中考数学总复习34
- 格式:ppt
- 大小:1.16 MB
- 文档页数:15
一、选择题(每题3分,共30分)1. 下列选项中,绝对值最小的是()A. -2B. -1C. 0D. 12. 下列选项中,最简分数是()A. $\frac{2}{4}$B. $\frac{3}{5}$C. $\frac{4}{6}$D. $\frac{5}{7}$3. 已知一个等腰三角形的底边长为4cm,腰长为6cm,则该三角形的周长是()A. 14cmB. 16cmC. 18cmD. 20cm4. 下列方程中,解为x=2的是()A. 2x - 1 = 3B. 3x + 2 = 8C. 4x - 3 = 7D. 5x + 4 = 95. 下列选项中,关于一次函数y=kx+b(k≠0)的图象,当k>0,b>0时,正确的说法是()A. 图象过一、二、三象限B. 图象过一、二、四象限C. 图象过一、三、四象限D. 图象过一、二、三、四象限6. 下列选项中,关于反比例函数y=k/x(k≠0)的图象,正确的说法是()A. 图象过一、二、三象限B. 图象过一、二、四象限C. 图象过一、三、四象限D. 图象过一、二、三、四象限7. 下列选项中,关于二次函数y=ax^2+bx+c(a≠0)的图象,当a>0时,正确的说法是()A. 图象开口向上,对称轴为x=-b/2aB. 图象开口向下,对称轴为x=-b/2aC. 图象开口向上,对称轴为x=b/2aD. 图象开口向下,对称轴为x=b/2a8. 下列选项中,关于平行四边形的性质,正确的是()A. 对角线互相平分B. 对边互相平行C. 对角线互相垂直D. 对边互相垂直9. 下列选项中,关于相似三角形的性质,正确的是()A. 对应边成比例B. 对应角相等C. 对应边相等D. 对应角互补10. 下列选项中,关于圆的性质,正确的是()A. 圆的直径是圆的最长弦B. 圆的半径是圆的最短弦C. 圆的直径是圆的对称轴D. 圆的半径是圆的对称轴二、填空题(每题3分,共30分)11. $\sqrt{16}$的值是______。
解直角三角形的押轴题解析汇编一解直角三角形一、选择题1. (2011贵州毕节,14,3分)如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为︒20,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了( )A、︒20tan8 B、︒20tan8 C、︒20sin8 D、︒20cos8【解题思路】设木桩与AB 的交点为E,过E作EH⊥BC,垂足为H,在Rt△BEH中,tan∠B=BHEH,020tan8tan=∠=BBHEH【答案】A【点评】本题考查解直角三角形的知识在实际中的应用,在解题时,要从实际问题中构建直角三角形的模型,再运用三角函数知识解决。
难度中等。
2.(2011湖北黄石,7,3分)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图(3).则三角板的最大边的长为A.3cm B.5cm C.23cm D.26cm【解题思路】过点A作AD垂直纸带下边沿于点D, 因为∠ACD=30°,所以AC=2AD=6cm,所以等腰直角三角板的最大边的长为6cm.2【答案】D【点评】本题以学生身边的三角板和纸带为背景,把锐角三角函数融合在内,图是学生熟知的,符合学生的生活常识和认知基础,使学生身边的实际问题与数学问题发生一种自然的联系,同时考查了学生从图形中获取信息的能力,体现了数学与学生生活息息相关的基本理念.构造直角三角形,用好30°,求出AC长是解题的关键.难度中等.3. (2011年湖北省武汉市3分)如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为A.12秒.B.16秒.C.20秒. D.24秒.分析:求出点A 到ON 的距离,也就是台风中心到A 处的最短距离,找出A 处受影响的起点和终点,计算之间的距离,得出受影响的时间. 答案:B点评:本题以受台风影响或噪音等影响为背景考查解直角三角形、勾股定理等知识点是常见的题目,关键是理解点A 到直线ON 的距离就是台风中心到点A 的最短距离.4. (2011湖北荆州,8,3分)在ABC ∆中,0120=∠A ,AB=4,AC=2,则B sin 的值是( ) A. 1475 B. 53C. 721D.1421 C【解题思路】如图,作C D ⊥AB 于D ,则0060180=∠-=∠A DAC ,在ADC ∆中,AC=2可得AD=1,CD=3,所以BD=5,在ABC ∆中,7222=+=DC BD BC ,所以===723sin BC CD B 1421【答案】D【点评】解决本题的关键是通过添加辅助线把锐角三角形转化为直角三角形,再正确运用三角函数的有关知识解决. 5.10.(2011四川绵阳10,3)周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在A 处测得她看塔顶的仰角α为45°,小丽站在B 处测得她看塔顶的仰角β为30°.她们又测出A 、B 两点的距离为30米.假设她们的眼睛离头顶都为10cm ,则可计算出塔高约为(结果精确到0.01=1.414 1.732) ( )A .36.21米B .37.71米C .40.98米D .42.48米【解题思路】如下图,AB =EF =30米,CD =1.5米,∠GDE =90°,∠DEG =45°,∠DFG =30°.设DG =x 米,在Rt △DGF 中,tan ∠DFG =DGDF,即tan30°=3=x DF ,∴DF .在Rt △DGE中,∵∠GDE =90°,∠DEG =45°,∴DE =DG =x .根据题意,-x =30,解得x≈40.98.∴CG =40.98+1.5=42.48(米).【答案】D【点评】本题主要考查了解直角三角形的应用,分别在两个直角三角形中,设出未知数,由锐角三角函数把与已知线段在同一条直线上的两条未知线段表示出来,然后构建方程,解方程即可求出未知线段的长.1. (2011湖北黄石,7,3分)将一个有45°角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图(3).则三角板的最大边的长为A.3cm B.5cm C.23cm D.26cm【解题思路】过点A作AD垂直纸带下边沿于点D, 因为∠ACD=30°,所以AC=2AD=6cm,所以等腰直角三角板的最大边的长为6cm.2【答案】D【点评】本题以学生身边的三角板和纸带为背景,把锐角三角函数融合在内,图是学生熟知的,符合学生的生活常识和认知基础,使学生身边的实际问题与数学问题发生一种自然的联系,同时考查了学生从图形中获取信息的能力,体现了数学与学生生活息息相关的基本理念.构造直角三角形,用好30°,求出AC长是解题的关键.难度中等.二、填空题1.(2011甘肃兰州,17,4分)某水库大坝的横截面是梯形,坝内斜坡的坡度i=1i=1:1,则两个坡角的和【解题思路】依题意先作出图形,如下图所示,坝内斜坡的坡度,即为DE与AE的比,坝外斜坡的坡度i=1:1,即为CF与BF的比,进而可分别求出两个坡角.如图所示,∵ED:AE=1:,∴∠A=30°.∵CF:BF=1:1,∴∠B=45°.∴∠A+∠B=30°+45°=75°.【答案】75° .【点评】本题属于解直角三角形的应用——坡度坡角问题,知道一些特殊角的边长之间的比例,会求解简单的直角三角形.难度较小. 2. (2011湖北襄阳,14,3分)在207国道襄阳段改造工程中,需沿AC方向开山修路(如图3所示),为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=140°,BD=1000m,∠D=50°,为了使开挖点E在直线AC上,那么DE=_____________m(供选用的三角函数值:sin50°=0.7660,cos50°=0.6428,tan50°=1.192)【解题思路】本题就是在Rt △BDE 中,已知斜边BD =1000m ,∠D =50°,求∠D 的邻边DE .由cos ∠D =DE BD得DE =1000•cos50°=1000×0.6428=642.8(米). 【答案】642.8.【点评】本题是解直角三角形应用题,直接由教材中的练习题改编而成,解答关键是阅读题意,从中建立恰当的解直角三角形模型.难度较小. 3.16.(2011内蒙古乌兰察布,16,4分)某厂家新开发的一种电动车如图,它的大灯A 射出的光线AB,AC 与地面MN 所夹的锐角分别为 80和 100,大灯A 与地面离地面的距离为lm 则该车大灯照亮地面的宽度BC 是 m .(不考虑其它因素)【解题思路】过点A 作AD ⊥MN 于D ,则BC=BD-CD,而BD 、CD 分别在直角三角形ABD 、ACD 中求出:08tan 1=BD ,010tan 1=CD 则第19题BC=BD-CD=5710tan 18tan 100=- 【答案】57.【点评】本题主要考查了直角三角形的边角关系及其应用,解决本题的关键是构造直角三角形,考查了考查考生应用知识解决问题的能力.难度中等.三、解答题1. (2011安徽,19,10分)如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m 高度C 处的飞机,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°,求隧道AB 的长.(3取1.73)【解题思路】在Rt △COA 中,由条件可求出OA 的长;而在Rt △COB 中,由条件可求出OB 的长,最后由AB=OB-OA.解决问题.【答案】解:在Rt △COA 中,∠OCA =90°- 60°= 30°,OCOA= 30tan , ∴OA350033150030tan 1500=⨯=⨯= , 在Rt △COB 中,∠OCB=∠CBO=∠DCB=45°, ∴OB=OC=1500,∴AB=635865150035001500=-≈-(m). 答:隧道AB 的长约为635m.【点评】这是一道三角函数应用题,利用特殊角的三角函数值通过计算而不需要列方程就可以解决问题,但应注意结果的精确要求.难度较小.2. (2011安徽芜湖,18,8分)如图,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD 的高度,他们先在A 处测得古塔顶端点D 的仰角为45︒,再沿着BA 的方向后退20m 至C 处,测得古塔顶端点D 的仰角为30︒.求该古塔BD 的高度 1.732≈,结果保留一位小数).【解题思路】在Rt △BCD 和Rt △ABD 中,利用已知条件,根据三角函数知识都不能直接求出BD 长,因此应考虑用BD 长的代数式表示出相关量,列方程来求解.【答案】解:根据题意可知:45,30.BAD BCD ∠=︒∠=︒20m.AC = 在Rt ABD △中,由45,BAD BDA ∠=∠=︒得AB BD =.在Rt BDC △中,由tan BD BCD BC ∠=.得.tan 30BDBC ==︒又∵BC AB AC -=,20BD -=.∴27.3BD =≈(m). 答:该古塔的高度约为27.3m.【点评】本题是一道常规的三角函数应用题,主要考查利用三角函数相关知识解决实际问题的能力,而特殊角的三角函数值往往是考查的重点.本题不能直接通过计算求解,需要列方程求解.难度中等. 3. (2011广东广州,23, 12分)(12分)已知R t △ABC 的斜边AB 在平面直角坐标系的x 轴上,点C(1,3)在反比例函数y=xk的图象上,且sin ∠BAC=53。
九年级数学总复习教案 第1课 实数复习教学目标:1、理解现实世界中具有相反意义的量的含义,会借助数轴理解实数的相反数和绝对值的意义,会求实数的相反数和绝对值,并会比较实数的大小。
2、了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根和立方根。
3、了解无理数与实数的概念,知道实数与数轴上的点的一一对应的关系,会用一个有理数估计一个无理数的大致范围,了解近似数与有效数字的概念,会用计算器进行近似计算。
4、结合具体问题渗透化归思想,分类讨论的数学思想方法。
复习教学过程设计: Ⅰ [唤醒] 一、填空:1、-1.5的相反数是 、倒数是 、绝对值是 、1- 2 的绝对值是 。
2、倒数等于本身的数是 ,绝对值等于本身的数是 。
算术平方根等于本身的数是 ,立方根等于本身的数是 。
3、2-1= ,-2-2= ,(-12 )-2= ,(3.14-∏ )0=4、在227,∏,-8 ,3(-64) ,sin600,tan450中,无理数共有 个。
5、用科学记数法表示:-3700000= ,0.000312=用科学记数法表示的数3.4×105 中有 个有效数字,它精确到 位。
6、点A 在数轴上表示实数2,在数轴上到A 点的距离是3的点表示的数是 。
7、3260 精确到0.1 的近似值为 ,误差小于1的近似值为 。
8、比较下列各位数的大小:-23 -34,0 -1, tan300 sin600二、判断:1、不带根号的数都是有理数。
( )2、无理数都是无限小数。
( )3、232是分数,也是有理数。
( )4、3-2没有平方根。
( ) 5、若3x =x ,则x 的值是0和1。
( )6、a 2的算术平方根是a 。
( ) 三、选择:1、和数轴上的点一一对应的数是( ) A 、整数 B 、有理数 C 、无理数 D 、实数2、已知:xy < 0,且|x|=3 ,|y|=1,则x+y 的值等于( ) A 、2或-2 B 、4或-4 C 、4或2 D 、4或-4或2或-23、如果一个数的平方根与立方根相同,这个数为( ) A 、0 B 、1 C 、0或1 D 、0或+1或-1 Ⅱ[尝试]例1,已知下列各数:∏,-2.6,227,0,0.4,-(-3),3(-27) ,(--12)-2,cos300,23.6 ,-10,0.21221222122221……(按此规律,从左至右,在每相邻的两个1之间,每段在原有2的基础上再增加一个2)。
新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:数与式综合复习—知识讲解(基础)【考纲要求】(1) 借助数轴理解相反数和绝对值的意义,会求有理数的倒数、相反数与绝对值.理解有理数的运算律,并能运用运算律简化运算;(2)了解平方根、算术平方根、立方根的概念,了解无理数和实数的概念,知道实数与数轴上的点一一对应;会用根号表示数的平方根、立方根.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;(3)了解整式、分式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算.会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.【知识网络】【考点梳理】考点一、实数的有关概念、性质1.实数及其分类实数可以按照下面的方法分类:实数还可以按照下面的方法分类:要点诠释:整数和分数统称有理数.无限不循环小数叫做无理数.有理数和无理数统称实数.2.数轴规定了原点、正方向和单位长度的直线叫做数轴.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.实数和数轴上的点是一一对应的关系.要点诠释:实数和数轴上的点的这种一一对应的关系是数学中把数和形结合起来的重要基础.3.相反数实数a和-a叫做互为相反数.零的相反数是零.一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等.要点诠释:两个互为相反数的数的运算特征是它们的和等于零,即如果a和b互为相反数,那么a+b=0;反过来,如果a+b=0,那么a和b互为相反数.4.绝对值一个实数的绝对值就是数轴上表示这个数的点与原点的距离.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即如果a>0,那么|a|=a;如果a<0,那么|a|=-a;如果a=0,那么|a|=0.要点诠释:从绝对值的定义可以知道,一个实数的绝对值是一个非负数.5.实数大小的比较在数轴上表示两个数的点,右边的点所表示的数较大.6.有理数的运算(1)运算法则(略).(2)运算律:加法交换律 a+b=b+a;加法结合律 (a+b)+c =a+(b+c); 乘法交换律 ab =ba ;乘法结合律 (ab)c =a(bc); 分 配 律 a(b+c)=ab+ac .(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减. 算式里如果有括号,先进行括号内的运算. 如果只有同一级运算,从左到右依次运算. 7.平方根如果x 2=a ,那么x 就叫做a 的平方根(也叫做二次方根). 要点诠释:正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根. 8.算术平方根正数a 的正的平方根,叫做a 的算术平方根.零的算术平方根是零. 要点诠释:从算术平方根的概念可以知道,算术平方根是非负数. 9.近似数及有效数字近似地表示某一个量准确值的数,叫做这个量准确值的近似数.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫这个数的有效数字. 10.科学记数法把一个数记成±a ×10n的形式(其中n 是整数,a 是大于或等于1而小于10的数),称为用科学记数法表示这个数.考点二、二次根式、分式的相关概念及性质 1.二次根式的概念≥0) 的式子叫做二次根式.2.最简二次根式和同类二次根式的概念最简二次根式是指满足下列条件的二次根式: (1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 要点诠释:把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式. 常用的二次根式的有理化因式:(1(2)a a +-互为有理化因式;一般地a a +-(3. 3.二次根式的主要性质(1)0(0)a a ≥≥; (2)()2(0)a a a =≥;(3)2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;(4)积的算术平方根的性质:(00)ab a b a b =⋅≥≥,;(5)商的算术平方根的性质:(00)a aa b b b=≥>,. 4. 二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并. (2)二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变.要点诠释:二次根式的混合运算:1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果. 5.代数式的有关概念(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.代数式的分类:(2)有理式:只含有加、减、乘、除、乘方运算(包含数字开方运算)的代数式,叫做有理式. (3)整式:没有除法运算或者虽有除法运算但除式里不含字母的有理式叫做整式. 整式包括单项式和多项式.(4)分式:除式中含有字母的有理式,叫做分式.分式的分母取值如果为零,分式没有意义. 6.整式的运算(1)整式的加减:整式的加减运算,实际上就是合并同类项.在运算时,如果遇到括号,根据去括号法则,先去括号,再合并同类项.(2)整式的乘法:①正整数幂的运算性质:m n m n a a a +=;()m n mn a a =;()m mm ab a b =;m n m n a a a -÷=(a ≠0,m >n).其中m 、n 都是正整数.②整式的乘法:单项式乘单项式,用它们的系数的积作为积的系数,对于相同字母,用它们的指数的和作为积里这个字母的指数,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式. 单项式乘多项式,用单项式去乘多项式的每一项,再把所得的积相加.多项式乘多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.③乘法公式:22()()a b a b a b +-=-; 222()2a b a ab b ±=±+.④零和负整数指数:在mnm na a a-÷=(a ≠0,m ,n 都是正整数)中,当m =n 时,规定01a =;当m <n 时,如m-n =-p(p 是正整数),规定1pp a a-=. 7.因式分解(1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,题目中没有指定数的范围,一般是指在有理数范围内分解.②因式分解以后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简. (2)因式分解的方法①提公因式法:ma+mb+mc =m(a+b+c).②运用公式法:22()()a b a b a b -=+-;2222()a ab b a b ±+=±;③十字相乘法:2()x a b x ab +++()()x a x b =++.(3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式; ②考虑所给多项式是否能用公式法分解. 要点诠释:因式分解时应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解;②因式分解后,如果有相同因式,应写成幂的形式,并且要把各个因式化简,同时每个因式的首项不含负号;③多项式的因式分解是多项式乘法的逆变形. 8.分式(1)分式的概念 形如AB的式子叫做分式,其中A 和B 均为整式,B 中含有字母,注意B 的值不能为零. (2)分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.A A MB B M ⨯=⨯,A A MB B M÷=÷.(其中M 是不等于零的整式) (3)分式的运算 ①加减法:a b a b c c c ±±=,a c ad bcb d bd ±±=. ②乘法:ac acb d bd=. ③除法:a c a d adb d bc bc÷==. ④乘方:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数).要点诠释:解分式方程的注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤: (1)审——仔细审题,找出等量关系; (2)设——合理设未知数; (3)列——根据等量关系列出方程; (4)解——解出方程; (5)验——检验增根; (6)答——答题.【典型例题】类型一、实数的有关概念及运算1.实数2-,0.3,172,π-中,无理数的个数是( ) A .2 B .3 C .4 D .5【思路点拨】常见的无理数有以下几种形式:(1)字母型:如π是无理数,24ππ、等都是无理数,而不是分数; (2)构造型:如2.10100100010000…(每两个1之间依次多一个0)就是一个无限不循环的小数;(33256、、,…都是一些开方开不尽的数;(4)三角函数型:sin35°、tan27°、cos29°等.【答案】A ;【解析】本题主要考查无理数的概念.无理数是指无限不循环小数,2,π-都是无限不循环小数, 故共有2个无理数.【总结升华】无理数通常有以下几类:①开方开不尽的数;②含π的数;③看似循环但实际不循环的小数;④三角函数型:sin35°、tan27°、cos29°等.抓住这几类无理数特征,则可以轻松解决有关无理数的相关试题. 举一反三:【课程名称:数与式综合复习 402392 :例1—2】【变式】如图,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( ).A .32--B .-31-C .32+-D .31+【答案】A.2.计算:(1)23220.2549403⎡⎤⎛⎫-⨯-÷-⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦; (2)85(2)25-⨯ .【思路点拨】注意在第(1)题中,32-与3(2)-的不同运算顺序和4499÷⨯的运算顺序. 【答案与解析】(1)23220.2549403⎡⎤⎛⎫-⨯-÷-⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦480.2549409⎛⎫=-⨯-÷⨯- ⎪⎝⎭9249402(8140)4⎛⎫=--⨯⨯-=--- ⎪⎝⎭24143=--=-.(2)85(2)25-⨯444442525(425)25100252500000000=⨯⨯=⨯⨯=⨯=.【总结升华】在进行有理数运算时,要注意运算的顺序,要有灵活运用运算律、运算法则和相反数、倒数、0、1的运算特性的意识,寻求简捷的运算途径.举一反三: 【变式】2517( 2.4)58612⎛⎫-+-+⨯- ⎪⎝⎭;【答案】2517( 2.4)58612⎛⎫-+-+⨯- ⎪⎝⎭21.50.4 1.4 1.5 1.42.95=--+-=--=- .3. 若x-3+x-y+1=0,计算322x y+xy +4y .【思路点拨】几个非负数相加和为0,则这几个非负数必定同时为0,进而求出x 、y 的值. 【答案与解析】依题意得30,10,x x y -=⎧⎨-+=⎩解得3,4,x y =⎧⎨=⎩∴3222224x y+xy +y(x +xy+)y(x+)(x+)(3)410.44222y y y y y ====+⨯=【总结升华】2a ,(a 0)a a ≥,这三个非负数中任意几个相加得0,则每一个都得0.举一反三:【变式】已知|1|80a b ++-=,则a b -= .【答案】本题考查绝对值与算数平方根的非负性,两个非负数的和为0,所以这两数都为0.因为|1|80a b ++-=,所以a=-1,b=8. a b -=﹣9.类型二、分式的有关运算4.对于分式211x x -+,当x 取何值时,(1)分式有意义? (2)分式的值等于零?【思路点拨】当分母等于零时,分式没有意义,此外,分式都有意义;当分子等于零,并且分母不等于零时,分式的值等于零. 【答案与解析】(1)由分母x+1=0,得x =-1.∴ 当x ≠-1时,分式211x x -+有意义.(2)由分子210x -=,得1x =或1x =-. 而当x =-1时,分母x+1=0; 当x =1时,分母10x +=.∴ 当x =l 时,分式211x x -+的值等于零.【总结升华】讨论分式有无意义时,一定要对原分式进行讨论,而不能讨论化简后的分式.类型三、二次根式的运算5.(2014春•平泉县校级期中)已知a=,求﹣的值.【思路点拨】先利用因式分解原式进行化简,再进行约分和利用二次根式的性质计算,由于a==4﹣2,则a ﹣4<0,所以原式可化简为a ﹣3+,然后把a 的值代入计算即可. 【答案与解析】 解:原式=﹣=a ﹣3﹣, ∵a==4﹣2, ∴a ﹣4<0, ∴原式=a ﹣3+=a ﹣3+, =4﹣2﹣3+=2﹣.【总结升华】本题考查了二次根式的化简求值:一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.也考查了分式的混合运算.举一反三:【变式】计算:2(1848)(212)(23)+---;【答案】2(1848)(212)(23)+---(3243)(223)(2263)=+---+646662452623=+---+=-.6.当x 为何值时,下列式子有意义? (1)32x -; (2)125xx -+. 【思路点拨】第(1)题中,根号外的负号与根号是否有意义无关;第(2)题中,因为与分式有关,因此要综合考虑x 的取值范围.【答案与解析】(1)320x -≥,即32x ≤. ∴ 当32x ≤时,32x --有意义. (2)120x -≥,且x+5≠0,∴ 当12x ≤,且x ≠-5时,125x x -+有意义.【总结升华】要使偶次根式有意义,被开方数为非负数;分式有意义分母不为0.举一反三:【课程名称:数与式综合复习 402392 :例1—2】 【变式】下列说法中,正确的是( )A .3的平方根是3B .5的算术平方根是5C .-7的平方根是7-±D .a 的算术平方根是a【答案】B.类型四、数与式的综合运用7.(2014秋•崂山区校级期末)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地面:(1)观察图形,填写下表:图形 (1) (2) (3)… 黑色瓷砖的块数 4 7… 黑白两种瓷砖的总块数 15 25… (2)依上推测,第n 个图形中黑色瓷砖的块数为 ;黑白两种瓷砖的总块数为 (都用含n 的代数式表示)(3)白色瓷砖的块数可能比黑色瓷砖的块数多2015块吗?若能,求出是第几个图形;若不能,请说明理由.【思路点拨】找规律题至少要推算出三个式子的值,再去寻求规律,考察了认真观察、分析、归纳、由特殊到一般,由具体到抽象的能力. 【答案与解析】解:(1)填表如下:图形 (1) (2) (3)… 黑色瓷砖的块数 4 7 10… 黑白两种瓷砖的总块数 15 25 35 …(2)第n 个图形中黑色瓷砖的块数为3n+1;黑白两种瓷砖的总块数为10n+5; (3)能,理由如下:10n+5﹣(3n+1)﹣(3n+1)=2015,精品文档 用心整理资料来源于网络 仅供免费交流使用 解得:n=503答:第503个图形.【总结升华】本题考查数形结合、整理信息,将图形转化为数据,猜想规律、探求结论.抓住其中的黑色瓷砖数目的变化规律,结合图形,观察其变化规律.举一反三:【变式】如图所示的是一块长、宽、高分别为7cm ,5cm 和3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面爬到和顶点A 相对的顶点B 处吃食物,那么它要爬行的最短路径的长是多少?22(57)3153++=(cm).【答案】路径①的长为路径②的长为22(37)5125++=22(35)7113++=(cm). 113。
中考数学总复习教案七篇中考数学总复习教案【篇1】【教学目标】1、会判断一个数是正数还是负数,理解负数的意义。
2、会把已知数在数轴上表示,能说出已知点所表示的数。
3、了解数轴的原点、正方向、单位长度,能画出数轴。
4、会比较数轴上数的大小。
【知识讲解】一、本讲主要学习内容1、负数的意义及表示2、零的位置和地位3、有理数的分类4、数轴概念及三要素5、数轴上数与点的对应关系6、数轴上数的比较大小其中,负数的概念,数轴的概念及其三要素以及数轴上数的比较大小是重点。
负数的'意义是难点。
下面概述一下这六点的主要内容1、负数的意义及表示把大于0的数叫正数如5,3,+3等。
在正数前加上“-”号的数叫做负数如-5,-3,-等。
负数是表示相反意义的量,如:低于海平面-155米表示为-155m,亏损50元表示-50元。
2、零的位置和地位零既不是正数,也不是负数,但它是自然数。
它可以表示没有,也可以在数轴上分隔正数和分数,甚至可以表示始点,表示缺位,这将在下面详细介绍。
中考数学总复习教案【篇2】一、教材分析1.教学目标、重点、难点.教学目标:(1)通过实例,感受引入负数的必要性.(2)了解正数、负数的概念.(3)会区分两种不同意义的量,会用正负数表示具有相反意义的量.重点:理解相反意义的量,理解负数的意义.难点:正确区分两种相反意义的量,并会用正负数表示.2.例、习题的意图通过补充的引例,复习回顾上一学段学习过的数的类型,归纳出我们已经学习了整数和分数,然后通过观察、分析P3的几幅画和图表所列举出的一些实际生活中的具有相反意义的量,让学生感受引入负数的必要性.通过分析正、负数与以前学过的整数和分数的区别与联系,进而归纳出正、负数的概念.例1为P5练习1,设置目的是强化学生对正、负数表示形式的理解.让学生准确的认识和区分正数与负数。
在学生对正、负数的概念与表示形式掌握的基础上,补充例2.例2是明确了哪一种意义的量用正数表示,则与其相反意义的量用负数表示.让学生进一步掌握如何用正、负数表示相反意义的数量.并理解相反意义与数量的含义.进而利用课本P5观察让学生认识正、负数表示实际生活中的数量的意义和必要性。
与圆的有关计算一、选择题1. (某某东营,7,3分)如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm ,则这块扇形铁皮的半径是( ) A .40cm B .50cm C .60cm D .80cm【答案】A【逐步提示】本题考查弧长公式与圆锥侧面展开图,先计算圆锥的底面周长,再根据圆锥的底面周长等于扇形的弧长列出方程求解.【详细解答】解:圆锥的底面周长为:π×60=60πcm,所以扇形的弧长为60πcm.根据扇形的弧长公式可得27060180rππ=,解得r=40cm .故选A . 【解后反思】解答本题易出现两处错误:一是公式错误,如把弧长公式与扇形面积公式搞错搞混;二是把直径误以为半径.圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长,扇形的面积等于圆锥的侧面积. 【关键词】弧长公式;圆锥的侧面展开图2. (某某东营,17,4分)如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD 的面积为__________.【答案】25【逐步提示】本题考查弧长公式及扇形面积公式,【详细解答】解:∵正方形的边长为5,∴弧BD 的弧长=10,∴S 扇形ABD =111052522lr =⨯⨯=.故答案为25.【解后反思】解答本题需掌握:(1)弧长公式:l=180n r π;扇形面积公式:S 扇形=2360n r π=12lr .【关键词】弧长公式;扇形面积公式 3.4. .(某某某某,10,3分)如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙∠ACB=30°,AB=3,则阴影部分的面积是( )(A )32 (B )6π(C )32-6π (D )33-6π 【答案】C【逐步提示】本题考查切线的性质及扇形面积公式的应用,连接OB ,先由切线的性质求出圆心角∠AOB 的度数,再分别计算△AOB 和扇形BOD 的面积,相减可得阴影部分面积.【详细解答】解:连接OB ,∵AB 是⊙O 的切线,B 为切点,∴∠ABO=90°.∵∠ACB=30°,∴∠AOB=60°.在Rt△AOB 中,OB=tan AB AOB ∠=1.∴S 阴影=S △AOB -S 扇形BOD =12·AB ·OB -2601360π⨯⨯=32-6π.故选择C .【解后反思】计算阴影部分的面积,通常情况下运用转化的思想,将不规则的图形、零散的几个图形面积转化为规则图形之间的和差关系和相对集中形成的规则图形面积. 【关键词】切线的性质;扇形面积公式5. ( 某某某某,7,3分)如图,一扇形纸扇完全打开后,外侧两竹条和AC 的 夹角为120°,AB 长为25cm ,贴纸部分的宽BD 为15cm ,若纸扇两面贴纸,则贴纸的面 积为().A . 175πcm 2B . 350πcm 2C .πcm 2D . 150πcm 2【答案】B【逐步提示】先由AB 和BD 的长求出AD 的长,再分别求出扇形BAC 和扇形DAE 的面积,然后根据“贴纸部分的面积等于扇形BAC 的面积减去扇形DAE 的面积”求解.【详细解答】解:∵AB =25cm ,BD =15cm ,∴AD =25-15=10cm ,∴S扇形BAC =2120251250=1803ππ⨯(cm 2),S 扇形DAE =212010200=1803ππ⨯(cm 2),∴贴纸部分的面积=125020035033πππ-=(cm 2),故选择B .【解后反思】1.弧长公式:l =nπr 180 ,扇形面积公式:S =360n 2r π=12lr ,其中n 为扇形圆心角的度数,r 为扇形半径.2.扇环的面积等于两个扇形面积之差. 【关键词】 扇形的面积计算6.( 某某某某,5,3分)如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为( )A .90°B .120°C .135°D .150°【答案】B【逐步提示】本题考查了三视图及圆锥侧面展开图的圆心角的计算,解决问题的关键是把图中的数据与圆锥结合起来.圆锥的主视图和左视图是一样的,数字“6”是底面直径,数字“2出圆锥的母线.然后利用扇形的弧长等于圆锥的底面周长即2180n Rl r ππ==,可以求得圆心角的度数. 626 第5题图【详细解答】解:圆锥的母线长=()226239+=,∵2180nR l r ππ==∴×923180n ππ⨯=,解得n =120°,故选择B . 【解后反思】了解圆锥的侧面展开图是扇形,扇形的弧长等于圆锥的底面周长,扇形的半径等于圆锥的母线.弄清楚这些关系才能正确解决问题.另外,左视图看到的两个量要清楚分别代表什么,不要把底面直径和周长混淆,导致解题错误.另外,对于涉及到圆锥的底面圆半径r 、母线长l 与圆锥侧面展开图的圆心角n 三个量之间的关系时,公式360r nl =的合理应用来得快捷得很,其推导过程如下:如图,由扇形ABC 的面积的两种表达形式可知,2123602n l l r ππ=⋅⋅,整理后即得360r nl =. 【关键词】左视图;圆锥的侧面展开图.7. (某某威海,16,3)如图,正方形ABCD 内接于⊙O ,其边长为4,则⊙O 的内接正三角形EFG 的边长为____________.O GFED C B A 第16题图【答案】6【逐步提示】先求得⊙O 的半径,再求得内接正三角形EFG 的边长。
一、选择题总结1.-3的相反数是( )A .3B .-3C . 1 3D .- 132.-2的绝对值等于A .2B .-2C .12 D .43.12-的倒数为( ) A .12B .2C .2-D .1-4.4的算术平方根是( )A .2±B .2C .2±D .25.9的平方根是 ( ) A 、3 B 、-3 C 、±3 D 、±36.2010年上海世博会首月游客人数超8030000人次,8030000用科学记数法表示是( ) A .803³104 B .80.3³105 C .8.03³106 D .8.03³1077.为保护水资源,某社区新建了雨水再生工程,再生水利用量达58600立方米/年。
这个数据用科学记数法表示为(保留两个有效数字)A .58³103B .5.8³104C .5.9³104D .6.0³104 8.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A . 107.2610⨯元 B .972.610⨯元 C .110.72610⨯元 D .117.2610⨯元 9.下列运算中结果正确..的是( ) A .3a +2b =5ab B .5y -3y =2C .-3x +5x =-8xD .3x 2y -2x 2y =x 2y 10.下列运算正确的是( ) A .ab b a 532=+ 3B .()b a b a -=-422C .()()22b a b a b a -=-+D .()222b a b a +=+11.下列运算正确的是A .(x -y )2=x 2-y 2B .x 2²y 2 =(xy )4C .x 2y +xy 2 =x 3y 3D .x 6÷y 2 =x 4 12.计算32()a 结果是( ) A .6aB .9aC .5aD .8a13.下列图案是我国几家银行的标志,其中不是..轴对称图形的是( )14.下列图形中,既是..轴对称图形又是..中心对称图形的是( )ABCD15.(2010²汕头)某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为()A.6,6 B.7,6C.7,8D.6,816.数学老师布置10道填空题,测验后得到如下统计表:答对题数7 8 9 10人数 4 20 18 8根据表中数据可知,全班同学答对的题数所组成的样本的中位数和众数分别是()A.8、8 B.8、9 C.9、9 D.9、817.数据3,3,4,5,4,3,6的众数和中位数分别是( )A.3,3B.4,4C.4,3D.3,418、下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位数是城市北京上海杭州苏州武汉重庆广州汕头珠海深圳最高温度(℃)26 25 29 29 31 32 28 27 28 29A.28 B.28.5 C.29 D.29.5 19.如图所示几何体的主(正)视图是()A.B.C.D.20.一个正方体的表面展开图可以是下列图形中的()21.(2010²汕头)左下图为主视图方向的几何体,它的俯视图是()A.B.D.C.主视方向第4题图A.B.C.D.二、填空题总结1.(珠海4分)分解因式ax 2-4a =_ .2.(湛江4分)分解因式:x 2+3x = .3. 分解因式:xy y x 2422++-=________________________. 4、 分解因式x x 823-=_______________________. 5、分式方程112=+x x的解x = . 6. (广东省4分)已知反比例函数=ky x的图象经过(1,-2),则=k ___________. 7、经过点A (1,2)的反比例函数解析式是_____ _____;8. (广东省4分)使2-x 在实数范围内有意义的x 的取值范围是____________. 9.(河源4分)函数 11y x =-的自变量的取值范围是 . 10.(湛江4分)函数y =3x -中自变量x 的取值范围是 ,若x =4,则函数值y = . 11. 已知210a b ++-=,那么2009)(b a +的值为___________.12、 一种商品原价120元,按八折(即原价的80%)出售,则现售价应为__________元. 13、某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两年内,商品房每平方米平均价格的年增长率都为x ,试列出关于x 的方程: .14、在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同,若 从中随机摸出一球,摸到黄球的概率是54,则n=__________________. 15.(2011广东江门,4,3分)在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为16. 若一组数据“-2,x ,3,0,2”的众数是2,则平均数与其中位数的和是 ______. 17、已知等边三角形ABC 的边长为33+,则ΔABC 的周长是____________; 18、如图,已知R t △ABC 中,斜边BC 上的高AD =4,cosB =54,则AC = . 19、正八边形的每个内角为( )A .120°B .135°C .140°D .144°20. 如图,在平行四边形ABCD 中,点E 、F 分别是AB 、AC 的中点,EF 的长度为1,则边AD 的长为 ______.E DCBAF21、已知⊙O 的直径AB=8cm ,C 为⊙O 上的一点,∠BAC=30°,则BC=_________cm.22、如图1,在ΔABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B=120°,则∠AN M= ; 23、如图2,已知AB 是⊙O 的直径,BC 为弦,∠A BC=30°过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB= °.24.已知△ABC 是直角边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 .25.如图,观察每一个图中黑色正六边形的排列规律,则第10个图中黑色正六边形有个.26. 用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中 有黑色瓷砖________块,第n 个图形中需要黑色瓷砖_______________块(用含n 的代数式 表示).三、解答题(本大题5小题,每小题6分,共30分)ABCDEFGAM NBC图1OBD CA图21.计算:2)21(31160sin 2--+-+︒2.(本题6分)计算:( 13 )-2-2sin45º+ (π -3.14)0+ 12 8+(-1)3.3.(6分)计算:10330tan 3)8(--+- .4.(2010²汕头)计算:()01260cos 2)21(4π-+︒--+-.5.计算:101(32)4cos30|12|3-⎛⎫-++-- ⎪⎝⎭°.6.(本题满分7分)计算:19sin 30π+32-+-0°+(). 7、计算:101|2|sin 45(2009)2-⎛⎫-+-+ ⎪⎝⎭°8.(2010²汕头)先化简,再求值:()x x x x x 224422+÷+++,其中x =2. 9.(本题6分)先化简分式a 2-9a 2+6a +9 ÷a -3a 2+3a -a -a 2a 2-1,然后在0,1,2,3中选一个你认为合适的a 值,代入求值.10.(7分)先化简,后求值:⎝⎛⎭⎫1+ 1x -2÷ x 2-2x +1 x 2-4,其中x =-5.11. (本小题满分10分)解方程223-=x x 12.(本题满分7分)解方程22111x x =--- 13.本题满分 7 分. 求不等式组1184 1.x x x x --⎧⎨+>-⎩≥,的整数解.14、解不等式组:213821x >x +-⎧⎨-≤-⎩ ①②,并把解集在数轴上表示出来.1.如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt △ABC 的顶点均在个点上,在建立平面直角坐标系后,点A 的坐标为(-6,1),点B 的坐标为(-3,1),点C 的坐标为(-3,3).(1)将Rt △ABC 沿x 轴正方向平移5个单位得到Rt △A 1B 1C 1,试在图上画出的图形Rt △A 1B 1C 1,并写出点A 1的坐标; (2)将原来的Rt △ABC 绕点B 顺时针旋转90°得到Rt △A 2B 2C 2,试在图上画出Rt △A 2B 2C 2的图形.2.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (﹣3,5),B (﹣4,3),(﹣1,1).(1)作出△ABC 向右平移5个单位的△A 1B 1C 1;(2)作出△ABC 关于x 轴对称的△A 2B 2C 2,并写出点C 2的坐标.3.△ABC 在方格纸中的位置如图所示,方格纸中的每个小正方形的边长为1个单位. (1)△A 1B 1C 1与△ABC 关于纵轴 (y 轴) 对称,请你在图5中画出△A 1B 1C 1; (2)将△ABC 向下平移8个单位后得到△A 2B 2C 2,请你在图5中画出△A 2B 2C 2.19.(7分)如图是某中学男田径队队员年龄结构条形统计图,根据图中信息解答下列问题:第13题图A xyBC11 -1O1 2 3 4 队员人数年龄15岁 16岁 17岁 18岁 (1)田径队共有多少人?(2)该队队员年龄的众数和中位数分别是多少?(3)该队队员的平均年龄是多少?20.(本题7分)低碳发展是今年深圳市政府工作报告提出的发展理念.近期,某区与某技术支持单位合作,组织策划了该区“低碳先锋行动”,开展低碳测量和排行活动.根据调查数据制作了频数分布直方图和扇形统计图,图6中从左到右各长方形的高度之比为2:8:9:7:3:1.(1)已知碳排放值5≤x <7(千克/平方米²月)的单位有16个,则此次行动调查了________个单位;(3分)(2)在图7中,碳排放值5≤x <7(千克/平方米²月)部分的圆心角为________度;(2分)(3)小明把图6中碳排放值1≤x <2的都看成1.5,碳排放值2≤x <3的都看成2.5,以此类推,若每个被检单位的建筑面积均为10000平方米,则按小明的办法,可估算碳排放值x ≥4(千克/平方米²月)的被检单位一个月的碳排放总值约为________________吨.(2分)21.2010年亚运会即将在广州举行,广元小学开展了“你最喜欢收看的亚运五项球比赛(只选一项)”抽样调查.根据调查数据,小红计算出喜欢收看排球比赛的人数占抽样人数的6%,小明则绘制成如下不完整的条形统计图,请你根据这两位同学提供的信息,解答下面的问题: (1)将统计补充完整;(2)根据以上调查,试估计该校1800名学生中,最喜欢收看羽毛球的人数.1 2 3 4 5 6 7 单位碳排放值x(千克/平方米.月) 单位数图6图75≤x <71≤x <33≤x <514.已知:正比例函数y=k 1x 的图象与反比例函数xk y 2(x>0)的图象交于点M (a,1),MN ⊥x 轴于点N (如图),若△OMN 的面积等于2,求这两个函数的解析式.17.(6分)已知一次函数y =kx -4,当x =2时,y =-3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x 轴交点的坐标. 14.如图,已知二次函数y =-12x 2+bx +c 的图象经过A (2,0),B (0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA 、BC ,求△ABC 的面积.18.(6分)我市某企业向玉树地震灾区捐助价值26万元的甲、乙两种帐篷共300顶.已知甲种帐篷每顶800元,乙种帐篷每顶1000元,问甲、乙两种帐篷各多少顶?17.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍. 根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?。
图形的对称、平移与位似【命题趋势】在中考.这是必考内容.主要考查形式包括:单纯判断对称图形的识别;利用对称图形的性质求点坐标;利用折叠的对称性性质的相关计算与证明。
【中考考查重点】一、轴对称图形与中心对称图形 二、图形的平移 三、图形的旋转四、位似考点:轴对称图形与轴对称轴对称图形轴对称图 形定 义如果一个图形沿着某条直线对折后.直线两旁的部分能够完全重合.那么这个图形就叫做轴对称图形.这条直线叫做对称轴如果两个图形对折后.这两个图形能够完全重合.那么我们就说这两个图形成轴对称.这条直线叫做对称轴性 质对应线段相等 AB =ACAB =A ′B ′.BC =B ′C ′.AC =A ′C ′ 对应角相等∠B =∠C∠A =∠A ′.∠B =∠B ′.∠C =∠C ′对应点所连的线段被对称轴垂直平分区 别 (1)轴对称图形是一个具有特殊形状的图形.只对一个图形而言; (2)对称轴不一定只有一条 (1)轴对称是指两个图形的位置关系.必须涉及两个图形; (2)只有一条对称轴关 系(1)沿对称轴对折.两部分重合; (2)如果把轴对称图形沿对称轴分成“两个图形”.那么这“两个图形”就关于这条直线成轴对称(1)沿对称轴翻折.两个图形重合;(2)如果把两个成轴对称的图形拼在一起.看成一个整体.那么它就是一个轴对称图形1.常见的轴对称图形: 等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质:折叠的实质是轴对称.折叠前后的两图形全等.对应边和对应角相等.3.作某点关于某直线的对称点的一般步骤1)过已知点作已知直线(对称轴)的垂线.标出垂足;2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段.那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤1)作出图形的关键点关于这条直线的对称点;2)把这些对称点顺次连接起来.就形成了一个符合条件的对称图形.1.(2021•黄石)下列几何图形中.是轴对称图形但不是中心对称图形的是()A.梯形B.等边三角形C.平行四边形D.矩形【答案】B【解答】解:A.梯形不一定是轴对称图形.不是中心对称图形.故此选项不合题意;B.等边三角形是轴对称图形.不是中心对称图形.故此选项符合题意;C.平行四边形不是轴对称图形.是中心对称图形.故此选项不合题意;D.矩形既是轴对称图形.又是中心对称图形.故此选项不合题意;故选:B.2.(2021•天津)在一些美术字中.有的汉字是轴对称图形.下面4个汉字中.可以看作是轴对称图形的是()A.B.C.D.【答案】A【解答】解:A.是轴对称图形.故此选项符合题意;B.不是轴对称图形.故此选项不合题意;C.不是轴对称图形.故此选项不合题意;D.不是轴对称图形.故此选项不合题意;故选:A.3.(2021•河北)如图.直线l.m相交于点O.P为这两直线外一点.且OP=2.8.若点P 关于直线l.m的对称点分别是点P1.P2.则P1.P2之间的距离可能是()A.0B.5C.6D.7【答案】B【解答】解:连接OP1.OP2.P1P2.∵点P关于直线l.m的对称点分别是点P1.P2.∴OP1=OP=2.8.OP=OP2=2.8.OP1+OP2>P1P2.0<P1P2<5.6.故选:B.考点:图形的平移1.定义:在平面内.一个图形由一个位置沿某个方向移动到另一个位置.这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素:一是平移的起点.二是平移的方向.三是平移的距离.3.性质:1)平移前后.对应线段平行且相等、对应角相等;2)各对应点所连接的线段平行(或在同一条直线上)且相等;3)平移前后的图形全等.4.作图步骤:1)根据题意.确定平移的方向和平移的距离;2)找出原图形的关键点;3)按平移方向和平移距离平移各个关键点.得到各关键点的对应点;4)按原图形依次连接对应点.得到平移后的图形.4.(2021•金华)如图.菱形ABCD的边长为6cm.∠BAD=60°.将该菱形沿AC方向平移2 cm得到四边形A′B′C′D′.A′D′交CD于点E.则点E到AC的距离为cm.【答案】2【解答】解:如图.连接BD.过点E作EF⊥AC于点F.∵四边形ABCD是菱形.∴AD=AB.BD⊥AC.∵∠BAD=60°.∴三角形ABD是等边三角形.∵菱形ABCD的边长为6cm.∴AD=AB=BD=6cm.∴AG=GC=3(cm).∴AC=6(cm).∵AA′=2(cm).∴A′C=4(cm).∵AD∥A′E.∴=.∴=.∴A′E=4(cm).∵∠EA′F=∠DAC=DAB=30°.∴EF=A′E=2(cm).故答案为:2.考点:图形的旋转1.定义:在平面内.一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度.这样的图形运动叫旋转.这个定点叫做旋转中心.转过的这个角叫做旋转角.2.三大要素:旋转中心、旋转方向和旋转角度.3.性质:1)对应点到旋转中心的距离相等;2)每对对应点与旋转中心所连线段的夹角等于旋转角;3)旋转前后的图形全等.4.作图步骤:1)根据题意.确定旋转中心、旋转方向及旋转角;2)找出原图形的关键点;3)连接关键点与旋转中心.按旋转方向与旋转角将它们旋转.得到各关键点的对应点;4)按原图形依次连接对应点.得到旋转后的图形.【注意】旋转是一种全等变换.旋转改变的是图形的位置.图形的大小关系不发生改变.所以在解答有关旋转的问题时.要注意挖掘相等线段、角.因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.5.(2021•苏州)如图.在方格纸中.将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B.则下列四个图形中正确的是()A.B.C.D.【答案】B【解答】解:A选项是原图形的对称图形.故A不正确;B选项是Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B.故B正确;C选项旋转后的对应点错误.即形状发生了改变.故C不正确;D选项是按逆时针方向旋转90°.故D不正确;故选:B.6.(2021•邵阳)如图.在△AOB中.AO=1.BO=AB=.将△AOB绕点O逆时针方向旋转90°.得到△A′OB′.连接AA′.则线段AA′的长为()A.1B.C.D.【答案】B【解答】解:由旋转性质可知.OA=OA'=1.∠AOA'=90°.则△AOA'为等腰直角三角形.∴AA'===.故选:B.7.(2021•衡阳)如图.点E为正方形ABCD外一点.∠AEB=90°.将Rt△ABE绕A点逆时针方向旋转90°得到△ADF.DF的延长线交BE于H点.(1)试判定四边形AFHE的形状.并说明理由;(2)已知BH=7.BC=13.求DH的长.【答案】(1)矩形AFHE是正方(2)DH=12+5=17【解答】解:(1)四边形AFHE是正方形.理由如下:∵Rt△ABE绕A点逆时针方向旋转90°得到△ADF.∴Rt△ABE≌Rt△ADF.∴∠AEB =∠AFD =90°. ∴∠AFH =90°. ∵Rt △ABE ≌Rt △ADF . ∴∠DAF =∠BAE , 又∵∠DAF +∠F AB =90°. ∴∠BAE +∠F AB =90°. ∴∠F AE =90°.在四边形AFHE 中.∠F AE =90°.∠AEB =90°.∠AFH =90°. ∴四边形AFHE 是矩形. 又∵AE =AF .∴矩形AFHE 是正方形;(2)设AE =x .则由(1)以及题意可知:AE =EH =FH =AF =x ,BH =7,BC =AB =13,在Rt △AEB 中.AB 2=AE 2+BE 2. 即132=x 2+(x +7)2, 解得:x =5,∴BE =BH +EH =5+7=12, ∴DF =BE =12, 又∵DH =DF +FH . ∴DH =12+5=17.考点:中心对称图形与中心对称中心对称图形中心对称图 形定 义如果一个图形绕某一点旋转180°后能与它自身重合.我们就把这个图形叫做中心对称图形.这个点叫做它的对称中心如果一个图形绕某点旋转180°后与另一个图形重合.我们就把这两个图形叫做成中心对称 性 质对应点 点A 与点C .点B 与点D点A 与点A ′.点B 与点B ′.点C 与点C ′对应线段AB =CD . AD =BCAB =A ′B ′.BC =B ′C ′.AC =A ′C ′对应角∠A=∠C∠B=∠D∠A=∠A′.∠B=∠B′.∠C=∠C′区别中心对称图形是指具有某种特性的一个图形中心对称是指两个图形的关系联系把中心对称图形的两个部分看成“两个图形”.则这“两个图形”成中心对称把成中心对称的两个图形看成一个“整体”.则“整体”成为中心对称图形常见的中心对称图形平行四边形、矩形、菱形、正方形、正六边形、圆等.注意:图形的“对称”“平移”“旋转”这些变化,是图形运动及延伸的重要途径,研究这些变换中的图形的“不变性”或“变化规律”.8.(2021•山西)为推动世界冰雪运动的发展.我国将于2022年举办北京冬奥会.在此之前进行了冬奥会会标的征集活动.以下是部分参选作品.其文字上方的图案既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解答】解:A.不是轴对称图形.也不是中心对称图形.故此选项不合题意;B.既是轴对称图形又是中心对称图形.故此选项符合题意;C.是轴对称图形.不是中心对称图形.故此选项不合题意;D.不是轴对称图形.也不是中心对称图形.故此选项不合题意.故选:B.9.(2021•广安)下列几何体的主视图既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解答】解:A、主视图是等腰三角形.是轴对称图形.不是中心对称图形.故不合题意;B、主视图是是矩形.是轴对称图形.也是中心对称图形.故符合题意;C、主视图是等腰梯形.是轴对称图形.不是中心对称图形.故不合题意;D、主视图是等腰三角形.是轴对称图形.不是中心对称图形.故不合题意;故选:B.考点:图形的位似(1)如果两个多边形不仅相似.而且对应顶点的连线相交于一点.这样的图形叫做位似图形.这个点叫做位似中心.(2)性质:①对应角相等.对应边之比等于位似比;②位似图形上任意一对对应点到位似中心的距离之比等于位似比.10.(2021•东营)如图.△ABC中.A、B两个顶点在x轴的上方.点C的坐标是(1.0).以点C为位似中心.在x轴的下方作△ABC的位似图形△A'B'C.并把△ABC的边长放大到原来的2倍.设点B的横坐标是a.则点B的对应点B′的横坐标是()A.﹣2a+3B.﹣2a+1C.﹣2a+2D.﹣2a﹣2【答案】A【解答】解:设点B′的横坐标为x.则B、C间的水平距离为a﹣1.B′、C间的水平距离为﹣x+1.∵△ABC放大到原来的2倍得到△A′B′C.∴2(a﹣1)=﹣x+1.解得:x=﹣2a+3.故选:A.11.(2021•绥化)如图所示.在网格中.每个小正方形的边长均为1个单位长度.把小正方形的顶点叫做格点.O为平面直角坐标系的原点.矩形OABC的4个顶点均在格点上.连接对角线OB.(1)在平面直角坐标系内.以原点O为位似中心.把△OAB缩小.作出它的位似图形.并且使所作的位似图形与△OAB的相似比等于;(2)将△OAB以O为旋转中心.逆时针旋转90°.得到△OA1B1.作出△OA1B1.并求出线段OB旋转过程中所形成扇形的周长.【答案】(1)略(2)4+π.【解答】解:(1)如图.△OA′B′或△OA″B″即为所求.(2)如图.△OA1B1即为所求.OB==2.线段OB旋转过程中所形成扇形的周长=2×2+=4+π.1.(2021•渭南模拟)下列关于“健康防疫“标志的图中是轴对称图形的是()A.B.C.D.【答案】C【解答】解:A.不是轴对称图形.故本选项不符合题意;B.不是轴对称图形.故本选项不符合题意;C.是轴对称图形.故本选项符合题意;D.不是轴对称图形.故本选项不符合题意.故选:C.2.(2022•重庆模拟)在平面直角坐标系中.将点A(a.1﹣a)先向左平移3个单位得点A1.再将A1向上平移1个单位得点A2.若点A2落在第三象限.则a的取值范围是()A.2<a<3B.a<3C.a>2D.a<2或a>3【答案】A【解答】解:点A(a.1﹣a)先向左平移3个单位得点A1.再将A1向上平移1个单位得点A2(a﹣3.1﹣a+1).∵点A′位于第三象限.∴.解得:2<a<3.故选:A.3.(2021•烟台模拟)如图是一块矩形ABCD的场地.长AB=99米.宽AD=41米.从A.B两处入口的路宽都为1米.两小路汇合处路口宽为2米.其余部分种植草坪面积为()A.3783米2B.3880米2C.3920米2D.4000米2【答案】B【解答】解:由题意得:(99﹣2)×(41﹣1)=97×40=3880(平方米).∴种植草坪面积为3880平方米.故选:B.4.(2022•贵阳模拟)如图.△ABC与△DEF是位似图形.点O为位似中心.已知BO:OE =2:1.则△ABC与△DEF的面积比是()A.2:1B.3:1C.4:1D.5:1【答案】C【解答】解:∵△ABC与△DEF位似.∴△ABC∽△FED.AB∥ED.∴△OAB∽△ODE.∴==2.∴=()2=4.即△ABC与△DEF的面积比是:4:1.故选:C.5.(2021•永川区模拟)如图.在平面直角坐标系中.每个小方格的边长均为1.△AOB与△A'OB'是以原点O为位似中心的位似图形.且相似比为3:2.点A.B都在格点上.则点B′的坐标是()A.(﹣2.1)B.(﹣2.)C.(﹣2.)D.(﹣2.)【答案】B【解答】解:由题意得:△A′OB′与△AOB的相似比为2:3.又∵B(3.﹣2)∴B′的坐标是[3×(﹣).﹣2×(﹣)].即B′的坐标是(﹣2.).故选:B.6.(2022•遵义模拟)2022年新年贺词中提到“人不负青山.青山定不负人”.下列四个有关环保的图形中.是轴对称图形.但不是中心对称图形的是()A.B.C.D.【答案】D【解答】解:A.既不是轴对称图形.又不是中心对称图形.故本选项不符合题意;B.既是轴对称图形.又是中心对称图形.故本选项不符合题意;C.既不是轴对称图形.又不是中心对称图形.故本选项不符合题意;D.是轴对称图形.不是中心对称图形.故本选项符合题意;故选:D.7.(2022•平凉模拟)如图.将平行四边形ABCD沿对角线AC折叠.使点B落在点B'处.若∠1=∠2=36°.∠B为()A.36°B.144°C.108°D.126°【答案】D【解答】解:根据翻折可知:∠B′AC=∠BAC.∵四边形ABCD是平行四边形.∴DC∥AB.∴∠BAC=∠DCA.∴∠BAC=∠DCA=∠B′AC.∵∠1=∠B′AC+∠DCA.∴∠1=2∠BAC=36°.∴∠BAC=18°.∴∠B=180°﹣∠BAC﹣∠2=180°﹣18°﹣36°=126°.故选:D.8.(2022•平凉模拟)如图.在四边形ABCD中.∠ABC=30°.将△DCB绕点C顺时针旋转60°后.点D的对应点恰好与点A重合.得到△ACE.AB=5.BC=9.则BD=.【答案】【解答】解:连接BE.如图.∵△DCB绕点C顺时针旋转60°后.点D的对应点恰好与点A重合.得到△ACE.∴∠BCE=60°.CB=CE.BD=AE.∴△BCE为等边三角形.∴BE=BC=9.∠CBE=60°.∵∠ABC=30°.∴∠ABE=90°.在Rt△ABE中.AE===.∴BD=.故答案为:.9.(2022•灞桥区校级一模)如图.D是等边三角形ABC外一点.AD=3.CD=2.当BD长最大时.△ABC的面积为.【答案】【解答】解:如图1.以CD为边作等边△DCE.连接AE.∵BC=AC.CD=CE.∠BCA=∠DCE=60°.∴∠BCD=∠ACE.在△BCD和△ACE中..∴△BCD≌△ACE(SAS).∴BD=AE.在△ADE中.∵AD=3.DE=CD=2.∴AE≤AD+DE.∴AE≤5.∴AE的最大值为5.∴BD的最大值为5.此时点D在AE上.如图2.过点A作AF⊥BD于F.∵△BCD≌△ACE.∴∠BDC=∠E=60°.∴∠ADF=60°.∵AF⊥BD.∴∠DAF=30°.∴DF=AD=.AF=DF=.∴BF=.∴AB2=AF2+BF2=19.∴△ABC的面积=AB2=.故答案为:.1.(2021•枣庄)将如图的七巧板的其中几块.拼成一个多边形.为轴对称图形的是()A.B.C.D.【答案】D【解答】解:A.不是轴对称图形.故本选项不合题意;B.不是轴对称图形.故本选项不合题意;C.不是轴对称图形.故本选项不合题意;D.是轴对称图形.故本选项符合题意;故选:D.2.(2021•济宁)一个圆柱体如图所示.下面关于它的左视图的说法其中正确的是()A.既是轴对称图形.又是中心对称图形B.既不是轴对称图形.又不是中心对称图形C.是轴对称图形.但不是中心对称图形D.是中心对称图形.但不是轴对称图形【答案】A【解答】解:圆柱体的左视图是长方形.而长方形既是轴对称图形.也是中心对称图形.故选:A.3.(2021•自贡)下列图形中.是轴对称图形且对称轴条数最多的是()A.B.C.D.【答案】D【解答】解:A.是轴对称图形.共有1条对称轴;B.不是轴对称图形.没有对称轴;C.不是轴对称图形.没有对称轴;D.是轴对称图形.共有2条对称轴.故选:D.4.(2021•重庆)如图.△ABC与△DEF位似.点O是它们的位似中心.其中OE=2OB.则△ABC与△DEF的周长之比是()A.1:2B.1:4C.1:3D.1:9【答案】A【解答】解:∵△ABC与△DEF位似.∴△ABC∽△DEF.BC∥EF.∴△OBC∽△OEF.∴==.即△ABC与△DEF的相似比为1:2.∴△ABC与△DEF的周长之比为1:2.故选:A.5.(2021•台州)如图.将长、宽分别为12cm.3cm的长方形纸片分别沿AB.AC折叠.点M.N恰好重合于点P.若∠α=60°.则折叠后的图案(阴影部分)面积为()A.(36)cm2B.(36)cm2C.24cm2D.36cm2【答案】A【解答】解:根据翻折可知.∠MAB=∠BAP.∠NAC=∠P AC.∴∠BAC=∠P AB+∠P AC=(∠MAB+∠BAP+∠NAC+∠P AC)=180°=90°.∵∠α=60°.∴∠MAB=180°﹣∠BAC﹣∠α=180°﹣90°﹣60°=30°.∴AB==6(cm).AC==2(cm).∴阴影部分的面积=S长方形﹣S△ABC=12×3﹣6×=(36﹣6)(cm2).故选:A.6.(2021•江西)如图.将▱ABCD沿对角线AC翻折.点B落在点E处.CE交AD于点F.若∠B=80°.∠ACE=2∠ECD.FC=a.FD=b.则▱ABCD的周长为.【答案】4a+2b【解答】解:∵∠B=80°.四边形ABCD为平行四边形.∴∠D=80°.由折叠可知∠ACB=∠ACE.又AD∥BC.∴∠DAC=∠ACB.∴∠ACE=∠DAC.∴△AFC为等腰三角形.∴AF=FC=a.设∠ECD=x.则∠ACE=2x.∴∠DAC=2x.在△ADC中.由三角形内角和定理可知.2x+2x+x+80°=180°.解得:x=20°.∴由三角形外角定理可得∠DFC=4x=80°.故△DFC为等腰三角形.∴DC=FC=a.∴AD=AF+FD=a+b.故平行四边形ABCD的周长为2(DC+AD)=2(a+a+b)=4a+2b.故答案为:4a+2b.7.(2021•重庆)如图.三角形纸片ABC中.点D.E.F分别在边AB.AC.BC上.BF=4.CF =6.将这张纸片沿直线DE翻折.点A与点F重合.若DE∥BC.AF=EF.则四边形ADFE 的面积为.【答案】5【解答】解:∵纸片沿直线DE翻折.点A与点F重合.∴DE垂直平分AF.∴AD=DF.AE=EF.∵DE∥BC.∴DE为△ABC的中位线.∴DE=BC=(BF+CF)=×(4+6)=5.∵AF=EF.∴△AEF为等边三角形.∴∠F AC=60°.在Rt△AFC中.∵tan∠F AC=.∴AF==2.∴四边形ADFE的面积为:DE×AF=×5×2=5.故答案为:5.8.(2021•天津)如图.在△ABC中.∠BAC=120°.将△ABC绕点C逆时针旋转得到△DEC.点A.B的对应点分别为D.E.连接AD.当点A.D.E在同一条直线上时.下列结论一定正确的是()A.∠ABC=∠ADC B.CB=CD C.DE+DC=BC D.AB∥CD【答案】D【解答】解:由旋转的性质得出CD=CA.∠EDC=∠BAC=120°.∵点A.D.E在同一条直线上.∴∠ADC=60°.∴△ADC为等边三角形.∴∠DAC=60°.∴∠BAD=60°=∠ADC.∴AB∥CD.故选:D.9.(2021•吉林)如图.在平面直角坐标系中.点A的坐标为(0.3).点B的坐标为(4.0).连接AB.若将△ABO绕点B顺时针旋转90°.得到△A′BO′.则点A′的坐标为.【答案】(7.4)【解答】解:作A'C⊥x轴于点C.由旋转可得∠O'=90°.O'B⊥x轴.∴四边形O'BCA'为矩形.∴BC=A'O'=OA=3.A'C=O'B=OB=4.∴点A'坐标为(7.4).故答案为:(7.4).10.(2021•上海)定义:在平面内.一个点到图形的距离是这个点到这个图上所有点的最短距离.在平面内有一个正方形.边长为2.中心为O.在正方形外有一点P.OP=2.当正方形绕着点O旋转时.则点P到正方形的最短距离d的取值范围为.【答案】2﹣≤d≤1【解答】解:如图:设AB的中点是E.OP过点E时.点O与边AB上所有点的连线中.OE 最小.此时d=PE最大.OP过顶点A时.点O与边AB上所有点的连线中.OA最大.此时d=P A最小.如图①:∵正方形ABCD边长为2.O为正方形中心.∴AE=1.∠OAE=45°.OE⊥AB.∴OE=1.∵OP=2.∴d=PE=1;如图②:∵正方形ABCD边长为2.O为正方形中心.∴AE=1.∠OAE=45°.OE⊥AB.∴OA=.∵OP=2.∴d=P A=2﹣;∴d的取值范围为2﹣≤d≤1.故答案为:2﹣≤d≤1.11.(2021•南京)如图.将▱ABCD绕点A逆时针旋转到▱AB′C′D′的位置.使点B′落在BC上.B′C′与CD交于点E.若AB=3.BC=4.BB′=1.则CE的长为.【答案】【解答】解:法一、如图.过点A作AM⊥BC于点M.过点B作BN⊥AB′于点N.过点E作EG⊥BC.交BC的延长线于点G.由旋转可知.AB=AB′=3.∠ABB′=∠AB′C′.∴∠ABB′=∠AB′B=∠AB′C′.∵BB′=1.AM⊥BB′.∴BM=B′M=.∴AM==.∵S△ABB′==.∴××1=•BN×3.则BN=.∴AN===.∵AB∥DC.∴∠ECG=∠ABC.∵∠AMB=∠EGC=90°.∴△AMB∽△EGC.∴===.设CG=a.则EG=a.∵∠ABB′+∠AB′B+∠BAB′=180°.∠AB′B+∠AB′C′+∠C′B′C=180°.又∵∠ABB′=∠AB′B=∠AB′C′.∴∠BAB′=∠C′B′C.∵∠ANB=∠EGC=90°.∴△ANB∽△B′GE.∴===.∵BC=4.BB′=1.∴B′C=3.B′G=3+a.∴=.解得a=.∴CG=.EG=.∴EC===.故答案为:.法二、如图.连接DD'.由旋转可知.∠BAB′=∠DAD′.AB′=AB=3.AD′=AD=4.∴△BAB′∽△DAD′.∴AB:BB′=AD:DD′=3:1.∠AD′D=∠AB′B=∠B.∴DD′=.又∵∠AD′C′=∠AB′C′=∠B.∠AD′D=∠B=∠AB′B.∴∠AD′C′=∠AD′D.即点D′.D.C′在同一条直线上.∴DC′=.又∠C′=∠ECB′.∠DEC′=∠B′EC.∴△CEB′∽△C'ED.∴B′E:DE=CE:C′E=B′C:DC′.即B′E:DE=CE:C′E=3:.设CE=x.B'E=y.∴x:(4﹣y)=y:(3﹣x)=3:.∴x=.故答案为:.法三、构造相似.如图.延长B′C到点G.使B′G=B′E.连接EG.∴∠B′EG=∠B′GE.由旋转可知.AB=AB′.∴∠B=∠AB′B=∠AB′C′.∴∠BAB′=∠EB′G.∴∠B=∠G.又AB∥CD.∴∠ECG=∠B=∠G.∴△ABB′∽△B′EG∽△ECG.∴.设CG=m.∴EC=3m.∴B′G=3+m.∴.解得m=.∴3m=.故答案为:.解法四:如图.过点C作CF∥C′D′.交B′C′于点F.∵AB=AB′.∴∠B=∠AB′B.由∵∠AB′C′=∠B.由三角形内角和可知.∠FB′C=∠BAB′.∵AB′∥FC.∴∠B′CF=∠AB′B.由∵AB=3.BB′=1.BC=4.∴AB=B′C.∴△ABB′≌△B′CF.∴FC=B′B=1.由旋转可知.△ABB′∽△ADD′.∴.∴DD′=∴C′D=.又由CF∥C′D.∴△C′DE∽△FCE.∴=.∴=.∴.∴EC=.故答案为:.12.(2020•南通)矩形ABCD中.AB=8.AD=12.将矩形折叠.使点A落在点P处.折痕为DE.(1)如图①.若点P恰好在边BC上.连接AP.求的值;(2)如图②.若E是AB的中点.EP的延长线交BC于点F.求BF的长.【答案】(1)==.(2)BF=3【解答】解:(1)如图①中.取DE的中点M.连接PM.∵四边形ABCD是矩形.∴∠BAD=∠C=90°.由翻折可知.AO=OP.AP⊥DE.∠2=∠3.∠DAE=∠DPE=90°.在Rt△EPD中.∵EM=MD.∴PM=EM=DM.∴∠3=∠MPD.∴∠1=∠3+∠MPD=2∠3.∵∠ADP=2∠3.∴∠1=∠ADP.∵AD∥BC.∴∠ADP=∠DPC.∴∠1=∠DPC.∵∠MOP=∠C=90°.∴△POM∽△DCP.∴===.∴==.解法二:证明△ABP和△DAE相似.==.(2)如图②中.过点P作GH∥BC交AB于G.交CD于H.则四边形AGHD是矩形.设EG=x.则BG=4﹣x∵∠A=∠EPD=90°.∠EGP=∠DHP=90°.∴∠EPG+∠DPH=90°.∠DPH+∠PDH=90°.∴∠EPG=∠PDH.∴△EGP∽△PHD.∴====.∴PH=3EG=3x.DH=AG=4+x.在Rt△PHD中.∵PH2+DH2=PD2.∴(3x)2+(4+x)2=122.解得x=(负值已经舍弃).∴BG=4﹣=.在Rt△EGP中.GP==.∵GH∥BC.∴△EGP∽△EBF.∴=.∴=.∴BF=3.1.(2022•碑林区校级一模)下列几何图形中.是中心对称图形的是()A.角B.等边三角形C.扇形D.平行四边形【答案】D【解答】解:A.角不是中心对称图形.故此选项不合题意;B.等边三角形不是中心对称图形.故此选项不合题意;C.扇形不是中心对称图形.故此选项不合题意;D.平行四边形是中心对称图形.故此选项符合题意.故选:D.2.(2021•历下区校级模拟)如图.点A.B的坐标分别为(1.2)、(4.0).将△AOB沿x 轴向右平移.得到三角形CDE.已知DB=1.则点C的坐标为()A.(5.2)B.(4.2)C.(5.3)D.(4.3)【答案】B【解答】解:∵B的坐标为(4.0).∴OB=4.∵DB=1.∴OD=4﹣1=3.∴△AOB向右平移了3个单位长度.∵点A的坐标为(1.2).∴点C的坐标为:(4.2).故选:B.3.(2021•开封一模)如图.在平面直角坐标系xOy中.将四边形ABCD先向上平移.再向左平移得到四边形A1B1C1D1.已知A1(﹣3.5).B1(﹣4.3).A(3.3).则点B坐标为()A.(1.2)B.(2.1)C.(1.4)D.(4.1)【答案】B【解答】解:由题意A1(﹣3.5)向右平移6个单位.再向下平移2个单位得到A(3.3).∴B1(﹣4.3)向右平移6个单位.再向下平移2个单位得到B(2.1).故选:B.4.(2021•市南区校级一模)已知平面直角坐标系中两点A(﹣1.0)、B(1.2).连接AB.平移线段AB得到线段A1B1.若A点对应的点是A1(2.﹣1).则B点对应的点是B1的坐标为()A.(4.3)B.(﹣2.3)C.(4.1)D.(﹣2.1)【答案】C【解答】解:∵A(﹣1.0)平移后对应点A1的坐标为(2.﹣1).∴A点的平移方法是:先向右平移3个单位.再向下平移1个单位.∴B点的平移方法与A点的平移方法是相同的.∴B(1.2)平移后的坐标是:(4.1).故选:C.5.(2021•河北模拟)如图.用平移三角尺的方法可以检验出图中平行线共有()A.3对B.4对C.5对D.6对【答案】D【解答】解:如图.由平移的性质得.AD∥BE.AD∥CF.BE∥CF.AB∥DE.BC∥EF.AC∥DF.共六对.故选:D.6.(2021•鹿城区校级三模)如图.在直角坐标系中.△OAB的顶点为O(0.0).A(6.3).B (6.6).以点O为位似中心.在第一象限内作与△OAB的位似比为的位似图形△OCD.则点C的坐标为()A.(1.2)B.(2.1)C.(2.2)D.(3.6)【答案】B【解答】解:∵以点O为位似中心.在第一象限内作与△OAB的位似比为的位似图形△OCD.A(6.3).∴点C的坐标为(6×.3×).即(2.1).故选:B.7.(2021•孝义市二模)如图所示是利用图形的位似绘制的一幅“小鱼”图案.其中O 为位似中心.且OA=2OD.若图案中鱼身(△ABC)的面积为S.则鱼尾(△DEF)的面积为()A.B.S C.S D.S【答案】C【解答】解:∵△ABC与△DEF是以O为位似中心位似图形.OA=2OD.∴△ABC∽△DEF.且相似比为2.∴=22=4.∵△ABC的面积为S.∴△DEF的面积S.故选:C.8.(2021•荔湾区一模)如图.在矩形ABCD中.AB=2.BC=6.E是BC的中点.将△ABE 沿直线AE翻折.点B落在点F处.连结CF.则tan∠ECF的值为()A.B.C.D.【答案】A【解答】解:∵BC=6.E是BC的中点.∴BE=3.由翻折变换的性质得:△AFE≌△ABE.∴∠AEF=∠AEB.∴EF=CE.∴∠EFC=∠ECF.∵∠BEF=∠EFC+∠ECF.∴∠AEB=∠ECF.∴tan∠ECF=tan∠AEB=.故选:A.9.(2022•安徽一模)如图.正方形ABCD的边长为5.E为BC上一点.且BE=2.F为AB 边上的一个动点.连接EF.以EF为边向右侧作等边△EFG.连接CG.则CG的最小值为()A.2B.2.5C.3D.3.5【答案】D【解答】解:由题意可知.点F是主动点.点G是从动点.点F在线段上运动.点G也一定在直线轨迹上运动.将△EFB绕点E旋转60°.使EF与EG重合.得到△EFB≌△EHG.∴BE=EH.∠BEH=60°.∠GHE=90°.∴△EBH为等边三角形.点G在垂直于HE的直线HN上.作CM⊥HN.则CM即为CG的最小值.作EP⊥CM.可知四边形HEPM为矩形.∴∠PEC=180°﹣∠PEH﹣∠BEH=180°﹣90°﹣60°=30°.∴PC=CE.则CM=MP+CP=HE+EC=2+=.故选:D.10.(2022•重庆模拟)在△ABC中.∠BAC=90°.点O是斜边BC上的一点.连接AO.点D是AO上一点.过点D分别作DE∥AB.DF∥AC.交BC于点E、F.(1)如图1.若点O为斜边BC的中点.求证:点O是线段EF的中点.(2)如图2.在(1)的条件下.将△DEF绕点O顺时针旋转任意一个角度.连接AD.CF.请写出线段AD和线段CF的数量关系.并说明理由.(3)如图3.若点O是斜边BC的三等分点.且靠近点B.当∠ABC=30°时.将△DEF 绕点O顺时针旋转任意一个角度.连接AD、BE、CF.请求出的值.【答案】(1)略(2)略(3)【解答】(1)证明:∵∠BAC=90°.点O为斜边BC的中点.∴BO=AO=OC.∴∠ABO=∠BAO.∠ODF=∠OFD.∵DE∥AB.DF∥AC.∴∠OED=∠OBA.∠ODE=∠OAB.∠ODF=∠OAC.∠OFD=∠OCA.∴∠OED=∠ODE.∠ODF=∠OFD.∴EO=DO.FO=DO.∴EO=FO.∴点O是线段EF的中点;(2)AD=CF.理由如下:∵将△DEF绕点O顺时针旋转任意一个角度.∴OD=OF.∠AOD=∠COF.又∵AO=CO.∴△AOD≌△COF(SAS).∴AD=CF;(3)如图1.旋转前.∵DE∥AB.∴.∴.如图3.旋转后.∵将△DEF绕点O顺时针旋转任意一个角度.∴∠AOD=∠BOE.∴△AOD∽△BOE.∴=.如图3.过点A作AH⊥BC于H.设AC=2x.∵∠ABC=30°.∠BAC=90°.∴∠ACH=60°.BC=4x.∵AH⊥BC.∴∠CAH=30°.∴CH=AC=x.AH=CH=x.∵点O是斜边BC的三等分点.∴BO=x.CO=.∴OH=.∴AO===x.∴==.。
初中数学知识点中考总复习总结归纳(人教版)2023年初中数学知识点中考总复习总结归纳第一章有理数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如7,32等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001…等;(4)一些三角函数,如sin60o等π+8等;3第二章整式的加减考点一、整式的有关概念(3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如?4ab,这种表示就是错误的,应写成?132132ab。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如3?5a3b2c是6次单项式。
考点二、多项式(11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。
(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。
4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。
第34课概率初步考点一事件的分类1.必然事件:在一定条件下______会发生的事件叫做必然事件.2.不可能事件:在一定条件下________不会发生的事件叫做不可能事件.3.随机事件:在一定条件下,可能________,也可能________的事件叫做不确定事件或随机事件.考点二概率的概念4.概率:把事件A发生的________大小称为事件A发生的概率,记为P(A).5.各类事件的概率:必然事件发生的概率为________,不可能事件发生的概率为________,随机事件发生的概率介于________与________之间.考点三概率的计算6.如果事件发生的各种结果的可能性相同且互相排斥,结果总数为n,事件A 包含其中的结果数为m,那么事件A发生的概率P(A)=________.7.列表、画树状图是人们用来确定事件发生的所有不同可能结果的常用方法.(1)列表法:当一次试验涉及两个因素,且可能出现的结果数目较多时,可采用列表法列出所有可能的结果;(2)画树状图法:当一次试验涉及两个或两个以上因素时,可采用画树状图法表示出所有可能的结果.考点四用频率估计概率8. 一般地,在大量重复试验中,如果事件A发生的频率mn逐渐稳定在某个常数p附近,那么把这个常数p作为这一事件发生的概率的近似值,事件A的概率记作P(A)=________.考点五面积型概率的求法9. 当随机事件的概率大小与几何图形的面积有关时,往往利用面积法求概率,计算公式:P(A)=表示事件A的图形的面积总面积.考点六 概率的应用10.用概率设计游戏方案:在设计游戏规则时要注意设计的方案要使双方获胜的概率相等,同时,设计的方案要有科学性、实用性和可操作性等.1.(2020沈阳)下列事件中,是必然事件的是( A )A .从一个只有白球的盒子里摸出一个球是白球B .任意买一张电影票,座位号是3的倍数C .掷一枚质地均匀的硬币,正面朝上D .汽车驶过一个红绿灯路口时,前方正好是绿灯2.(2020温州)一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,是红球的概率为( C ) A.47B.37C.27D.173.(2020徐州)一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是( A )A .5B .10C .12D .154.(2019乐山)小强同学从-1,0,1,2,3,4这六个数中任选一个数,满足不等式x +1<2的概率是( C )A.15B.14C.13D.125.(2020辽阳)如图34-1是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是__59__.(图34-1)◆达标一事件的分类例1(2020攀枝花)下列事件中,为必然事件的是(B)A.明天要下雨B.|a|≥0C.-2>-1D.打开电视机,它正在播广告变式1(2020通辽)下列事件中是不可能事件的是(C)A.守株待兔B.瓮中捉鳖C.水中捞月D.百步穿杨◆达标二用频率估计概率例2(2018玉林)某小组做“用频率估计概率”的试验时,绘制了如图34-2的折线统计图,则符合这一结果的试验可能是(D)(图34-2)A.抛一枚质地均匀的硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.一副去掉大、小王的扑克牌洗匀后,从中任抽一张扑克牌的花色是红桃D.从一个装有2个红球、1个黑球的袋子中任取一球,取到的是黑球变式2(2019泰州)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数100200300400500正面朝上的频数5398156202244A.20 B.300 C.500 D.800◆达标三 求简单事件的概率例3 (2020新疆)四张看上去无差别的卡片上分别印有正方形、正五边形、正六边形和圆,现将印有图形的一面朝下,混合均匀后从中随机抽取两张,则抽到的卡片上印有的图形都是中心对称图形的概率为( C ) A.14 B.13 C.12 D.34 【解析】 分别用A ,B ,C ,D 表示正方形、正五边形、正六边形和圆,画树状图如图D34-1:(图D34-1)所以抽到卡片上印有的图案都是中心对称图形的概率为:612=12.故选C.例4 (2020无锡)现有4张正面分别写有数字1,2,3,4的卡片,将4张卡片的背面朝上,洗匀.(1)若从中任意抽取1张,抽到的卡片上的数字恰好为3的概率是__14__;(2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用画树状图或列表的方法写出分析过程)解:画树状图如图D34-2:(图D34-2)所以抽得的2张卡片上的数字之和为3的倍数的概率为412=13.变式3 (2018威海)在一个不透明的盒子中放入4张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取2张卡片,抽取的2张卡片上数字之积为负数的概率是( B ) A.14 B.13 C.12 D.34【解析】 画树状图如图D34-3:(图D34-3)所以抽取的两张卡片上数字之积为负数的概率为412=13.变式4 (2020宿迁)将4张分别印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为__14__;(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的2张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表的方法求解).解:画树状图如图D34-4:(图D34-4)∴至少有1张印有“兰”字的概率为716. ◆达标四 概率的综合应用例5 在-2,0,1这三个数中任取两数作为m ,n ,则二次函数y =(x -m )2+n 图象的顶点在坐标轴上的概率为( C )A.25B.13C.23D.12 【解析】 画树状图如图D34-5:(图D34-5)所以顶点在坐标轴上的概率为46=23.故选C.例6疫情过后,为了促进消费,某商场设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”“10元”“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满500元,就可以从箱子里先后摸出两个小球(第一次摸出后不放回),商场根据两个小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费500元.(1)该顾客至少可得到__10__元购物券,至多可得到__50__元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.解:画树状图如图D34-6:(图D34-6)从上图可以看出,共有12种等可能结果,其中大于或等于30元共有8种可能结果,所以该顾客所获得购物券的金额不低于30元的概率P=812=23.变式5某人的钱包内有10 元、20 元和50 元的纸币各1 张,从中随机取出2张纸币.求:(1)取出纸币的总额是30 元的概率;(2)取出纸币的总额可购买一件55元的商品的概率.解:(1)根据题意列表如下:共有6种等可能的结果,其中总额是30元有2种,所以取出纸币的总额是30元的概率为13;(2)共有6种等可能的结果,其中总额超过55元的有4种,所以取出纸币的总额可购买一件55元的商品的概率为23.1.“任意掷一枚质地均匀的骰子,掷出的点数是偶数”这个事件是( C )A .必然事件B .不可能事件C .随机事件D .确定事件 2.(2020绍兴)如图34-3,小球从A 入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E 出口落出的概率是( C )(图34-3)A.12B.13C.14D.163.(2018鄂州)一袋中装有形状、大小都相同的五个小球,每个小球上各标有一个数字,分别是2,3,4,5,6.现从袋中任意摸出一个小球,则摸出的小球上的数恰好是方程x 2-5x -6=0的解的概率是( A )A.15B.25C.35D.454.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回地随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球的个数为__20__.5.(2020苏州)一个小球在如图34-4所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在灰色区域的概率是__38__.(图34-4)6.(2020河南)如图34-5所示的转盘被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,重新转动)的颜色,则两次颜色相同的概率是__14__.(图34-5)7.(2020常州)在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放入一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是__13__;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.解:用列表法表示所有可能出现的结果情况如下:共有6种等可能的结果,其中和为奇数的有4种,所以签号的和为奇数的概率P =46=23.1.下列事件中,属于不可能事件的是( C )A .某个数的绝对值大于0B .某个数的相反数等于它本身C .任意一个五边形的外角和等于540°D .长分别为3,4,6的三条线段能围成一个三角形2.一个不透明的盒子中装有4个形状、大小质地完全相同的小球,这些小球上分别标有数字-1,0,2和3.从中随机地摸取一个小球,则这个小球所标数字是正数的概率为( C )A.14B.13C.12D.343.如图Z34-1是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是( A )(图Z34-1)A.13B.14C.16D.184.已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是( C ) A.110 B.910 C.15 D.455.在平行四边形ABCD 中,AC ,BD 是两条对角线,现从以下四个关系①AB =BC ;②AC =BD ;③AC ⊥BD ;④AB ⊥BC 中随机取出一个作为条件,即可推出平行四边形ABCD 是菱形的概率为( B )A.14B.12C.34 D .16.如图Z34-2是一张矩形纸板,顺次连结各边中点得到菱形,再顺次连结菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是( B )(图Z34-2)A.13B.14C.16D.187.从-5,0,4,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是__25__.8.在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有__7__个.9.一个不透明的盒子里装有除颜色外其余均相同的2个黑球和n 个白球,搅匀后从盒子里随机摸出一个球,摸到白球的概率为13.(1)求n 的值;(2)所有球放入盒中,搅匀后随机从中摸出1个球,放回搅匀,再随机摸出第2个球,求两次摸球摸到一个白球和一个黑球的概率.请用画树状图或列表的方法进行说明.解:(1)由题意,得n 2+n=13,解得n=1,经检验n=1是原方程的根,∴n的值为1;(2)用列表法表示所有可能出现的结果情况如下:第1球第2球黑1黑2白黑1(黑1,黑1)(黑2,黑1)(白,黑1)黑2(黑1,黑2)(黑2,黑2)(白,黑2)白(黑1,白)(黑2,白)(白,白)∴P(一白一黑)=4 9.10.有不透明的甲,乙两个口袋:甲袋中装有3张完全相同的卡片,标有数字分别是1,2,-3;乙袋中装有4张完全相同的卡片,标有数字分别是1,-2,-3,4.现在随机从甲口袋中抽取一张将数字记为x,从乙口袋中抽取一张将数字记为y.(1)请你用树状图或列表法求出从两个口袋中所抽取的卡片的数组成对应点(x,y)落在第四象限的概率;(2)求点(x,y)落在函数y=x的图象上的概率.解:(1)画树状图如图ZD34-1:(图ZD34-1)∴点(x,y)落在第四象限的概率为412=13;(2)点(x,y)落在函数y=x图象上的概率为212=16.11.如图Z34-3,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在其他格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是等腰三角形顶点的概率为(C)A.27B.13C.47D.23(图Z34-3) (图ZD34-2) 【解析】 如图ZD34-2,由图知第三枚棋子可摆放的位置共有14种,其中这三枚棋子所在格点恰好是等腰三角形顶点的有8种,∴这三枚棋子所在格点恰好是等腰三角形顶点的概率为814=47.故选C.12.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为( A )A.23B.12C.13D.16【解析】 将篮球和足球分别记为a 和b ,三个篮子分别记为1,2,3.画树状图如图ZD34-3:(图ZD34-3)因此P (恰有一个篮子为空)=69=23.13.从1,2,3,4四个数中随机选取两个不同的数,分别记为a ,c ,则关于x 的一元二次方程ax 2+4x +c =0有实数解的概率为( C )A.14B.13C.12D.23【解析】 画树状图如图ZD34-4:(图ZD34-4)由树状图可知:一共有12种等可能的结果,其中使ac≤4的有6种结果,∴关于x的一元二次方程ax2+4x+c=0有实数解的概率为12,故选C.14. 抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),从中随机摸出两只袜子,颜色恰好相同的概率为__13__.15.小王和小林举行羽毛球对抗赛,约定三局两胜,胜者可得奖金1200元.结果第一局小王获胜,而后面的比赛因故中断.事后,为了奖金分配两人发生分歧,小王说:“我已经胜了一局,1200元全归我”.小林说:“只比一局不能分出胜负,每人各600元”.裁判说:“小王800元,小林400元”.假设两人球技相当,从胜的可能性大小来考虑奖金分配,你认为谁的话合理?如果都不合理,两人的奖金应各得多少?为什么?解:∵P(小王胜)=34,P(小林胜)=14.∴小王得1200×34=900元,小林得1200×14=300元.16.甲口袋中装有2个相同小球,它们分别写有数字1,2;乙口袋中装有3个相同小球,它们分别写有数字3,4,5;丙口袋中装有2个相同小球,它们分别写有数字6,7.从三个口袋各随机取出1个小球.用画树状图或列表法求:(1)取出的3个小球上恰好有一个偶数的概率;(2)取出的3个小球上全是奇数的概率.解:(1)画树状图如图ZD34-5:(图ZD34-5)取出的3个小球上恰好有一个偶数的概率P=5 12;(2)取出的3个小球上全是奇数的概率P=212=16.17.如图Z34-4,正方体的一个顶点记为A ,那么抛掷这个正方体后,A 点着地的概率是__12__.(图Z34-4)18.如图Z34-5,飞机客舱第12排的6个座位都还没有售出,座号分别是12A ,12B ,12C ,12D ,12E ,12F ,某人随机购买第12排座位字母相邻的2张机票,则他购得的票中有一个座位靠窗的概率是( B )(图Z34-5)A.12B.25C.13D.1419.甲、乙两人同一天从A 市坐飞机去B 市,又同一天坐飞机回A 市,每天从A 到B 有2个航班,从B 到A 有3个航班,问甲、乙同机去同机回的概率是多少?答:每人一趟来回有6种选择,故P (同机去同机回)=636=16.。
2020年中考数学一轮专项复习——圆的综合问题1.(2019绵阳中考 第23题 )如图,AB 是⊙O 的直径,点C 为的中点,CF 为⊙O 的弦,且CF ⊥AB ,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF . (1)求证:△BFG ≌△CDG ; (2)若AD =BE =2,求BF 的长.2.(2019黔东南州中考 第22题12分)如图,点P 在⊙O 外,PC 是⊙O 的切线,C 为切点,直线PO 与⊙O 相交与点A 、B , (1)若∠A=30゜,求证:PA=3PB ;(2)小明发现,∠A 在一定范围内变化时,始终有)90(21P BCP ∠-︒=∠成立,请你写出推理过程.3. (2019贵港中考 第23题)如图,在矩形ABCD 中,以BC 边为直径作半圆O ,OE ⊥OA 交CD 边于点E ,对角线AC 与半圆O 的另一个交点为P ,连接AE . (1)求证:AE 是半圆O 的切线; (2)若PA =2,PC =4,求AE 的长.4.(2019湖北十堰中考 第22题 8分)如图,△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,点E 为C 延长线上一点,且∠CDE =∠BAC . (1)求证:DE 是⊙O 的切线;(2)若AB =3BD ,CE =2,求⊙O 的半径.5.在⊙O 中,AB 为直径,C 为⊙O 上一点.(1)如图①,过点C 作⊙O 的切线,与AB 的延长线相交于点P ,若∠CAB =27°,求∠P 的大小;(2)如图②,D 为AC ︵上一点,且OD 经过AC 的中点E ,连接DC 并延长,与AB 的延长线相交于点P ,若∠CAB =10°,求∠P 的大小.6.(2019鄂州中考第22题10分)如图,P A是⊙O的切线,切点为A, AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;(2)求证:E为△P AB的内心;(3)若cos∠P AB=10, BC =1,求PO的长.7.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,求∠DOR的度数。
专题34 利用相似解决四边形问题——几何综合(原卷版)专题诠释:几何综合题是中考必考题型。
试题一般以全等或相似为中心, 以四边形为重点, 常常是三角形、四边形、相似三角形、锐角三角函数等知识的综合运用.解题策略:解答几何综合题应注意:(1) 注意观察、分析图形, 把复杂的图形分解成几个基本图形, 通过添加辅助线补全或构造基本图形.(2) 掌握常规的证题方法和思路;(3) 运用转化的思想解决几何证明问题, 运用方程的思想解决计算问题。
另外还用结合数学思想和方法。
第一部分专题典例剖析类型一利用相似解决平行四边形问题1.(2022•贺州)如图,在平行四边形ABCD中,点E,F分别在AD,BC上,且ED=BF,连接AF,CE,AC,EF,且AC与EF相交于点O.(1)求证:四边形AFCE是平行四边形;(2)若AC平分∠FAE,AC=8,tan∠DAC=34,求四边形AFCE的面积.2.(2022•杭州)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF.已知四边形BFED是平行四边形,DEBC=14.(1)若AB=8,求线段AD的长.(2)若△ADE的面积为1,求平行四边形BFED的面积.3.(2021•长春)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=4,BD=8,点E在边AD上,AE=13AD,连结BE交AC于点M.(1)求AM的长.(2)tan∠MBO的值为 .类型二利用相似解决矩形问题4.(2022•玉林)如图,在矩形ABCD中,AB=8,AD=4,点E是DC边上的任一点(不包括端点D,C),过点A作AF⊥AE交CB的延长线于点F,设DE=a.(1)求BF的长(用含a的代数式表示);(2)连接EF交AB于点G,连接GC,当GC∥AE时,求证:四边形AGCE是菱形.5.(2022•泰安)如图,矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.6.(2022秋•苏州期末)如图,矩形ABCD中,AD=3,CD=4,点P从点A出发,以每秒1个单位长度的速度在射线AB上向右运动,运动时间为t秒,连接DP交AC于点Q.(1)求证:△DCQ∽△PAQ;(2)若△ADQ是以AD为腰的等腰三角形,求运动时间t的值.类型三利用相似解决菱形问题7.(2022•长春)如图,在Rt△ABC中,∠ABC=90°,AB<BC.点D是AC的中点,过点D作DE⊥AC 交BC于点E.延长ED至点F,使得DF=DE,连结AE、AF、CF.(1)求证:四边形AECF是菱形;(2)若BEEC=14,则tan∠BCF的值为 .8.(2022秋•海淀区校级期末)如图,在菱形ABCD中,∠A=60°,经过点C的直线分别与AB,AD的延长线相交于点P,Q,QB,PD相交于点O.(Ⅰ)求证:BD2=PB•DQ;(Ⅱ)求证:BD2=OD•PD.9.(2022秋•汝州市期末)如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE ∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)连接AE,交CD于点F,当∠ADB=60°,AD=43时,直接写出EA的长.10.(2022秋•白塔区月考)如图,在菱形ABCD中,DE⊥BC交BC的延长线于点E,连结AE交BD于点F,交CD于点G,连结CF.(1)求证:AF2=EF•GF;(2)若菱形ABCD的边长为2,∠BAD=120°,求FG的长.类型一利用相似解决正方形问题11.(2022秋•青浦区校级期末)如图,在三角形ABC中,∠C=90°,四边形DEFC是边长为4的正方形,且D、E、F分别在边AC、AB、BC上.把三角形ADE绕点E逆时针旋转一定的角度.(1)当点D与点F重合时,点A的对应点G落在边BC上,此时四边形ACGE的面积为 ;(2)当点D的对应点D1落在线段BE上时,点A的对应点为点A1,在旋转过程中点A经过的路程为l1,点D经过的路程为l2,且l1:l2=3:2,求线段AD1的长.12.(2022秋•成华区期末)如图,点E是正方形ABCD的对角线CA延长线上一点,连接BE,将BE绕点B顺时针旋转90°至BF,连接EF,EF交AD于点G.(1)求证:△ABE∽△AEG;(2)若正方形ABCD的边长为4,点G为AD的中点,求AE的长.13.(2022秋•洛阳期末)如图,把边长为3的正方形OABC绕点O逆时针旋转n°(0°<n<90°)得到正方形ODEF,DE与BC交于点P,ED的延长线交AB于点Q,交OA的延长线于点M,若BQ:AQ=4:1,求AM的值.14.(2022秋•邹平市校级期末)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=3,AE=3,求AF的长.第二部分 专题提优训练1.(2023•偃师市一模)如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,连接DE ,EF .已知四边形BFED 是平行四边形,DE BC =14.(1)若AB =12,求线段AD 的长.(2)若△ADE 的面积为1,求平行四边形BFED 的面积.2.(2022秋•济南期末)如图,点F 是平行四边形ABCD 的边AD 上的一点,直线CF 交线段BA 的延长线于点E .(1)求证:△AEF ∽△DCF ;(2)若AF :DF =1:2,AE =2,S △AEF =23.①求AB 的长;②求△EBC 的面积.4.(2022秋•惠济区校级期末)如图1,在矩形ABCD 中,AC ,BD 相交于点O ,点E 为BD 上的一个动点,连接CE 并延长到点F ,使EF =CE ,连接AF .(1)若点E 与点B 重合(如图2),判断AF 与BD 的数量关系和位置关系,并说明理由;(2)若以A ,F ,B ,E 为顶点的四边形是平行四边形,BD =3,请直接写出线段BE 的长度.5.(2022秋•路南区校级期末)如图,矩形ABCD中,AB=16,BC=8,点P为AB边上一动点,DP交AC 于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒2个单位长度的速度向B点移动,移动时间为t秒.当t为何值时,DP⊥AC?8.(2022秋•运城期末)如图,矩形ABCD的对角线AC、BD相交于点F,延长BC到点E,使CE=BC,连接DE,连接AE交BD于点G,交CD于点H.(1)求证:四边形ACED是平行四边形;(2)求证:DG2=FG•BG;(3)若AB=14,BC=24,求线段GH的长度.9.(2021秋•三原县期末)如图,在菱形ABCD中,∠C=60°,AB=4,点E是边BC的中点,连接DE、AE、BD.(1)求DE的长;(结果保留根号)(2)点F为边CD上的一点,连接AF,交DE于点G,连接EF,AF⊥EF.①求证:△AGE∽△DGF;②求DF的长.(提示:过点E作EH⊥CD于点H.)10.(2022•江西)如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.(1)求证:△ABC∽△AEB;(2)当AB=6,AC=4时,求AE的长.11.(2021秋•宝塔区校级期末)如图,在菱形ABOC中,对角线AO,BC相交于点D,BE⊥AC于点E,A0与BE交于点H.(1)求证:△BAD∽△HBD;(2)延长OC交BE的延长线于点F.求证:HB2=HE•HF.12.(2022秋•未央区校级期末)已知有一块三角形材料∠ABC,其中BC=120cm,高AD=80cm,现需要在三角形ABC上裁下一个正方形材料做零件,使得正方形EFGH的顶点E、F分别在边AB,AC上,H、G在BC上,裁下的正方形EFGH的边长是多少?27.(2022秋•东明县校级期末)如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当CEEB=13时,求S△CEFS△CDF的值;(2)如图②,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=12 BG.。
初中数学知识点归纳总结(含七八九年级)七年年级数学(上)知识点 (1)第⼀一章有理理数 (1)第⼆二章整式的加减 (3)第三章⼀一元⼀一次⽅方程 (4)第四章图形的认识初步 (5)七年年级数学(下)知识点 (6)第五章相交线与平⾏行行线 (6)第六章平⾯面直⻆角坐标系 (8)第七章三⻆角形 (9)第⼋八章⼆二元⼀一次⽅方程组 (12)第九章不不等式与不不等式组 (13)第⼗十章数据的收集、整理理与描述 (13)⼋八年年级数学(上)知识点 (14)第⼗十⼀一章全等三⻆角形 (14)第⼗十⼆二章轴对称 (15)第⼗十三章实数 (16)第⼗十四章⼀一次函数 (17)第⼗十五章整式的乘除与分解因式 (18)⼋八年年级数学(下)知识点 (19)第⼗十六章分式 (19)第⼗十七章反⽐比例例函数 (20)第⼗十⼋八章勾股定理理 (21)第⼗十九章四边形 (22)第⼆二⼗十章数据的分析 (23)九年年级数学(上)知识点 (24)第⼆二⼗十⼀一章⼆二次根式 (24)第⼆二⼗十⼆二章⼀一元⼆二次根式 (25)第⼆二⼗十三章旋转 (26)第⼆二⼗十四章圆 (27)第⼆二⼗十五章概率 (28)九年年级数学(下)知识点 (30)第⼆二⼗十六章⼆二次函数 (30)第⼆二⼗十七章相似 (32)第⼆二⼗十⼋八章锐⻆角三⻆角函数 (33)第⼆二⼗十九章投影与视图 (34)七年年级数学(上)知识点⼈人教版七年年级数学上册主要包含了了有理理数、整式的加减、⼀一元⼀一次⽅方程、图形的认识初步四个章节的内容.第⼀一章有理理数⼀一.知识框架⼆二.知识概念1.有理理数:(1)凡能写成形式的数,都是有理理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理理数.注意:0即不不是正数,也不不是负数;-a不不⼀一定是负数,+a也不不⼀一定是正数;π不不是有理理数;(2)有理理数的分类:①②2.数轴:数轴是规定了了原点、正⽅方向、单位⻓长度的⼀一条直线.3.相反数:(1)只有符号不不同的两个数,我们说其中⼀一个是另⼀一个的相反数;0的相反数还是0;(2)相反数的和为0⇔a+b=0⇔a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理理数⽐比⼤大⼩小:(1)正数的绝对值越⼤大,这个数越⼤大;(2)正数永远⽐比0⼤大,负数永远⽐比0⼩小;(3)正数⼤大于⼀一切负数;(4)两个负数⽐比⼤大⼩小,绝对值⼤大的反⽽而⼩小;(5)数轴上的两6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1⇔a、b互为倒数;若ab=-1⇔a、b互为负倒数.7.有理理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较⼤大的符号,并⽤用较⼤大的绝对值减去较⼩小的绝对值;(3)⼀一个数与0相加,仍得这个数.8.有理理数加法的运算律律:(1)加法的交换律律:a+b=b+a;(2)加法的结合律律:(a+b)+c=a+(b+c).9.有理理数减法法则:减去⼀一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)⼏几个数相乘,有⼀一个因式为零,积为零;各个因式都不不为零,积的符号由负因式的个数决定.11有理理数乘法的运算律律:(1)乘法的交换律律:ab=ba;(2)乘法的结合律律:(ab)c=a(bc);(3)乘法的分配律律:a(b+c)=ab+ac.12.有理理数除法法则:除以⼀一个数等于乘以这个数的倒数;注意:零不不能做除数,.13.有理理数乘⽅方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-a n或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=a n或(a-b)n=(b-a)n.14.乘⽅方的定义:(1)求相同因式积的运算,叫做乘⽅方;(2)乘⽅方中,相同的因式叫做底数,相同因式的个数叫做指数,乘⽅方的结果叫做幂;15.科学记数法:把⼀一个⼤大于10的数记成a×10n的形式,其中a是整数数位只有⼀一位的数,这种记数法叫科学记数法.16.近似数的精确位:⼀一个近似数,四舍五⼊入到那⼀一位,就说这个近似数的精确到那⼀一位.17.有效数字:从左边第⼀一个不不为零的数字起,到精确的位数⽌止,所有数字,都叫这个近似数的有效数字.请判断下列列题的对错,并解释.1.近似数25.0的精确度与近似数25⼀一样.2.近似数4千万与近似数4000万的精确度⼀一样.3.近似数660万,它精确到万位.有三个有效数字.4.⽤用四舍五⼊入法得近似数6.40和6.4是相等的.5.近似数3.7x10的⼆二次与近似数370的精确度⼀一样.1、错。
新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:统计与概率—知识讲解【考纲要求】1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;5.加强统计与概率的联系,这方面的题型以综合题为主,将逐渐成为新课标下中考的热点问题.【知识网络】「I 统计图表——।阅读图表提取信息T 集中程度I 怦均数中位教嬴【考点梳理】考点一、数据的收集及整理1 .一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展 开调查、记录结果、得出结论.2 .调查收集数据的方法:普查与抽样调查. 要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行 普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想 (3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样 3 .数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图. 要点诠释:这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.收集数据媒体查询抽样调查-抽样的基本要求总体个体样本T 整理数据借助统计活动研究概率从概 率角度分析善数据特征离散程度限差方差标准差实验估计概必然事不可能事游戏的 公平与模拟等效实考点二.数据的分析 1 .基本概念:总体:把所要考查的对象的全体叫做总体; 个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本; 样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组 数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数; 极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的 情况,这个结果通常称为方差.计算方差的公式:设一组数据是/,无是这组数据的平均数。
一、整数的运算1.加法、减法、乘法和除法的运算规则2.负数的概念和运算3.整数的比较大小二、有理数的运算1.加法、减法、乘法和除法的运算规则2.绝对值的概念和性质3.有理数的比较大小三、平方根和立方根1.平方根和立方根的概念和性质2.估算和画图确定平方根的值3.利用平方根和立方根解决实际问题四、代数式和方程式1.代数式的基本概念和性质2.方程式的基本概念和性质3.一次方程的解法和实际应用4.二次方程的解法和实际应用5.指数幂的计算和简化6.一次方程和二次方程的应用题五、图形的认识1.平面图形的基本概念和性质2.直线、线段、射线的概念和性质3.角的概念和性质4.三角形的概念和性质5.四边形的概念和性质6.圆的概念和性质六、相似和全等1.图形的相似和全等的概念和性质2.相似三角形的判定和应用3.全等三角形的判定和证明4.利用相似和全等解决实际问题七、频数分布和概率1.数据的整理、统计和表示2.频数分布和频率分布3.概率的概念和性质4.概率的计算和应用八、函数1.函数的概念和性质2.求函数值和函数的增减性3.过点作切线和求解方程的应用4.表函数和获得函数关系式九、统计与图表1.数据的整理、统计和表示2.直方图、折线图和饼图的绘制和分析十、面积和体积1.平面图形的面积计算2.三角形、四边形和多边形的面积计算3.圆的面积计算4.空间图形的体积计算十一、比例和变量1.比例的概念和应用2.比例的计算和问题解决3.变量的概念和应用4.变量的计算和问题解决。