计算方法复习提纲(包括定义定理).
- 格式:ppt
- 大小:1.63 MB
- 文档页数:43
数值计算方法复习提纲第一章 数值计算中的误差分析 1.了解误差及其主要来源,误差估计;2.了解误差(绝对误差、相对误差)和有效数字的概念及其关系;3.掌握算法及其稳定性,设计算法遵循的原则。
1、 误差的来源 模型误差 观测误差 截断误差 舍入误差 2误差与有效数字绝对误差 E (x )=x-x *绝对误差限ε εε+≤≤-**x x x相对误差 ***/)(/)()(x x x x x x x E r -≈-=有效数字m n a a a x 10.....021*⨯±=若n m x x -⨯≤-1021*,称*x 有n 位有效数字。
有效数字与误差关系(1) m 一定时,有效数字n 越多,绝对误差限越小; (2)*x 有n 位有效数字,则相对误差限为)1(11021)(--⨯≤n r a x E 。
选择算法应遵循的原则1、 选用数值稳定的算法,控制误差传播; 例 ⎰=101dx e x eI xn neI nI I n n 11101-=-=- △!n x n=△x 02、 简化计算步骤,减少运算次数;3、 避免两个相近数相减,和接近零的数作分母; 避免第二章 线性方程组的数值解法1.了解Gauss 消元法、主元消元法基本思想及算法; 2.掌握矩阵的三角分解,并利用三角分解求解方程组; (Doolittle 分解;Crout 分解;Cholesky 分解;追赶法)3.掌握迭代法的基本思想,Jacobi 迭代法与Gauss-Seidel 迭代法;4.掌握向量与矩阵的范数及其性质,迭代法的收敛性及其判定 。
本章主要解决线性方程组求解问题,假设n 行n 列线性方程组有唯一解,如何得到其解?⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a (22112222212111212111)两类方法,第一是直接解法,得到其精确解;第二是迭代解法,得到其近似解。
复习提纲第一章:1、极限(夹逼准则)2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法2、分部积分法(注意加 C )定积分:1、定义2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程)3、空间平面4、空间旋转面(柱面)具体内容函数收敛比如函数的极限是a,那么我们可以叫他为函数收敛于 a 性质如果函数收敛那么极限唯一。
如果函数收敛它一定有界(有界是指函数定义域存在一个数使得函数值的绝对值大于等于这个数)。
绕口令:函数有界是函数收敛的必要条件(因为可能极限不存在)证明极限的方法1求函数极限的方法定义证明设|Xn|为一数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,|Xn - a|<ε 都成立,那么就称常数a是数列|Xn|的极限,或称数列|Xn|收敛于a。
记为lim Xn = a 或Xn→a(n→∞)2利用左右极限左右极限存在并相等。
3利用极限存在准则一、单调有界准则,如单调递增又有上界者,或者单调递减又有下界者。
二、夹逼准则,如能找到比目标数列或者函数大而有极限的数列或函数并且又能找到比目标数列或者函数小且有极限的数列或者函数,那么目标数列或者函数必定存在极限。
4利用两个重要极限1)x->0时,sinx/x=1 2)x->无穷时,(1+1/x)^x=e x趋近0的时候5极限的运算法则。
初中数学知识点复习提纲新一轮中考复习备考周期正式开始,你是不是还在为了数学怎么复习而苦恼呢?你知道初中数学的知识点有哪些吗?以下是小编精心收集整理的初中数学知识点复习提纲,肯定会对你有所帮助的,来阅读一下吧!初中数学知识点复习提纲1、有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好2、合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样3、去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号.4、一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒,5、平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆:5.1 完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央:首±尾括号带平方,尾项符号随中央。
5.2 因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚5.3 单项式运算:加、减、乘、除、乘(开)方,三级运算分得清;系数进行同级(运)算,指数运算降级(进)行。
5.4 一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
5.5 一元一次不等式组的解集:大大取较大,小小取较小,小大、大小取中间,大小、小大无处找,一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
6.1 分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键找出最简公分母,通分不是很难;变号必须两处,结果要求最简6.2 分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍,别含糊。
七年级下册数学复习提纲一、有理数1. 有理数的概念和表示方法•有理数的定义•有理数的表示方法–数轴表示法–分数表示法2. 有理数的加法和减法•有理数加法的规则•有理数减法的规则3. 有理数的乘法和除法•有理数乘法的规则•有理数除法的规则•有理数乘除法混合运算的顺序4. 有理数的比较•有理数的大小关系•有理数的绝对值5. 有理数的简化和约分•有理数的约分•有理数的最简形式二、代数式和运算1. 代数式的概念和性质•代数式的定义•代数式的性质–相同项合并–同类项合并2. 代数式的加法和减法•代数式加法的规则•代数式减法的规则3. 代数式的乘法•代数式乘法的规则•乘法交换律•乘法分配率4. 代数式的化简•代数式的合并同类项•代数式的展开三、一次函数1. 一次函数的概念和表示方法•一次函数的定义•一次函数的表示方法2. 一次函数的图象和性质•一次函数的图象特征–斜率–截距3. 一次函数的线性关系•一次函数的线性关系–直线的斜率和截距–斜率与线的倾斜度的关系4. 一次函数的应用•平均速度的计算•工资与工作时间的关系•成本与产量的关系四、图形的认识和性质1. 图形的基本概念•点、线、面的概念2. 直线与角的认识•平行线和垂直线的定义•角的定义和分类3. 三角形的认识•三角形的定义和分类•三角形的内、外角和特殊角•三角形的线段关系–边长关系–角度关系4. 四边形的认识•四边形的定义和分类•四边形的性质–等边四边形–等角四边形5. 圆的认识•圆的定义和性质•圆的元素–半径–直径–弧–弦6. 图形的周长和面积•图形的周长的计算•图形的面积的计算–三角形的面积–矩形的面积–圆的面积五、数据的收集和整理1. 数据的收集和整理的方法•数据的来源•数据的收集方法2. 数据的整理和分析•数据表的制作•数据的整理和归纳•数据的图表表示3. 概率的认识和应用•概率的定义•试验与事件•概率的计算以上是七年级下册数学复习的提纲,涵盖了有理数、代数式和运算、一次函数、图形的认识和性质、数据的收集和整理等内容。
数据结构与算法复习提纲(详细版)数据结构与算法复习提纲第一章引论一、数学知识复习1、对数(重要公式:X A=B当且仅当A=log X B;关键思路:将对数转化成为指数分析)2、级数(重要公式:∑A i和∑i A;关键思路:同时乘上某个系数再相减)3、证明方法(数学归纳法和反证法:三个关键步骤(归纳基础、归纳假设、归纳证明))二、C++类1、构造函数(使用默认参数的构造函数;初始化列表)2、访问函数和修改函数(关键字const)3、接口与实现的分离(声明与实现必须精确匹配,两个例外:默认参数和explicit)三、C++细节1、参数传递(一般情形:单向传递/引用:双向传递/常引用:避免大对象的拷贝)2、★三大函数(当数据成员含有指针类型,三大函数必须显式给出;避免浅复制)⑴、析构函数(形式:~类名()/作用:释放资源)⑵、复制构造函数(形式:类名(const 类名&rhs)/作用:利用已有对象复制一个新对象)⑶、operator=(形式:const 类名&operator=(const 类名&rhs)/作用:赋值)四、模板1、★函数模板定义(template 通用函数定义)2、★类模板⑴、定义(template class 类模板名)⑵、调用(class 类模板名<实际参数> 对象名(参数))3、函数对象(定义一个包含零个数据成员和一个成员函数的类,然后传递该类的实例)五、矩阵1、基本思想(矩阵利用向量的向量来实现,即vector array)2、典型代码分析(包括构造函数和operator[]重载)第二章算法分析一、数学基础1、重要定义⑴、f(N)=Ο(g(N))(若存在正常数C和n0,使得当N≥n0时,有f(N)≤Cg(N))⑵、f(N)=Ω(g(N))、f(N)=Θ(g(N))和f(N)=ο(g(N)))2、★重要工具⑴、性质:log k N=O(N)⑵、洛比塔法则:判断两个函数的相对增长率二、最大子列和问题1、算法Ⅰ⑴、算法思想(i表示序列起点,j表示序列终点,k从i扫描到j)⑵、★时间复杂度分析(注意分析方法:∑(i:0~N-1)∑(j:i~N-1)∑(k:i~j))⑶、★算法的缺陷(重复计算)2、算法Ⅱ算法思想(i表示序列起点,j表示序列终点(省略辅助变量k))3、算法Ⅲ⑴、★分治策略(递归程序:传递数组和左右边界,后者界定了数组要被处理的范围/单行驱动程序:传递数组和0,N-1而启动递归程序)⑵、算法思想(递归出口分析;最大子序列和的三种可能情况)⑶、★时间复杂度分析(重要公式:T(N)=2T(N/2)+N)4、算法Ⅳ(任何负的子序列不可能是最优子序列的前缀)三、折半搜索1、概念:折半查找(在已排好序的队列中查找数X)2、算法思想(关键是分析low、high和mid)第三章表、栈和队列一、STL中的向量和表(STL,Standard Template Library,标准模板库)1、STL定义了vector(向量)和list(双向链表)两个类模板2、★★迭代器(iterator)⑴、迭代器的作用(位置标记)⑵、迭代器的声明(典例:vecto r。
算法复习提纲题型及分数分布:1.填空题15分2.简答题、证明题25分左右3.计算题2-3题30分左右4.算法设计题2-3题30分左右复习提纲一、算法基础1. 什么是算法?2. 算法的五个重要特性3. 运算的分类:时间囿界于常数的运算、时间非囿界于常数的运算,为什么要定义时间囿界于常数的运算?怎么分析时间非囿界于常数的运算?4.什么是事前分析和事后测试?各阶段的目标和特点是什么?5.什么是函数表达式的数量级?数量级的大小怎么反应了算法复杂度的高低?6.什么是限界函数?怎么得来的?7.限界函数:上界函数、下界函数、“均值”函数的定义和性质8.理解定理1.2,P76定理9.掌握数学归纳法、反证法、反例法等证明方法二、递归与递归式1.什么是递归和递归程序设计?2.递归的结构是什么?3.什么是直接递归和间接递归?4.递归程序有哪些效率问题?各自的原因是什么?5.怎么消去递归(不要求)6.什么是代换法、递归树法、主方法?(例题、习题)三、分治法1.简述分治法的基本思想?分治法分解问题的基本要求是什么?为什么说分治与递归像一对孪生兄弟?2.可用分治法求解的问题应具有的特征?(了解)3.分治法求解的三个步骤。
4.二分检索(3.2节)1)了解算法2)重点掌握算法复杂度的分析技术(1)对成功和不成功检索情况的讨论(2)什么是二元比较树?内结点、外结点分别代表了什么?比较次数和结点在树中的级数(或根到结点的路径长度)之间的关系。
3)定理3.1及其证明过程和结论4)什么叫做以比较为基础的检索?其下界是什么?(了解)5)为什么说二分检索是解决检索问题的最优的最坏情况算法?5.找最大和最小元素(3.3节):一般了解,理解递归程序的效率问题6.基于分治的分类算法(3.4节):回顾数据结构相关知识,知道每种分类算法的基本思想、算法复杂度、适用性等方面的性质(不考算法,考应用)1)P46:以关键字比较为基础的分类算法的时间下界是什么?怎么证明的?(了解)2)P60:一个改进了的快速分类迭代算法模型,其空间复杂度为O(logn)是怎么得来的?7.选择问题(3.5节)1)了解基于partition 的选择算法设计思想、最坏、平均时间复杂度的结论和证明。
数学重点知识复习提纲数学作为一门基础学科,对于学生来说是必修的科目之一。
然而,由于数学的抽象性和复杂性,很多学生在学习过程中会遇到困难。
为了帮助学生更好地复习数学知识,下面将提供一个数学重点知识复习提纲,以便学生有条不紊地进行复习。
1. 数的性质与运算1.1 自然数、整数、有理数、无理数和实数的概念与性质1.2 加法、减法、乘法和除法的运算性质1.3 分数的性质与运算1.4 百分数、比例与比例关系的应用2. 代数式与方程式2.1 代数式的概念与性质2.2 一元一次方程与一元一次不等式的解法2.3 二元一次方程组的解法2.4 平方根与二次方程的解法2.5 分式方程与分式不等式的解法3. 几何图形与几何变换3.1 平面图形的性质与分类3.2 直线、角、三角形、四边形和多边形的性质3.3 圆的性质与圆周角3.4 相似与全等的概念与判定3.5 平移、旋转、翻转和对称的基本变换4. 函数与图像4.1 函数的概念与性质4.2 一次函数、二次函数和指数函数的图像与性质4.3 对数函数、三角函数和反三角函数的图像与性质4.4 函数的运算与复合函数的概念与性质4.5 函数方程与函数不等式的解法5. 统计与概率5.1 数据的收集、整理与分析5.2 频数表、频率表和频率分布图的制作与分析5.3 概率的概念与计算5.4 事件与样本空间的概念与性质5.5 随机变量与概率分布的概念与性质以上提纲涵盖了数学的主要知识点,学生可以根据自己的实际情况进行复习。
在复习过程中,可以采取以下策略:首先,建立知识框架。
将每个知识点的概念、性质和解题方法整理成表格或思维导图,有助于学生理清知识脉络。
其次,掌握基本概念。
数学是建立在基本概念之上的,学生要深入理解每个概念的含义和性质,做到心中有数。
再次,多做习题。
通过大量的习题练习,可以帮助学生巩固知识,提高解题能力。
可以选择一些典型的习题进行反复练习,同时也要注重思考和总结。
最后,做好归纳总结。
高等数学(一)复习提纲1、函数的定义域、复合函数的求解。
2、基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数。
初等函数:由基本初等函数和常数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数。
3、无穷小的定义与性质。
1)若函数f(x)当0x x →(或∞→x )时的极限为零,则称f(x)当0x x → (或∞→x )时为无穷小量。
注:(1)无穷小量是个变量而不是个很小的数。
(2)零是常数中唯一的无穷小量。
2)无穷小的性质:有限个无穷小的代数和是无穷小、有界函数与无穷小的乘积是无穷小、常数与无穷小的乘积是无穷小、有限个无穷小的乘积也是无穷小。
3)函数极限与无穷小的关系:()()A x f xx x =∞→→lim 0的充要条件是()α+=A x f ,其中A 为常数,α是当0x x → (或∞→x )时的无穷小。
4、无穷大的定义。
若当0x x → (或∞→x )时,f(x)的绝对值无限增大,则称函数f(x)当0x x → (或∞→x )时为无穷大量。
注:1)无穷大是变量,不是一个绝对值很大的数。
2)无穷大与无穷小互为倒数。
5、极限的运算法则。
00型:1)用1sin lim 0=→x x x 。
2)因式分解法9323lim --→x x x 。
3)分子分母有理化法1131lim--→x x x 。
∞∞型: 分子分母同除以一个非零因式, 如:3212322lim +--+∞→x x x x x 。
6、两个重要极限。
1)1sin lim=→x xx 2)e x xx =⎪⎭⎫⎝⎛+∞→11lim 以及()e x xx =+→1lim10。
会用重要极限求函数极限。
7、求两个无穷小之比极限时,分子、分母都可用等价无穷小代替。
如:xxx 3tan 2sin lim→。
注:等价无穷小只能在乘积和商中进行,不能在加减运算中代换 8、连续定义:函数()x f 在点0x 处连续,必须同时满足三个条件: 1) ()x f 在点0x 处有定义; 2))(limx f x x →存在 ;3)极限值等于函数值,即()0)(limx f x f x x =→。