三角形3、菱形的面积可以用平行四边形面积公式计算,也可以用两对角线积的来计算4、菱形常见题目是内角为1200或600时,利用等边三角形或直角三角形的相关知识解决的题目】三、正方形:1、定义:有一组邻边相等的是正方形,或有一个角是直角的是正方形2、性质:⑴正方形四个角都都是角,⑵正方形四边条都⑶正方形两对角线、且每条对角线平分一组内角3、判定:⑴先证是矩形,再证⑵先证是菱形,再证【名师提醒:1、菱形、正方形具有平行四边形的所有性质,正方形具有以上特殊四边形的所有性质。
这四者之间的关系可表示为:2、正方形也既是对称图形,又是对称图形,有条对称轴3、几种特殊四边形的性质和判定都是从、、三个方面来看的,要注意它们的区别和联系】【重点考点例析】考点一:与矩形有关的折叠问题例1 (2017•泸州)如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=105cm,且tan∠EFC=34,那么该矩形的周长为()D.16cm对应训练1.(2017•湖州)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则ADAB的值为()A.12B.3C.23D.2考点二:和菱形有关的对角线、周长、面积的计算问题例2 (2017•泉州)如图,菱形ABCD的周长为85,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO= ,菱形ABCD的面积S= .2.(2017•凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.1 D.17考点三:和正方形有关的证明题例3 (2017•湘潭)在数学活动课中,小辉将边长为2和3的两个正方形放置在直线l 上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.思路分析:(1)根据正方形的性质可得AO=CO ,OD=OF ,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF ,再利用“边角边”证明△AOD 和△COF 全等,根据全等三角形对应边相等即可得证;(2)与(1)同理求出CF=AD ,连接DF 交OE 于G ,根据正方形的对角线互相垂直平分可得DF ⊥OE ,DG=OG=12OE ,再求出AG ,然后利用勾股定理列式计算即可求出AD . 解:(1)AD=CF .理由如下:在正方形ABCO 和正方形ODEF 中,AO=CO ,OD=OF ,∠AOC=∠DOF=90°, ∴∠AOC+∠COD=∠DOF+∠COD ,即∠AOD=∠COF ,在△AOD 和△COF 中,AO CO AOD COF OD OF =⎧⎪∠=∠⎨⎪=⎩, ∴△AOD ≌△COF (SAS ),∴AD=CF ;(2)与(1)同理求出CF=AD ,如图,连接DF 交OE 于G ,则DF ⊥OE ,DG=OG=12OE ,∵正方形ODEF 的边长为2,∴OE=2×2=2,∴DG=OG=12OE=12×2=1, ∴AG=AO+OG=3+1=4,在Rt △ADG 中,AD=22224117AG DG +=+=,∴CF=AD=17.点评:本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用,(1)熟练掌握正方形的四条边都相等,四个角都是直角,对角线相等且互相垂直平分是解题的关键,(2)作辅助线构造出直角三角形是解题的关键.对应训练3.(2017•三明)如图①,在正方形ABCD 中,P 是对角线AC 上的一点,点E 在BC 的延长线上,且PE=PB .(1)求证:△BCP ≌△DCP ;(2)求证:∠DPE=∠ABC ;(3)把正方形ABCD 改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.3.(1)证明:在正方形ABCD 中,BC=DC ,∠BCP=∠DCP=45°,∵在△BCP 和△DCP 中,BC DC BCP DCP PC PC =⎧⎪∠=∠⎨⎪=⎩, ∴△BCP ≌△DCP (SAS ); (2)证明:由(1)知,△BCP ≌△DCP ,∴∠CBP=∠CDP ,∵PE=PB ,∴∠CBP=∠E ,∴∠DPE=∠DCE ,∵∠1=∠2(对顶角相等),∴180°-∠1-∠CDP=180°-∠2-∠E ,即∠DPE=∠DCE ,∵AB ∥CD ,∴∠DCE=∠ABC ,∴∠DPE=∠ABC ;(3)解:与(2)同理可得:∠DPE=∠ABC ,∵∠ABC=58°,∴∠DPE=58°.故答案为:58.考点四:四边形综合性题目例4 (2017•资阳)在一个边长为a (单位:cm )的正方形ABCD 中,点E 、M 分别是线段AC ,CD 上的动点,连结DE 并延长交正方形的边于点F ,过点M 作MN ⊥DF 于H ,交AD 于N .(1)如图1,当点M 与点C 重合,求证:DF=MN ;(2)如图2,假设点M 从点C 出发,以1cm/s 的速度沿CD 向点D 运动,点E 同时从点A 出发,以2cm/s 速度沿AC 向点C 运动,运动时间为t (t >0);①判断命题“当点F 是边AB 中点时,则点M 是边CD 的三等分点”的真假,并说明理由. ②连结FM 、FN ,△MNF 能否为等腰三角形?若能,请写出a ,t 之间的关系;若不能,请说明理由.思路分析:(1)证明△ADF ≌△DNC ,即可得到DF=MN ;(2)①首先证明△AFE ∽△CDE ,利用比例式求出时间t=13a ,进而得到CM=13a=13CD ,所以该命题为真命题;②若△MNF 为等腰三角形,则可能有三种情形,需要分类讨论.解:(1)证明:∵∠DNC+∠ADF=90°,∠DNC+∠DCN=90°,∴∠ADF=∠DCN .在△ADF 与△DNC 中,90DAF CDN AD CDADF DCN ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴△ADF ≌△DNC (ASA ), ∴DF=MN .(2)解:①该命题是真命题.理由如下:当点F 是边AB 中点时,则AF=12AB=12CD . ∵AB ∥CD ,∴△AFE ∽△CDE ,∴AE EC =AF CD =12, ∴AE=12EC ,则AE=13AC=23a , ∴t=2AE =13a . 则CM=1•t=13a=13CD , ∴点M 为边CD 的三等分点.②能.理由如下:易证AFE ∽△CDE ,∴AF CD =AE EC ,即222AF t a a t=-,得AF=at a t -. 易证△MND ∽△DFA ,∴ND DM AF AD =,即ND a t at aa t -=-,得ND=t .∴ND=CM=t,AN=DM=a-t.若△MNF为等腰三角形,则可能有三种情形:(I)若FN=MN,则由AN=DM知△FAN≌△NDM,∴AF=DM,即ata t-=t,得t=0,不合题意.∴此种情形不存在;(II)若FN=FM,由MN⊥DF知,HN=HM,∴DN=DM=MC,∴t=12a,此时点F与点B重合;(III)若FM=MN,显然此时点F在BC边上,如下图所示:易得△MFC≌△NMD,∴FC=DM=a-t;又由△NDM∽△DCF,∴DN DCDM FC=,即t aa t FC=-,∴FC=()a a tt-.∴()a a tt-=a-t,∴t=a,此时点F与点C重合.综上所述,当t=a或t=12a时,△MNF能够成为等腰三角形.点评:本题是运动型几何综合题,考查了相似三角形、全等三角形、正方形、等腰三角形、命题证明等知识点.解题要点是:(1)明确动点的运动过程;(2)明确运动过程中,各组成线段、三角形之间的关系;(3)运用分类讨论的数学思想,避免漏解.对应训练4.(2017•营口)如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=43,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.4.解:(1)①BF=AD ,BF ⊥AD ;②BF=AD ,BF ⊥AD 仍然成立,证明:∵△ABC 是等腰直角三角形,∠ACB=90°,∴AC=BC ,∵四边形CDEF 是正方形,∴CD=CF ,∠FCD=90°,∴∠ACB+∠ACF=∠FCD+∠ACF ,即∠BCF=∠ACD ,在△BCF 和△ACD 中BC ACBCF ACD CF CD=⎧⎪∠=∠⎨⎪=⎩,∴△BCF ≌△ACD (SAS ),∴BF=AD ,∠CBF=∠CAD ,又∵∠BHC=∠AHO ,∠CBH+∠BHC=90°,∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BF ⊥AD ;(2)证明:连接DF ,∵四边形CDEF 是矩形,∴∠FCD=90°,又∵∠ACB=90°,∴∠ACB=∠FCD∴∠ACB+∠ACF=∠FCD+∠ACF ,即∠BCF=∠ACD ,∵AC=4,BC=3,CD=43,CF=1,∴34BC CFAC CD ==,∴△BCF ∽△ACD ,∴∠CBF=∠CAD ,又∵∠BHC=∠AHO ,∠CBH+∠BHC=90°∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BF ⊥AD ,∴∠BOD=∠AOB=90°,∴BD 2=OB 2+OD 2,AF 2=OA 2+OF 2,AB 2=OA 2+OB 2,DF 2=OF 2+OD 2,∴BD 2+AF 2=OB 2+OD 2+OA 2+OF 2=AB 2+DF 2,∵在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,∴AB 2=AC 2+BC 2=32+42=25,∵在Rt △FCD 中,∠FCD=90°,CD=43,CF=1,∴DF2=CD2+CF2=(43)2+12=259,∴BD2+AF2=AB2+DF2=25+259=2509.【聚焦中考】1.(2017•威海)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF2.(2017•枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.3-1B.3-5C.5+1D.5-13.(2017•临沂)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是.4.(2017•烟台)如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画»AC,连结AF,CF,则图中阴影部分面积为.5.(2017•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+3.其中正确的序号是(把你认为正确的都填上).6.(2017•济宁)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.6.(1)证明:在正方形ABCD 中,AB=AD ,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF ⊥BE ,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF ,∵在△ABE 和△DAF 中,ABE DAF AB ADBAE D ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△DAF (ASA ),∴AF=BE ;(2)解:MP 与NQ 相等.理由如下:如图,过点A 作AF ∥MP 交CD 于F ,过点B 作BE ∥NQ 交AD 于E , 则与(1)的情况完全相同.7.(2017•青岛)已知:如图,在矩形ABCD 中,M ,N 分别是边AD 、BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:△ABM ≌△DCM ;(2)判断四边形MENF 是什么特殊四边形,并证明你的结论;(3)当AD :AB= 时,四边形MENF 是正方形(只写结论,不需证明)8.(2017•淄博)矩形纸片ABCD 中,AB=5,AD=4.(1)如图1,四边形MNEF 是在矩形纸片ABCD 中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;(2)请用矩形纸片ABCD 剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD 中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).8.解:(1)正方形的最大面积是16.设AM =x (0≤x ≤4),则MD =4-x .∵四边形MNEF 是正方形,∴MN =MF ,∠AMN +∠FMD =90°.∵∠AMN +∠ANM =90°,∴∠ANM =∠FMD .∵在△ANM 和△DMF 中A D ANM FMD MN FM ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ANM ≌△DMF (AAS ).∴DM =AN .∴S 正方形MNEF =MN 2=AM 2+AN 2,=x 2+(4-x )2,=2(x-2)2+8∵函数 S 正方形MNEF =2(x-2)2+8的开口向上,对称轴是x =2,在对称轴的左侧S 随x 的增大而减小,在对称轴的右侧S 随x 的增大而增大, ∵0≤x ≤4,∴当x =0或x =4时,正方形MNEF 的面积最大.最大值是16.(2)先将矩形纸片ABCD 分割成4个全等的直角三角形和两个矩形如图1,然后拼成如图2的正方形.9.(2017•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.9.解:(1)完成图形,如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,AD ABCAD EABAC AE=⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△EAB(SAS),∴BE=CD;(2)BE=CD,理由同(1),∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°,∴∠CAD=∠EAB,∵在△CAD和△EAB中,AD ABCAD EABAC AE=⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△EAB(SAS),∴BE=CD;(3)由(1)、(2)的解题经验可知,如图,过A作等腰直角三角形ABD,∠BAD=90°,则AD=AB=100米,∠ABD=45°,∴BD=1002米,连接CD,则由(2)可得BE=CD,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100米,BD=1002米,根据勾股定理得:CD=22100(1002)1003+=米,则BE=CD=1003米.【备考真题过关】一、选择题1.(2017•铜仁地区)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形2.(2017•宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等3.(2017•随州)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A.25 B.20 C.15 D.104.(2017•重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D.1cm 5.(2017•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.123D.1636.(2017•巴中)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD 的周长是()A.24 B.16 C.43D.237(2017•茂名)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC 的长是()A.2 B.4 C.2 3D.438.(2017•成都)如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A.1 B.2 C.3 D.4 9.(2017•包头)如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S210.(2017•扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC 于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°11.(2017•绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A.2825cm B.2120cm C.2815cm D.2521cm12.(2017•雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.2 B.3 C.4 D.5二、填空题13.(2017•宿迁)如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α为------ 度时,两条对角线长度相等.14.(2017•淮安)若菱形的两条对角线分别为2和3,则此菱形的面积是.15.(2017•无锡)如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于.16.(2017•黔西南州)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.17.(2017•攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=35,BE=4,则tan∠DBE的值是.18.(2017•南充)如图,正方形ABCD的边长为2,过点A作AE⊥AC,AE=1,连接BE,则tanE= .19.(2017•苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若1CGGB k=,则ADAB=用含k的代数式表示).20.(2017•哈尔滨)如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC 交AB于E,若BC=4,△AOE的面积为5,则sin∠BOE的值为.21.(2017•北京)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.22.(2017•南京)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.23.(2017•舟山)如图,正方形ABCD的边长为3,点E,F分别在边AB、BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程为.24.(2017•桂林)如图,已知线段AB=10,AC=BD=2,点P是CD上一动点,分别以AP、PB为边向上、向下作正方形APEF和PHKB,设正方形对角线的交点分别为O1、O2,当点P从点C运动到点D时,线段O1O2中点G的运动路径的长是.25.(2017•荆州)如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②当x=1时,四边形ABC1D1是菱形;③当x=2时,△BDD 1为等边三角形;④s=38(x-2)2 (0<x <2); 其中正确的是 (填序号).26.(2017•南通)如图,AB=AC ,AD=AE ,DE=BC ,且∠BAD=∠CAE .求证:四边形BCDE 是矩形.26.证明:∵∠BAD=∠CAE ,∴∠BAD-∠BAC=∠CAE-∠BAC ,∴∠BAE=∠CAD ,∵在△BAE 和△CAD 中AE AD BAE CAD AB AC =⎧⎪∠=∠⎨⎪=⎩∴△BAE ≌△CAD (SAS ), ∴∠BEA=∠CDA ,BE=CD ,∵DE=BC ,∴四边形BCDE 是平行四边形,∵AE=AD ,∴∠AED=∠ADE ,∵∠BEA=∠CDA ,∴∠BED=∠CDE ,∵四边形BCDE 是平行四边形,∴BE ∥CD ,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE 是矩形.27.(2017•广州)如图,四边形ABCD 是菱形,对角线AC 与BD相交于O ,AB=5,AO=4,求BD 的长.27.解:∵四边形ABCD 是菱形,对角线AC 与BD 相交于O ,∴AC ⊥BD ,DO=BO ,∵AB=5,AO=4,∴BO=2254-=3,∴BD=2BO=2×3=6.28.(2017•厦门)如图所示,在正方形ABCD 中,点G 是边BC 上任意一点,DE ⊥AG ,垂足为E ,延长DE 交AB 于点F .在线段AG 上取点H ,使得AG=DE+HG ,连接BH .求证:∠ABH=∠CDE .28.证明:如图,在正方形ABCD 中,AB=AD ,∠ABG=∠DAF=90°,∵DE⊥AG,∴∠2+∠EAD=90°,又∵∠1+∠EAD=90°,∴∠1=∠2,在△ABG和△DAF中,1 290AB ADABG DAF=⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABG≌△DAF(ASA),∴AF=BG,AG=DF,∠AFD=∠BGA,∵AG=DE+HG,AG=DE+EF,∴EF=HG,在△AEF和△BHG中,AF BGAFD BGAEF HG=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△BHG(SAS),∴∠1=∠3,∴∠2=∠3,∵∠2+∠CDE=∠ADC=90°,∠3+∠ABH=∠ABC=90°,∴∠ABH=∠CDE.29.(2017•黔东南州)如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD交BC于点E,作MF∥BC交CD于点F.求证:AM=EF.29.证明:过M点作MQ⊥AD,垂足为Q,作MP垂足AB,垂足为P,∵四边形ABCD是正方形,∴四边形MFDQ和四边形PBEM是正方形,四边形APMQ是矩形,∴AP=QM=DF=MF ,PM=PB=ME ,∵在△APM 和△FME 中,AP MF APM FME PM ME =⎧⎪∠=∠⎨⎪=⎩, ∴△APM ≌△FME (SAS ), ∴AM=EF .30.(2017•铁岭)如图,△ABC 中,AB=AC ,AD 是△ABC 的角平分线,点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD ,连接AE ,BE .(1)求证:四边形AEBD 是矩形;(2)当△ABC 满足什么条件时,矩形AEBD 是正方形,并说明理由.30.(1)证明:∵点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD ,∴四边形AEBD 是平行四边形,∵AB=AC ,AD 是△ABC 的角平分线,∴AD ⊥BC ,∴∠ADB=90°,∴平行四边形AEBD 是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC ,AD 是△ABC 的角平分线,∴AD=BD=CD ,∵由(1)得四边形AEBD 是矩形,∴矩形AEBD 是正方形.31.(2017•南宁)如图,在菱形ABCD 中,AC 为对角线,点E 、F 分别是边BC 、AD 的中点.(1)求证:△ABE ≌△CDF ;(2)若∠B=60°,AB=4,求线段AE 的长.31.解:(1)∵四边形ABCD 是菱形,∴AB=BC=AD=CD ,∠B=∠D ,∵点E 、F 分别是边BC 、AD 的中点,∴BE=DF ,在△ABE 和△CDF 中,∵AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CDF (SAS );(2)∵∠B=60°,∴△ABC 是等边三角形,∵点E 是边BC 的中点,∴AE ⊥BC ,在Rt △AEB 中,∠B=60°,AB=4,sin60°=4AE AE AB =, 解得AE=23.32.(2017•贵阳)已知:如图,在菱形ABCD 中,F 是BC 上任意一点,连接AF 交对角线BD 于点E ,连接EC .(1)求证:AE=EC ;(2)当∠ABC=60°,∠CEF=60°时,点F 在线段BC 上的什么位置?说明理由.32.(1)证明:如图,连接AC ,∵BD 也是菱形ABCD 的对角线,∴BD 垂直平分AC ,∴AE=EC ;(2)解:点F 是线段BC 的中点.理由如下:在菱形ABCD 中,AB=BC ,又∵∠ABC=60°,∴△ABC 是等边三角形,∴∠BAC=60°,∵AE=EC ,∠CEF=60°,∴∠EAC=12∠BAC=30°, ∴AF 是△ABC 的角平分线,∵AF 交BC 于F ,∴AF 是△ABC 的BC 边上的中线,∴点F 是线段BC 的中点.33.(2017•曲靖)如图,点E 在正方形ABCD 的边AB 上,连接DE ,过点C作CF ⊥DE 于F ,过点A 作AG ∥CF 交DE 于点G .(1)求证:△DCF ≌△ADG .(2)若点E 是AB 的中点,设∠DCF=α,求sinα的值.33.(1)证明:在正方形ABCD 中,AD=DC ,∠ADC=90°,∵CF ⊥DE ,∴∠CFD=∠CFG=90°,∵AG ∥CF ,∴∠AGD=∠CFG=90°,∴∠AGD=∠CFD ,又∵∠ADG+∠CDE=∠ADC=90°,∠DCF+∠CDE=90°,∴∠ADG=∠DCF ,∵在△DCF 和△ADG 中,AGD CFD ADG DCF AD DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DCF ≌△ADG (AAS );(2)设正方形ABCD的边长为2a,∵点E是AB的中点,∴AE=12×2a=a,在Rt△ADE中,DE=2222(2)5AD AE a a a+=+=,∴sin∠ADG=555AE aED a==,∵∠ADG=∠DCF=α,∴sinα=55.35.(2017•绥化)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为22,对角线AE,DF相交于点O,连接OC.求OC的长度.35.证明:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°-∠DAC,∠CAF=90°-∠DAC,∴∠BAD=∠CAF,则在△BAD和△CAF中,AB ACBAD CAFAD AF=⎧⎪∠=∠⎨⎪=⎩,∴△BAD≌△CAF(SAS),∴BD=CF,36.解:(1)∵四边形ABCD 是正方形,∴AB=BC ,∠ABC=∠PBA=90°∵在△PBA 和△FBC 中,AB BC PBA ABC BP BF =⎧⎪∠=∠⎨⎪=⎩,∴△PBA ≌△FBC (SAS ),∴PA=FC ,∠PAB=∠FCB .∵PA=PE ,∴PE=FC .∵∠PAB+∠APB=90°,∴∠FCB+∠APB=90°.∵∠EPA=90°,∴∠APB+∠EPA+∠FPC=180°,即∠EPC+∠PCF=180°,∴EP ∥FC ,∴四边形EPCF 是平行四边形;(2)结论:四边形EPCF 是平行四边形,∵四边形ABCD 是正方形,∴AB=BC ,∠ABC=∠CBF=90°∵在△PBA 和△FBC 中,AB BC PBA ABC BP BF =⎧⎪∠=∠⎨⎪=⎩,∴△PBA ≌△FBC (SAS ),∴PA=FC ,∠PAB=∠FCB . ∵PA=PE ,∴PE=FC .∵∠FCB+∠BFC=90°,∠EPB+∠APB=90°,∴∠BPE=∠FCB ,∴EP ∥FC ,∴四边形EPCF 是平行四边形;。
中考复习《矩形、菱形、正方形》测试题(含答案)一、选择题(每题4分,共24分)1.[2015·泸州]菱形具有而平行四边形不具有的性质是(D) A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.对角线互相垂直2.[2015·衢州]如图28-1,已知某菱形花坛ABCD的周长是24 m,∠BAD=120°,则花坛对角线AC的长是(B)A.6 3 m B.6 m图28-1 C.3 3 m D.3 m【解析】易知△ABC为等边三角形,所以AC=AB=6 m.3.[2015·益阳]如图28-2,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是(D) A.∠ABC=90°B.AC=BDC.OA=OB D.OA=AD图28-2 图28-34.[2014·福州]如图28-3,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为(C) A.45°B.55°C.60°D.75°【解析】∵四边形ABCD是正方形,∴AB=AD,又∵△ADE 是等边三角形, ∴AE =AD =DE ,∠DAE =60°, ∴AB =AE ,∴∠ABE =∠AEB ,∠BAE =90°+60°=150°, ∴∠ABE =(180°-150°)÷2=15°, 又∵∠BAC =45°, ∴∠BFC =45°+15°=60°.5.[2015·临沂]如图28-4,四边形ABCD 为平行四边形,延长AD 到E ,使DE =AD ,连结EB ,EC ,DB .添加一个条件,不能使四边形DBCE 成为矩形的是 (B) A .AB =BEB .BE ⊥DCC .∠ADB =90°D .CE ⊥DE【解析】 因为四边形ABCD 为平行四边形,所以AD 綊BC ,因为DE =AD ,所以DE 綊BC所以四边形EDBC 为平行四边形,A .假若AB =BE ,因为AB =BE ,AD =DE ,BD =BD ,所以△ADB ≌△EDB ,所以∠BDE =90°,所以四边形EDBC 为矩形; B .假若BE ⊥DC ,可得四边形EDBC 为菱形;C .假若∠ADB =90°,所以∠EDB =90°,所以四边形EDBC 为矩形;D .假若CE ⊥DE ,所以∠DEC =90°,所以四边形EDBC 为矩形,故选B. 6.[2015·日照]小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 中选两个作为补充条件,使▱ABCD 成为正方形(如图28-5)现有下列四种选法,你图28-4图28-5认为其中错误的是(B)A.①②B.②③C.①③D.②④【解析】此题考查正方形的判定,即在▱ABCD的基础上,需要再同时具备矩形和菱形的特征.①是菱形的特征;②是矩形的特征;③是矩形的特征,④是菱形的特征.而B中都是矩形的特征,故选B.二、填空题(每题4分,共20分)7.[2015·铜仁]已知一个菱形的两条对角线长分别为6 cm和8 cm,则这个菱形的面积为__24__cm2.8.[2014·衡阳]如图28-6,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为__10__.9.[2015·上海]已知E是正方形ABCD的对角线AC上一点,图28-6 AE=AD,过点E作AC的垂线,交边CD于点F,那么∠F AD=__22.5__度.10.[2014·淄博]已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形.你添加的条件是__AB=BC或AC⊥BD等__.11.[2014·资阳]如图28-7,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为__6__.图28-7【解析】如答图,连结BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE=5,∴△BEQ周长的最小值=DE+BE=5+1=6.三、解答题(共20分)12.(10分)[2015·安顺]如图28-8,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于图28-8F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.证明:(1)∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴AE=DF;(2)若AD平分∠BAC,四边形AEDF是菱形,理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠EAD=∠F AD,∵AE∥DF,∴∠EAD=ADF,∠DAF=∠FDA,∴AF=DF,∴平行四边形AEDF为菱形.13.(10分)[2015·青岛]已知:如图28-9,在△ABC中,AB =AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;图28-9(2)连结DE ,线段DE 与AB 之间有怎样的位置和数量关系?请证明你的结论. 解:(1)证明:∵AB =AC ,AD 是BC 边上的中线, ∴AD ⊥BC ,BD =CD . ∵AE ∥BC ,CE ⊥AE , ∴四边形ADCE 是矩形, ∴AD =CE .在Rt △ABD 与Rt △CAE 中, ⎩⎪⎨⎪⎧AD =CE ,AB =CA ,∴△ABD ≌△CAE (HL );(2)DE ∥AB ,DE =AB .证明如下: 如答图所示,∵四边形ADCE 是矩形, ∴AE =CD =BD ,AE ∥BD , ∴四边形ABDE 是平行四边形, ∴DE ∥AB ,DE =AB .14.(10分)[2014·扬州]如图28-10,已知Rt △ABC ,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°后至△DBE ,再把△ABC 沿射线AB 平移至△FEG ,DE ,FG 相交于点H .(1)判断线段DE ,FG 的位置关系,并说明理由; (2)连结CG ,求证:四边形CBEG 是正方形. 解:(1)DE ⊥FG ,理由如下:由题意得∠A =∠EDB =∠GFE ,∠ABC =∠DBE =90°,第13题答图图28-10∴∠BDE+∠BED=90°.∴∠GFE+∠BED=90°,∴∠FHE=90°,即DE⊥FG;(2)证明:∵△ABC沿射线AB平移至△FEG,∴CB∥GE,CB=GE.∴四边形CBEG是平行四边形.∵∠ABC=∠GEF=90°,∴四边形CBEG是矩形.∵BC=BE,∴四边形CBEG是正方形.15.(10分)[2015·南京]如图28-11,AB∥CD,点E,F分别在AB,CD上,连结EF,∠AEF,∠CFE的平分线交于点G,∠BEF,∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD交于点P,Q,得到四边形MNQP.此时,他猜想四边形MNQP是菱形,请在下列框图中补全他的证明思路.小明的证明思路由AB∥CD,MN∥EF,易证四边形MNQP是平行四边形,要证▱MNQP是菱形,只要证MN=NQ.由已知条件__FG平分∠CFE__,MN∥EF,可证NG=NF,故只要证GM=FQ,即证△MEG≌△QFH,易证__GE=FH__,__∠GME =∠FQH__.故只要证∠MGE=∠QFH.易证∠MGE=∠GEF,∠QFH=∠EFH,__∠GEF=∠EFH__,即可得证.图28-11解:(1)证明:∵EH平分∠BEF.∴∠FEH=12∠BEF,∵FH平分∠DFE,∴∠EFH=12∠DFE,∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=12(∠BEF+∠DFE)=12×180°=90°,又∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°-(∠FEH+∠EFH)=180°-90°=90°,同理可证,∠EGF=90°,∵EG平分∠AEF,∴∠FEG=12∠AEF,∵EH平分∠BEF,∴∠FEH=12∠BEF,∵点A,E,B在同一条直线上.∴∠AEB=180°,即∠AEF+∠BEF=180°.∴∠FEG+∠FEH=12(∠AEF+∠BEF)=12×180°=90°,即∠GEH=90°.∴四边形EGFH是矩形;(2)本题答案不唯一,下列解法供参考.例如,FG平分∠CFE;GE=FH;∠GME =∠FQH;∠GEF=∠EFH.16.(6分)[2015·资阳]若顺次连结四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是(D) A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形17.(10分)如图28-12,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;…;按此规律继续下去,则四边形A2B2C2D2的周长是__20__;四边形A2 016B2 016C2 016D2 016的周长是__521 005__.图28-12。
中考数学总复习《矩形、菱形、正方形》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·自贡中考)如图,以点A为圆心,适当的长为半径画弧,交∠A两边于点M,N,再分别以M、N为圆心,AM的长为半径画弧,两弧交于点B,连接MB,NB.若∠A=40°,则∠MBN=( )A.40°B.50°C.60°D.140°2.(2024·甘肃中考)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ABD=60°,AB=2,则AC的长为( )A.6B.5C.4D.33.(2024·广西中考)如图,边长为5的正方形ABCD,E,F,G,H分别为各边中点.连接AG,BH,CE,DF,交点分别为M,N,P,Q,那么四边形MNPQ的面积为( )A.1B.2C.5D.104.(2024·绥化中考)如图,四边形ABCD是菱形,CD=5,BD=8,AE⊥BC于点E,则AE 的长是( )A.245B.6C.485D.125.(2024·广西中考)如图,两张宽度均为3 cm的纸条交叉叠放在一起,交叉形成的锐角为60°,则重合部分构成的四边形ABCD的周长为cm.6.(2024·福建中考)如图,正方形ABCD的面积为4,点E,F,G,H分别为边AB,BC,CD,AD的中点,则四边形EFGH的面积为.7.(2024·贵州中考)如图,四边形ABCD的对角线AC与BD相交于点O,AD∥BC,∠ABC=90°,有下列条件:①AB∥CD,②AD=BC.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD是矩形;(2)在(1)的条件下,若AB=3,AC=5,求四边形ABCD的面积.B层·能力提升8.(2024·甘肃中考)如图1,动点P从菱形ABCD的点A出发,沿边AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,PO的长为y,y与x的函数图象如图2所示,当点P运动到BC中点时,PO的长为( )A.2B.3C.√5D.2√29.(2024·泸州中考)如图,在边长为6的正方形ABCD中,点E,F分别是边AB,BC上的动点,且满足AE=BF,AF与DE交于点O,点M是DF的中点,G是边AB上的点,AG=2GB,则OM+1FG的最小值是( )2A.4B.5C.8D.1010.(2024·广东中考)如图,菱形ABCD的面积为24,点E是AB的中点,点F是BC上的动点.若△BEF的面积为4,则图中阴影部分的面积为.11.(2024·牡丹江中考)矩形ABCD的面积是90,对角线AC,BD交于点O,点E是BC 边的三等分点,连接DE,点P是DE的中点,OP=3,连接CP,则PC+PE的值为.C层·素养挑战12.(2024·盐城中考)如图1,E,F,G,H分别是▱ABCD各边的中点,连接AF,CE交于点M,连接AG,CH交于点N,将四边形AMCN称为▱ABCD的“中顶点四边形”.(1)求证:中顶点四边形AMCN为平行四边形;(2)①如图2,连接AC,BD交于点O,可得M、N两点都在BD上,当▱ABCD满足_________时,中顶点四边形AMCN是菱形;②如图3,已知矩形AMCN为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)参考答案A层·基础过关1.(2024·自贡中考)如图,以点A为圆心,适当的长为半径画弧,交∠A两边于点M,N,再分别以M、N为圆心,AM的长为半径画弧,两弧交于点B,连接MB,NB.若∠A=40°,则∠MBN=(A)A.40°B.50°C.60°D.140°2.(2024·甘肃中考)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ABD=60°,AB=2,则AC的长为(C)A.6B.5C.4D.33.(2024·广西中考)如图,边长为5的正方形ABCD,E,F,G,H分别为各边中点.连接AG,BH,CE,DF,交点分别为M,N,P,Q,那么四边形MNPQ的面积为(C)A.1B.2C.5D.104.(2024·绥化中考)如图,四边形ABCD是菱形,CD=5,BD=8,AE⊥BC于点E,则AE 的长是(A)A.245B.6C.485D.125.(2024·广西中考)如图,两张宽度均为3 cm的纸条交叉叠放在一起,交叉形成的锐角为60°,则重合部分构成的四边形ABCD的周长为8√3cm.6.(2024·福建中考)如图,正方形ABCD的面积为4,点E,F,G,H分别为边AB,BC,CD,AD的中点,则四边形EFGH的面积为2.7.(2024·贵州中考)如图,四边形ABCD的对角线AC与BD相交于点O,AD∥BC,∠ABC=90°,有下列条件:①AB∥CD,②AD=BC.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD是矩形;【解析】(1)选择①,证明:∵AD∥BC,AB∥CD∴四边形ABCD是平行四边形∵∠ABC=90°,∴四边形ABCD是矩形;选择②,证明:∵AD∥BC,AD=BC∴四边形ABCD是平行四边形∵∠ABC=90°,∴四边形ABCD是矩形;(2)在(1)的条件下,若AB=3,AC=5,求四边形ABCD的面积.【解析】(2)∵四边形ABCD是矩形∴∠ABC=90°∵AB=3,AC=5,∴BC=√AC2-AB2=4∴四边形ABCD的面积=AB·BC=3×4=12.B层·能力提升8.(2024·甘肃中考)如图1,动点P从菱形ABCD的点A出发,沿边AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,PO的长为y,y与x的函数图象如图2所示,当点P运动到BC中点时,PO的长为(C)A.2B.3C.√5D.2√29.(2024·泸州中考)如图,在边长为6的正方形ABCD中,点E,F分别是边AB,BC上的动点,且满足AE=BF,AF与DE交于点O,点M是DF的中点,G是边AB上的点,AG=2GB,则OM+1FG的最小值是(B)2A.4B.5C.8D.1010.(2024·广东中考)如图,菱形ABCD的面积为24,点E是AB的中点,点F是BC 上的动点.若△BEF的面积为4,则图中阴影部分的面积为10.11.(2024·牡丹江中考)矩形ABCD的面积是90,对角线AC,BD交于点O,点E是BC 边的三等分点,连接DE,点P是DE的中点,OP=3,连接CP,则PC+PE的值为13或√109.C层·素养挑战12.(2024·盐城中考)如图1,E,F,G,H分别是▱ABCD各边的中点,连接AF,CE交于点M,连接AG,CH交于点N,将四边形AMCN称为▱ABCD的“中顶点四边形”.(1)求证:中顶点四边形AMCN为平行四边形;【解析】(1)∵四边形ABCD是平行四边形∴AB∥CD,AD∥BC,AB=CD,AD=BC∵点E,F,G,H分别是▱ABCD各边的中点∴AE=12AB=12CD=CG,AE∥CG∴四边形AECG为平行四边形同理可得:四边形AFCH为平行四边形∴AM∥CN,AN∥CM∴四边形AMCN是平行四边形;(2)①如图2,连接AC,BD交于点O,可得M、N两点都在BD上,当▱ABCD满足_________时,中顶点四边形AMCN是菱形;②如图3,已知矩形AMCN为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)答案:AC⊥BD【解析】(2)①当平行四边形ABCD满足AC⊥BD时,中顶点四边形AMCN是菱形由(1)得四边形AMCN是平行四边形∵AC⊥BD∴MN⊥AC∴中顶点四边形AMCN是菱形②如图所示,即为所求连接AC,作直线MN,交于点O,然后作ND=2ON,MB=2OM,然后连接AB,BC,CD,DA即可∴点M和N分别为△ABC和△ADC的重心,符合题意;证明:∵四边形AMCN是矩形∴AC=MN,OM=ON∵ND=2ON,MB=2OM∴OB =OD∴四边形ABCD 为平行四边形;分别延长CM ,AM ,AN ,CN 交四边于点E 、F 、G 、H 如图所示:∵四边形AMCN 是矩形 ∴AM ∥CN ,MO =NO 由作图得BM =MN ∴△MBF ∽△NBC ∴BF BC =BM BN =12∴点F 为BC 的中点同理得:点E 为AB 的中点,点G 为DC 的中点,点H 为AD 的中点.。
矩形、菱形、正方形一、选择题1、(2022年安徽凤阳模拟题二)如图,矩形OABC 的顶点O 是坐标原点,边OA 在x 轴上,边OC 在y 轴上.若矩形OA 1B 1C 1与矩形OABC 关于点O 位似,且矩形OA 1B 1C 1的面积等于矩形OABC 面积的 14,则点B 1的坐标是( )A .(3,2)B .(-2,-3)C .(3,2)或(-3,-2)D .(2,3)或(-2,-3) 答案:C2、(2022年安徽省模拟八)如图,在矩形ABCD 中,AB =3,BC =4,点P 在BC 边上运动,联结DP ,过点A 作AE ⊥DP ,垂足为E ,设DP =x ,AE =y ,则能反映y 与x 之间函数关系的大致图象是512yx0453 512yx0453 512yx0453512yx04533、(2022年湖北荆州模拟5)如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是( ▲ )A .B .C .D .4、(2022年上海奉贤区二模)对角线相等的四边形是(▲)A .菱形;B .矩形;C .等腰梯形;D .不能确定; 答案:D5、(2022浙江省宁波模拟题)如图,边长为12的正方形ABCD 中,有一个正方形EFGH,其中E、F、G 分别在AB 、BC 、DF 上 ,若BF=3,则正方形EFGH 的边长为( ) A .5 B .6 C .154D .23EA CBPD第1题图第2题图答案:C6. (2022沈阳一模)顺次连接矩形四边中点所得的四边形一定是( ) A.正方形 B.矩形 C.菱形 D.等腰梯形答案:C7、(2022浙江锦绣·育才教育集团一模)如图,菱形ABCD 和菱形ECGF 的边长分别为3和4,∠A =120°,则图中阴影部分的面积( ▲ ) A .3 B .349C .32D .32答案:B8、(2022年江苏南京一模)如图,在矩形ABCD 内,以BC 为一边作等边三角形EBC ,连接AE 、DE .若BC =2,ED =3,则AB 的长为 A .2 2 B .2 3 C .2+ 3D .2+ 3答案:C 9、(2022云南勐捧中学二模)若一个菱形的一条边长为4cm ,则这个菱形的周长为( )(A )20cm (B )18cm (C )16cm (D )12cm 【答案】C10、(2022宁波五校联考一模)如图,正方形ABCD 及正方形AEFG ,连结BE 、CF 、DG ,则BE :CF :DG 等于( )A .1:1:1B .12 1C .131D .1:2:1 答案:B11.(2022宁波五校联考一模)如图,边长为1的正方形EFGH 在边长为3的正方形ABCD 所在平面上移动,始终保持EF//AB. 线段CF 的中点为M ,DH 的中点为N ,则线段MN的长为 ( )F 第11题 E DAGH (第1题) AB C DE第2题N MHG DCB AE FA第2题图E BC DFA .10B .17C .172D .2103答案:C12、(2022山东德州特长展示)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为100° 的菱形,剪口与折痕所成的角的度数应为( )A .25°或50°B .20°或50°C .40°或50°D .40°或80° C13、(2022山东德州特长展示)如图,在△ABC 中,点E 、D 、F 分别在边AB 、BC 、CA 上,且DE ∥AC ,DF ∥AB .下列说法中错误的是( ) A .四边形AEDF 是平行四边形B .如果∠BAC =90 º,那么四边形AEDF 是矩形 C .如果AD ⊥BC ,那么四边形AEDF 是正方形 D .如果AD 平分∠BAC ,那么四边形AEDF 是菱形14、(2022山东德州特长展示)如图是一个由正方形ABCD 和半圆O 组成的封闭图形,点O 是圆心.点P 从点A 出发,沿弧AB 、线段BC 、线段CD 和线段DA 匀速运动,到达终点A .运动过程中OP 扫过的面积(s )随时间(t )变化的图象大致是( )AtOOOOttts sssABCD第3题图AC D OPGFEODCBA28°10CBA 15、(2022凤阳县县直义教教研中心)如图,将边长为cm 的正方形ABCD 沿直线l 向右翻动(不滑动),当正方形连续翻动8次后,正方形的中心O 经过的路线长是( )cm . A .8B .8C .3πD .4πD16、(2022年福州市初中毕业班质量检查) “赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).随机在大正方形及其内部区域投针,若针扎到小正方形(阴影部分)的概率是19,则大、小两个正方形的边长之比是A .3∶1B .8∶1C .9∶1D .22∶1A17、(2022年湖北省武汉市中考全真模拟)如图,正方形ABCD 的边长为25,内部有6个全等的正方形,小正方形的顶点E 、F 、G 、H 分别落在边AD 、AB 、BC 、CD 上,则每个小正方形的边长为( ). A.6 B.5 C.72 D.34 D18、(2022年湖北武汉模拟) .如图:将一个矩形纸片ABCD ,沿着BE 折叠,使C 、D 点分 别落在点11,C D 处.若150C BA ∠=,则ABE ∠的度数为A .15 B. 20 C. 25 D. 30 答案:B19. (2022年湖北武汉模拟) 如图,正方形ABCD 的对角线相交于O 点,BE 平分∠ABO 交AO 于E 点,CF ⊥BE 于F 点,交BO 于G 点,连结EG 、OF .则 ∠OFG的度数是A.60°B.45°C.30°D.75°答案:B20. (2022年湖北宜昌调研)如图所示,将边长为8cm 的正方形纸片ABCD 沿MN 折叠,使点D 落在BC中点E 处,点A 落在F 处,线段CN 的长是( )(A )6 (B )5 (C )4 (D )3答案:D第5题图21. (2022年吉林沈阳模拟)顺次连接矩形四边中点所得的四边形一定是( ) A.正方形 B.矩形 C.菱形 D.等腰梯形 答案:C22.(2022年江苏东台第二学期阶段检测)如图,将边长为12cm 的正方形纸片ABCD 折叠,使得点A 落在边CD 上的E 点,折痕为MN .若CE 的长为8cm ,则MN 的长为 A .12cm B .12.5cm C .104 cm D .13.5cm 答案:C 23.(2022年江苏无锡崇安一模)下列图形中不是中心对称图形的是…………………………………………………( ▲ )A .矩形B .菱形C .正五边形D .平行四边形 答案:C24、(2022年广西钦州市四模)正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图4所示,点G 在线段DK 上,正方形BEFG 的边长为4,则DEK △的面积为: (A)10 (B)12 (C)14 (D)16 答案:D25.(2022年杭州拱墅区一模)如图,在△ABC 中,已知∠C =90°,AC =BC =4,D 是AB 的中点,点E 、F 分别在AC 、BC 边上运动(点E 不与点A 、C 重合),且保持AE=CF ,连接DE 、DF 、EF .在此运动变化的过程中,有下列结论: ①四边形CEDF 有可能成为正方形;②△DFE 是等腰直角三角形; ③四边形CEDF 的面积是定值;④点C 到线段EF 的最大距离为2. 其中正确的结论是( )A .①④B .②③C .①②④D .①②③④ 答案:DDEAB C MND ABRP F CGK图4E26.(2022上海黄浦二摸)我们把两个能够完全重合的图形称为全等图形,则下列命题中真命题是(A)有一条边长对应相等的两个矩形是全等图形(B)有一个内角对应相等的两个菱形是全等图形(C)有两条对角线对应相等的两个矩形是全等图形(D)有两条对角线对应相等的两个菱形是全等图形答案:D27.(2022年上海静安区二摸)如果□ABCD的对角线相交于点O,那么在下列条件中,能判断□ABCD为菱形的是(A)∠OAB=∠OBA(B)∠OAB=∠OBC(C)∠OAB=∠OCD(D)∠OAB=∠OAD答案:D28.(2022年上海徐汇区二摸)下列正方形的性质中,菱形(非正方形)不具有的性质是A.四边相等;B.对角线相等;C.对角线平分一组对角;D.对角线互相平分且垂直.答案:B二、填空题1.(2022年安徽初中毕业考试模拟卷一)如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是.答案:52、(2022年安徽省模拟八)点E、F分别在一张长方形纸条ABCD的边AD、BC上,将这张纸条沿着直线EF对折后如图,BF与DE交于点G,如果∠BGD=30°,长方形纸条的宽AB=2cm,那么这张纸条对折后的重叠部分的面积S△GEF=____ __ cm2.答案:4第1题ABDCEF G第1题图第16题图 3、(2022届宝鸡市金台区第一次检测)如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE ⊥ AB ,垂足为 E ,若∠ADC =120°,则∠AOE= 答案:209、(2022北仑区一模)18. 如图,在矩形ABCD 中,AB=2,BC=4,⊙D 的半径为1.现将一个直角三角板的直角顶点与矩形的对称中心O 重合,绕着O 点转动三角板,使它的一条直角边与⊙D 切于点H ,此时两直角边与AD 交于E ,F 两点,则tan ∠EFO 的值为 ▲ . 【答案】4310、(2022重庆一中一模)16.如图,矩形ABCD 中,12AB AD ==,,以AD 的长为半径的A ⊙交BC 边于点E ,则图中阴影部分的面积为__________. (结果保留根号和π). 【答案】)(或42124-2-24ππ-- 11.(2022江西饶鹰中考模拟)在⊙O 中,点B 在⊙O 上,四边形AOCB 是矩形,对角线AC 的长为5,则⊙O 的半径长为 .答案:512、(2022山东德州特长展示)如图,矩形ABCD 中,E 为DC 的中点, AD : AB =3:2,CP :BP =1:2,连接EP 并延长,交AB 的延长线于点F ,AP 、BE 相交于点O .下列结论:①EP 平分∠CEB ;②△EBP ∽△EFB ;③△ABP ∽△ECP ;④AOAP =OB 2.其中正确的序号是_______________.(把你认为正确的序号都填上)①②③(第1题)E ABCDxyOA1A 3A4A 2A BO3 x2y 第1题图13、(2022年湖北省武汉市中考全真模拟)如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为对角线OB 的中点,反比例函数k y x=(x >0)在第一象限内的图象经过点D ,且与AB 、BC 分别交于E 、F 两点,若四边形BEDF 的面积为1,则k 的值为 . 3214、(2022年湖北省武汉市中考全真模拟)已知在矩形ABCD 中,AB=3,BC=4,P 为对角线AC 上一点,过P 作BP 的垂线交直线AD 于点Q ,若△APQ 为等腰三角形,则AP 的长度为 或 . 3.6或1 15、 (2022年江苏东台第二学期阶段检测)如图,三个边长均为2的正方形重叠在一起,O 1、O 2是其中两个正方形的中心,则阴影部分的面积是 .答案:217.(2022年上海静安区二摸)在正方形ABCD 中,点E 、F 、G 、H 分别在边AB 、BC 、CD 、AD 上,四边形EFGH 是矩形,EF =2FG ,那么矩形EFGH 与正方形ABCD 的面积比是 ▲ . 答案:94 18.(2022年上海闵行区二摸)如图,在正方形ABCD 中,E 为边BC 的中点,EF ⊥AE ,与边CD 相交于点F ,如果△CEF 的面积等于1,那么△ABE 的面积等于 ▲ . 答案:419.(2022年上海浦东新区二摸)如图,已知四边形ABCD 是边长为2的菱形,点E 、B 、C 、F 都在以D为圆心的同一圆弧上,且∠ADE =∠CDF ,那么EF 的长度等于 ▲ .(结果保留π) 答案:π34AB C DEF(第17题图)BAMNODC20.(2022年上海浦东新区二摸)边长为1的正方形内有一个正三角形,如果这个正三角形的一个顶点与正方形的一个顶点重合,另两个顶点都在这个正方形的边上,那么这个正三角形的边长是 ▲ .答案:26三、解答题1、(2022年湖北荆州模拟题)如图,在矩形ABCD 中,对角线BD 的垂直平分线 与 相交于点 ,与 相较于点 ,与 相较于 ,连接 .请你判定四边形 是什么特殊四边形,并说明理由.解:四边形 是菱形.理由如下:四边形 是矩形 ∴AD ∥BC 是 的垂直平分线四边形 是平行四边形 是 的垂直平分线 平行四边形 是菱形2、(2022年安徽模拟二)如图,四边形ABCD 是边长为2的正方形,点G 是BC 延长线上一点,连接AG ,点E 、F 都在AG 上,连接BE 、DF ,有∠1=∠2,∠3=∠4. (1)证明: ; (2)若 ,求EF 的长.解:(1)证明:∵四边形ABCD 是正方形, ∴AB =AD =2. ∵∠1=∠2,∠3=∠4, ∴ (ASA ).第2题图第16题图FEDCBA(2)∵∠1=∠2,∠1+∠4= ,∴∠2+∠4= ,即.∵∠G+∠4= ,∴∠2=∠G= .∴AE=1,BE= .由(1)可知AF=BE= ,∴EF=AF-AE= -1.3. (2022年北京房山区一模)已知,矩形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行操作:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)(1)通过操作,最后拼成的四边形为(2)拼成的这个四边形的周长的最小值为_______________________________cm,最大值为___________________________cm.答案:(1)平行四边形;-----------------------------1分(2)拼成的平行四边形上下两条边的长度等于原来矩形的边AD=6,左右两边的长等于线段MN的长,当MN垂直于BC时,其长度最短,等于原来矩形的边AB的一半,等于4,于是这个平行四边形的周长的最小值为2(6+4)=20;----------------------------3分当点E与点A重合,点M与点G重合,点N与点C重合时,线段MN最长,等于,此时,这个四边形的周长最大,其值为2(6+ )=12+ . -----------5分4、(2022年安徽省模拟六)如图,正方形ABCD中,AB=24,点E在边CD上,且CD=3DE.将△ADE 沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.(1)求证:△ABG≌△AFG;(2)求BG的长度;(3)求△FGC 的面积.答案:解: (1)∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);(3分)②∵EF =DE = CD =8,设BG =FG =x ,则CG =24-x . 在直角△ECG 中,根据勾股定理,得:(24-x )2+162=(x +8)2,解之,解得:x =12. (7分) (3)∵S △GCE = GC •CE = ×12×16=96. ∵GF =12,EF =8,△GFC 和△FCE 等高, ∴S △GFC :S △FCE =3:2,∴S △GFC = ×96= . (12分)5、(2022年安徽省模拟八) (本题满分10分)已知:平行四边形ABCD 中,E 、F 是BC 、AB 的中点,DE 、DF 分别交AB 、CB 的延长线于H 、G ; (1)求证:BH =AB ;(2)若四边形ABCD 为菱形,试判断∠G 与∠H 的大小,并证明你的结论. 答案: (1)∵四边形ABCD 是平行四边形∴DC =AB ,DC ∥AB ,∴∠C =∠EBH ,∠CDE =∠H 又∵E 是CB 的中点,∴CE =BE ∴△CDE ≌△BHE ,∴BH =DC ∴BH =AB(2)∵四边形ABCD 是平行四边形,∴AD ∥CB ,∴∠ADF =∠G ∵四边形ABCD 是菱形,∴AD =DC =CB =AB ,∠A =∠C ∵E 、F 分别是CB 、AB 的中点,∴AF =CE ∴△ADF ≌△CDE ,∴∠CDE =∠ADF ∴∠H =∠G6、(2022年安徽省模拟八)如图,在矩形ABCD 中,AB = 6米,BC = 8米,动点P 以2米/秒的速度从点A 出发,沿AC 向点C 移动,同时动点Q 以1米/秒的速度从点C 出发,沿CB 向点B 移动,设P 、Q 两点移动t 秒(0<t <5)后,四边形ABQP 面积为S 米2. ⑴ 求面积S 关于时间 t 的函数关系式;⑵ 在P 、Q 两点移动的过程中,四边形ABQP 与△CPQ 的面第1题图F EHGBC DA第2题图PQ积能否相等?若能,求出此时点P 的位置;若不能,请说明理由.答案:⑴ 过点P 作PE ⊥BC 于E ,Rt △ABC 中,AC =10(米)由题意知:AP =2t ,CQ =t ,则PC =10-2t 由AB ⊥BC ,PE ⊥BC 得PE ∥AB ∴ = 即: =∴ PE = (10-2t )=- t +6 又∵S = ×6×8=24∴S =S -S △CPQ =24- · t ·(- t +6)= t 2-3t +24 S = t 2-3t +24⑵ 假设四边 形ABQP 与△CPQ 的面积相等,则有: t 2-3t +24=12, 即: t 2-5t +20=0∵b 2-4ac =(-5)2-4×1×20<0 ∴方程无实根∴ 在P 、Q 两点移动的过程中,四边形ABQP 与△CPQ 的面积不能相等。
矩形、菱形与正方形一、选择题1.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等2.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形 B.菱形 C.正方形D.梯形3.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于()A.B.C.D.4.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A. cm B. cm C. cm D. cm5.如图所示,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个二、填空题6.若菱形的两条对角线分别为2和3,则此菱形的面积是.7.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= .8.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α= .9.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.10.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是(把你认为正确的都填上).三、解答题(共40分)11.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.12.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.13.如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.14.如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.矩形、菱形与正方形参考答案与试题解析一、选择题1.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.2.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形 B.菱形 C.正方形D.梯形【考点】旋转的性质;矩形的判定.【分析】根据旋转的性质可得AE=CE,DE=EF,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF是平行四边形,然后利用等腰三角形三线合一的性质求出∠ADC=90°,再利用有一个角是直角的平行四边形是矩形解答.【解答】解:∵△ADE绕点E旋转180°得△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵AC=BC,点D是边AB的中点,∴∠ADC=90°,∴四边形ADCF是矩形.故选:A.【点评】本题考查了旋转的性质,矩形的判定,主要利用了对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形的判定方法,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.3.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于()A.B.C.D.【考点】勾股定理;菱形的性质;矩形的性质.【分析】首先由菱形的四条边都相等与矩形的四个角是直角,即可得到直角△ABM中三边的关系.【解答】解:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=x,AM=y,则MB=2x﹣y,(x、y均为正数).在Rt△ABM中,AB2+AM2=BM2,即x2+y2=(2x﹣y)2,解得x=y,∴MD=MB=2x﹣y=y,∴==.故选:C.【点评】此题考查了菱形与矩形的性质,以及直角三角形中的勾股定理.解此题的关键是注意数形结合思想与方程思想的应用.4.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A. cm B. cm C. cm D. cm【考点】菱形的性质;勾股定理;解直角三角形.【分析】先求出菱形的边长,然后利用面积的两种表示方法求出DH,在Rt△DHB中求出BH,然后得出AH,利用tan∠HAG的值,可得出GH的值.【解答】解:∵四边形ABCD是菱形,对角线AC=8cm,BD=6cm,∴AO=4cm,BO=3cm,在Rt△AOB中,AB==5cm,∵BD×AC=AB×DH,∴DH=cm,在Rt△DHB中,BH==cm,则AH=AB﹣BH=cm,∵tan∠HAG===,∴GH=AH=cm.故选:B.【点评】本题考查了菱形的性质、解直角三角形及三角函数值的知识,注意菱形的面积等于对角线乘积的一半,也等于底乘高.5.如图所示,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个【考点】正方形的性质.【分析】根据四边形ABCD是正方形及CE=DF,可证出△ADE≌△BAF,则得到:①AE=BF,以及△ADE 和△BAF的面积相等,得到;④S△AOB=S四边形DEOF;可以证出∠ABO+∠BAO=90°,则②AE⊥BF一定成立.错误的结论是:③AO=OE.【解答】解:∵四边形ABCD是正方形,∴CD=AD∵CE=DF∴DE=AF∴△ADE≌△BAF∴AE=BF(故①正确),S△ADE=S△BAF,∠DEA=∠AFB,∠EAD=∠FBA∵S△AOB=S△BAF﹣S△AOF,S四边形DEOF=S△ADE﹣S△AOF,∴S△AOB=S四边形DEOF(故④正确),∵∠ABF+∠AFB=∠DAE+∠D EA=90°∴∠AFB+∠EAF=90°∴AE⊥BF一定成立(故②正确).假设AO=OE,∵AE⊥BF(已证),∴AB=BE(线段垂直平分线上的点到线段两端点的距离相等),∵在Rt△BCE中,BE>BC,∴AB>BC,这与正方形的边长AB=BC相矛盾,∴,假设不成立,AO≠OE(故③错误);故错误的只有一个.故选:A.【点评】本题考查了正方形的四条边都相等,每一个角都是直角的性质,全等三角形的判定与性质,综合题但难度不大,求出△ADE≌△BAF是解题的关键,也是本题的突破口.二、填空题6.若菱形的两条对角线分别为2和3,则此菱形的面积是 3 .【考点】菱形的性质.【分析】菱形的面积是对角线乘积的一半,由此可得出结果即可.【解答】解:由题意,知:S菱形=×2×3=3,故答案为:3.【点评】本题考查了菱形的面积两种求法:(1)利用底乘以相应底上的高;(2)利用菱形的特殊性,菱形面积=×两条对角线的乘积;具体用哪种方法要看已知条件来选择.7.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= 5 .【考点】含30度角的直角三角形;矩形的性质.【分析】根据矩形的性质,可以得到△AOB是等边三角形,则可以求得OA的长,进而求得AB的长.【解答】解:∵四边形ABCD是矩形,∴OA=OB又∵∠AOB=60°∴△AOB是等边三角形.∴AB=OA=AC=5,故答案是:5.【点评】本题考查了矩形的性质,正确理解△AOB是等边三角形是关键.8.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α= 20°.【考点】旋转的性质;矩形的性质.【分析】根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.【解答】解:如图,∵四边形ABCD为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案为:20°.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的性质.9.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是10 .【考点】轴对称﹣最短路线问题;正方形的性质.【分析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【解答】解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案为:10.【点评】本题考查了轴对称﹣最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.10.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【专题】压轴题.【分析】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,AD2+DF2=AF2,即a2+(a﹣)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为:①②④.【点评】本题主要考查正方形的性质的知识点,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大,但是有一点麻烦.三、解答题(共40分)11.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.【解答】解:(1)BD=CD.理由如下:依题意得AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD(三线合一),∴∠ADB=90°,∴▱AFBD是矩形.【点评】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.12.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.【考点】菱形的判定与性质;三角形中位线定理.【分析】从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;∠BCF是120°,所以∠EBC为60°,所以菱形的边长也为4,求出菱形的高面积就可求.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2,∴菱形的面积为4×2=8.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.13.如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.【考点】正方形的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据正方形的性质可得AB=AD,∠BAE=∠D=90°,再根据同角的余角相等求出∠ABE=∠DAF,然后利用“角边角”证明△ABE和△DAF全等,再根据全等三角形的证明即可;(2)过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,然后与(1)相同.【解答】(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,,∴△ABE≌△DAF(ASA),∴AF=BE;(2)解:MP与NQ相等.理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,∵AB∥CD,AD∥BC,∴四边形AMPF与四边形BNQE是平行四边形,∴AF=PM,BE=NQ,∵在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,,∴△ABE≌△DAF(ASA),∴AF=BE;∴MP=NQ.【点评】本题考查了正方形的性质,全等三角形的判定与性质,主要利用了正方形的四条边都相等,每一个角都是直角的性质,同角的余角相等的性质,利用三角形全等证明相等的边是常用的方法之一,要熟练掌握并灵活运用.14.如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.【考点】正方形的性质;全等三角形的判定与性质;平行四边形的判定.【分析】(1)由正方形的性质可得:∠B=∠C=90°,由同角的余角相等,可证得:∠BAE=∠CEF,根据同角的正弦值相等即可解答;(2)在BA边上截取BK=BE,连接KE,根据角角之间的关系得到∠AKE=∠ECP,由AB=CB,BK=BE,得AK=EC,结合∠KAE=∠CEP,证明△AKE≌△ECP,于是结论得出;(3)作DM⊥AE于AB交于点M,连接ME、DP,易得出DM∥EP,由已知条件证明△ADM≌△BAE,进而证明MD=EP,四边形DMEP是平行四边形即可证出.【解答】(1)解:∵四边形ABCD是正方形,∴∠B=∠D,∵∠AEP=90°,∴∠BAE=∠FEC,在Rt△ABE中,AE==,∵sin∠BAE==sin∠FEC=,∴=,解法二:由上得∠BAE=∠FEC,∵∠BAE=∠FEC,∠B=∠DCB,∴△ABE∽△ECF,∴=,(2)证明:在BA边上截取BK=BE,连接KE,∵∠B=90°,BK=BE,∴∠BKE=45°,∴∠AKE=135°,∵CP平分外角,∴∠DCP=45°,∴∠ECP=135°,∴∠AKE=∠ECP,∵AB=CB,BK=BE,∴AB﹣BK=BC﹣BE,即:AK=EC,由第一问得∠KAE=∠CEP,∵在△AKE和△ECP中,,∴△AKE≌△ECP(ASA),∴AE=EP;(3)答:存在.证明:作DM⊥AE交AB于点M,则有:DM∥EP,连接ME、DP,∵在△ADM与△BAE中,,∴△ADM≌△BAE(ASA),∴MD=AE,∵AE=EP,∴MD=EP,∴MD EP,∴四边形DMEP为平行四边形.【点评】此题考查了相似三角形的判定与性质,全等三角形的判定与性质以及正方形的性质等知识.此题综合性很强,图形比较复杂,解题的关键是注意数形结合思想的应用与辅助线的准确选择.。
初三数学中考复习矩形、菱形与正方形专题综合训练题含答案2019 初三数学中考复习矩形、菱形与正方形专题综合训练题1. 已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( C )A.∠BAC=∠DCA B.∠BAC=∠DACC.∠BAC=∠ABD D.∠BAC=∠ADB2.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=( B )A.5 B.4 C.3.5 D.33.如图所示,矩形ABCD的顶点A,C分别在直线a,b上,且a∥b,∠1=60°,则∠2的度数为( C )A.30° B.45° C.60° D.75°4.如图,四边形ABCD的四边相等,且面积为120 cm2,对角线AC=24 cm,则四边形ABCD的周长为( A )A.52 cm B.40 cm C.39 cm D.26 cm5. 如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( A ) A.4.8 B.5 C.6 D.7.26.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是( D )A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形解:(1)证明:∵四边形ABCD 是矩形,∴AB =DC ,AC =BD ,AD =BC ,∠ADC =∠ABC =90°.由平移的性质得,DE =AC ,CE =BC ,∠DCE =∠ABC=90°,DC =AB ,∴AD =EC ,在△ACD 和△EDC 中,⎩⎪⎨⎪⎧AD =EC ,∠ADC =∠DCE,CD =DC ,∴△ACD ≌△EDC(SAS).(2)△BDE 是等腰三角形.理由如下:∵AC=BD ,DE =AC ,∴BD =DE ,∴△BDE 是等腰三角形.14.如图,在△ABC 中,∠ACB =90°,BC 的垂直平分线DE 交BC 于点D ,交AB 于点E ,F 在DE 上,并且AF =CE.(1)求证:四边形ACEF 是平行四边形;(2)当∠B 的大小满足什么条件时,四边形ACEF 是菱形?请回答并证明你的结论;(3)四边形ACEF 有可能是正方形吗?为什么?解:(1)证明:∵DE 垂直平分BC ,∠ACB =90°,∴DE ∥AC ,∴DE 为△ABC 的中位线,∴E 为AB 的中点,∴CE =AE =AF.∵DF ∥AC ,∴∠ECA =∠EAC=∠AEF=∠EFA,从而△AFE≌△EAC,∴EF =AC ,∴四边形ACEF 为平行四边形.(2)当∠E=30°,四边形ACEF 为菱形.理由:∵∠B=30°,∴∠EAC =60°.∵AE =EC ,∴△AEC 为正三角形,∴AC =EC =AE ,∴平行四边形ACEF 为菱形.(3)四边形ACEF 不可能为正方形.理由:若四边形ACEF 为正方形,则∠ACE=90°.又∠ACB=90°,则E ,D 两点重合,这与DE 垂直平分BC 矛盾.∴四边形ACEF 不可能为正方形.15.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC =BC =4,D 是AB 的中点,E ,F 分别是AC ,BC 上的点(点E 不与端点A ,C 重合),且AE =CF ,连结EF 并取EF 的中点O ,连结DO 并延长至点G ,使GO =OD ,连结DE ,DF ,GE ,GF.(1)求证:四边形EDFG 是正方形;(2)当点E 在什么位置时,四边形EDFG 的面积最小?并求四边形EDFG 面积的最小值.解:(1)证明:连结CD ,∵△ABC 为等腰直角三角形,∠ACB =90°,D 是AB 的中点,∴∠A =∠DCF=45°,AD =CD.在△ADE 和△CDF 中,⎩⎪⎨⎪⎧AE =CF ,∠A =∠DCF,AD =CD ,∴△ADE ≌△CDF(SAS),∴DE =DF ,∠ADE =∠CDF.∵∠ADE+∠EDC=90°,∴∠EDC +∠CDF=∠EDF=90°,∴△EDF 为等腰直角三角形.∵O 为EF 的中点,GO =OD ,∴GD ⊥EF ,且GD =2OD =EF ,∴四边形EDFG 是正方形.(2)过点D 作DE′⊥AC 于点E′,∵△ABC 为等腰直角三角形,∠ACB =90°,AC =BC =4,∴DE ′=12BC =2,AB =42,点E′为AC 的中点,∴2≤DE <22,∴4≤S 四边形EDFG =DE 2<8.∴当点E 为线段AC 的中点时,四边形EDFG 的面积最小,该最小值为4.。
专题16矩形菱形正方形(共50题)一.选择题(共24小题)1.(2020•荆门)如图,菱形ABCD中,E,F分别是AD,BD的中点,若EF=5,则菱形ABCD的周长为()A.20 B.30 C.40 D.50【分析】由三角形中位线定理可求AB=10,由菱形的性质即可求解.【解析】∵E,F分别是AD,BD的中点,∴EF是△ABD的中位线,∴EF=12AB=5,∴AB=10,∵四边形ABD是菱形,∴AB=BC=CD=AD=10,∴菱形ABCD的周长=4AB=40;故选:C.2.(2020•黄冈)若菱形的周长为16,高为2,则菱形两邻角的度数之比为()A.4:1 B.5:1 C.6:1 D.7:1【分析】如图,AH为菱形ABCD的高,AH=2,利用菱形的性质得到AB=4,利用正弦的定义得到∠B =30°,则∠C=150°,从而得到∠C:∠B的比值.【解析】如图,AH为菱形ABCD的高,AH=2,∵菱形的周长为16,∴AB=4,在Rt△ABH中,sin B=AHAB=24=12,∴∠B=30°,∵AB∥CD,∴∠C=150°,∴∠C:∠B=5:1.故选:B.3.(2020•牡丹江)如图,在平面直角坐标系中,O是菱形ABCD对角线BD的中点,AD∥x轴且AD=4,∠A=60°,将菱形ABCD绕点O旋转,使点D落在x轴上,则旋转后点C的对应点的坐标是()A.(0,2√3)B.(2,﹣4)C.(2√3,0)D.(0,2√3)或(0,﹣2√3)【分析】分点C旋转到y轴正半轴和y轴负半轴两种情况分别讨论,结合菱形的性质求解.【解析】根据菱形的对称性可得:当点D在x轴上时,A、B、C均在坐标轴上,如图,∵∠BAD=60°,AD=4,∴∠OAD=30°,∴OD=2,∴AO=√42−22=2√3=OC,∴点C的坐标为(0,−2√3),同理:当点C旋转到y轴正半轴时,点C 的坐标为(0,2√3),∴点C 的坐标为(0,2√3)或(0,−2√3),故选:D .4.(2020•盐城)如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为BC 中点,AC =6,BD =8.则线段OH 的长为( )A .125 B .52 C .3D .5 【分析】先根据菱形的性质得到AC ⊥BD ,OB =OD =12BD =4,OC =OA =12AC =3,再利用勾股定理计算出BC ,然后根据直角三角形斜边上的中线性质得到OH 的长.【解析】∵四边形ABCD 为菱形,∴AC ⊥BD ,OB =OD =12BD =4,OC =OA =12AC =3,在Rt △BOC 中,BC =√32+42=5,∵H 为BC 中点,∴OH =12BC =52.故选:B .5.(2020•辽阳)如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,AC =8.BD =6,点E 是CD上一点,连接OE ,若OE =CE ,则OE 的长是( )A .2B .52C .3D .4【分析】根据菱形的对角线互相垂直平分求出OB ,OC ,AC ⊥BD ,再利用勾股定理列式求出BC ,然后根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.【解析】∵菱形ABCD 的对角线AC 、BD 相交于点O ,∴OB=12BD=12×6=3,OA=OC=12AC=12×8=4,AC⊥BD,由勾股定理得,BC=√OB2+OC2=√32+42=5,∴AD=5,∵OE=CE,∴∠DCA=∠EOC,∵四边形ABCD是菱形,∴∠DCA=∠DAC,∴∠DAC=∠EOC,∴OE∥AD,∵AO=OC,∴OE是△ADC的中位线,∴OE=12AD=2.5,故选:B.6.(2020•黑龙江)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为()A.4 B.8 C.√13D.6【分析】由菱形的性质得出OA=OC=6,OB=OD,AC⊥BD,则AC=12,由直角三角形斜边上的中线性质得出OH=12BD,再由菱形的面积求出BD=8,即可得出答案.【解析】∵四边形ABCD是菱形,∴OA=OC=6,OB=OD,AC⊥BD,∴AC=12,∵DH⊥AB,∴∠BHD=90°,∴OH=12BD,∵菱形ABCD的面积=12×AC×BD=12×12×BD=48,∴BD=8,∴OH=12BD=4;故选:A.7.(2020•黑龙江)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A.72 B.24 C.48 D.96【分析】根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积.【解析】∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积=12AC⋅BD=12×12×8=48.故选:C.8.(2020•绥化)如图,四边形ABCD是菱形,E、F分别是BC、CD两边上的点,不能保证△ABE和△ADF 一定全等的条件是()A.∠BAF=∠DAE B.EC=FC C.AE=AF D.BE=DF【分析】根据菱形的性质可得AB=AD,∠B=∠D,再根据所添加条件,与这个两个条件是否能最终得到全等三角形的判定条件,进而得出结论.【解析】A.∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵∠BAF=∠DAE,∴∠BAE=∠CAF,∴△ABE≌△ADF(AAS),故选项A不符合题意;B..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,BC=BD,∵EC=FC,∴BE=DF,∴△ABE≌△ADF(SAS),故选项B不符合题意;C..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵AE=AF,∴△ABE和△ADF只满足两边和一边的对角相等,两个三角形不一定全等,故选项C符合题意;D..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵BE=DE,∴△ABE≌△ADF(SAS),故选项D不符合题意.故选:C.9.(2020•乐山)如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE ⊥CD于点E,连结OA.则四边形AOED的周长为()A.9+2√3B.9+√3C.7+2√3D.8【分析】先利用菱形的性质得AD=AB=4,AB∥CD,∠ADB=∠CDB=30°,AO⊥BD,利用含30度的直角三角形三边的关系得到AO=2,OD=2√3,然后计算出OE、DE的长,最后计算四边形AOED的周长.【解析】∵四边形ABCD为菱形,∴AD=AB=4,AB∥CD,∵∠BAD=120°,∴∠ADB=∠CDB=30°,∵O是对角线BD的中点,∴AO⊥BD,在Rt△AOD中,AO=12AD=2,OD=√3OA=2√3,∵OE⊥CD,∴∠DEO=90°,在Rt△DOE中,OE=12OD=√3,DE=√3OE=3,∴四边形AOED的周长=4+2+√3+3=9+√3.故选:B.10.(2020•甘孜州)如图,菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点.若菱形ABCD的周长为32,则OE的长为()A.3 B.4 C.5 D.6【分析】由菱形的性质得出AB=BC=CD=AD=8,AC⊥BD,则∠AOB=90°,由直角三角形斜边上的中线性质即可得出答案.【解析】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,∴∠AOB=90°,∵菱形ABCD的周长为32,∴AB=8,∵E为AB边中点,∴OE=12AB=4.故选:B.11.(2020•贵阳)菱形的两条对角线长分别是6和8,则此菱形的周长是()A.5 B.20 C.24 D.32【分析】根据题意画出图形,由菱形的性质求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长.【解析】如图所示:∵四边形ABCD是菱形,AC=8,BD=6,∴AB=BC=CD=AD,OA=12AC=4,OB=12BD=3,AC⊥BD,∴AB=√OA2+OB2=√42+32=5,∴此菱形的周长=4×5=20;故选:B.12.(2020•南充)如图,面积为S的菱形ABCD中,点O为对角线的交点,点E是线段BC的中点,过点E 作EF ⊥BD 于F ,EG ⊥AC 于G ,则四边形EFOG 的面积为( )A .14SB .18SC .112SD .116S 【分析】由菱形的性质得出OA =OC ,OB =OD ,AC ⊥BD ,S =12AC ×BD ,证出四边形EFOG 是矩形,EF ∥OC ,EG ∥OB ,得出EF 、EG 都是△OBC 的中位线,则EF =12OC =14AC ,EG =12OB =14BD ,由矩形面积即可得出答案.【解析】∵四边形ABCD 是菱形,∴OA =OC ,OB =OD ,AC ⊥BD ,S =12AC ×BD ,∵EF ⊥BD 于F ,EG ⊥AC 于G ,∴四边形EFOG 是矩形,EF ∥OC ,EG ∥OB ,∵点E 是线段BC 的中点,∴EF 、EG 都是△OBC 的中位线,∴EF =12OC =14AC ,EG =12OB =14BD ,∴矩形EFOG 的面积=EF ×EG =14AC ×14BD =18S ;故选:B .13.(2020•遵义)如图,在菱形ABCD 中,AB =5,AC =6,过点D 作DE ⊥BA ,交BA 的延长线于点E ,则线段DE 的长为( )A .125 B .185 C .4 D .245【分析】由在菱形ABCD 中,AB =5,AC =6,利用菱形的性质以及勾股定理,求得OB 的长,继而可求得BD 的长,然后由菱形的面积公式可求得线段DE 的长.【解析】如图.∵四边形ABCD是菱形,AC=6,∴AC⊥BD,OA=12AC=3,BD=2OB,∵AB=5,∴OB=√AB2−OA2=4,∴BD=2OB=8,∵S菱形ABCD=AB•DE=12AC•BD,∴DE=12AC⋅BDAB=12×6×85=245.故选:D.14.(2020•湘西州)如图,在平面直角坐标系xOy中,矩形ABCD的顶点A在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边AB=a,BC=b,∠DAO=x,则点C到x轴的距离等于()A.a cos x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a sin x+b sin x【分析】作CE⊥y轴于E,由矩形的性质得出CD=AB=a,AD=BC=b,∠ADC=90°,证出∠CDE =∠DAO=x,由三角函数定义得出OD=b sin x,DE=a cos x,进而得出答案.【解析】作CE⊥y轴于E,如图:∵四边形ABCD是矩形,∴CD=AB=a,AD=BC=b,∠ADC=90°,∴∠CDE+∠ADO=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠CDE=∠DAO=x,∵sin∠DAO=ODAD,cos∠CDE=DECD,∴OD=AD×sin∠DAO=b sin x,DE=D×cos∠CDE=a cos x,∴OE=DE+OD=a cos x+b sin x,∴点C到x轴的距离等于a cos x+b sin x;故选:A.15.(2020•怀化)在矩形ABCD中,AC、BD相交于点O,若△AOB的面积为2,则矩形ABCD的面积为()A.4 B.6 C.8 D.10【分析】根据矩形的性质得到OA=OB=OC=OD,推出S△ADO=S△BCO=S△CDO=S△ABO=2,即可求出矩形ABCD的面积.【解析】∵四边形ABCD是矩形,对角线AC、BD相交于点O,∴AC=BD,且OA=OB=OC=OD,∴S△ADO=S△BCO=S△CDO=S△ABO=2,∴矩形ABCD的面积为4S△ABO=8,故选:C.16.(2020•达州)如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC、BD 交于点E,连接OE交AD于点F.下列4个判断:①OE平分∠BOD;②OF=BD;③DF=√2AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形.正确判断的个数是()A.4 B.3 C.2 D.1【分析】由矩形得EB=ED=EA,∠BAD为直角,再由等腰三角形的三线合一性质可判断①的正误;证明△AOF≌△ABD,便可判断②的正误;连接BF,由线段的垂直平分线得BF=DF,由前面的三角形全等得AF=AB,进而便可判断③的正误;由直角三角形斜边上的中线定理得AG=OG,进而求得∠AGE =45°,由矩形性质得ED=EA,进而得∠EAD=22.5°,再得∠EAG=90°,便可判断④的正误.【解析】①∵四边形ABCD是矩形,∴EB=ED,∵BO=DO,∴OE平分∠BOD,故①正确;②∵四边形ABCD是矩形,∴∠OAD=∠BAD=90°,∴∠ABD+∠ADB=90°,∵OB=OD,BE=DE,∴OE⊥BD,∴∠BOE+∠OBE=90°,∴∠BOE=∠BDA,∵∠BOD=45°,∠OAD=90°,∴∠ADO=45°,∴AO=AD,∴△AOF≌△ABD(ASA),∴OF=BD,故②正确;③∵△AOF≌△ABD,∴AF=AB,连接BF,如图1,∴BF=√2AF,∵BE=DE,OE⊥BD,∴DF=BF,∴DF=√2AF,故③正确;④根据题意作出图形,如图2,∵G是OF的中点,∠OAF=90°,∴AG=OG,∴∠AOG=∠OAG,∵∠AOD=45°,OE平分∠AOD,∴∠AOG=∠OAG=22.5°,∴∠F AG=67.5°,∠ADB=∠AOF=22.5°,∵四边形ABCD是矩形,∴EA=ED,∴∠EAD=∠EDA=22.5°,∴∠EAG=90°,∵∠AGE=∠AOG+∠OAG=45°,∴∠AEG=45°,∴AE=AG,∴△AEG为等腰直角三角形,故④正确;故选:A.17.(2020•泰安)如图,矩形ABCD 中,AC ,BD 相交于点O ,过点B 作BF ⊥AC 交CD 于点F ,交AC 于点M ,过点D 作DE ∥BF 交AB 于点E ,交AC 于点N ,连接FN ,EM .则下列结论:①DN =BM ;②EM ∥FN ;③AE =FC ;④当AO =AD 时,四边形DEBF 是菱形.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个【分析】证△DNA ≌△BMC (AAS ),得出DN =BM ,∠ADE =∠CBF ,故①正确;证△ADE ≌△CBF (ASA ),得出AE =FC ,DE =BF ,故③正确;证四边形NEMF 是平行四边形,得出EM ∥FN ,故②正确;证四边形DEBF 是平行四边形,证出∠ODN =∠ABD ,则DE =BE ,得出四边形DEBF 是菱形;故④正确;即可得出结论.【解析】∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,∠DAE =∠BCF =90°,OD =OB =OA =OC ,AD =BC ,AD ∥BC ,∴∠DAN =∠BCM ,∵BF ⊥AC ,DE ∥BF ,∴DE ⊥AC ,∴∠DNA =∠BMC =90°,在△DNA 和△BMC 中,{∠DAN =∠BCM∠DNA =∠BMC AD =BC,∴△DNA ≌△BMC (AAS ),∴DN =BM ,∠ADE =∠CBF ,故①正确;在△ADE 和△CBF 中,{∠ADE =∠CBFAD =BC ∠DAE =∠BCF,∴△ADE ≌△CBF (ASA ),∴AE =FC ,DE =BF ,故③正确;∴DE﹣DN=BF﹣BM,即NE=MF,∵DE∥BF,∴四边形NEMF是平行四边形,∴EM∥FN,故②正确;∵AB=CD,AE=CF,∴BE=DF,∵BE∥DF,∴四边形DEBF是平行四边形,∵AO=AD,∴AO=AD=OD,∴△AOD是等边三角形,∴∠ADO=∠DAN=60°,∴∠ABD=90°﹣∠ADO=30°,∵DE⊥AC,∴∠ADN=ODN=30°,∴∠ODN=∠ABD,∴DE=BE,∴四边形DEBF是菱形;故④正确;正确结论的个数是4个,故选:D.18.(2020•连云港)如图,将矩形纸片ABCD沿BE折叠,使点A落在对角线BD上的A'处.若∠DBC=24°,则∠A'EB等于()A.66°B.60°C.57°D.48°【分析】由矩形的性质得∠A=∠ABC=90°,由折叠的性质得∠BA'E=∠A=90°,∠A'BE=∠ABE=1 2(90°﹣∠DBC)=33°,即可得出答案.【解析】∵四边形ABCD是矩形,∴∠A=∠ABC=90°,由折叠的性质得:∠BA'E=∠A=90°,∠A'BE=∠ABE,∴∠A'BE=∠ABE=12(90°﹣∠DBC)=12(90°﹣24°)=33°,∴∠A'EB=90°﹣∠A'BE=90°﹣33°=57°;故选:C.19.(2020•天津)如图,四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,6),点C在第一象限,则点C的坐标是()A.(6,3)B.(3,6)C.(0,6)D.(6,6)【分析】利用正方形的性质求出OB,BC,CD即可.【解析】∵四边形OBCD是正方形,∴OB=BC=CD=OD,∠CDO=∠CBO=90°,∵O,D两点的坐标分别是(0,0),(0,6),∴OD=6,∴OB=BC=CD=6,∴C(6,6).故选:D.20.(2020•黑龙江)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM =45°,点F在射线AM上,且AF=√2BE,CF与AD相交于点G,连接EC、EF、EG.则下列结论:①∠ECF=45°;②△AEG的周长为(1+√22)a;③BE2+DG2=EG2;④△EAF的面积的最大值是18a2;⑤当BE=13a时,G是线段AD的中点.其中正确的结论是()A.①②③B.②④⑤C.①③④D.①④⑤【分析】①正确.如图1中,在BC上截取BH=BE,连接EH.证明△F AE≌△EHC(SAS)即可解决问题.②③错误.如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),再证明△GCE≌△GCH (SAS)即可解决问题.④正确.设BE=x,则AE=a﹣x,AF=√2x,构建二次函数,利用二次函数的性质解决最值问题.⑤正确.当BE=13a时,设DG=x,则EG=x+13a,利用勾股定理构建方程可得x=a2即可解决问题.【解析】如图1中,在BC上截取BH=BE,连接EH.∵BE=BH,∠EBH=90°,∴EH=√2BE,∵AF=√2BE,∴AF=EH,∵∠DAM=∠EHB=45°,∠BAD=90°,∴∠F AE=∠EHC=135°,∵BA=BC,BE=BH,∴AE=HC,∴△F AE≌△EHC(SAS),∴EF=EC,∠AEF=∠ECH,∵∠ECH+∠CEB=90°,∴∠AEF+∠CEB=90°,∴∠FEC=90°,∴∠ECF=∠EFC=45°,故①正确,如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),∴∠ECB=∠DCH,∴∠ECH=∠BCD=90°,∴∠ECG=∠GCH=45°,∵CG=CG,CE=CH,∴△GCE≌△GCH(SAS),∴EG=GH,∵GH=DG+DH,DH=BE,∴EG=BE+DG,故③错误,∴△AEG的周长=AE+EG+AG=AE+AH=AD+DH+AE=AE+EB+AD=AB+AD=2a,故②错误,设BE=x,则AE=a﹣x,AF=√2x,∴S△AEF=12•(a﹣x)×x=−12x2+12ax=−12(x2﹣ax+14a2−14a2)=−12(x−12a)2+18a2,∵−12<0,∴x=12a时,△AEF的面积的最大值为18a2.故④正确,当BE=13a时,设DG=x,则EG=x+13a,在Rt△AEG中,则有(x+13a)2=(a﹣x)2+(23a)2,解得x=a 2,∴AG=GD,故⑤正确,故选:D.21.(2020•河南)如图,在△ABC 中,∠ACB =90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(﹣2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A .(32,2)B .(2,2)C .(114,2) D .(4,2)【分析】根据已知条件得到AC =6,OC =2,OB =7,求得BC =9,根据正方形的性质得到DE =OC =OE =2,求得O ′E ′=O ′C ′=2,根据相似三角形的性质得到BO ′=3,于是得到结论.【解析】如图,设正方形D ′C ′O ′E ′是正方形OCDE 沿x 轴向右平移后的正方形,∵顶点A ,B 的坐标分别为(﹣2,6)和(7,0),∴AC =6,OC =2,OB =7,∴BC =9,∵四边形OCDE 是正方形,∴DE =OC =OE =2,∴O ′E ′=O ′C ′=2,∵E ′O ′⊥BC ,∴∠BO ′E ′=∠BCA =90°,∴E ′O ′∥AC ,∴△BO ′E ′∽△BCA ,∴E′O′AC=BO′BC , ∴26=BO′9,∴BO′=3,∴OC′=7﹣2﹣3=2,∴当点E落在AB边上时,点D的坐标为(2,2),故选:B.22.(2020•湖州)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1 B.1和2 C.2和1 D.2和2【分析】根据要求拼平行四边形矩形即可.【解析】中国七巧板和日本七巧板能拼成的个数都是2,如图所示:故选:D.23.(2020•台州)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②【分析】根据对角线相等的四边形推不出是正方形或矩形即可判断.【解析】对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B,C,D错误,故选:A.24.(2020•菏泽)如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是()A.互相平分B.相等C.互相垂直D.互相垂直平分【分析】由于顺次连接四边各边中点得到的四边形是平行四边形,有对应边与原对角线平行,由矩形的性质可知,应为对角线互相垂直的四边形.【解析】由矩形的性质知,矩形的四角为直角,即每组邻边互相垂直,故原四边形的对角线应互相垂直.故选:C.二.填空题(共15小题)25.(2020•常州)数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD中,AB=2,∠DAB=120°.如图,建立平面直角坐标系xOy,使得边AB在x轴正半轴上,点D在y轴正半轴上,则点C的坐标是(2,√3).【分析】根据直角三角形的性质可得OA和OD的长,根据菱形的性质和坐标与图形的性质可得答案.【解析】∵四边形ABCD是菱形,且AB=2,∴CD=AD=AB=2,∵∠DAB=120°,∴∠OAD=60°,Rt△AOD中,∠ADO=30°,∴OA=12AD=12×2=1,OD=√22−12=√3,∴C(2,√3),故答案为:(2,√3).26.(2020•营口)如图,在菱形ABCD中,对角线AC,BD交于点O,其中OA=1,OB=2,则菱形ABCD的面积为 4 .【分析】根据菱形的面积等于对角线之积的一半可得答案. 【解析】∵OA =1,OB =2,∴AC =2,BD =4,∴菱形ABCD 的面积为12×2×4=4. 故答案为:4.27.(2020•陕西)如图,在菱形ABCD 中,AB =6,∠B =60°,点E 在边AD 上,且AE =2.若直线l 经过点E ,将该菱形的面积平分,并与菱形的另一边交于点F ,则线段EF 的长为 2√7 .【分析】过点A 和点E 作AG ⊥BC ,EH ⊥BC 于点G 和H ,可得矩形AGHE ,再根据菱形ABCD 中,AB =6,∠B =60°,可得BG =3,AG =3√3=EH ,由题意可得,FH =FC ﹣HC =2﹣1=1,进而根据勾股定理可得EF 的长.【解析】如图,过点A 和点E 作AG ⊥BC ,EH ⊥BC 于点G 和H ,得矩形AGHE ,∴GH =AE =2,∵在菱形ABCD 中,AB =6,∠B =60°,∴BG =3,AG =3√3=EH ,∴HC =BC ﹣BG ﹣GH =6﹣3﹣2=1,∵EF 平分菱形面积,∴FC =AE =2,∴FH=FC﹣HC=2﹣1=1,在Rt△EFH中,根据勾股定理,得EF=√EH2+FH2=√27+1=2√7.故答案为:2√7.28.(2020•哈尔滨)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD=2BE,∠DAE=∠DEA,EO=1,则线段AE的长为2√2.【分析】设BE=x,则CD=2x,根据菱形的性质得AB=AD=CD=2x,OB=OD,AC⊥BD,再证明DE=DA=2x,所以1+x=32x,解得x=2,然后利用勾股定理计算OA,再计算AE的长.【解析】设BE=x,则CD=2x,∵四边形ABCD为菱形,∴AB=AD=CD=2x,OB=OD,AC⊥BD,∵∠DAE=∠DEA,∴DE=DA=2x,∴BD=3x,∴OB=OD=32x,∵OE+BE=BO,∴1+x=32x,解得x=2,即AB=4,OB=3,在Rt△AOB中,OA=√42−32=√7,在Rt△AOE中,AE=√12+(√7)2=2√2.故答案为2√2.29.(2020•无锡)如图,在菱形ABCD中,∠B=50°,点E在CD上,若AE=AC,则∠BAE=115°.【分析】由菱形的性质得出AC平分∠BCD,AB∥CD,由平行线的性质得出∠BAE+∠AEC=180°,∠B+∠BCD=180°,求出∠BCD=130°,则∠ACE=12∠BCD=65°,由等腰三角形的性质得出∠AEC=∠ACE=65°,即可得出答案.【解析】∵四边形ABCD是菱形,∴AC平分∠BCD,AB∥CD,∴∠BAE+∠AEC=180°,∠B+∠BCD=180°,∴∠BCD=180°﹣∠B=180°﹣50°=130°,∴∠ACE=12∠BCD=65°,∵AE=AC,∴∠AEC=∠ACE=65°,∴∠BAE=180°﹣∠AEC=115°;故答案为:115.30.(2020•淮安)菱形的两条对角线长分别为6和8,则这个菱形的边长为5.【分析】首先根据题意画出图形,由菱形ABCD中,AC=6,BD=8,即可得AC⊥BD,OA=12AC=3,OB=12BD=4,然后利用勾股定理求得这个菱形的边长.【解析】∵菱形ABCD中,AC=6,BD=8,∴AC⊥BD,OA=12AC=3,OB=12BD=4,∴AB=√OA2+OB2=5.即这个菱形的边长为:5.故答案为:5.31.(2020•嘉兴)如图,▱ABCD的对角线AC,BD相交于点O,请添加一个条件:AD=DC(答案不唯一),使▱ABCD是菱形.【分析】根据菱形的定义得出答案即可.【解析】∵邻边相等的平行四边形是菱形,∴平行四边形ABCD的对角线AC、BD相交于点O,试添加一个条件:可以为:AD=DC;故答案为:AD=DC(答案不唯一).32.(2020•菏泽)如图,矩形ABCD中,AB=5,AD=12,点P在对角线BD上,且BP=BA,连接AP并延长,交DC的延长线于点Q,连接BQ,则BQ的长为3√17.【分析】根据矩形的性质可得BD=13,再根据BP=BA可得DQ=DP=8,所以得CQ=3,在Rt△BCQ 中,根据勾股定理即可得BQ的长.【解析】∵矩形ABCD中,AB=5,AD=12,∠BAD=∠BCD=90°,∴BD=√AB2+AD2=13,∵BP=BA=5,∴PD=BD﹣BP=8,∵BA=BP,∴∠BAP=∠BP A=∠DPQ,∵AB∥CD,∴∠BAP=∠DQP,∴∠DPQ=∠DQP,∴DQ=DP=8,∴CQ=DQ﹣CD=DQ﹣AB=8﹣5=3,∴在Rt△BCQ中,根据勾股定理,得BQ=√BC2+CQ2=√153=3√17.故答案为:3√17.33.(2020•绍兴)将两条邻边长分别为√2,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的 ①②③④ (填序号).①√2,②1,③√2−1,④√32,⑤√3. 【分析】首先作出图形,再根据矩形的性质和等腰三角形的判定即可求解.【解析】如图所示:则其中一个等腰三角形的腰长可以是①√2,②1,③√2−1,④√32,不可以是√3. 故答案为:①②③④.34.(2020•青岛)如图,在正方形ABCD 中,对角线AC 与BD 交于点O ,点E 在CD 的延长线上,连接AE ,点F 是AE 的中点,连接OF 交AD 于点G .若DE =2,OF =3,则点A 到DF 的距离为 4√55 .【分析】根据正方形的性质得到AO =DO ,∠ADC =90°,求得∠ADE =90°,根据直角三角形的性质得到DF =AF =EF =12AE ,根据三角形中位线定理得到FG =12DE =1,求得AD =CD =4,过A 作AH ⊥DF 于H ,根据相似三角形的性质和勾股定理即可得到结论.【解析】∵在正方形ABCD 中,对角线AC 与BD 交于点O ,∴AO =DO ,∠ADC =90°,∴∠ADE =90°,∵点F 是AE 的中点,∴DF =AF =EF =12AE ,∴OF 垂直平分AD ,∴AG =DG ,∴FG =12DE =1,∵OF =2,∴OG =2,∵AO =CO ,∴CD =2OG =4,∴AD =CD =4,过A 作AH ⊥DF 于H ,∴∠H =∠ADE =90°,∵AF =DF ,∴∠ADF =∠DAE ,∴△ADH ∽△AED ,∴AHDE =ADAE ,∴AE =√AD 2+DE 2=√42+22=2√5,∴AH2=2√5,∴AH =4√55,即点A 到DF 的距离为4√55, 故答案为:4√55.35.(2020•连云港)如图,将5个大小相同的正方形置于平面直角坐标系中,若顶点M 、N 的坐标分别为(3,9)、(12,9),则顶点A的坐标为(15,3).【分析】由图形可得MN∥x轴,MN=9,BN∥y轴,可求正方形的边长,即可求解.【解析】如图,∵顶点M、N的坐标分别为(3,9)、(12,9),∴MN∥x轴,MN=9,BN∥y轴,∴正方形的边长为3,∴BN=6,∴点B(12,3),∵AB∥MN,∴AB∥x轴,∴点A(15,3)故答案为(15,3).36.(2020•绍兴)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为4√5.【分析】根据题意和图形,可以得到直角三角形的一条直角边的长和斜边的长,从而可以得到直角三角形的另一条直角边长,再根据图形,可知阴影部分的面积是四个直角三角形的面积,然后代入数据计算即可.【解析】由题意可得,直角三角形的斜边长为3,一条直角边长为2,故直角三角形的另一条直角边长为:√32−22=√5,故阴影部分的面积是:2×√52×4=4√5, 故答案为:4√5.37.(2020•枣庄)如图,E ,F 是正方形ABCD 的对角线AC 上的两点,AC =8,AE =CF =2,则四边形BEDF的周长是 8√5 .【分析】连接BD 交AC 于点O ,则可证得OE =OF ,OD =OB ,可证四边形BEDF 为平行四边形,且BD ⊥EF ,可证得四边形BEDF 为菱形;根据勾股定理计算DE 的长,可得结论.【解析】如图,连接BD 交AC 于点O ,∵四边形ABCD 为正方形,∴BD ⊥AC ,OD =OB =OA =OC ,∵AE =CF =2,∴OA ﹣AE =OC ﹣CF ,即OE =OF ,∴四边形BEDF 为平行四边形,且BD ⊥EF ,∴四边形BEDF 为菱形,∴DE =DF =BE =BF ,∵AC =BD =8,OE =OF =8−42=2,由勾股定理得:DE =√OD 2+OE 2=√42+22=2√5,∴四边形BEDF 的周长=4DE =4×2√5=8√5,故答案为:8√5.38.(2020•天水)如图,将正方形OEFG 放在平面直角坐标系中,O 是坐标原点,点E 的坐标为(2,3),则点F 的坐标为 (﹣1,5) .【分析】结合全等三角形的性质可以求得点G 的坐标,再由正方形的中心对称的性质求得点F 的坐标.【解析】如图,过点E 作x 轴的垂线EH ,垂足为H .过点G 作x 轴的垂线GM ,垂足为M ,连接GE 、FO 交于点O ′.∵四边形OEFG 是正方形,∴OG =EO ,∠GOM =∠OEH ,∠OGM =∠EOH ,在△OGM 与△EOH 中,{∠OGM =∠EOHOG =EO ∠GOM =∠OEH∴△OGM ≌△EOH (ASA )∴GM =OH =2,OM =EH =3,∴G (﹣3,2).∴O ′(−12,52). ∵点F 与点O 关于点O ′对称,∴点F 的坐标为(﹣1,5).故答案是:(﹣1,5).39.(2020•德州)如图,在矩形ABCD 中,AB =√3+2,AD =√3.把AD 沿AE 折叠,使点D 恰好落在AB 边上的D ′处,再将△AED ′绕点E 顺时针旋转α,得到△A 'ED ″,使得EA ′恰好经过BD ′的中点F .A ′D ″交AB 于点G ,连接AA ′.有如下结论:①A ′F 的长度是√6−2;②弧D 'D ″的长度是5√312π;③△A ′AF ≌△A ′EG ;④△AA ′F ∽△EGF .上述结论中,所有正确的序号是 ①②④ .【分析】由折叠的性质可得∠D =∠AD 'E =90°=∠DAD ',AD =AD ',可证四边形ADED '是正方形,可得AD =AD '=D 'E =DE =√3,AE =√2AD =√6,∠EAD '=∠AED '=45°,由勾股定理可求EF 的长,由旋转的性质可得AE =A 'E =√6,∠D 'ED ''=α,∠EA 'D ''=∠EAD '=45°,可求A 'F =√6−2,可判断①;由锐角三角函数可求∠FED '=30°,由弧长公式可求弧D 'D ″的长度,可判断②;由等腰三角形的性质可求∠EAA '=∠EA 'A =52.5°,∠A 'AF =7.5°,可判断③;由“HL ”可证Rt △ED 'G ≌Rt △ED ''G ,可得∴∠D 'GE =∠D ''GE =52.5°,可证△AF A '∽△EFG ,可判断④,即可求解.【解析】∵把AD 沿AE 折叠,使点D 恰好落在AB 边上的D ′处,∴∠D =∠AD 'E =90°=∠DAD ',AD =AD ',∴四边形ADED '是矩形,又∵AD =AD '=√3,∴四边形ADED '是正方形,∴AD =AD '=D 'E =DE =√3,AE =√2AD =√6,∠EAD '=∠AED '=45°,∴D 'B =AB ﹣AD '=2,∵点F 是BD '中点,∴D 'F =1,∴EF =√D′E 2+D′F 2=√3+1=2,∵将△AED′绕点E顺时针旋转α,∴AE=A'E=√6,∠D'ED''=α,∠EA'D''=∠EAD'=45°,∴A'F=√6−2,故①正确;∵tan∠FED'=D′FD′E=1√3=√33,∴∠FED'=30°∴α=30°+45°=75°,∴弧D'D″的长度=75°×π×√3180°=5√312π,故②正确;∵AE=A'E,∠AEA'=75°,∴∠EAA'=∠EA'A=52.5°,∴∠A'AF=7.5°,∵∠AA'F≠∠EA'G,∠AA'E≠∠EA'G,∠AF A'=120°≠∠EA'G,∴△AA'F与△A'GE不全等,故③错误;∵D'E=D''E,EG=EG,∴Rt△ED'G≌Rt△ED''G(HL),∴∠D'GE=∠D''GE,∵∠AGD''=∠A'AG+∠AA'G=105°,∴∠D'GE=52.5°=∠AA'F,又∵∠AF A'=∠EFG,∴△AF A'∽△EFG,故④正确,故答案为:①②④.三.解答题(共11小题)40.(2020•福建)如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.【分析】根据菱形的性质可得∠B=∠D,AB=AD,再证明△ABE≌△ADF,即可得∠BAE=∠DAF.【解答】证明:四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,{AB =AD ∠B =∠D BE =DF,∴△ABE ≌△ADF (SAS ),∴∠BAE =∠DAF .41.(2020•滨州)如图,过▱ABCD 对角线AC 与BD 的交点E 作两条互相垂直的直线,分别交边AB 、BC 、CD 、DA 于点P 、M 、Q 、N .(1)求证:△PBE ≌△QDE ;(2)顺次连接点P 、M 、Q 、N ,求证:四边形PMQN 是菱形.【分析】(1)由ASA 证△PBE ≌△QDE 即可;(2)由全等三角形的性质得出EP =EQ ,同理△BME ≌△DNE (ASA ),得出EM =EN ,证出四边形PMQN 是平行四边形,由对角线PQ ⊥MN ,即可得出结论.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴EB =ED ,AB ∥CD ,∴∠EBP =∠EDQ ,在△PBE 和△QDE 中,{∠EBP =∠EDQEB =ED ∠BEP =∠DEQ,∴△PBE ≌△QDE (ASA );(2)证明:如图所示:∵△PBE ≌△QDE ,∴EP =EQ ,同理:△BME ≌△DNE (ASA ),∴EM =EN ,∴四边形PMQN 是平行四边形,∵PQ ⊥MN ,∴四边形PMQN 是菱形.42.(2020•郴州)如图,在菱形ABCD中,将对角线AC分别向两端延长到点E和F,使得AE=CF.连接DE,DF,BE,BF.求证:四边形BEDF是菱形.【分析】四边形ABCD是菱形,可得AB=BC=CD=DA,∠DCA=∠BCA,∠DAC=∠BAC,可以证明△CDF≌△CBF,△DAE≌△BFC,△DCF≌△BEA,进而证明平行四边形BEDF是菱形.【解答】证明:∵四边形ABCD是菱形,∴BC=CD,∠DCA=∠BCA,∴∠DCF=∠BCF,∵CF=CF,∴△CDF≌△CBF(SAS),∴DF=BF,∵AD∥BC,∴∠DAE=∠BCF,∵AE=CF,DA=AB,∴△DAE≌△BFC(SAS),∴DE=BF,同理可证:△DCF≌△BEA(SAS),∴DF=BE,∴四边形BEDF是平行四边形,∵DF=BF,∴平行四边形BEDF是菱形.43.(2020•连云港)如图,在四边形ABCD 中,AD ∥BC ,对角线BD 的垂直平分线与边AD 、BC 分别相交于点M 、N .(1)求证:四边形BNDM 是菱形;(2)若BD =24,MN =10,求菱形BNDM 的周长.【分析】(1)证△MOD ≌△NOB (AAS ),得出OM =ON ,由OB =OD ,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的性质得出BM =BN =DM =DN ,OB =12BD =12,OM =12MN =5,由勾股定理得BM =13,即可得出答案.【解答】(1)证明:∵AD ∥BC ,∴∠DMO =∠BNO ,∵MN 是对角线BD 的垂直平分线,∴OB =OD ,MN ⊥BD , 在△MOD 和△NOB 中,{∠DMO =∠BNO∠MOD =∠NOB OD =OB,∴△MOD ≌△NOB (AAS ),∴OM =ON ,∵OB =OD ,∴四边形BNDM 是平行四边形,∵MN ⊥BD ,∴四边形BNDM 是菱形; (2)解:∵四边形BNDM 是菱形,BD =24,MN =10,∴BM =BN =DM =DN ,OB =12BD =12,OM =12MN =5,在Rt △BOM 中,由勾股定理得:BM =2+OB 2=√52+122=13,∴菱形BNDM 的周长=4BM =4×13=52.44.(2020•聊城)如图,在▱ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F ,连接BF ,AC ,若AD =AF ,求证:四边形ABFC 是矩形.【分析】根据平行四边形的性质得到两角一边对应相等,利用AAS判定△ABE≌△FCE,从而得到AB=CF;由已知可得四边形ABFC是平行四边形,BC=AF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC是矩形.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAE=∠CFE,∠ABE=∠FCE,∵E为BC的中点,∴EB=EC,∴△ABE≌△FCE(AAS),∴AB=CF.∵AB∥CF,∴四边形ABFC是平行四边形,∵BC=AF,∴四边形ABFC是矩形.45.(2020•遂宁)如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△F AE;(2)求证:四边形ADCF为矩形.【分析】(1)根据平行线的性质得到∠AFE=∠DBE,根据线段中点的定义得到AE=DE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=BD,推出四边形ADCF是平行四边形,根据等腰三角形的性质得到∠ADC=90°,于是得到结论.【解答】证明:(1)∵AF∥BC,∴∠AFE=∠DBE,∵E是线段AD的中点,∴AE=DE,∵∠AEF=∠DEB,∴△BDE≌△F AE(AAS);(2)∵△BDE≌△F AE,∴AF=BD,∵D是线段BC的中点,∴BD=CD,∴AF=CD,∵AF∥CD,∴四边形ADCF是平行四边形,∵AB=AC,∴AD⊥BC,∴∠ADC=90°,∴四边形ADCF为矩形.46.(2020•北京)如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.【分析】(1)根据菱形的性质得到BD⊥AC,∠DAO=∠BAO,得到AE=OE=12AD,推出OE∥FG,求得四边形OEFG是平行四边形,根据矩形的判定定理即可得到结论;(2)根据菱形的性质得到BD⊥AC,AB=AD=10,得到OE=AE=12AD=5;由(1)知,四边形OEFG是矩形,求得FG=OE=5,根据勾股定理得到AF=√AE2−EF2=3,于是得到结论.【解析】(1)∵四边形ABCD是菱形,∴BD⊥AC,∠DAO=∠BAO,∵E是AD的中点,∴AE=OE=12AD,∴∠EAO=∠AOE,∴∠AOE=∠BAO,∴OE∥FG,∵OG∥EF,∴四边形OEFG是平行四边形,∵EF⊥AB,∴∠EFG=90°,∴四边形OEFG是矩形;(2)∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90°,∵E是AD的中点,∴OE=AE=12AD=5;由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF=√AE2−EF2=3,∴BG=AB﹣AF﹣FG=10﹣3﹣5=2.47.(2020•湘西州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:△BAE≌△CDE;(2)求∠AEB 的度数.【分析】(1)利用等边三角形的性质得到∠AD =AE =DE ,∠EAD =∠EDA =60°,利用正方形的性质得到AB =AD =CD ,∠BAD =∠CDA =90°,所以∠EAB =∠EDC =150°,然后根据“SAS ”判定△BAE ≌△CDE ;(2)先证明AB =AE ,然后根据等腰三角形的性质和三角形内角和计算∠ABE 的度数.【解答】(1)证明:∵△ADE 为等边三角形,∴∠AD =AE =DE ,∠EAD =∠EDA =60°,∵四边形ABCD 为正方形,∴AB =AD =CD ,∠BAD =∠CDA =90°,∴∠EAB =∠EDC =150°,在△BAE 和△CDE 中{AB =DC ∠EAB =∠EDC AE =DE,∴△BAE ≌△CDE (SAS );(2)∵AB =AD ,AD =AE ,∴AB =AE ,∴∠ABE =∠AEB ,∵∠EAB =150°,∴∠ABE =12(180°﹣150°)=15°.48.(2020•自贡)如图,在正方形ABCD 中,点E 在BC 边的延长线上,点F 在CD 边的延长线上,且CE=DF ,连接AE 和BF 相交于点M .求证:AE =BF .【分析】根据矩形的性质可证明△AEB ≌△BFC (SAS ),然后根据全等三角形的判定即可求出答案.【解析】在正方形ABCD 中,AB =CD =CD =AD ,∵CE =DF ,∴BE =CF ,在△AEB 与△BFC 中,{AB =BC ∠ABE =∠BCF BE =CF,∴△AEB ≌△BFC (SAS ),∴AE =BF .49.(2020•遵义)如图,在边长为4的正方形ABCD 中,点E 为对角线AC 上一动点(点E 与点A 、C 不重合),连接DE ,作EF ⊥DE 交射线BA 于点F ,过点E 作MN ∥BC 分别交CD 、AB 于点M 、N ,作射线DF 交射线CA 于点G . (1)求证:EF =DE ;(2)当AF =2时,求GE 的长.【分析】(1)要证明EF =DE ,只要证明△DME ≌△ENF 即可,然后根据题目中的条件和正方形的性质,可以得到△DME ≌△ENF 的条件,从而可以证明结论成立;(2)根据勾股定理和三角形相似,可以得到AG 和CG 、CE 的长,然后即可得到GE 的长.【解答】(1)证明:∵四边形ABCD 是正方形,AC 是对角线,∴∠ECM =45°,。
专题16平行四边形、矩形、菱形、正方形学校:___________姓名:___________班级:___________ 一、选择题:(共4个小题)1.【2015资阳】若按序连结四边形ABCD四边的中点,获得的图形是一个矩形,则四边形ABCD必定是()A.矩形B.菱形C.对角线相等的四边形D.对角线相互垂直的四边形【答案】D.【分析】【考点定位】中点四边形.2.【2015南充】如图,菱形ABCD的周长为8cm,高AE长为3cm,则对角线AC长和BD长之比为()A.1:2B.1:3C.1:2D.1:3【答案】D.【分析】【考点定位】菱形的性质.3.【2015内江】以下图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.3B.23C.26D.6【答案】B.【分析】试题剖析:连结BD,与AC交于点F.∵点B与D对于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=23.又∵△ABE是等边三角形,∴ BE=AB=23.故所求最小值为23.应选B.【考点定位】1.轴对称-最短路线问题;2.最值问题;3.正方形的性质.4.【2015攀枝花】如图,在菱形中,=,点、分别是、上随意的点(不与端点重合),且ABCD ABBDEF AB ADA E=DF,连结BF与DE订交于点G,连结CG与BD订交于点H.给出以下几个结论:①△AED≌△DFB;②S四边形=BCDG32;③若AF DF,则BGGF;④CG与BD必定不垂直;⑤∠BGE的大小为定值.CG=2=62此中正确的结论个数为()A.4B.3C.2D.1【答案】B.:【分析】::::::::::::::::③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:1AE=1:6,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;2④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是ABAD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,应选B.【考点定位】四边形综合题.二、填空题:(共4个小题)5.【2015成都】如图,在平行四边形中,=13,=4,将平行四边形沿翻折后,点B恰ABCD AB AD ABCDAE好与点C 重合,则折痕的长为________.AE【答案】3.【分析】【考点定位】1.翻折变换(折叠问题);2.勾股定理;3.平行四边形的性质.6.【2015凉山州】菱形ABCD在平面直角坐标系中的地点以下图,极点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.【答案】(233,23).【分析】试题剖析:连结ED,如图,【考点定位】1.菱形的性质;2.坐标与图形性质;3.轴对称-最短路线问题;4.动点型.7.【2015成都】已知菱形ABCD的边长为11112,ABC=60°,对角线111AC,BD订交于点1 1 1 1O.以点O 为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,成立以下图的直角坐标系.以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,,,按此规律持续作下去,在x轴的正半轴上获得点A1,A2,A3,......,A n,则点A n的坐标为________.n 1【答案】(3-,0).【分析】【考点定位】1.相像多边形的性质;2.菱形的性质;3.规律型.8.【2015内江】如图,正方形的边在正方形的边上,是的中点,∠的均分线过点DABCD CD ECGF CE O EG EGC GH,交BE于点H,连结OH,FH,EG与FH交于点M,对于下边四个结论:①GH⊥BE;②HO1BG;③S:S2正方形ABCD正=1:2;④EM:MG=1:(12),此中正确结论的序号为.方形ECGF【答案】①②④.【分析】试题剖析:∵四边形ABCD是正方形,∴BC=DC,∠BCE=90°,同理可得CE=CG,∠DCG=90°,在△BCE和△DCG中,∵BC=DC,∠BCE=∠DCG=90°,CE=CG,∴△BCE≌△DCG,∴∠BEC=∠DGC,∵∠EDH=∠CDG,∠DGC+∠CDG=90°,∴∠EDH+∠BEC=90°,∴∠EHD=90°,∴GH⊥BE,则故①正确;在△BGH和△EGH中,∵∠EHG=∠BHG,HG=HG,∠EGH=∠BGH,∴△BGH≌△EGH,∴BH=EH,又∵O是EG的中点,∴HO 1BG,故②正确;2EC和OH订交于点N.设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,∵OH∥BC,∴△DHN∽△DGC,∴DN HN,即b2a a,即a22abb20,解得:a(12)b或DC CGa 2a2ba(12)b21=(21)2(舍去),则,则S ABCD:S=322,故③错误;ECGF正方形正方形b∵EF ∥OH ,∴△EFM ∽△OMH ,∴EM EF 2b ,∴EM 2b ,EM b ,∴OMOHabOEa3bEGa3bEMb b 1 =1:(21).故④正确.MGa2b==(21)b2b21故正确的选项是①②④.故答案为:①②④.【考点定位】四边形综合题. 三、解答题:(共2个小题) 9.【2015眉山】如图,在矩形ABCD 中,E 是AB 边的中点,沿 EC 对折矩形ABCD ,使B 点落在点P 处,折痕EC ,连结AP 并延伸AP 交CD 于F 点,(1)求证:四边形AECF 为平行四边形;(2)若△AEP 是等边三角形,连结 BP ,求证:△APB ≌△EPC ; (3)若矩形 ABCD 的边AB =6,BC =4,求△CPF 的面积.【答案】(1)证明见试题分析;(2)证明见试题分析;(3)42.25【分析】试题剖析:(1)由折叠的性质获得BE=PE,EC⊥PB,依据E为AB中点,获得AE=PE,利用等角平等边获得两对角相等,利用外角性质获得∠AEP=2∠EPB,设∠EPB=x,则∠AEP=2x,表示出∠APE,由∠APE+∠EPB获得∠APB为90°,从而获得AF与EC平行,再由AE与FC平行,利用两对边平行的四边形为平行四边形即可得证;2)∵△AEP 为等边三角形,∴∠BAP =∠AEP =60°,AP =AE =EP =EB ,∵∠PEC =∠BEC ,∴∠PEC =∠BEC =60°,∵∠BAP +∠ABP =90°,∠ABP +∠BEQ =90°,∴∠BAP =∠BEQ ,在△ABP 和△EBC 中,∵∠APB =∠EBC =90°,∠BAP =∠BEQ ,AP =EB ,∴△ABP ≌△EBC (AAS ),∵△EBC ≌△EPC ,∴△ABP ≌△EPC ;(3)过P 作PM ⊥DC ,交DC 于点M ,在Rt △EBC 中,EB =3,BC =4,依据勾股定理得:EC =2 2△EBC3 4=5,∵S=1EB ?BC = 1EC ?BQ ,∴BQ = 3 5 4 =12,由折叠得:BP =2BQ =24,在Rt △ABP 中,AB =6,BP =24 ,依据勾股22555定理得:=2 BP 2 =18,∵四边形为平行四边形,∴= =5,==3,∴=18 7 , APAB5AECFAFECFCAEPF55=5,∴PFPM7PM28,则△PFC =1=12842. ∵∥,即 5?=PMADAFAD 5,解得:PM=25SFCPM23254225【考点定位】 1.四边形综合题; 2.翻折变换(折叠问题) . 10.【2015甘孜州】已知E ,F 分别为正方形ABCD 的边BC ,CD 上的点,AF ,DE 订交于点G ,当E ,F 分别为边BCCD 的中点时,有:①AF =DE ;②AF ⊥DE 成立.尝试究以下问题:(1)如图1,若点E 不是边BC 的中点,F 不是边CD 的中点,且CE =DF ,上述结论①,②能否仍旧成立?(请直接回答“成立”或“不可立”),不需要证明)(2)如图2,若点E,F分别在CB的延伸线和DC的延伸线上,且CE=DF,此时,上述结论①,②能否仍旧成立?若成立,请写出证明过程,若不可立,请说明原因;3)如图3,在(2)的基础上,连结AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.【答案】(1)成立;(2)成立,原因见试题分析;(3)正方形,证明见试题分析.【分析】(3)设MQ,DE分别交AF于点G,O,PQ交DE于点H,由于点M,N,P,Q分别为AE,EF,FD,AD的中点,可得MQ=PN=1DE,PQ=MN=1AF,MQ∥DE,PQ∥AF,而后依据AF=DE,可得四边形MNPQ是菱形,又由于AF⊥DE即可22证得四边形MNPQ是正方形.试题分析:(1)上述结论①,②仍旧成立,原因是:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(2)上述结论①,②仍旧成立,原因是:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠E=∠F,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;【考点定位】1.四边形综合题;2.存在型;3.研究型.。
中考数学复习 矩形、菱形和正方形 专项复习检测1.若顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是( )A .平行四边形B .矩形C .对角线相等的四边形D .对角线互相垂直的四边形2.如图,矩形ABCD 的两条对角线AC ,BD 相交于点O ,∠AOD =120°,AB =2,则矩形的对角线AC 的长为( )A .2 3B .4 3C .4D .2 3.已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A .当AB =BC 时,四边形ABCD 是菱形 B .当AC =BD 时,四边形ABCD 是正方形 C .当∠ABC=90°时,四边形ABCD 是矩形 D .当AC⊥BD 时,四边形ABCD 是菱形4.如图,在正方形ABCD 中,∠DAF =25°,AF 交对角线BD 于点E ,连结CE ,则∠BEC 的度数为( )A .75°B .70°C .60°D .45°5.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O.若BD =8,tan ∠ABD =34,则线段AB 的长度为( )A .7B .27C .5D .106. 如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE=22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( )A .1B . 2C .4-2 2D .32-4 7. 矩形ABCD 与CEFG 如图放置,点B ,C ,E 在同一条直线上,点C ,D ,G 在同一条直线上,连结AF ,取AF 的中点H ,连结GH.若BC =EF =2,CD =CE =1,则GH 的长为( )A .1B .23C .22D .528. 如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE =BF ,将△AEH,△CFG 分别沿EH ,FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AEEB的值为( )A .53B .2C .52D .4 9. 如图,点E 在正方形ABCD 内,且满足∠AEB=90°,AE =6,BE =8,则阴影部分的面积是 .10. 如图,在△ABC中,AD,CD分别平分∠BAC和∠ACB,AE∥CD,CE∥AD.若从三个条件:①AB=AC;②AB=BC;③AC=BC中,选择一个作为已知条件,则能使四边形ADCE为菱形的是 (填序号).11. 如图,将矩形ABCD分成15个大小相等的正方形,E,F,G,H分别在AD,AB,BC,CD边上,且是某个小正方形的顶点.若四边形EFGH的面积为1,则矩形ABCD的面积为.12. 如图,已知正方形ABCD的边长为5,点E,F分别在AD,DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连结GH,则GH的长为.13. 如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为.14. 如图,在矩形ABCD中,AD=6,CD=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF.(1)当DG=2时,求证:四边形EFGH是正方形;(2)当△FCG的面积为2时,求CG的长.15. 如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G,H,连结EH,FG.(1)求证:△BFH≌△DEG;(2)连结DF,若BF=DF,则四边形EGFH是什么特殊四边形?并证明你的结论.16.如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA,OB的长分别是一元二次方程x2-7x+12=0的两个根(OA >OB).(1)求点D的坐标;(2)求直线BC的函数表达式;(3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.答案与解析:1. C2. C3. B4. B5. C6. C7. C解析: 如图,延长GH交AD于点P.∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2,GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH.又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,⎩⎪⎨⎪⎧∠PAH=∠GFH,AH=FH,∠AHP=∠FHG,∴△APH≌△FGH,∴AP=GF=1,GH =PH=12PG,∴PD=AD-AP=1.∵CG=2,CD=1,∴DG=1,则GH=12PG=12×PD2+DG2=22.故选C.8. A解析: 如图,设重叠的菱形边长为x,BE=BF=y,由矩形和菱形的对称性以及折叠的性质,得四边形AHME、四边形BENF是菱形,∴AE=EM,EN=BE=y,EM=x+y.∵重叠部分为菱形且面积是菱形ABCD面积的116,且两个菱形相似,∴AB =4MN =4x ,∴AE =AB -BE =4x -y ,∴4x -y=x +y ,解得x =23y ,∴AE =53y ,∴AE EB =53yy =53.故选A .9. 76 10. ② 11. 5312. 342解析:∵四边形ABCD 为正方形,∴∠BAE =∠D=90°,AB =AD .在△ABE 和△DAF 中,⎩⎪⎨⎪⎧AB =DA ,∠BAE =∠D,AE =DF ,∴△ABE ≌ △DAF ,∴∠ABE =∠DAF.∵∠ABE+∠BEA=90°,∴∠DAF +∠BEA=90°,∴∠AGE =∠BGF=90°.∵点H 为BF 的中点,∴GH =12BF.∵BC=5,CF =CD -DF =5-2=3,∴BF =BC 2+CF 2=34,∴GH =12BF =342.故答案为342.13. (2.5,4)或(3,4)或(2,4)或(8,4)解析: ∵四边形OABC 是矩形,∴∠OCB =90°,OC =4,BC =OA =10.∵D 为OA 的中点,∴OD =AD =5.若△POD 为等腰三角形,分三种情况讨论:(1)当PO =PD 时,点P 在OD 的垂直平分线上,∴点P 的坐标为(2.5,4);(2)当OP =OD 时,如图①,则OP =OD =5,PC =52-42=3,∴点P 的坐标为(3,4);(3)当DP =DO 时,作PE⊥OA 于点E ,则∠PED=90°,DE =52-42=3;分两种情况:当点E 在点D 的左侧时,如图②,OE =5-3=2,∴点P 的坐标为(2,4);当点E在点D的右侧时,如图③,OE=5+3=8,∴点P的坐标为(8,4).综上可得,点P的坐标为(2.5,4)或(3,4)或(2,4)或(8,4).14. (1) 证明:∵在矩形ABCD中,∠A=∠D=90°,∴∠DGH+∠DHG=90°.∵四边形EFGH是菱形,∴EH=GH.又∵AH=2,DG=2,∴AH=DG,∴△AEH≌△DHG,∴∠AHE=∠DGH,∴∠AHE+∠DHG=90°,∴∠EHG=90°.∴四边形EFGH 是正方形.(2) 解:如图,过点F作FM⊥DC于点M,则∠FMG=90°,∴∠A=∠FMG=90°.连结EG.由矩形和菱形的性质,知AB∥DC,HE∥GF,∴∠AEG=∠MGE,∠HEG=∠FGE,∴∠AEH=∠MGF.∵EH=GF,∴△AEH≌△MGF,∴FM=AH=2.∵S△FCG=12CG·FM=12CG×2=2,∴CG=2.15. (1) 证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠FBH=∠EDG.∵AE=CF,∴BF=DE. ∵EG∥FH,∴∠OHF=∠OGE,∴∠BHF=∠DGE.在△BFH和△DEG中,⎩⎪⎨⎪⎧∠FBH=∠EDG,∠BHF=∠DGE,BF=DE,∴△BFH≌△DEG.(2) 解:四边形EGFH是菱形.理由如下:如图,由(1),得△BFH≌△DEG,∴FH =EG.又∵EG∥FH,∴四边形EGFH是平行四边形.∵DE=BF,∠EOD=∠BOF,∠EDO=∠FBO,∴△EDO≌△FBO,∴OB=OD.∵BF=DF,OB=OD,∴EF⊥BD,∴EF ⊥GH,∴四边形EGFH是菱形.16. (1) 解:解x2-7x+12=0,得x1=3,x2=4.∵OA>OB,∴OA=4,OB=3.如图,过点D作DE⊥y轴于点E,∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠ABO=∠DAE.∵DE⊥AE,∴∠AED =∠AOB=90°,∴△DAE≌△ABO,∴DE =AO=4,AE=BO=3,OE=7,∴D(4,7).(2) 解:如图,过点C作CM⊥x轴于点M.同上可证得△BCM≌△ABO.∴CM=OB=3,BM=OA=4,∴OM=7,∴C(7,3).设直线BC的函数表达式为y=kx+b(k≠0,k,b为常数),把 B(3,0),C(7,3)代入,得⎩⎪⎨⎪⎧7k+b=3,3k+b=0,解得⎩⎪⎨⎪⎧k=34,b=-94,∴y=34x-94.(3) 解:存在点P1(3,0),P2(11,6),使△PCD为等腰三角形.理由如下:如图,当PC=CD时,△PCD是等腰三角形.由题意可知,BC=DC,故P1与点B重合,P1(3,0).当点P在BC的延长线上时,如图,P2C=DC=BC,则过点P2作P2N⊥x 轴,CM是△BP2N的中位线,故P2N=2CM=6,ON=OB+2BM=3+4×2=11,故P2(11,6).综上可知,点P的坐标为(3,0)或(11,6).。
中考数学试题专题 矩形、菱形、正方形一、选择题1.(2009年湖北荆州)如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( ) A .3cm B .4cm C .5cm D .6cm2..(2009年山西省)如图(1),把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n - B .m n - C .2mD .2n3.(2009 黑龙江大兴安岭)在矩形ABCD 中,1=AB ,3=AD ,AF 平分DAB ∠,过C 点作BD CE ⊥于E ,延长AF 、EC 交于点H ,下列结论中:①FH AF =;②BF BO =;③CH CA =;④ED BE 3=,正确的( ) A .②③ B .③④ C .①②④D .②③④4.(2009年河北)如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对 角线AC 等于( ) A .20 B .15 C .10D .5OHEF DC ABN M FEDCBAmnnn(2)(1)BACD5.(2009年兰州)如图7所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是6.(2009年济南)如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥交AD 于E ,则AE 的长是( ) A .1.6 B .2.5 C .3 D .3.47.(2009年凉山州)如图,将矩形ABCD 沿对角线BD 折叠,使C 落在C '处,BC '交AD 于E ,则下列结论不一定成立的是( )A .AD BC '=B .EBD EDB ∠=∠C .ABE CBD △∽△ D .sin AEABE ED∠=8.(2009年济宁市)“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上), 则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是 A .12 B . 14 C . 15 D . 1109.(2009年衡阳市) 如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,54A cos =,则下列结论中正确的个数为( )①DE =3cm ; ②EB =1cm ; ③2ABCD 15S cm =菱形.C D C 'A BEA .B .C .D .A .3个B .2个C .1个D .0个10.(2009年衡阳市)如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( ) A .1 B .34 C .23D .211.(2009年广西南宁)如图2,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ) A .210cmB .220cmC .240cmD .280cm12.(2009年宁波市)如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( ) A .△AOM 和△AON 都是等边三角形 B .四边形MBON 和四边形MODN 都是菱形C .四边形AMON 与四边形ABCD 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形AB CDEA ′G DB CAABCD图213.(2009桂林百色)如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放 在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿 图中所示方向按A→B→C→D→A 滑动到A 止,同时点R 从B 点 出发,沿图中所示方向按B→C→D→A→B 滑动到B 止,在这个 过程中,线段QR 的中点M 所经过的路线围成的图形的面积为 ( ).A .2B .4π-C .πD .π1-14.(2009河池)已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为( ) A . 23cmB . 24cm C .23cm D . 223cm15.(2009年杭州市)如图,在菱形ABCD 中,∠A =110°,E ,F 分别是边AB 和BC 的中点,EP ⊥CD 于点P ,则∠FPC =( ) A .35° B .45° C .50° D .55°16.(2009年义乌)如图,一块砖的外侧面积为x ,那么图中残留部分墙面的面积为 A .4x A .12x A .8x A .16x17.(2009年台湾) 如图(八),长方形ABCD 中,E 点在BC 上,且AE 平分∠BAC 。
天津市和平区一般中学2024届初三数学中考复习矩形、菱形和正方形专项复习练习1.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=23,∠AEO=120°,则FC的长度为( )A.1 B.2 C. 2 D. 32.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有( )①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③ B.①②④ C.②③④ D.①③④3. 关于▱ABCD的叙述,正确的是( )A.若AB⊥BC,则▱ABCD是菱形 B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形 D.若AB=AD,则▱ABCD是正方形4. 如图,在菱形ABCD中,过点D做DE⊥AB于点E,做DF⊥BC于点F,连结EF. 求证:(1)△ADE≌△CDF;(2)∠BEF=∠BFE.5. 如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500 m,小敏行走的路途为B→A→G→E,小聪行走的路途为B→A→D→E→F.若小敏行走的路程为3100 m,求小聪行走的路程.6. 如图,菱形ABCD的对角线AC与BD交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.7. 如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB,外角∠ACD的平分线于点E,F.(1)若CE=8,CF=6,求OC的长;(2)连结AE ,AF .问:当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.8. 如图,在▱ABCD 中,BC =2AB =4,点E ,F 分别是BC ,AD 的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF 为菱形时,求出该菱形的面积.9. 已知菱形的周长为45,两条对角线的和为6,求菱形的面积.10. 如图,已知E ,F ,G ,H 分别为菱形ABCD 四边的中点,AB =6 cm ,∠ABC =60°.(1)试推断四边形EFGH 的类型,并证明你的结论;(2)求四边形EFGH 的面积.11. 如图,点E 是正方形ABCD 的边BC 延长线上一点,连结DE ,过顶点B 作BF⊥DE,垂足为F ,BF 分别交AC 于H ,交CD 于G.(1)求证:BG =DE ;(2)若点G 为CD 的中点,求HG GF的值. 12. 已知正方形的对角线AC ,BD 相交于点O .(1)如图1,E ,G 分别是OB ,OC 上的点,CE 与DG 的延长线相交于点F .若DF ⊥CE ,求证:OE =OG ;(2)如图2,H 是BC 上的点,过点H 作EH ⊥BC ,交线段OB 于点E ,连结DH ,交CE 于点F ,交OC 于点G .若OE =OG .①求证:∠ODG =∠OCE ;②当AB =1时,求HC 的长.答案与解析:1. A2. B【解析】当▱ABCD 的面积最大时,四边形ABCD 为矩形,得出∠A =∠B =∠C =∠D =90°,AC =BD ,依据勾股定理求出AC =32+42=5,①正确,②正确,④正确;③不正确;故选B.3. C4. 解:(1) ∵四边形ABCD 是菱形,∴AD =CD ,∠A =∠C ,∵DE ⊥AB ,DF ⊥BC ,∴∠AED =∠CFD =90°,∴△ADE ≌△CDF(2) ∵四边形ABCD 是菱形,∴AB =CB ,∵△ADE ≌△CDF ,∴AE =CF ,∴BE =BF ,∴∠BEF =∠BFE5. 解:小敏走的路程为AB +AG +GE =1500+(AG +GE)=3100,则AG +GE =1600 m ,小聪走的路程为BA +AD +DE +EF =3000+(DE +EF).连结CG ,在正方形ABCD 中,∠ADG =∠CDG=45°,AD =CD ,在△ADG 和△CDG 中,∵AD =CD ,∠ADG =∠CDG,DG =DG ,∴△ADG ≌△CDG ,∴AG =CG.又∵GE⊥CD,GF⊥BC,∠BCD =90°,∴四边形GECF 是矩形,∴CG =EF.又∵∠CDG=45°,∴DE =GE ,∴小聪走的路程为BA +AD +DE +EF =3000+(GE +AG)=3000+1600=4600 m6. 解:(1)∵四边形ABCD 是菱形,∴AD ∥BC ,∠DBC =12∠ABC,∴∠ABC +∠BAD =180°,∵∠ABC ∶∠BAD =1∶2,∴∠ABC =60°,∴∠DBC =12∠ABC=30°,则tan ∠DBC =tan30°=33(2)∵四边形ABCD 是菱形,∴AC ⊥BD ,即∠BOC=90°,∵BE ∥AC ,CE ∥BD ,∴四边形OBEC 是平行四边形,则四边形OBEC 是矩形【解析】(1)由四边形ABCD 是菱形,得到一对同旁内角互补,依据已知角之比求出相应度数,进而求出∠DBC 的度数;(2)由四边形ABCD 是菱形,得到对角线相互垂直,即∠BOC =90°,利用有一个角为直角的平行四边形是矩形即可得证.7. 解:(1)∵EF 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,∴∠OCE =∠BCE,∠OCF =∠DCF,∵EF ∥BC ,∴∠OEC =∠BCE,∠OFC =∠DCF,∴∠OEC =∠OCE,∠OFC =∠OCF,∴OE =OC ,OF =OC ,∴OE =OF ;∵∠OCE+∠BCE +∠OCF+∠DCF=180°,∴∠ECF =90°,在Rt △CEF 中,由勾股定理得:EF =CE 2+CF 2=10,∴OC =OE =12EF =5 (2)当点O 在边AC 上运动到AC 中点时,四边形AECF 是矩形.理由如下: 连结AE ,AF ,当O 为AC 的中点时,AO =CO ,∵EO =FO ,∴四边形AECF 是平行四边形,∵∠ECF =90°,∴平行四边形AECF 是矩形【解析】(1)依据平行线的性质以及角平分线的性质得出∠OEC =∠OCE ,∠OFC =∠OCF ,证出OE =OC =OF ,∠ECF =90°,由勾股定理求出EF ,即可得出答案;(2)依据平行四边形的判定以及矩形的判定得出即可.8. 解:(1)∵▱ABCD ,∴AB =CD ,BC =AD ,∠ABC =∠CDA.又∵BE=EC =12BC ,AF =DF =12AD ,∴BE =DF.∴△ABE ≌△CDF (2)∵四边形AECF 为菱形,∴AE =EC.又∵点E 是边BC 的中点,∴BE =EC ,即BE =AE.又BC =2AB =4,∴AB =12BC =BE ,∴AB =BE =AE ,即△ABE 为等边三角形,▱ABCD 的BC 边上的高为2×sin60°=3,∴菱形AECF 的面积为2 39. 解:四边形ABCD 是菱形,AC +BD =6,∴AB =5,AC ⊥BD ,AO =12AC ,BO =12BD ,∴AO +BO =3,∴AO 2+BO 2=AB 2,(AO +BO)2=9,即AO 2+BO 2=5,AO 2+2AO ·BO+BO 2=9,∴2AO ·BO =4,∴菱形的面积是12AC·BD=2AO·BO=4 【解析】依据菱形对角线相互垂直,利用勾股定理转化为两条对角线的关系式求解.10. 解:(1)连结AC ,BD ,相交于点O ,∵E ,F ,G ,H 分别是菱形四边上的中点,∴EH =12BD =FG ,EH ∥BD ∥FG ,EF =12AC =HG ,∴四边形EHGF 是平行四边形,∵菱形ABCD 中,AC ⊥BD ,∴EF ⊥EH ,∴四边形EFGH 是矩形 (2)∵四边形ABCD是菱形,∠ABC =60°,∴∠ABO =30°,∵AC ⊥BD ,∴∠AOB =90°,∴AO =12AB =3,∴AC =6,在Rt △AOB 中,由勾股定理得OB =AB 2-OA 2=33,∴BD =63,∵EH =12BD ,EF =12AC ,∴EH =33,EF =3,∴矩形EFGH 的面积=EF·FG=9 3 cm 211. 解:(1)∵BF⊥DE,∴∠GFD =90°,∵∠BCG =90°,∠BGC =∠DGF,∴∠CBG =∠CDE,在△BCG 与△DCE 中,∵∠CBG =∠CDE,BC =CD ,∠BCG =∠DCE,∴△BCG ≌△DCE(ASA),∴BG =DE(2)设CG =1,∵G 为CD 的中点,∴GD =CG =1,由(1)可知:△BCG≌△DCE(ASA),∴CG =CE =1,∴由勾股定理可知:DE =BG =5,∵sin ∠CDE =CE DE =GF GD ,∴GF =55,∵AB ∥CG ,∴△ABH ∽△CGH ,∴AB CG =BH HG =21,∴BH =253,GH =53,∴HG GF =53【解析】(1)由于BF⊥DE,所以∠GFD=90°,从而可知∠CBG=∠CDE,依据全等三角形的判定即可证明△BCG≌△DCE,从而可知BG =DE ;(2)设CG =1,从而知CG =CE =1,由勾股定理可知:DE =BG =5,易证△ABH∽△CGH,所以BH HG=2,从而可求出HG 的长度,进而求出HG GF的值. 12. 解:(1) ∵四边形ABCD 是正方形,∴AC ⊥BD ,OD =OC ,∴∠DOG =∠COE =90°,∴∠OEC +∠OCE =90°.∵DF ⊥CE ,∴∠OEC +∠ODG =90°,∴∠ODG =∠OCE.∴△ODG ≌△OCE(ASA),∴OE =OG(2)①∵OD =OC ,∠DOG =∠COE=90°,又OE =OG ,∴DOG ≌COE(SAS),∴∠ODG =∠OCE②设CH =x ,∵四边形ABCD 是正方形,AB =1,∴BH =1-x ,∠DBC =∠BDC=∠ACB =45°,∵EH⊥BC,∴∠BEH =∠EBH=45°.∴EH =BH =1-x.∵∠ODG=∠OCE,∴∠BDC -∠ODG=∠ACB-∠OCE.∴∠HDC=∠ECH.∵EH⊥BC,∴∠EHC =∠HCD=90°.∴△CHE ∽△DCH.∴EH HC =HC CD. ∴HC 2=EH·CD,得x 2+x -1=0.解得x 1=5-12,x 2=-5-12(舍去).∴HC=5-12。