VENTILATOR-ASSOCIATED PNEUMONIA CURRENT STATUS AND FUTURE RECOMMENDATIONS
- 格式:pdf
- 大小:238.09 KB
- 文档页数:8
呼吸机相关性感染预防与控制措施指南呼吸机相关性感染(Ventilator-Associated Pneumonia, VAP)是指患者在接受机械通气治疗后48小时内发生的肺炎,是医院获得性肺炎中最常见的一种类型。
VAP的发生不仅影响患者的康复,还可能导致患者死亡。
因此,加强VAP的预防与控制至关重要。
本文将为您介绍VAP的预防与控制措施。
一、加强手卫生手卫生是预防VAP传播的基本措施。
医护人员在接触患者前后、操作前后以及从同一患者转移到另一患者时,必须严格遵守手卫生规范,用肥皂和水洗手,或使用免洗手消毒剂。
二、严格执行无菌操作在气管插管、吸痰、换药等操作过程中,医护人员应严格执行无菌操作规程,避免交叉感染。
吸痰时应使用无菌吸痰管,并及时更换。
三、保持呼吸道通畅正确气管插管,确保插管深度适宜,避免气道损伤。
定时翻身、拍背,帮助患者排出气道分泌物。
对于痰液黏稠的患者,可采用雾化吸入、振动排痰等方法,以保持呼吸道通畅。
四、加强口腔护理口腔是细菌定植的重要场所,加强口腔护理有助于减少口腔细菌的定植。
对有发生HAP高危因素的患者,建议使用洗必泰漱口液,每日至少两次。
五、预防胃食管反流胃食管反流是VAP的重要危险因素。
将床头抬高30~45度,可减少胃内容物的返流。
对于有胃食管反流症状的患者,可考虑使用质子泵抑制剂或H2受体拮抗剂,以减少胃酸分泌,预防胃食管反流。
六、合理使用抗生素合理使用抗生素,避免不必要的抗生素使用,防止细菌耐药。
根据患者的痰液或血液培养及药敏试验结果,调整抗生素治疗方案,选用敏感抗生素。
七、呼吸治疗设备的管理1. 呼吸机及其附件的清洁、消毒和维护:呼吸机内部机械部分不常规进行灭菌或消毒,呼吸回路管道、呼气活瓣、湿化器等每周更换一次,有污染时及时更换。
连接呼吸机管道上的冷凝水要定期引流、倾倒,操作时要避免引流液流向患者侧。
2. 呼吸机参数的调节:根据患者的病情,合理调节呼吸机参数,避免过度通气或通气不足。
呼吸机相关性肺炎诊断、预防和治疗指南(2013)吸机相关性肺炎(ventilator.associatedpneumonia,VAP)是重症医学科(ICU)内机械通气患者最常见的感染性疾病之一。
VAP可使机械通气患者住院时间和ICU留治时间延长,抗菌药物使用增加,并导致重症患者病死率增加,严重影响重症患者的预后。
随着我国重症医学的发展,机械通气技术在ICU应用的日益普及,如何正确诊断、有效预防与治疗VAP成为重症医学领域最关注的问题之一。
中华医学会重症医学分会结合近年来国内外在该领域的热点问题和研究成果,组织专家进行讨论,应用循证医学的方法制定了本指南,旨在对我国ICU内机械通气患者VAP的诊断、预防和治疗方面的管理达成共识。
定义与流行病学AP指气管插管或气管切开患者在接受机械通气48h后发生的肺炎。
撤机、拔管48h内出现的肺炎,仍属VAPE[1-2]。
目前VAP在国内外的发病率、病死率均较高,导致ICU留治时间与机械通气时间延长,住院费用增加。
国外报道,VAP发病率为6%~52%或(1.6~52.7)例/1000机械通气日,病死率为14%~50%;若病原菌是多重耐药菌或泛耐药菌,病死率可达76%,归因死亡率为20%~30%[3-9]。
在我国,VAP发病率在4.7%~55.8%或(8.4—49.3)例/1000机械通气日,病死率为19.4%一51.6%[10-12]。
VAP导致机械通气时间延长5.4—14.5d,ICU留治时间延长6.1~17.6 d,住院时间延长11~12.5d[3,13-16]。
在美国,VAP导致住院费用增加超过4000美元/每次住院[16-17]。
重症患者存在多种与发生VAP相关的危险因素,包括与患者的基础状态、诊疗相关操作及药物治疗相关因素等[1,3,7,10,18]。
根据VAP发病时间,可将VAP分为早发VAP和晚发VAP。
早发VAP发生在机械通气≤4 d,主要由对大部分抗菌药物敏感的病原菌(如甲氧西林敏感的金黄色葡萄球菌、肺炎链球菌等)引起;晚发VAP发生在机械通气>15d,主要由多重耐药菌或泛耐药菌[如铜绿假单胞菌、鲍曼不动杆菌、甲氧西林耐药的金黄色葡萄球菌(MRSA)]引起[3,9]。
呼吸机相关性肺炎的感染防控措施呼吸机相关性肺炎(Ventilator-Associated Pneumonia,VAP)是指机械通气48小时后发生的肺炎,是医院获得性肺炎中最常见的一种类型。
VAP的感染防控措施主要包括以下几个方面:一、加强呼吸道管理1. 吸痰:及时清除气道分泌物,保持呼吸道通畅。
吸痰时应严格执行无菌操作,避免交叉感染。
2. 气道湿化:机械通气时,应保证足够的气道湿化,避免分泌物干燥,易于排出。
3. 气管插管维护:定期更换气管插管,避免插管相关感染。
注意观察插管的位置和固定情况,防止插管移位或脱落。
二、严格无菌操作1. 手卫生:医务人员在接触患者前后应严格遵循手卫生规则,使用洗手液或消毒剂进行手部清洁。
2. 个人防护:与患者接触时,应根据患者携带的病原微生物情况,决定是否穿戴隔离衣和手套。
对于免疫力低下的患者,医务人员应采取保护性隔离措施。
三、预防胃肠道感染1. 应激性溃疡的预防:尽量减少使用或尽早停用预防应激性溃疡的药物,如H2受体阻滞剂和制酸剂。
2. 鼻胃管:选择直径较小的鼻胃管,减少胃液反流。
限制镇静剂和镇痛剂的使用,注意鼻饲后是否有胃潴留。
3. 胃肠道菌群失调的预防:避免不必要的抗生素使用,以免破坏肠道菌群平衡。
四、早期拔管和脱机1. 评估患者拔管指征:及时评估患者的拔管指征,如病情稳定、呼吸功能恢复等。
2. 逐步减少呼吸机支持:在患者病情允许的情况下,逐步减少呼吸机支持,促进患者自主呼吸的恢复。
3. 拔管后护理:拔管后对患者进行充分的气道护理,预防拔管后呼吸道感染。
五、合理使用抗生素1. 抗生素选择:根据患者病原菌及药物敏感试验结果,选择合适的抗生素。
避免不必要的广谱抗生素使用,减少菌群失调的风险。
2. 抗生素疗程:确保抗生素疗程足够,避免过早停药。
六、环境消毒和通风1. 病房环境消毒:定期对病房进行消毒,保持环境清洁。
2. 通风:保持病房空气流通,减少呼吸道感染的风险。
呼吸机相关性肺炎(Ventilator associated pneumonia,VAP)是指机械通气(MV)48小时后至拔管后48小时内出现的肺炎,是医院获得性肺炎(Hospital-acquired pneumonia,HAP)的重要类型,其中MV≤4天内发生的肺炎为早发性VAP,≥5天者为晚发性VAP。
目录疾病简介VAP是机械通气过程中常见而又严重的并发症之一,患者一旦发生VAP,则易造成脱机困难,从而延长住院时间,增加住院费用,严重者甚至威胁患者生命,导致患者死亡。
Cook 和 Morehead等报道,VAP的病死率为20%~71%[1-2]。
国内文献报道,VAP的患病率为43.1%,病死率为51.6%。
鉴于VAP 的致病菌、临床诊断与治疗不同于一般的肺炎,加上其病死率高,近年来国内外对VAP的研究受到广泛的重视。
病原学VAP具有地方性和流行病的某些特点,其病原谱依地区不同而有一定差别,且与基础疾病和先前抗生素治疗、传播途径、病原菌的来源等因素有密切关系。
病原体中以细菌最为多见,占90%以上,其中革兰阴性杆菌50%-70%,包括铜绿假单孢菌、变形杆菌属、不动杆菌属[3]。
革兰氏阳性球菌15%-30%,主要为金黄色葡萄球菌。
在早发的 VAP 中主要是非多重耐药菌。
如肺炎链球菌、流感嗜血杆菌、MSSA和敏感的肠道革兰阴性杆菌(如大肠杆菌、肺炎克雷伯杆菌、变形杆菌和粘质沙雷杆菌)。
迟发 VAP 为多重耐药菌。
如产ESBL的肺炎克雷伯杆菌和鲍曼不动杆菌、耐药肠道细菌属、嗜麦芽窄食单胞菌、MRSA等。
目前真菌感染比例也逐渐增加,考虑有以下几方面原因:①患者年龄、基础疾病状态、抵抗力低下、住院时间长导致的院内感染增加;②免疫抑制剂、激素等的应用,使机体抵抗力下降;③气管插管等侵人性操作的施行使局部防御机制受损,使上呼吸道的病原菌易向下呼吸道蔓延;④广谱抗生素的泛使用使耐药的条件致病菌增殖占优势,造成菌群失调,真菌的感染率上升。
DOI:10畅3760/cma畅j畅issn畅0376-2491畅2014畅05畅006作者单位:510080广州,中山大学附属第一医院重症医学科通信作者:管向东,Email:carlg@163畅net・专题论坛———呼吸机相关性肺炎的防治・2013枟呼吸机相关性肺炎诊断、预防和治疗指南枠———目标性治疗的解读管向东 刘紫锰 呼吸机相关性肺炎(ventilatorassociatedpneum-onia,VAP)指气管插管或气管切开患者在接受机械通气48h后发生的肺炎,是重症医学科(ICU)内患者最常见的院内获得性感染之一。
VAP在国内外报道的发生率和病死率均较高。
VAP一旦发生,易造成撤机困难,延长患者的ICU停留时间及住院时间,增加相关的医疗费用,并导致患者病死率增加,严重影响患者预后。
VAP的早期认识与诊断、有效全面的预防及积极有效的治疗等已成为当今重症医学迫切需要解决的问题。
为规范VAP的诊断、预防和治疗,中华医学会重症医学分会制定了“呼吸机相关性肺炎诊断、预防与治疗指南(2013)”(以下简称指南)[1],该指南针对目前VAP诊疗过程中存在的突出问题,从不同层面,对VAP的认识、诊断、预防和治疗进行概括与规范,并依据循证医学原则提出了相应的推荐意见。
本文主要对指南中关于VAP的目标性治疗部分进行解读。
抗菌药物的目标性治疗是在充分评估患者的临床特征并获取病原学培养及药敏结果的前提下,按照致病菌药敏结果给予相应的抗菌药物进行针对性治疗的一种策略。
早期获得病原菌结果对指导目标性治疗具有重要的意义。
在经验性抗菌药物治疗开始前应留取相应的病原学标本,这是目标性治疗的重要基础。
一、目标治疗的药物选择指南指出,早发VAP发生在机械通气≤4d,主要由对大部分抗菌药物敏感的病原菌(如甲氧西林敏感的金黄色葡萄球菌、肺炎链球菌等)引起;晚发VAP发生在机械通气>15d,主要由多重耐药菌或泛耐药菌[如铜绿假单胞菌、鲍曼不动杆菌、甲氧西林耐药的金黄色葡萄球菌(MRSA)]引起。
呼吸机相关性肺炎呼吸机相关性肺炎(Ventilator-Associated Pneumonia,VAP)是指在机械通气患者中发生的肺炎。
呼吸机是救治危重病人必不可少的设备之一,但同时也是导致危重病人发生继发性感染的重要因素之一。
VAP是医疗机构内最常见的医院感染之一,不仅会增加患者的病死率和住院费用,还会危及患者的生命安全,给医疗工作者带来严重的医疗风险。
本篇文章将着重介绍呼吸机相关性肺炎的防控策略。
发病机理呼吸机的使用会破坏人体自然的免疫屏障,使得肺内的病原体有更多的机会侵入人体,引发肺炎。
VAP通常分为早期和晚期两种类型。
早期VAP多为机械通气开始后48-72小时内发生,多数病原体为耐药菌;晚期VAP则多发生在通气开始后4-7天之后,此时肺内炎症加剧,病原体数量增多,病情危重程度明显增加。
除了使用呼吸机外,VAP的其他高危因素还包括:过度插管、机械通气时长、使用抗生素的类型和时长、病人的自身免疫力等。
另外,医护人员的操作技术和手卫生等措施的执行情况也对VAP的发生起到了重要的作用。
预防策略管路管理由于呼吸机管路中可以形成滋生细菌的“生物膜”,且这些区域很难进行彻底的清洁消毒,所以管路管理是预防VAP的重点控制措施之一。
具体包括:•选择尽可能短的管路,并定期更换•管路更换时实行无菌技术•定期清洗鼻咽部分泌物•管路取样时实行无菌技术呼吸机管理呼吸机是VAP的重要发病因素之一,因此,合理使用呼吸机、定期维护保养和严格的管路管理,可以有效降低VAP的发生率。
具体的呼吸机管理策略包括:•选择适当的机械通气策略,如限制性液体管理、保持末梢氧饱和度在90%以上等•定期维护呼吸机,包括更换过滤器、定期消毒,同时也要注意使用维修保养的售后服务•根据病情调整吸气压力、呼气末正压等呼吸机参数,避免导致肺泡过度膨胀或气道阻力过高•选择佩戴合适的口腔护理用品,包括口腔护理帽、口腔护理口罩等抗生素使用抗生素的广泛使用是导致细菌耐药的重要原因之一,因此,正确使用抗生素是预防VAP的关键。
呼吸机相关性肺炎的集束化护理呼吸机相关性肺炎(Ventilator-Associated Pneumonia,简称VAP)是指在使用呼吸机过程中,呼吸系统出现感染的一种并发症。
呼吸机是治疗呼吸衰竭的关键工具之一,但长期使用呼吸机会增加患者感染肺部的风险。
为了降低VAP的发生率,集束化护理成为了呼吸机使用过程中的重要护理策略。
集束化护理是一种系统性的护理方法,通过相互关联的一系列护理措施来降低感染的概率,提高患者的治疗效果。
在呼吸机相关性肺炎的预防中,集束化护理包括以下几个方面:1.遵循严格的手卫生规范:护士和医生必须在接触患者之前和之后正确执行手卫生。
洗手液或酒精消毒剂应该方便地摆放在呼吸机旁边,以便于人员随时进行洗手。
2.导管护理:呼吸机导管是细菌寄生的主要位置,因此需要注意导管的护理。
在更换或插入导管时,应严格遵守无菌操作;保持导管通畅,定期进行口腔护理,以防止细菌滋生。
3. 避免误吸:误吸是导致呼吸机相关性肺炎的重要原因之一、为了防止误吸,需要对患者进行positioning(正确体位)、cuff pressure (袖带气压)检测和调节、营养支持等。
4.遵循呼吸机脱离原则:当患者状况允许时,应尽早终止呼吸机治疗,减少呼吸机使用时间,以降低感染的风险。
5.合理使用抗生素:针对呼吸机相关性肺炎,合理使用抗生素是至关重要的。
通过进行药敏试验,选择适宜的抗生素治疗,避免滥用抗生素和耐药菌株的产生。
此外,集束化护理还包括对患者进行定期评估和护理措施的评估,以及护士与医生之间的紧密合作,提高护理质量和效果。
最后,为了有效进行集束化护理,医护人员需要有良好的专业知识和技能。
通过持续的培训和教育,提高医护人员的意识和能力,才能有效地降低呼吸机相关性肺炎的发生率。
医学vap名词解释
VAP是医学上的缩写,全称为“院内获得性肺炎”
(Ventilator-Associated Pneumonia)。
VAP是指在患者接受机械
通气治疗时,在48小时后发生的肺炎。
通常情况下,患者需要接受
机械通气治疗是因为严重疾病或手术后的恢复,而VAP则是这些患
者在医院内感染的一种常见并发症。
VAP的发生通常与机械通气导管的使用有关,因为这些导管可
能会引入细菌到患者的呼吸道中,从而导致感染的发生。
VAP的症
状包括发热、咳嗽、呼吸急促、胸痛等,严重时可能导致呼吸功能
衰竭。
预防VAP的方法包括定期清洁口腔、提供适当的营养支持、避
免过度镇静和肌肉松弛剂的使用、定期更换呼吸机的配件等。
此外,医护人员的手部卫生和使用无菌操作也是预防VAP的重要措施。
治疗VAP通常需要使用抗生素进行治疗,但由于抗生素滥用可
能导致耐药菌株的产生,因此在选择抗生素时需要谨慎并根据细菌
培养和药敏试验结果进行选择。
对于一些复杂的VAP病例,可能需
要进行支持性治疗以维持呼吸功能和氧合。
总的来说,VAP是一种严重的医院感染并发症,对患者的康复和预后都会产生不良影响。
因此,对于需要接受机械通气治疗的患者,医护人员需要严格执行预防措施,并及时发现和治疗VAP,以降低患者的感染风险并提高治疗效果。
医学vap名词解释及概念
VAP是指医院内患者在使用呼吸机或机械通气设备时发生的
肺部感染,全称为院内获得性肺炎(Ventilator-Associated Pneumonia)。
以下是相关名词解释及概念:
1. 呼吸机(Ventilator):也称为机械通气设备,是用于支持
或代替患者自主呼吸的医疗设备,通过输送气体到患者的肺部,维持正常的气体交换。
2. 院内获得性肺炎(Hospital-acquired pneumonia):简称HAP,是指患者在住院期间在医院内发生的肺部感染,一般
在入院48小时后发生。
3. 细菌定植(Colonization):指病原微生物在宿主的呼吸道
内定居并繁殖,但没有引起感染症状。
4. 风险因素(Risk factors):在医院环境中,可能增加患者发
生VAP的因素,如长时间的机械通气、使用插管、抗生素使用、营养不良等。
5. 预防策略(Prevention strategies):为了降低医院内发生
VAP的风险,可以采取一系列的预防措施,如提供合适的呼
吸机护理、规范操作插管过程、定期拔除呼吸机、定期清洁口腔和牙齿等。
6. 呼吸机相关性肺炎(Ventilator-Associated Events,VAE):
是指使用呼吸机时发生肺部感染的一种严重并发症,包括
VAP和其他与呼吸机使用相关的肺部事件。
7. 感染控制(Infection control):是指医疗机构采取的一系列预防和控制传染病的措施与方法,包括手卫生、个人防护、消毒和隔离等。
请注意,以上解释仅为常见信息,具体解释可能会有所差异。
呼吸机相关性病毒感染的预防及护理措施呼吸机相关性病毒感染(Ventilator-Associated Viral Pneumonia,简称VAVP)是指机械通气48小时后至拔管后48小时内出现的病毒性肺炎。
随着现代医学技术的不断发展,机械通气在重症患者的救治中发挥着越来越重要的作用。
然而,呼吸机相关性病毒感染已成为重症患者常见的并发症之一,严重影响患者的预后。
为了降低VAVP的发生率,提高患者的生存质量,本文将从预防及护理措施方面进行探讨。
一、预防措施1. 加强医务人员的手卫生医务人员的手是病毒传播的主要途径,因此加强医务人员的洗手是预防VAVP的关键措施。
医务人员在接触患者前后应严格遵循六步洗手法,使用洗手液或肥皂清洁双手,并在必要时佩戴手套。
2. 严格消毒呼吸机及相关设备呼吸机及相关设备(如雾化器、湿化器、波纹管等)是VAVP的重要传播途径。
因此,要严格执行消毒灭菌程序,确保设备清洁、无病毒污染。
湿化器、波纹管、湿化水等应至少每日更换一次。
3. 采取隔离措施对于病毒感染的患者,应采取隔离措施,如佩戴口罩、帽子、穿无菌隔离衣等,防止病毒在患者之间传播。
同时,要限制病房内的探视人数及次数,保持病房内空气流通,定期进行消毒。
4. 减少或消除口咽部及胃腔病原菌的植入控制胃内容物反流是预防VAVP的重要措施。
可以通过采用半卧位、使用胃肠动力药、及时吸痰等方式减少胃内容物反流。
此外,还要加强患者的口腔护理,减少口腔病原菌的繁殖。
5. 加强患者机体免疫功能合理应用抗生素、糖皮质激素等药物,有助于抑制病毒复制和减轻肺部炎症。
同时,要注重患者的营养支持,提高患者的免疫力。
二、护理措施1. 保持呼吸道通畅加强呼吸道管理,保持人工气道畅通,定期清除呼吸道中的分泌物。
吸痰时要注意严格的无菌操作,避免交叉感染。
2. 体位护理建议患者采取30-45度的半卧位,有助于减少胃内容物、分泌物反流,降低VAVP的发生风险。
3. 口腔护理加强口腔护理,每天至少进行2-3次口腔清洁,减少口腔病原菌的繁殖。
SHEA 呼吸机相关性肺炎预防策略在呼吸机的应用过程中,呼吸机相关性肺炎(Ventilator-Associated Pneumonia,简称VAP)是一种常见的严重并发症。
由于VAP患者的死亡率较高,而且治疗费用昂贵,因此预防和控制VAP是非常重要的。
在此文档中,我们将讨论SHEA呼吸机相关性肺炎预防策略,以帮助医疗人员更好地控制VAP的风险。
病因分析呼吸机相关性肺炎是一种严重的感染,通常发生在使用呼吸机的病人身上。
它的主要病理变化是肺部感染导致的炎症反应。
通常情况下,VAP是由呼吸机内的细菌和病毒所引起。
SHEA预防策略•定期清洗呼吸机: 为防止呼吸机内的细菌滋生,定期清洗呼吸机是非常必要的。
建议每天至少清洗一次呼吸机。
同时,应该确保呼吸机的管道储存的干燥和清洁。
•使用适当的防护: 医护人员应该佩戴适当的手套和口罩,以避免呼吸机内的细菌传播到病人身上。
另外,医护人员在运用呼吸机的过程中需要严格遵守洗手和消毒的规定。
•设定正常呼吸参数: 呼吸机的参数应该根据患者的具体情况来调整,包括呼吸频率、潮气量和呼气末正压(Positive End-Expiratory Pressure,简称PEEP)等。
特别是在使用呼吸机的初期,应该严格控制呼吸参数,以降低VAP的发生率。
•选择适当的呼吸机:医护人员应该选择可提供机械通气的合适型号呼吸机。
同时还应该让患者及其家属了解呼吸机的使用和维护情况,以帮助预防VAP。
VAP是一种可以避免的疾病。
通过遵循SHEA呼吸机相关性肺炎预防策略,医护人员可以减少VAP的发生率。
为了确保病人安全,我们必须严格管理呼吸机,适当使用防护设备,定期维护呼吸机设备,避免疏忽和纰漏。
医护团队应该关注VAP的高危人群,并及时采取措施进行预防,以提高治疗质量和降低病人的治疗费用。
VAP预防及护理VAP即医院获得性肺炎(Ventilator-Associated Pneumonia),指的是机械通气患者在机械通气的48小时后发生的肺炎。
机械通气是治疗重症患者的重要手段,但也容易导致肺部感染。
VAP的预防和护理对于患者的康复至关重要。
以下是VAP预防及护理的一些建议:1.手卫生:无菌技术是避免VAP发生的基础。
护士和医务人员应经常洗手或使用含酒精的消毒剂,尤其是在与患者接触、更换呼吸机管道或调整监测设备时。
2. 的确无需换气管。
呼吸机导管(ET管)气囊压力应保持在20cmH2O以下,以避免对气道的压力损伤。
同时,根据需要定期更换气管,避免管道与支气管分泌物的积聚和交叉感染。
3.姿势护理:机械通气患者需要定期更换体位,以避免长时间的仰卧位压迫导致肺部积液和感染。
可以通过侧卧位、俯卧位和坐位等姿势进行定期更换。
4.咽拭子:机械通气患者咽喉部有很多细菌定植,容易下降到肺部引起感染。
每天进行一次咽拭子以检测病原菌是否存在,并根据检测结果进行及时的抗生素治疗。
5.吸痰操作:机械通气患者需要经常进行吸痰操作以清除呼吸道分泌物,避免积聚引起感染。
护士在吸痰过程中要做好消毒工作,同时避免过度吸痰,以减少对呼吸道的刺激。
6.鼻饲管护理:机械通气患者需要通过鼻饲管进行营养支持。
护理人员要注意定期更换鼻饲管,并保持通畅,避免感染传播。
7.抬头位:机械通气患者需要保持抬头位,以减少误吸的风险。
护士可以通过调整床位和枕头的高度来帮助患者保持抬头位。
8.环境清洁:保持病房的环境清洁是预防VAP的重要措施之一、护士要定期清洁呼吸机和监测设备,并遵守感染控制的相关规定。
9.定期评估:护士在病情观察中要及时发现VAP的风险因素,如发热、呼吸困难、气道分泌物增多等。
同时还要定期评估患者的通气状况和肺部咳嗽的情况,及时调整治疗方案。
10.抗生素应用:机械通气患者的抗生素的使用要精确而有效。
护士要根据患者的感染指标和敏感性检测结果来选择合适的抗生素,同时要关注抗生素的使用时间和疗程,避免过度或不足的使用。
VENTILATOR-ASSOCIATED PNEUMONIA:CURRENT STATUS AND FUTURE RECOMMENDATIONSShai Efrati,MD 1,Israel Deutsch,BSc 1,Massimo Antonelli,MD 2,Peter M.Hockey,MD 3,Ronen Rozenblum,PhD,MPH 4and Gabriel M.Gurman,MD 5Efrati S,Deutsch I,Antonelli M,Hockey PM,Rozenblum R,Gurman GM,Ventilator-associated pneumonia:current status and future rec-ommendationsJ Clin Monit Comput 2010;24:161–168ABSTRACT .Objective.Ventilator-associated pneumonia (VAP)is a common hazardous complication in ICU patients.The aim of the current review is to give an update on the current status and future recommendations for VAP prevention.Methods.This article gives an updated review of the current literature on VAP.The first part briefly reviews pathogenesis and epidemiology while the second includes an in-depth review of evidence-based practice guidelines (EBPG)and new technologies developed for prevention of VAP.Results.VAP remains a frequent and costly complication of critical illness with a pooled relative risk of 9–27%and mortality of 25–50%.Strikingly,VAP adds an estimated cost of more than $40,000to a typical hospital admission.An important aetiological mechanism of VAP is gross or micro-aspiration of oropharyngeal organisms around the cuff of the endotracheal tube (ETT)into the distal bronchi.Prevention of VAP is preferable.Preventative measures can be divided into two main groups:the implemen-tation of EBPGs and use of device-based technologies.EBPGs have been authored jointly by the American Thoracic Society and the Infectious Diseases Society of America.The Canadian Critical Care Trials group also published VAP Guidelines in 2008.Their recommendations are detailed in this review.The current device-based technologies include drainage of subglottic secretions,silver coated ETTs aiming to influence the internal bio-layer of the ETT,better sealing of the lower airways with ultrathin cuffs and loops for optimal cuff pressure control.Conclusions.EBPG consensus includes:elevation of the head of the bed,use of daily ‘‘sedation vacations’’and decontamination of the oropharynx.Technological solutions should aim to use the most comprehensive combination of subglottic suction of secretions,optimization of ETT cuff pressure and ultrathin cuffs.VAP is a type of hospital-acquired pneumonia that develops more than 48h after endotracheal intubation.Its incidence is estimated to be 9–27%,with a mortality of 25–50%[Am J Respir Crit Care Med 171:388–416(2005),Am J Med 85:499–506(1988),Chest 122:2115–2121(2002),Intensive Care Med 35:9–29(2009)].The most important target in VAP handling is its prevention.The aim of this article is to review the pathogenesis,epidemiology and the different strategies/technologies for prevention of VAP.KEY WORDS.ventilator-associated pneumonia,pathogenesis,epi-demiology,clinical practice guidelines,prevention,technologies.DEFINITION AND EPIDEMIOLOGYVentilator-associated pneumonia (VAP)should be con-sidered in any mechanically ventilated patient who develops new or increased fever,alveolar infiltrate,From the Shai Efrati,Israel Deutsch and Ronen Rozenblum are shareholders in Hospitech Respiration,Ltd.The AnapnoGuard system developed by Hospitech Respiration is being presented in the manuscript.From the 1Research &Development Unit,Assaf Harofeh Medical Center,Affiliated with the Sackler School of Medicine,Tel-Aviv University,Zerifin 70300,Israel;2Department of Intensive Care and Anesthesiology,Policlinico Universitario A.Gemelli,Univer-sita`Cattolica del Sacro Cuore,Largo A,Rome,Italy;3General and Respiratory Medicine,Hampshire Community Health Care,Hampshire,UK;4The Center for Patient Safety Research and Practice,Division of General Medicine,Brigham &Women’s Hospital and Harvard Medical School,Boston,MA,USA;5Faculty of Health Sciences,Beer-Sheva,and Myney Hayesuah Medical Center,Ben-Gurion University of the Negev,Bnei Brak,Israel.Received 8January 2010.Accepted for publication 4March 2010.Address correspondence to S.Efrati,Research &Development Unit,Assaf Harofeh Medical Center,Affiliated with the Sackler School of Medicine,Tel-Aviv University,Zerifin 70300,Israel.E-mail:efratishai@Journal of Clinical Monitoring and Computing (2010)24:161–168DOI:10.1007/s10877-010-9228-2ÓSpringer 2010respiratory secretions,leukocytosis,or respiratory abnor-malities.Diagnostic testing is required whenever VAP is suspected because clinicalfindings alone are nonspecific [1–3].The purpose of diagnostic testing is to confirm VAP and identify the likely pathogen.Diagnostic testing involves radiographic imaging and microbiologic analysis of lower respiratory tract secretions,including gram stain and culture.A clinical pulmonary infection score(CPIS) combining clinical,radiographic,physiologic,and microbiologic data into a numerical result has been sug-gested as a standard for VAP diagnosis.Initial validation of the CPIS found that a score greater than six correlated with VAP[4].VAP remains a frequent and costly complication of critical illness with a pooled relative risk of9–27%and mortality of25–50%[5–8].Strikingly,VAP adds an estimated cost of more than$40,000to a typical hospital admission[7,9].Clearly,the combination of the need to improve patient outcomes,thefinancial impact of improving throughput,and the proposed cut in VAP medicare reimbursement,is serving as a strong impetus to implement practices and policies aimed at reducing the risk of VAP.PATHOGENESISAn important contributing factor to the development of VAP is gross-or micro-aspiration of oropharyngeal organisms into the distal bronchi,followed by bacterial proliferation and parenchymal invasion[5,10–12].In the mechanically ventilated patient,a number of factors conspire to compromise host defenses:critical illness,co morbidities,H2-blockers and antacid therapy,malnutri-tion impairing the immune system.Endotracheal intuba-tion thwarts the cough reflex,compromises mucociliary clearance,injures the tracheal epithelial surface,and pro-vides a direct conduit for rapid access of bacteria from above into the lower respiratory tract[11,13–17].Intu-bation increases the risk of pneumonia6-to20-fold[5], and it would probably be more accurate to rename VAP as‘‘endotracheal-intubation-related pneumonia’’.In order for microorganisms to cause VAP,they must first gain access to the normally sterile lower respiratory tract,where they can adhere to the mucosa and produce sustained infection.Microorganisms gain access by one of four mechanisms:[5]the most common is by aspiration of microbe-laden secretions around the ETT cuff(Figure1). The source of the secretions is either from the oropharynx directly or,secondarily,by reflux from the stomach into the oropharynx;[6]by direct extension of a contiguous infection,such as a pleural space infection;[7]through inhalation of contaminated air or medical aerosols;or[8] by hematogenous carriage of microorganisms to the lung from remote sites of local infection,such as vascular or urinary catheter-related bloodstream infection[10–12, 18–21].PREVENTION OF VAPPrevention of VAP is the gold standard.Preventative measures can be divided into two main groups:clinical practices guidelines and device-based technologies.All measures are aiming at altering at least one of the parameters playing a role in the pathogenesis of VAP: bacterial proliferation and shift of oropharyngeal/GIflora, aspiration of secretions around the ETT cuff,and injury to tracheal epithelium.The standard procedures needed to keep the ventilator circuits disinfected are beyond the scope of this review.Clinical practice guidelinesAn evidence-based practice guideline(EBPG)has been authored jointly by the American Thoracic Society and the Infectious Diseases Society of Americasynthesizing Fig.1.Aspiration of microbial laden secretions around the ETT cuff.162Journal of Clinical Monitoring and Computingand appraising all of the available evidence in this disease state[22].The Canadian Critical Care Trials group also published VAP guidelines in2008[23].In all recom-mendations it is clear that the risk of VAP is related to the use of the ETT and non-invasive mechanical ventilation (NIMV)is recommended whenever possible.If ETT is needed,orotracheal intubation and orogastric tubes should be preferred to nasotracheal intubation and naso-gastric tubes in order to prevent nosocomial sinusitis and to reduce the risk of VAP[8,24].The Boston-based Institute for Healthcare Improve-ment(IHI),has been instrumental in supporting organi-zations to implement EBPGs for the prevention of VAP.[9].The standard component of IHI’s approach is‘‘bun-dles’’of care,defined as‘‘a small,straightforward set of practices—generally three tofive—that,when performed collectively and reliably,have been proven to improve patient outcomes’’[9].The IHI’s ventilator bundle was originally aimed at reducing complications of mechanical ventilation,and not specifically at VAP prevention[9].Of the four components in this bundle,three—head of the bed elevation,daily sedation interruption and daily screening for readiness to extubate—are aimed specifically at VAP prevention[9].Each of these three IHI bundle elements has behind it either a level I(head of the bed elevation and stress bleeding prophylaxis)or level II(use of sedation holidays)evidence individually.In view of this,it is difficult to argue that implementing each of the proposed measures does not amount to good care of pa-tients on mechanical ventilation,supporting the original intent of the mechanical ventilation bundle development [9].‘‘Elevation of the head of the bed’’is an integral part of the ventilator bundle and has been correlated with reduction in the rate of VAP.The recommended eleva-tion is30–45°[9,25].While it is not immediately clear whether the intervention aids in the prevention of VAP by decreasing the risk of aspiration of gastrointestinal contents or oropharyngeal and nasopharyngeal secretions, this was the ostensible reason for the initial recommen-dation.Even though elevation of the head seems to be effective,some studies have indicated that a variety of reasons preclude this goal from being achieved85%of the time,and even call its effectiveness into question[26]. The fourth component of the IHI bundle is stress ulcer bleeding prophylaxis.Stress ulcerations are the most common cause of gastrointestinal bleeding in intensive care unit patients,and the presence of gastrointestinal bleeding due to these lesions is associated with afivefold increase in mortality compared to ICU patients without bleeding[9].Applying peptic ulcer disease prophylaxis is therefore a necessary intervention in critically ill patients.A concern about prophylactic therapy for stress ulceration has been the potential for increased risk of nosocomial pneumonia[9].Agents that raise gastric pH may promote the growth of bacteria in the stomach,particularly gram-negative bacilli that originate in the duodenum.One randomized trial comparing antacids,H2blockers and sucralfate reported no differences in rates of early-onset VAP,while rates of late-onset VAP were reduced in pa-tients treated with sucralfate[27].However,another large, double-blind,randomized study comparing ranitidine with sucralfate reported a clinically significant increase in gastrointestinal bleeding among patients receiving sucral-fate[28].Consequently,if stress ulcer prophylaxis is indicated,the risk and benefits of each therapeutic strategy should be carefully considered[8].Using daily‘‘sedation vacations’’and assessing the pa-tient’s readiness to extubate is an integral part of the ventilator bundle[9,29].It appears that lightening seda-tion decreases the amount of time spent on mechanical ventilation and therefore the risk of ventilator-acquired pneumonia[9].In addition,weaning patients from ven-tilators becomes easier when patients are able to assist themselves at extubation with coughing and control of secretions[9].However,sedation vacations are not without risks.Patients who are not sedated as deeply will have an increased potential for self-extubation.Therefore, the maneuver must be conducted in a careful fashion[9]. In addition,there may be an increased potential for pain and anxiety associated with lightening stly, increased tone and poor synchrony with the ventilator during the maneuver may risk episodes of desaturation[9]. Decontamination of the oropharynxGingival and dental plaque rapidly becomes colonized with aerobic pathogens in ICU patients due to poor oral hygiene and lack of mechanical elimination.Results from a meta-analysis of11trials of3,242mechanically venti-lated adults who were treated with oral application of antibiotics or antiseptics or with placebo or standard oral care alone[30],showed that the incidence of VAP was significantly reduced by oral antiseptics such as chlorh-exidine(relative risk[RR]0.56,95%CI0.39–0.81)but not oral applications of antibiotics(RR0.69,95%CI 0.41–1.18).Technologies and devicesSubglottic drainageDrainage of subglottic secretions may lessen the risk of aspiration and thereby decrease the incidence of VAP. Specially designed endotracheal tubes have been devel-oped to provide continuous aspiration of subglottic secretions(CASS)[31–34].However,even though the Efrati et al.:VAP Status and Future Recommendations163CASS system can lower bacterial colonization of the respiratory tract,there is a risk of severe tracheal mucosal damage at the level of the suction port [35].The aetiology of mucosal damage is suction performed in a relatively small space (the boundaries are the vocal cords,tracheal mucosa,ETT and ETT cuff)creating a vacuum that ad-heres the tracheal mucosa to the suction port.The vacuum created in the subglottic area is responsible for the severe macroscopic and microscopic damage of the tracheal mu-cosa and is also responsible for the inability to perform effective suction in many patients intubated with the Hi-Lo Evac (Mallinckrodt Inc.,Athlone,Ireland)(Table 1).Silver-coated endotracheal tubeSilver-coated ETTs reduce the incidence of VAP.This was demonstrated in a prospective,randomized,single-blinded trial in which a silver-coated ETT was compared to an uncoated ETT in 2003patients requiring mechan-ical ventilation [36].Among patients intubated for more than 24h,the rate of microbiologically confirmed VAP was significantly lower with the silver-coated ETT.The silver-coated ETT was also associated with a significant delay in the occurrence of VAP,suggesting the main beneficial effect was during the relatively early days of intubation.There were no differences between the groups in the duration of intubation,intensive care unit stay,or hospital stay;mortality;or the frequency or severity of adverse events [36].It should be noted that the silver coated ETTs may influence the internal bio-layer of the ETT but they do not have any significant effect on the aspiration around the ETT.Ultrathin cuffThe high-volume low-pressure cuffs developed to pro-vide tracheal sealing at lower cuff pressures may leak due to folds created when the cuff is inflated in a lower diameter trachea [37,38].To overcome this,a new generation of high-volume low-pressure thin walled cuffs was developed.Wall thickness reduction shrinks voids created by folds and cuff vulnerability to leakage [38].Recently,two versions of ultrathin cuffs have been approved for clinical use:the Microcuff äETT of Kim-berly-Clark Ltd and the SealGuard äETT of Covidien Ltd.In both cases the cuff is made of polyurethane.The use of endotracheal tubes with ultra-thin cuffs and inter-mittent subglottic secretion drainage were shown to reduce VAP.The better sealing of the new generation of ultra thin cuffs,should be accompanied with continuous or intermittent aspiration of subglottic secretions [39].As detailed above,it should again be noted that CASS or intermittent aspiration of secretions may be dangerous while using a single lumen for suction (due to the vacuum created below the vocal cords).T a b l e 1.C o m p a r i s o n b e t w e e n t h e c u r r e n t a v a i l a b l e t e c h n o l o g i e sT e c h n o l o g yD e v i c e s i n t h e m a r k e tC u f f p r e s s u r e c o n t r o lL o w i n t r a c u f f p r e s s u r eL e a k a g e d e t e c t i o n S e c r e t i o n s e v a c u a t i o nD i l u t i o n o f s e c r e t i o n sS t a f f r e d u c e d o v e r l o a d A u t o m a t i c o p e n -l o o p p r e s s u r e c o n t r o l T r a c o eÖU l t r a t h i n c u f f sT a p e r e d E v a c (C o v i d i e n )M i c r o c u f f (K i m b e r l a y )ÖÖC A S S -s u c t i o n t u b e s T a p e r e d E v a c (C o v i d i e n )ÖÖC o m p r e h e n s i v e s e a l i n g c o n t r o lA n a p n o G u a r d (H o s p i t e c h )ÖÖÖÖÖÖ164Journal of Clinical Monitoring and ComputingAutomatic open loop pressure controlA critical component in the management of mechanically ventilated patients is to avoid complications related to inappropriate ETT cufffilling[15,40–42].An appropri-ately inflated ETT cuff should achieve isolation of the lower airways,thus reducing the risk of aspiration around the cuff and possible VAP.However,an over-inflated cuff may cause local mechanical complications such as mucosal ulcerations,granulomas,tracheal stenosis,and tracheoe-sophagealfistulae[15,40,41,43].The tracheal tissue/ mucosa is especially sensitive to mechanical complications in patients with low blood pressure since thetissue parison between the Hi-Lo Evac and the new Hospitech endotracheal tube used for subglotic aspiration of secretions.(a)Photos of the Hi-Lo Evac and the new endotracheal tube of Hospitech.(b)Hospitech endotracheal tube:the position of the extra subglotic opening for vacuum prevention and CO2 sampling.Efrati et al.:VAP Status and Future Recommendations165perfusion pressure is low.As a general guideline,the cuff pressure should be maintained between18and 25mmHg.A cuff pressure above18mmHg is expected to prevent leakage around the ETT cuff[44].However, since the relation between the patient tracheal anatomy and the ETT cuff are hard to predict,and since there are more dynamic parameters that may affect the minimal cuff pressure needed to prevent leakage(e.g.ETT location, maximal ventilation pressure,mucosal edema)it is very difficult to predict the optimal cuff pressure for an indi-vidual patient.Accordingly,it was demonstrated that an ETT with a device that sets the cuff pressure automatically by an open loop pressure controller does not have a beneficial effect with regards to VAP,ICU mortality,or hospital mortality[45].A comprehensive continuous sealing control systemOptimal ETT cufffilling is defined as the minimal pres-sure required for airway isolation.It is influenced by airway anatomy,cuff location,cuff compliance,size and volume,and by peak inspiratory pressure[46,47].The common clinical practice of optimizing cufffilling by auscultation or by assessing inhaled/exhaled volume dif-ference is imprecise,and evaluating leak by dye infusion is impractical.It has been demonstrated that even with optimal conditions in elective surgical patients,and the use of an automatic cuff pressure controller,anesthesiol-ogists only set the optimal cuff pressure in15%of patients [48].In order to confirm complete sealing of the ETT cuff, maintain baseline cuff pressure,and monitor the cyclic changes in the intra-cuff pressures during the respiration cycle,the AnapnoGuard system was developed(Hospi-tech Respiration Ltd,Petach Tikva,Israel).In brief,The AnapnoGuard system has been developed to detect any leak around the ETT cuff during the respiratory cycle.As detailed elsewhere[48],the optimal tracheal sealing by ETT cuff is based on closed loop control of the CO2 levels above the cuff and of intra cuff-pressure.Any leakage sensed above the cuff expressed by an increase of CO2level marks non-optimal sealing of the trachea and the system sets the optimal pressure accordingly[48]. Moreover,the system automatically performs cyclic sub-glottic suction of secretions.However,unlike the CASS system,in order to prevent the resultant vacuum in the subglottic space and the related mucosal damage,the AnapnoGuard system uses a specially designed ETT that has an extra lumen,in addition to the suction lumen (Figure2).When the subglottic suction is activated the extra lumen is open and thereby avoiding the creation of a hazardous vacuum.The AnapnoGuard system has recently gained CE approval and is currently in use in clinical trials.IN CONCLUSIONMuch effort is being made in order to prevent VAP and the combination of new technologies and better clinical practices holds promise for better results in this arena. Practical clinical recommendations are for:elevation of the head of the bed,use of daily‘‘sedation vacations’’and decontamination of the oropharynx.Technological rec-ommendations should aim to use the most comprehensive combination of solutions:subglottic suction of secretions, optimization of ETT cuff pressure and ultrathin cuffs. REFERENCES1.Andrews CP,Coalson JJ,Smith JD,Johanson WG Jr.Diag-nosis of nosocomial bacterial pneumonia in acute,diffuse lung injury.Chest1981;80:254–258.2.Fagon JY,Chastre J,Hance AJ,Domart Y,Trouillet JL,GibertC.Evaluation of clinical judgment in the identification andtreatment of nosocomial pneumonia in ventilated patients.Chest1993;103:547–553.3.Fagon JY,Chastre J,Hance AJ,Guiguet M,Trouillet JL,Domart Y,Pierre J,Gibert C.Detection of nosocomial lung infection in ventilated e of a protected specimen brush and quantitative culture techniques in147patients.Am Rev Respir Dis1988;138:110–116.4.Wood AY,Davit AJ II,Ciraulo DL,Arp NW,Richart CM,Maxwell RA,Barker DE.A prospective assessment of diag-nostic efficacy of blind protective bronchial brushings com-pared to bronchoscope-assisted lavage,bronchoscope-directed brushings,and blind endotracheal aspirates in ventilator-asso-ciated pneumonia.J Trauma2003;55:825–834.5.America ATSIDSo.Guidelines for the management of adultswith hospital-acquired,ventilator-associated,and healthcare-associated pneumonia.Am J Respir Crit Care Med2005;171: 388–416.6.Chastre J,Fagon JY,Soler P,Bornet M,Domart Y,TrouilletJL,Gibert C,Hance AJ.Diagnosis of nosocomial bacterial pneumonia in intubated patients undergoing ventilation: comparison of the usefulness of bronchoalveolar lavage and the protected specimen brush.Am J Med1988;85:499–506. 7.Rello J,Ollendorf DA,Oster G,Vera-Llonch M,Bellm L,Redman R,Kollef MH.Epidemiology and outcomes of ventilator-associated pneumonia in a large US database.Chest 2002;122:2115–2121.8.Torres A,Ewig S,Lode H,Carlet J.Defining,treating andpreventing hospital acquired pneumonia:European perspec-tive.Intensive Care Med2009;35:9–29.9.IHI Ifhci-.Implement the Ventilator Bundle.2008.10.Estes RJ,Meduri GU.The pathogenesis of ventilator-associ-ated pneumonia:I.Mechanisms of bacterial transcolonization and airway inoculation.Intensive Care Med1995;21:365–383.11.Safdar N,Crnich CJ,Maki DG.The pathogenesis of ventila-tor-associated pneumonia:its relevance to developing effective166Journal of Clinical Monitoring and Computingstrategies for prevention.Respir Care2005;50:725–739dis-cussion39–41.12.Alcon A,Fabregas N,Torres A.Hospital-acquired pneumonia:etiologic considerations.Infect Dis Clin North Am2003;17: 679–695.13.Bone DK,Davis JL,Zuidema GD,Cameron JL.Aspirationpneumonia.Prevention of aspiration in patients with trach-eostomies.Ann Thorac Surg1974;18:30–37.14.Gal TJ.Effects of endotracheal intubation on normal coughperformance.Anesthesiology1980;52:324–329.15.Klainer AS,Turndorf H,Wu WH,Maewal H,Allender P.Surface alterations due to endotracheal intubation.Am J Med 1975;58:674–683.16.Levine SA,Niederman MS.The impact of tracheal intubationon host defenses and risks for nosocomial pneumonia.Clin Chest Med1991;12:523–543.17.Kollef MH.Ventilator-associated pneumonia.A multivariateanalysis.JAMA1993;270:1965–1970.18.de Latorre FJ,Pont T,Ferrer A,Rossello J,Palomar M,PlanasM.Pattern of tracheal colonization during mechanical venti-lation.Am J Respir Crit Care Med1995;152:1028–1033.19.Ewig S,Torres A,El-Ebiary M,Fabregas N,Hernandez C,Gonzalez J,Nicolas JM,Soto L.Bacterial colonization patterns in mechanically ventilated patients with traumatic and medical head injury.Incidence,risk factors,and association with ven-tilator-associated pneumonia.Am J Respir Crit Care Med 1999;159:188–198.20.Meduri GU,Estes RJ.The pathogenesis of ventilator-associ-ated pneumonia:II.The lower respiratory tract.Intensive Care Med1995;21:452–461.21.Hamill RJ,Houston ED,Georghiou PR,Wright CE,KozaMA,Cadle RM,Goepfert PA,Lewis DA,Zenon GJ, Clarridge JE.An outbreak of Burkholderia(formerly Pseudomo-nas)cepacia respiratory tract colonization and infection associ-ated with nebulized albuterol therapy.Ann Intern Med1995;122:762–766.22.Kollef MH,Morrow LE,Baughman RP,Craven DE,McGowan JE Jr,Micek ST,Niederman MS,Ost D,Paterson DL,Segreti J.Health care-associated pneumonia(HCAP):a critical appraisal to improve identification,management,and outcomes—proceedings of the HCAP summit.Clin Infect Dis 2008;46(Suppl4):S296–S334quiz5–8.23.Muscedere J,Dodek P,Keenan S,Fowler R,Cook D,Hey-land prehensive evidence-based clinical practice guidelines for ventilator-associated pneumonia:prevention.J Crit Care2008;23:126–137.24.Rouby JJ,Laurent P,Gosnach M,Cambau E,Lamas G,Zouaoui A,Leguillou JL,Bodin L,Khac TD,Marsault C,et al.Risk factors and clinical relevance of nosocomial maxillary sinusitis in the critically ill.Am J Respir Crit Care Med1994;150:776–783.25.Drakulovic MB,Torres A,Bauer TT,Nicolas JM,Nogue S,Ferrer M.Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients:a randomised ncet1999;354:1851–1858.26.van Nieuwenhoven CA,Vandenbroucke-Grauls C,van TielFH,Joore HC,van Schijndel RJ,van der Tweel I,Ramsay G, Bonten MJ.Feasibility and effects of the semirecumbent po-sition to prevent ventilator-associated pneumonia:a random-ized study.Crit Care Med2006;34:396–402.27.Prod’hom G,Leuenberger P,Koerfer J,Blum A,Chiolero R,Schaller MD,Perret C,Spinnler O,Blondel J,Siegrist H, SaghafiL,Blanc D,Francioli P.Nosocomial pneumonia in mechanically ventilated patients receiving antacid,ranitidine, or sucralfate as prophylaxis for stress ulcer.A randomized controlled trial.Ann Intern Med1994;120:653–662.28.Cook D,Guyatt G,Marshall J,Leasa D,Fuller H,Hall R,Peters S,Rutledge F,Griffith L,McLellan A,Wood G,KirbyA.A comparison of sucralfate and ranitidine for the preventionof upper gastrointestinal bleeding in patients requiring mechanical ventilation.Canadian Critical Care Trials Group.N Engl J Med1998;338:791–797.29.Kress JP,Pohlman AS,O’Connor MF,Hall JB.Daily inter-ruption of sedative infusions in critically ill patients undergoing mechanical ventilation.N Engl J Med2000;342:1471–1477.30.Chan EY,Ruest A,Meade MO,Cook DJ.Oral decontami-nation for prevention of pneumonia in mechanically ventilated adults:systematic review and meta-analysis.BMJ2007;334: 889.31.Smulders K,van der Hoeven H,Weers-Pothoff I,Van-denbroucke-Grauls C.A randomized clinical trial of inter-mittent subglottic secretion drainage in patients receiving mechanical ventilation.Chest2002;121:858–862.32.Kollef MH,Skubas NJ,Sundt TM.A randomized clinical trialof continuous aspiration of subglottic secretions in cardiac surgery patients.Chest1999;116:1339–1346.33.Bouza E,Perez MJ,Munoz P,Rincon C,Barrio JM,Hortal J.Continuous aspiration of subglottic secretions in the prevention of ventilator-associated pneumonia in the postoperative period of major heart surgery.Chest2008;134:938–946.34.Dezfulian C,Shojania K,Collard HR,Kim HM,Matthay MA,Saint S.Subglottic secretion drainage for preventing ventilator-associated pneumonia:a meta-analysis.Am J Med2005;118: 11–18.35.Berra L,Panigada M,De Marchi L,Greco G,ZX Y,BaccarelliA,Pohlmann J,Costello KF,Appleton J,Mahar R,Lewan-dowski R,Ravitz L,Kolobow T.New approaches for the prevention of airway infection in ventilated patients.Lessons learned from laboratory animal studies at the National Institutes of Health.Minerva Anestesiol2003;69:342–347.36.Kollef MH,Afessa B,Anzueto A,Veremakis C,Kerr KM,Margolis BD,Craven DE,Roberts PR,Arroliga AC, Hubmayr RD,Restrepo MI,Auger WR,Schinner R.Silver-coated endotracheal tubes and incidence of ventilator-associ-ated pneumonia:the NASCENT randomized trial.JAMA 2008;300:805–813.37.Asai T,Shingu K.Leakage offluid around high-volume,low-pressure cuffs apparatus A comparison of four tracheal tubes.Anaesthesia2001;56:38–42.38.Dullenkopf A,Schmitz A,Gerber AC,Weiss M.Trachealsealing characteristics of pediatric cuffed tracheal tubes.Paediatr Anaesth2004;14:825–830.39.Lorente L,Lecuona M,Jimenez A,Mora ML,Sierra A.Influence of an endotracheal tube with polyurethane cuff and subglottic secretion drainage on pneumonia.Am J Respir Crit Care Med2007;176:1079–1083.40.Stauffer JL,Olson DE,Petty plications and conse-quences of endotracheal intubation and tracheotomy.A pro-spective study of150critically ill adult patients.Am J Med 1981;70:65–76.Efrati et al.:VAP Status and Future Recommendations167。