[最新推荐]鲁教版八年级上册数学期末试卷
- 格式:docx
- 大小:83.47 KB
- 文档页数:4
八年级数学上册期末考试试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共36分)1.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是()A. 平均数是80B. 极差是15C. 中位数是80D. 标准差是252.已知方程组,则|x-y|的值()A. 5B. -1C. 0D. 13.在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A. 众数是90分B. 中位数是95分C. 平均数是95分D. 方差是154.下列是方程组的解的是( )A. B. C. D.5.设,a在两个相邻整数之间,则这两个整数是()A. 1和2B. 2和3C. 3和4D. 4和56.点P(﹣2,3)关于y轴的对称点的坐标是()A. (2,3 )B. (﹣2,﹣3)C. (﹣2,3)D. (﹣3,2)7.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架2.5米长的梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是()A. 0.6米B. 0.7米C. 0.8米D. 0.9米8.已知一次函数y=kx+b和y=x+a的图象交于点A,则关于x,y的二元一次方程组的解为()A. B. C. D.9.如图,AB∥CD,BC平分∠ABE, ∠C=34°,则∠BED的度数等于()A. B. C. D.10.如图,由下列条件不能得到AB∥CD的是()A. ∠B+∠BCD=180°B. ∠1=∠2C. ∠3=∠4D. ∠B=∠511.如图,已知A(4,0)、B(0,4),从点P(2,0)射出的光线经直线AB反向后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是()A. B. 6 C. D.12.如图,直线a∥b,直线l与直线a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠2=40°,则∠1的度数为()A. 20°B. 30°C. 40°D. 50°二、填空题(共6题;共24分)13.若一组数据的平均数为6,众数为5,则这组数据的方差为________.14.如图,l是四边形ABCD的对称轴,如果AD∥BC,有下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC,其中正确的结论是________(把你认为正确的结论的序号都填上).15.若和都是关于x、y的二元一次方程ax﹣y=b的解,则ab=________.16.如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=________.17.如图,在△ABC中,∠A=20°,∠ABC与∠ACB的平分线交于点D1,∠ABD1与∠ACD1的平分线交于点D2,以此类推,∠ABD2与∠ACD2的平分线交于点D,则∠BDC的度数是________.(16题)(17题)18.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x小时,两车之间的距离y千米,图中的折线表示y与x之间的函数关系,则出发6小时的时候,甲、乙两车相距________千米.三、计算题(共6题;共60分)19.为了求1+2+22+23+…+22008的值,可令S=1=2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S ﹣S=22009﹣1,所以1+2+22+23+…+22008=22009﹣1仿照以上推理,计算1+5+52+53+…+52009的值.20.已知和是关于x,y的二元一次方程y = kx+b的解,求k,b的值.21.甲、乙两人分别在六次射击中的成绩如下表:(单位:环)第1次第2次第3次第4次第5次第6次甲 6 7 7 8 6 8乙 5 9 6 8 5 9分别算出两人射击的平均数和方差.这六次射击中成绩发挥比较稳定的是谁?22.长方体的长为20cm,宽为10cm,高为15cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是多少?23.某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往 A地区,20台派往 B地区,两地区与该农机公司商定的每天租赁价格如表:每台甲型收割机的租金每台乙型收割机的租金A地区 1800元1600元B地区 1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.24.设a、b是任意两个实数,用max{a,b}表示a、b两数中较大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:(1)max{5,2}=________,max{0,3}=________;(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范围;(3)求函数y=x2﹣2x﹣4与y=﹣x+2的图象的交点坐标,函数y=x2﹣2x﹣4的图象如图所示,请你在图中作出函数y=﹣x+2的图象,并根据图象直接写出max{﹣x+2,x2﹣2x﹣4}的最小值.答案一、单选题1.D2. D3.A4. D5. B6. A7.B8.B9. D 10.B 11. A 12. D二、填空题13. 14.①、②、④ 15. 10 16.17. 40°18.450三、计算题19. 解:令S=1+5+52+53+ (52009)则5S=5+52+53+ (52010)5S﹣S=﹣1+52010,4S=52010﹣1,则S=.20.解:根据题意,得解得:21.解:∵甲= (6+7+7+8+6+8)=7,乙= (5+9+6+8+5+9)=7;∴S2甲= [(6﹣7)2+(7﹣7)2+(7﹣7)2+(8﹣7)2+(6﹣7)2+(8﹣7)2]= ,S2乙= [(5﹣7)2+(9﹣7)2+(6﹣7)2+(8﹣7)2+(5﹣7)2+(9﹣7)2]=3;∴S2甲<S2乙,∴甲在射击中成绩发挥比较稳定22. 解:将长方体沿CF、FG、GH剪开,向右翻折,使面FCHG和面ADCH在同一个平面内,连接AB,如图1,由题意可得:BD=BC+CD=5+10=15cm,AD=CH=15cm,在Rt△ABD中,根据勾股定理得:将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,连接AB,如图2,由题意得:BH=BC+CH=5+15=20cm,AH=10cm,在Rt△ABH中,根据勾股定理得:则需要爬行的最短距离是15 cm.连接AB,如图3,由题意可得:BB′=B′E+BE=15+10=25cm,AB′=BC=5cm,在Rt△AB′B中,根据勾股定理得:∵∴则需要爬行的最短距离是23.(1)解:由于派往A地乙型收割机x台,则派往B地乙型收割机为(30-x)台,派往A,B地区的甲型收割机分别为(30-x)台和(x-10)台,∴y=1600x+1200(30-x)+1800(30-x)+1600(x-10)=200x+74000(10≤x≤30且x为整数)(2)解:由题意得200x+74000≥79600,解得x≥28,∵28≤x≤30,x是正整数,∴x=28,29,30,∴有3种不同分派方案:①当x=28时,派往A地区的甲型收割机2台,乙型收割机28台,余者全部派往B地区;②当x=29时,派往A地区的甲型收割机1台,乙型收割机29台,余者全部派往B地区;③当x=30时,即30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区(3)解:∵y=200x+74000中y随x的增大而增大,∴当x=30时,y取得最大值,此时,y=200×30+74000=80000, 建议农机租赁公司将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,这样公司每天获得租金最高,最高租金为80000元24. (1)5;3(2)解:∵max{3x+1,﹣x+1}=﹣x+1,∴3x+1≤﹣x+1,解得:x≤0.(3)解:联立两函数解析式成方程组,,解得:,,∴交点坐标为(﹣2,4)和(3,﹣1).画出直线y=﹣x+2,如图所示,观察函数图象可知:当x=3时,max{﹣x+2,x2﹣2x﹣4}取最小值﹣1.。
2023年鲁教版(五四制)数学八年级上册期末考试测试卷及答案(一)一、选择题(每题3分,共36分)1.某校评选先进班集体,从“学习”“卫生”“纪律”“德育”四个方面考核打分,各项满分均为100,所占比例如下表:九年级1班这四项得分依次为80,86,84,90,则该班四项综合得分为() A.81.5 B.84.5 C.85 D.842.若a+5=2b,则代数式a2-4ab+4b2-5的值是()A.0 B.-10 C.20 D.-303.下列各组图形可以通过平移得到的是()4.下列分式中是最简分式的是()A.xyx2B.63y C.xx-1D.x+1x2-15.将(a-1)2-1分解因式,结果正确的是()A.a(a-1) B.a(a-2)C.(a-2)(a-1) D.(a-2)(a+1)6.下列四个图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转90°后,能与原图形完全重合的是()7.某校为加强学生出行的安全意识,每月都要对学生进行安全知识测评,随机选取15名学生五月份的测评成绩如下表:则这组数据的中位数和众数分别为()A.95,95 B.95,96 C.96,96 D.96,978.分式x+a3x-1中,当x=-a时,下列结论正确的是()A.分式的值为零B.分式无意义C.若a≠-13,分式的值为零D.若a≠13,分式的值为零9.如图,E是平行四边形ABCD的边AD的延长线上一点,连接BE交CD于点F,连接CE,BD.添加以下条件,仍不能判定四边形BCED为平行四边形的是() A.∠ABD=∠DCE B.∠AEC=∠CBDC.EF=BF D.∠AEB=∠BCD(第9题) (第11题)10.下面是涂涂同学完成的一组练习题,每小题20分,他的得分是()①x2-1x-1=x+1;②3-x·23-x=2;③1÷ab·ba=1;④1x+1y=x+yxy;⑤⎝⎛⎭⎪⎫xx+1-x÷x2-xx+1=x-x2+xx+1÷x2-xx+1=x(2-x)x+1·x+1x(x-1)=2-xx-1.A.40分B.60分C.80分D.100分11.如图,在平面直角坐标系中,将△ABC绕点P顺时针旋转得到△A′B′C′,则点P的坐标为()A.(1,1) B.(1,2) C.(1,3) D.(1,4)12.已知a1=x+1(x≠0且x≠-1),a2=11-a1,a3=11-a2,…,a n=11-a n-1,则a2 024等于()A.-x+1 B.x+1 C.xx+1D.-1 x二、填空题(每题3分,共18分)13.已知x2+nx+m有因式(x-1)和(x-2),则m=______,n=________.14.分解因式:3(x2+1)-6x=______________.15.有一组样本数据x1,x2,…,x n,由这组数据得到新样本数据y1,y2,…,y n,其中y i=x i+c(i=1,2,…,n),c为非零常数.下列说法:①两组样本数据的样本平均数相同;②两组样本数据的样本中位数相同;③两组样本数据的样本标准差相同;④两组样本数据的样本极差相同.正确说法的序号是________.16.中华优秀传统文化是中华民族的“根”和“魂”,为了大力弘扬中华优秀传统文化,某校决定开展名著阅读活动.用3 600元购买“四大名著”若干套后,发现这批图书满足不了学生的阅读需求,图书管理员在购买第二批时正赶上图书城八折销售该套书,于是用2 400元购买的套数只比第一批少4套.设第一批购买的“四大名著”每套的价格为x元,则符合题意的方程是______________.17.如图,点F在正五边形ABCDE的内部,△ABF为等边三角形,则∠AFC等于________.18.若关于x的分式方程3xx-1=m1-x+2的解为正数,则m的取值范围是______________.三、解答题(19题6分,20,22,24题每题8分,其余每题12分,共66分) 19.已知a,b,c为△ABC的三边长,求证:(a-c)2-b2是负数.20.(1)计算:2m m 2-1-1m -1;(2)先化简,再求值:⎝ ⎛⎭⎪⎫x +x x +1÷x +2 x 2+x ,其中x =1+2.21.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (-1,0),B (-4,1),C (-2,2).(1)点B 关于原点对称的点B ′的坐标是________;(2)平移△ABC ,使平移后点A 的对应点A 1的坐标为(2,1),请画出平移后的△A 1B 1C 1; (3)画出△ABC 绕原点O 逆时针旋转90°后得到的△A 2B 2C 2.22.如图,在平行四边形ABCD 中,点O 是对角线BD 的中点,EF 过点O ,交AB于点E,交CD于点F.求证:(1)∠1=∠2;(2)△DOF≌△BOE.23.某水果公司以10元/kg的成本价新进2 000箱荔枝,每箱质量为5 kg,在出售荔枝前,需要去掉坏荔枝,现随机抽取20箱,去掉坏荔枝后称得每箱的质量(单位:kg)如下:4.7 4.8 4.6 4.5 4.8 4.9 4.8 4.7 4.8 4.74.8 4.9 4.7 4.8 4.5 4.7 4.7 4.9 4.75.0整理数据:分析数据:(1)直接写出上述表格中a,b,c的值.(2)平均数、众数、中位数都能反映这组数据的集中趋势,请根据以上样本数据分析的结果,任意选择其中一个统计量,估算这2 000箱荔枝共坏了多少千克.(3)根据(2)中的结果,求该公司销售这批荔枝每千克最低定为多少元才不亏本.(结果保留一位小数)24.八年级(1)班开展“经典诵读,光亮人生”读书活动,小冬和小惠两同学读了同一本480页的名著,小冬每天读的页数是小惠每天读的页数的1.2倍,小惠读完这本书比小冬多用4天,求两人每天读这本名著多少页.25.在△ABC与△DEC中,∠BAC=∠EDC=90°,AB=AC=4,DE=DC,EC=2,将线段BA平移到EF.(1)如图①,当B,C,D三点共线时,求线段CF的长;(2)将△DEC绕点C逆时针旋转至如图②所示的位置,请探究AD与DF的数量关系和位置关系,并证明.答案一、1.B2.C 3.C4.C5.B6.A 7.C8.C9.D10.A11.B12.D点拨:∵a1=x+1,∴a2=11-a1=11-(x+1)=-1x,∴a3=11-a2=11-⎝⎛⎭⎪⎫-1x=xx+1,∴a4=11-a3=11-xx+1=x+1,∴a5=11-a4=-1x,a6=11-a5=xx+1,….∵2 024÷3=674……2,∴a2 024=-1x.故选D.二、13.2;-3 14.3(x-1)2 15.③④16.3 600x -2 4000.8x =417.126° 点拨:∵△ABF 是等边三角形,∴AB =BF ,∠AFB =∠ABF =60°.在正五边形ABCDE 中,AB =BC ,∠ABC =108°, ∴BF =BC ,∠FBC =∠ABC -∠ABF =48°, ∴∠BFC =12(180°-∠FBC )=66°, ∴∠AFC =∠AFB +∠BFC =126°.18.m <-2且m ≠-3 点拨:去分母,得3x =-m +2(x -1),去括号、移项、合并同类项,得 x =-m -2.∵关于x 的分式方程3x x -1=m1-x +2的解为正数,∴-m -2>0. ∴m <-2. 由题意得x -1≠0, ∴x ≠1. ∴-m -2≠1. ∴m ≠-3.∴m <-2且m ≠-3.三、19.证明:∵a ,b ,c 为△ABC 的三边长,∴a +b >c ,b +c >a , 即a -c +b >0,a -c -b <0.∴(a -c )2-b 2=(a -c +b )(a -c -b )<0, ∴(a -c )2-b 2是负数.20.解:(1)原式=2m(m +1)(m -1)-m +1(m -1)(m +1)=2m -m -1(m -1)(m +1)=m -1(m -1)(m +1)=1m +1. (2)原式=⎝ ⎛⎭⎪⎫x 2+xx +1+x x +1·x 2+x x +2=x 2+2x x +1·x 2+x x +2 =x (x +2)x +1·x (x +1)x +2=x 2.当x =1+2时, 原式=(1+2)2 =1+22+2 =3+22. 21.解:(1)(4,-1)(2)如图所示,△A 1B 1C 1即为所求.(3)如图所示,△A 2B 2C 2即为所求. 22.证明:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD . ∴∠1=∠2.(2)∵点O 是BD 的中点, ∴OD =OB .在△DOF 和△BOE 中,⎩⎨⎧∠1=∠2,∠DOF =∠BOE ,OD =OB ,∴△DOF ≌△BOE (AAS).23.解:(1)a =6,b =4.7,c =4.75.(2)选择众数,估算这2 000箱荔枝共坏了2 000×(5-4.7)=600(kg).(答案不唯一)(3)10×5×2 000÷(2 000×5-600)≈10.7(元).答:该公司销售这批荔枝每千克最低定为10.7元才不亏本. 24.解:设小慧每天读这本名著x 页,则小冬每天读这本名著1.2x 页,依题意得480x -4801.2x =4, 解得x =20.经检验,x =20是原方程的解,且符合题意. ∴1.2x =24,答:小慧每天读这本名著20页,小冬每天读这本名著24页. 25.解:(1)∵∠BAC =90°,AB =AC ,∴∠ABC =45°.∵DE =DC ,∠EDC =90°, ∴∠ECD =45°, ∴∠ABC =∠ECD . 又∵B ,C ,D 三点共线, ∴EC ∥AB . 又∵EF ∥AB , ∴C ,E ,F 三点共线. 由题意知EF =AB =4, ∴CF =CE +EF =2+4=6. (2)AD =DF ,且AD ⊥DF .证明:如图,延长FE 交AC 于G .由题意得EF∥AB,∴∠EGA=∠BAC=90°.∴∠FGC=90°=∠EDC.∴∠DEG+∠DCG=180°.又∵∠FED+∠DEG=180°,∴∠ACD=∠FED.又∵EF=AB=AC,DE=DC,∴△ACD≌△FED(SAS).∴AD=DF,∠ADC=∠EDF.∴∠ADF=∠EDC=90°,∴AD⊥DF.2023年鲁教版(五四制)数学八年级上册期末考试测试卷及答案(二)一、选择题(本大题共12道小题,每小题3分,满分36分)1.太原正式步入“地铁时代”,太原轨道交通近期建设的1、2、3号线在全国是第338条线路.下面是中国四个城市的地铁图标,其中是中心对称图形的是()2.若a+b=3,则a2+6b-b2的值为()A.3 B.6 C.9 D.123.把多项式3(x-y)2+2(y-x)3分解因式,结果正确的是()A.(x-y)2(3-2x-2y) B.(x-y)2(3-2x+2y)C.(x-y)2(3+2x-2y) D.(y-x)2(3+2x+2y)4.若分式|x|-2(x-2)(x+1)的值为0,则x的值为()A.±2 B.2 C.-2 D.-15.一个多边形的内角和与外角和相加之后的结果是2 520°,则这个多边形的边数为()A.12 B.13 C.14 D.156.方程23x=1x+2的解为()A.x=-2 B.x=4C.x=0 D.x=67.某班50人一周内在线学习数学的时间如图所示,则以下叙述正确的是() A.全班同学在线学习数学的平均时间为2.5 hB.全班同学在线学习数学时间的中位数为2 hC.全班同学在线学习数学时间的众数为20 hD.全班超过半数同学每周在线学习数学的时间超过3 h8.若分式方程6(x+1)(x-1)-mx-1=6有增根,则它的增根是()A.0 B.1 C.-1 D.1或-19.如图,△ABC沿BC所在的直线平移到△DEF的位置,且C点是线段BE的中点,若AB=5,BC=2,AC=4,则AD的长是()A.5 B.4 C.3 D.210.如图,将线段AB平移到线段CD的位置,则a+b的值为() A.4 B.0 C.3 D.-511.如图,在▱ABCD中,对角线AC,BD相交于点O,点E是BC的中点,若AB =16,则OE的长为()A.8 B.6 C.4 D.312.如图,E ,F 分别是平行四边形ABCD 的边AD ,BC 上的点,且BE ∥DF ,AC分别交BE ,DF 于点G ,H .下列结论:①四边形BFDE 是平行四边形;②△AGE ≌△CHF ;③BG =DH ;④S △AGE ︰S △CDH =GE ︰DH .其中正确的个数是( ) A .1B .2C .3D .4二、填空题(本大题共6道小题,每小题3分,满分18分) 13.如果a 2-2a =0,则2a 2 020-4a 2 019+2 020的值为________. 14.使代数式x +3x -3÷x 2-9x +4有意义的x 的取值范围是________.15.一组数据3,2,x ,2,6,3的唯一众数是2,则这组数据的方差为________. 16.如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,且AB ⊥AC ,∠DAC =45°,如果AC =2,那么BD 的长是________.17.如图,在平面直角坐标系中,点A (3,0),点B (0,2),连接AB ,将线段AB绕点A 顺时针旋转90°得到线段AC ,连接OC ,则线段OC 的长度为________.18.如图,在▱ABCD 中,AB =6,∠BAD 的平分线与BC 的延长线交于点E ,与DC交于点F,且点F为边CD的中点,DG⊥AE,垂足为G,若DG=5,则AE的长为________.三、解答题(本大题共7道小题,满分66分)19.(9分)分解因式:(1)x3-x;(2)2a2-4a+2;(3)m4-2m2+1.20.(7分)先化简,再求值:1x÷ ⎝⎛⎭⎪⎫x2+1x2-x-2x-1+1x+1,其中x的值为方程2x=5x-1的解.21.(8分)某校八年级开展英语拼写大赛,爱国班和求知班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据统计图直接写出上表中a,b,c的值;(2)已知爱国班复赛成绩的方差是70,请求出求知班复赛成绩的方差,并说明哪个班成绩比较稳定.22.(10分)如图所示,已知射线CB∥OA,∠C=∠OAB=120°,E,F在CB上,且∠1=∠2,∠3=∠4.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC是否随之变化?若变化,找出规律或求出其变化范围;若不变,求出这个比.23.(10分)2020年初,市场上防护口罩出现热销.某药店用3 000元购进甲、乙两种不同型号的口罩共1 100只进行销售,已知购进甲种口罩与乙种口罩的费用相同,购进甲种口罩单价是乙种口罩单价的1.2倍.(1)求购进的甲,乙两种口罩的单价各是多少;(2)若甲、乙两种口罩的进价不变,该药店计划用不超过7 000元的资金再次购进甲、乙两种口罩共2 600只,求甲种口罩最多能购进多少只.24.(10分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为E,F,AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.25.(12分)已知在△ABC中,AB=AC,点D在BC上,以AD,AE为腰作等腰三角形ADE,且∠ADE=∠ABC,连接CE,过E作EM∥BC交CA的延长线于M,连接BM.(1)求证:△BAD≌△CAE;(2)若∠ABC=30°,求∠MEC的度数;(3)求证:四边形MBDE是平行四边形.答案一、1.C 2.C 3.B 4.C 5.C 6.B7.B8.B【点拨】分式方程的最简公分母为(x+1)(x-1),去分母得6-m(x+1)=6(x+1)(x-1).由分式方程有增根,得到(x+1)(x-1)=0,即x=1或x=-1,把x=-1代入整式方程得6=0,无解,则它的增根是1.故选B.9.B【点拨】由平移的性质可知,AD=BE,∵BC=CE,BC=2,∴BE=4,∴AD=4.故选B.10.A【点拨】由题意知,线段AB向左平移3个单位长度,再向上平移4个单位长度得到线段CD,∴a=5-3=2,b=-2+4=2,∴a+b=4.故选A. 11.A【点拨】∵在▱ABCD中,对角线AC,BD相交于点O,∴点O是AC的中点.又∵点E是BC的中点,∴EO是△ABC的中位线,∴EO=12AB=8.故选A.12.D【点拨】∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC,∵BE∥DF,∴四边形BFDE是平行四边形,故①正确;∵四边形BFDE 是平行四边形, ∴BF =DE ,DF =BE ,∴AE =FC ,∵AD ∥BC ,BE ∥DF ,∴∠DAC =∠ACB ,∠ADF =∠DFC ,∠AEB =∠ADF , ∴∠AEB =∠DFC , ∴△AGE ≌△CHF (ASA ),故②正确;∵△AGE ≌△CHF ,∴GE =FH , ∵BE =DF ,∴BG =DH ,故③正确; ∵△AGE ≌△CHF ,∴S △AGE =S △CHF , ∵S △CHF ︰S △CDH =FH ︰DH ,∴S △AGE ︰S △CDH =GE ︰DH ,故④正确.故选D. 二、13.2 020 14.x ≠±3且x ≠-415.2 【点拨】∵数据3,2,x ,2,6,3的唯一众数是2,∴x =2.∴3,2,2,2,6,3的平均数为16×(3+2+2+2+6+3)=3,则这组数据的方差为16×[(2-3)2×3+(3-3)2×2+(6-3)2]=2.16.25 【点拨】∵四边形ABCD 是平行四边形,∴AD ∥BC ,OB =OD ,OA =12AC =1,∴∠ACB =45°.∵AB ⊥AC ,∴△ABC 是等腰直角三角形,∴AB =AC =2.在Rt △AOB 中,根据勾股定理,得OB =5,∴BD =2BO =2 5. 17.34 【点拨】如图,作CH ⊥x 轴于H .∵A (3,0),B (0,2),∴OA =3,OB =2,∵∠AOB =∠BAC =∠AHC =90°,∴∠BAO +∠HAC =90°,∠HAC +∠ACH =90°,∴∠BAO =∠ACH .∵AB =AC ,∴△ABO ≌△CAH (AAS ),∴AH =OB =2,CH =OA =3,∴OH =OA +AH =3+2=5,∴OC =OH 2+CH 2=52+32=34.18.8 【点拨】∵AE 为∠DAB 的平分线, ∴∠DAE =∠BAE .∵四边形ABCD 为平行四边形, ∴AD ∥BC ,DC ∥AB ,DC =AB . ∵DC ∥AB ,∴∠BAE =∠DFA ,∴∠DAE =∠DFA , ∴AD =FD . 又∵DG ⊥AE ,∴AG =FG ,即AF =2AG . ∵F 为DC 的中点,∴DF =CF , ∴AD =DF =12DC =12AB =3.在Rt △ADG 中,根据勾股定理得AG =2,则AF =2AG =4. ∵AD ∥BC ,∴∠DAF =∠E ,∠ADF =∠ECF . 在△ADF 和△ECF 中,⎩⎨⎧∠DAF =∠E ,∠ADF =∠ECF ,DF =CF ,∴△ADF ≌△ECF (AAS), ∴AF =EF ,则AE =2AF =8.三、19.解:(1)x 3-x =x (x 2-1)=x (x +1)(x -1); (2)2a 2-4a +2=2(a 2-2a +1)=2(a -1)2; (3)m 4-2m 2+1=(m 2-1)2=(m +1)2(m -1)2. 20.解:1x ÷⎝ ⎛⎭⎪⎫x 2+1x 2-x -2x -1+1x +1 =1x ÷x 2+1-2x x (x -1)+1x +1=1x ·x (x -1)(x -1)2+1x +1=1x-1+1 x+1=2x(x+1)(x-1).解方程2x=5x-1,得x=1 3.当x=13时,原式=-34.21.解:(1)a=85;b=80;c=85.(2)求知班成绩的方差为15×[(70-85)2+(75-85)2+(80-85)2+2×(100-85)2]=160.∵70<160,∴爱国班的成绩比较稳定.22.解:(1)∵CB∥OA,∴∠C+∠COA=180°.∵∠C=120°,∴∠COA=180°-∠C=180°-120°=60°.∵∠1=∠2,∠3=∠4,∴∠COA=2∠1+2∠4=2(∠1+∠4)=2∠EOB.∴∠EOB=12∠COA=12×60°=30°.(2)不变化.∵CB∥OA,∴∠OBC=∠2,∠OFC=∠FOA.又∵∠1=∠2,∴∠OBC=∠1,∴∠OFC=2∠1,∴∠OBC∠OFC=∠12∠1=1 2.23.解:(1)3 000÷2=1 500(元).设乙种口罩的单价为x元,则甲种口罩的单价为1.2x元,由题意,得1 500 1.2x+1 500x=1 100,解得x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴1.2x=3.∴甲种口罩的单价为3元,乙种口罩的单价为2.5元.(2)设该药店购进甲种口罩a只,则购进乙种口罩(2 600-a)只,由题意,得3a+2.5(2 600-a)≤7 000,解得a≤1 000.∴甲种口罩最多能购进1 000只.24.(1)解:∵AE⊥BD,∴∠AEO=90°.∵∠AOE=50°,∴∠EAO=40°.∵AC平分∠DAE,∴∠DAC=∠EAO=40°.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ACB=∠DAC=40°.(2)证明:∵四边形ABCD是平行四边形,∴OA=OC.∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°.∵∠AOE=∠COF,∴△AEO≌△CFO(AAS),∴AE=CF.25.(1)证明:∵AB=AC,∴∠ABC=∠ACB,∴∠BAC=180°-2∠ABC.∵以AD,AE为腰作等腰三角形ADE,∴AD=AE,∴∠ADE=∠AED,∴∠DAE=180°-2∠ADE.∵∠ADE=∠ABC,∴∠BAC=∠DAE,∴∠BAC-∠CAD=∠DAE-∠CAD,∴∠BAD=∠CAE.在△BAD和△CAE中,∵AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS).(2)解:∵AB=AC,∴∠ACB=∠ABC=30°.∵△BAD≌△CAE,∴∠ABD=∠ACE=30°,∴∠ECB=∠ACB+∠ACE=60°.∵EM∥BC,∴∠MEC+∠ECD=180°,∴∠MEC=180°-60°=120°.(3)证明:∵△BAD≌△CAE,∴DB=CE,∠ABD=∠ACE.∵AB=AC,∴∠ABD=∠ACB,∴∠ACB=∠ACE.∵EM∥BC,∴∠EMC=∠ACB,∴∠ACE=∠EMC,∴ME=EC,∴DB=ME.又∵EM∥BD,∴四边形MBDE是平行四边形.2023年鲁教版(五四制)数学八年级上册期末考试测试卷(三)一.选择题(本题共10个小题)每小题均给出标号为A、B.C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号涂在答题卡上.1.下列图形中,是中心对称图形的是()A.B.C.D.2.分式﹣可变形为()A.B.C.﹣D.﹣3.下列分式,,,中,最简分式有()A.1个B.2个C.3个D.4个4.空气是混合物,为了直观介绍空气各成分的百分比,最适合用的统计图是()A.折线统计图B.条形统计图C.散点统计图D.扇形统计图5.某交警在一个路口统计的某时段来往车辆的车速情况如表:车速(km/h)5055606570车辆数(辆)54821则上述车速的中位数和众数分别是()A.60,8B.60,60C.55,60D.55,86.早上6:20的时候,钟表的时针和分针所夹的锐角是()A.50°B.60°C.70°D.80°7.计算:101×1022﹣101×982=()A.404B.808C.40400D.808008.如图,已知四边形ABCD中,R、P分别为BC、CD上的点,E、F分别为AP、RP的中点,当点P在CD上从点C向点D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长不变C.线段EF的长逐渐减小D.线段EF的长与点P的位置有关9.如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.平均数是95分B.中位数是95分C.众数是90分D.方差是1510.如图1,平行四边形纸片ABCD的面积为120,AD=20.今沿两对角线将四边形ABCD 剪成甲、乙、丙、丁四个三角形纸片,若将甲、丙合井(AD、CB重合)形成一轴对称图形(戊),如图2所示,则图形戊的两对角线长度和为()A.26B.29C.24D.25二、填空题(本题共10个小题)11.如图,△ABC是等边三角形,D为BC边上的点,△ABD经旋转后到达△ACE的位置,若∠CAE=15°,那么∠DAC=.12.若关于x的二次三项式x2+ax+16是完全平方式,则a的值是.13.若m2﹣n2=3,且m﹣n=6,则m+n=.14.若关于x的方程﹣=0产生增根,则m=.15.如图,△ABC沿边BC所在直线向右平移得到△DEF,下列结论:①△ABC≌△DEF;②∠DEF=∠B;③AC=DF;④EC=CF.正确的有(只填序号).16.一个多边形的内角和比四边形内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角的度数是.17.有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是.18.如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为19,OE=2.5,则四边形EFCD的周长为.19.如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.20.如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,若CG=2BG,S△BPG=2,则S▱AEPH=.三、解答题(本大题共9个小题)21.分解因式:(1)(x2+25)2﹣100x2.(2)3(x﹣1)2﹣18(x﹣1)+27.22.先化简(1﹣)÷,再从﹣2,﹣1,2中选一个合适的数代入并求值.23.解方程:﹣=﹣.24.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C.(2)平移△ABC,使点A的对应点A2坐标为(﹣3,﹣4),请画出平移后对应的△A2B2C2.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.25.我省某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩数据如图表所示.平均分(分)中位数(分)众数(分)方差初中部 a 85 b s 初中2 高中部85c100160(1)计算出a 、b 、c 的值;(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好? (3)计算初中代表队决赛成绩的方差S中,并判断哪一个代表队选手成绩较为稳定.26.阅读下列材料,并解答其后的问题: 定义:两组邻边分别相等的四边形叫做筝形,如图1,四边形ABCD 中,若AD =AB ,CD =CB ,则四边形ABCD 是筝形. 类比研究我们在学完平行四边形后,知道可以从对称性、边角和对角线四个角度对平行四边形的性质进行研究,请根据示例图形,完成表格. 四边形 示例图形对称性边角 对角线 平行 四边形是中心对称图形两组对边分别平行,两组对边分别相等.两组对角分别相等. 对角线互相平分.筝形① 两组邻边分别相等有一组对角相等②(1)表格中①、②分别填写的内容是: ① ;② ;(2)证明筝形有关对角线的性质.已知:如图2,在第形ABCD 中,AD =AB ,BC =DC ,对角线AC ,BD 交于点O . 求证: ; 证明:(3)运用:如图2,已知筝形ABCD 中,AD =AB =4,CD =CB ,∠BAD ﹣120°,∠DCB=60*.求筝形ABCD的面积.27.某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,同样用3600元购买排球要比购买篮球多10个.(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?28.如图,在△ABC中,CD是AB边的中线,E是CD的中点,连接AE并延长交BC于点F.求证:BF=2CF.29.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证DE+DF=AC.(2)当点D在边BC的延长线上时,如图②,线段DE,DF,AC之间的数量关系是为什么?(3)当点D在边BC的反向延长线上时,如图③,线段DE,DF,AC之间的数量关系是(不需要证明).。
一、选择题1.小明和小亮在研究一道数学题,如图EF AB ⊥,CD AB ⊥,垂足分别为E 、D ,G 在AC 上.小明说:“如果CDG BFE ∠=∠,则能得到AGD ACB ∠=∠”; 小亮说:“连接FG ,如果//FG AB ,则能得到GFC ADG ∠=∠”. 则下列判断正确的是( )A .小明说法正确,小亮说法错误B .小明说法正确,小亮说法正确C .小明说法错误,小亮说法正确D .小明说法错误,小亮说法错误2.下列命题中,假命题是( )A .在同一平面内,垂直于同一条直线的两直线平行B .到线段两端点距离相等的点在这条线段的垂直平分线上C .一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等D .一边长相等的两个等腰直角三角形全等3.如图,//AB EF ,C 点在EF 上,EAC ECA ∠=∠,BC 平分DCF ∠,且AC BC ⊥.下列结论:①AC 平分DCE ∠;②//AE CD ;③190B ∠+∠=︒;④BDC 21∠=∠.其中结论正确的个数有( )A .1个B .2个C .3个D .4个4.如图,一次函数162y x =-+的图象分别交x 、y 轴于点A 、B ,与正比例函数y x =的图象交于第一象限内的点C ,则OBC 的面积为( )A .12B .24C .27D .485.下列各组数中①22x y =⎧⎨=⎩; ②21x y =⎧⎨=⎩;③22x y =⎧⎨=-⎩;④16x y ⎧⎨⎩==是方程410x y +=的解的有( ) A .1个B .2个C .3个D .4个6.一次函数y mx n =-+的图象经过第二、三、四象限,则化简22()m n n -+所得的结果是( ) A .mB .m -C .2m n -D .2m n -7.若某正比例函数过(2,3)-,则关于此函数的叙述不.正确的是( ). A .函数值随自变量x 的增大而增大 B .函数值随自变量x 的增大而减小 C .函数图象关于原点对称 D .函数图象过二、四象限8.同一平面直角坐标系中,一次函数y mx n =+与y nx m =+(,m n 为常数)的图象可能是A .B .C .D .9.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .4种B .5种C .6种D .7种10.若点()23,P m m --在第四象限,则m 的取值范围是( ) A .302m <<B .0m >C .32m >D .0m <11.下列实数227,3π,3.14159,9-39-0.1010010001…….(每两个1之间依次多1个0)中无理数有( ) A .1个 B .2个 C .3个 D .4个 12.以下列各组数为长度的线段,不能构成直角三角形的是( )A .2,3,4B .3,4,5C .1,12D .6,8,10二、填空题13.某机器零件的横截面如图所示,按要求线段AB 和DC 的延长线相交成直角才算合格.一工人测得23A ∠=︒,31D ∠=︒,143AED ∠=∠︒,请你帮他判断该零件是否合格_______(填“合格”或“不合格”).14.数学课上,同学提出如下问题:老师说这个证明可以用反证法完成,思路及过程如下: 如图1,我们想要证明“如果直线AB ,CD 被直线所截EF ,AB ∥CD ,那么∠EOB=EO D '∠.” 如图2,假设∠EOB≠EO D '∠,过点O 作直线A'B',使EOB '∠=EO D '∠,可得A B ''∥CD .这样过点O 就有两条直线AB ,A B ''都平行于直线CD ,这与基本事实_________矛盾,说明∠EOB≠EO D '∠的假设是不对的,于是有∠EOB=∠EO D '∠.小贴士反证法不是直接从命题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.在某些情形下,反证法是很有效的证明方法.请补充上述证明过程中的基本事实:_________________________15.若方程x |m|-2+(m+3)y 2m-n =6是关于x 、y 的二元一次方程,则m+n=_____ 16.方程组6293x yx y a=-⎧⎨-=-⎩的解x 、y 互为相反数,则a =_____.17.已知Q 在直线4y x =-+上,且点Q 到两坐标轴的距离相等,那么点Q 的坐标为__________.18.在平面直角坐标系中,点()3,4A -到x 轴的距离为________. 19.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____.20.直角三角形的两边长分别为5和3,该三角形的第三边的长为________.三、解答题21.填空:(将下面的推理过程及依据补充完整)如图,已知:CD 平分ACB ∠,//AC DE ,//CD EF ,求证:EF 平分DEB ∠.证明:∵CD 平分ACB ∠(已知),DCA DCE ∴∠=∠(角平分线的定义),//AC DE (已知),DCA ∴∠=____(两直线平行,内错角相等) DCA CDE ∴∠==∠(等量代换), //CD EF (已知),∴_____CDE =∠(_________);DCE BEF ∠=∠(__________),∴__________=__________(等量代换),EF ∴平分DEB ∠(______________).22.平面直角坐标系中,已知直线1l 经过原点与点(),2P m m ,直线2l :23y mx m =+-(0)m ≠; (1)求证:点(23)--,在直线2l 上; (2)当2m =时,请判断直线1l 与2l 是否相交?23.一辆货车从甲地开往乙地,一辆客车从乙地开往甲地,两车同时出发,设货车离甲地的距离为1km y ,客车离甲地的距离为2km y ,两车行驶的时间为h x ,12,y y 与x 之间的关系如图所示.(1)分别求出1y 、2y 与x 之间的关系式;(2)甲、乙两地间有A ,B 两个加油站,且两个加油站相距150km ,当货车进人入A 加油站时,客车恰好进入B 加油站,求A 加油站离甲地的距离.24.如图所示,ABC 在正方形网格中,若点A 的坐标为(0,3),点C 的坐标为(1,1)按要求回答下列问题: (1)在图中建立正确的平面直角坐标系; (2)根据所建立的坐标系,写出点B 的坐标; (3)作出ABC 关于x 轴的对称图形'''A B C .25.计算:20116(2019)|527|32π-⎛⎫⨯+---- ⎪⎝⎭. 26.综合与探究在学习了轴对称变换后,我们经常会遇到三角形中的“折叠”问题,在解答这种问题时,通常会考虑到折叠前与折叠后的图形全等,并利用全等图形的性质,即对应角相等,对应边相等来研究解决数学中的“折叠”问题,每个小组剪了一些如图1所示的Rt ABC △纸片(90B ∠=︒,6AB =,8BC =)并进行探究:(1)如图2,“奋斗”小组将Rt ABC △纸片沿DE 折叠,使点C 落在ABC 外部的'C 处 ①若140∠=︒,37C ∠=︒,则2∠的度数为 . ②1∠,2∠,C ∠之间的数量关系为 .(2)如图3,“勤奋”小组将ABC 沿DE 折叠,使点C 与点A 重合,求BD 的长; (3)如图4,“雄鹰”小组将ABC 沿AD 折叠,使点B 落在点E 处,连接CE ,当CDE △为直角三角形时,求BD 的长.【参考答案】***试卷处理标记,请不要删除1.A解析:A【分析】由EF⊥AB,CD⊥AB,知CD∥EF,然后根据平行线的性质与判定即可得出答案.【详解】解:∵EF⊥AB,CD⊥AB,∴CD∥EF,若∠CDG=∠BFE,∵∠BCD=∠BFE,∴∠BCD=∠CDG,∴DG∥BC,∴∠AGD=∠ACB,故小明说法正确;∵FG∥AB,∴∠B=∠GFC,故得不到∠GFC=∠ADG,故小亮说法错误,故选:A.【点睛】本题考查了平行线的判定与性质,属于基础题,关键是掌握平行线的性质与判定.2.D解析:D【分析】根据垂线的性质,线段垂直平分线的判定,全等三角形的判定对各选项分析判断后利用排除法求解.【详解】A、同一平面内,垂直于同一条直线的两直线互相平行,真命题,本选项不符合题意;B、到线段两端点距离相等的点在这条线段的垂直平分线上,真命题,本选项不符合题意;C、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另一条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等,真命题,本选项不符合题意;D、有一边相等的两个等腰直角三角形不一定全等,如:一个等腰直角三角形的直角边与另一个等腰直角三角形的斜边相等,这两个等腰直角三角形并不全等,假命题,本选项符合题意.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.D解析:D 【分析】根据平行线的性质及角度的计算,等腰三角形的性质即可进行一一求解判断. 【详解】根据//AB EF , BC 平分DCF ∠,且AC BC ⊥可得∠1+∠BCD=90°,∠BCD=12∠DCF , 又∠DCF+∠ECD=180°,∴∠1=12∠ECD ,故AC 平分DCE ∠,①正确; ∵AC 平分DCE ∠,∴∠1=∠ECA,∵EAC ECA ∠=∠ ∴EAC ∠=∠1,∴//AE CD ,②正确; ∵EF ∥AB ,∴∠FCB=∠B ,∴∠B=∠DCB , ∵∠1+∠DCB=90°,∴190B ∠+∠=︒,③正确; ∵EF ∥AB ,∴∠ECA=∠CAD ,∵∠1=∠ECA ∴∠1=∠CAD∵∠CDB 是△ACD 的一个外角,∴∠CAD=∠1+∠CAD=2∠1,④正确; 故选D 【点睛】此题主要考查平行线的角度计算,解题的关键是根据图像的特点进行求解.4.A解析:A 【分析】 因直线162y x =-+交y 轴于点B ,故可求得点B 的坐标,从而可得OB 的长,又直线162y x =-+与直线y x =相交,故可求得点C 的坐标,从而可得△OBC 的边OB 上的高,因此可求得△OBC 的面积. 【详解】 对于直线162y x =-+,令0x =,得:6y = ∴6OB =解方程组162y xy x =⎧⎪⎨=-+⎪⎩,得:44x y =⎧⎨=⎩ 即点C 的坐标为(4,4)∴点C 到y 轴的距离为4 ∴14122OBCSOB =⨯⨯= 故选:A 【点睛】本题主要考查了求两直线交点坐标、平面直角坐标系中求直线围成的三角形面积,关键分别求得点B 、点C 的坐标,而求两直线的交点坐标体现了数形结合的思想.5.B解析:B 【详解】解:把①22x y ==⎧⎨⎩代入得左边=10=右边;把②2{1x y ==代入得左边=9≠10;把③2{2x y ==-代入得左边=6≠10; 把④1{6x y ==代入得左边=10=右边;所以方程4x +y =10的解有①④2个. 故选B .6.D解析:D 【分析】根据题意可得﹣m <0,n <0,再进行化简即可. 【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限, ∴﹣m <0,n <0, 即m >0,n <0,∴=|m ﹣n |+|n | =m ﹣n ﹣n =m ﹣2n , 故选D . 【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.7.A解析:A【详解】解:设正比例函数解析式(0)y kx k =≠, ∵正比例函数过(2,3)-, ∴32k -=, ∴32k =-, ∴正比例函数解析式为32y x =-, ∵302k =-<, ∴图象过二、四象限,函数值随自变量x 增大而减小,图象关于原点对称, ∴四个选项中,只有A 选项中的不正确,其余三个选项中的结论都是正确的. 故选A .8.B解析:B 【分析】根据一次函数的图像即可求解判断. 【详解】由A,C 图像可得函数y=mx+n 过一,二,三象限,故m >0,n >0, 故y=nx+m 也过一,二,三象限,故A,C 错误;由B,D 图像可得函数y=mx+n 过一三四象限,故m >0,n <0, 故y=nx+m 过一,二,四象限,故B 正确,D 错误; 故选B. 【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.第II 卷(非选择题)请点击修改第II 卷的文字说明9.C解析:C 【分析】设兑换成10元x 张,20元的零钱y 元,根据题意可得等量关系:10x 张+20y 张=100元,根据等量关系列出方程求整数解即可. 【详解】解:设兑换成10元x 张,20元的零钱y 元,由题意得: 10x+20y=100, 整理得:x+2y=10, 方程的整数解为:方程的整数解为:246810x 0,,,,,,432105x x x x x y y y y y y ======⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨======⎩⎩⎩⎩⎩⎩ 因此兑换方案有6种, 故选C . 【点睛】此题主要考查了二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.10.C解析:C 【分析】先根据第四象限内点的坐标符号特点列出关于m 的不等式组,再求解可得. 【详解】解:根据题意,得:230?0? m m -⎧⎨-⎩>①<②,解不等式①,得:m >32,解不等式②,得:m >0,∴不等式组的解集为m >32,故选:C . 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.C解析:C 【分析】根据无理数的概念即可判断. 【详解】解:, 无理数有:3π,-0.1010010001…….(每两个1之间依次多1个0),共有3个.故选:C . 【点睛】本题考查了无理数.解题的关键是熟练掌握无理数的概念.12.A解析:A 【分析】由勾股定理的逆定理逐一分析各选项即可得到答案.【详解】解:2222349134,+=+=≠∴以 2,3,4为边的三角形不是直角三角形,故A 符合题意,2223491625=5,+=+=∴以 3,4,5为边的三角形是直角三角形,故B 不符合题意, ()2221122,+== ∴以1,1,2为边的三角形是直角三角形,故C 不符合题意,222683664100=10,+=+=∴以6,8,10为边的三角形是直角三角形,故D 不符合题意,故选:.A【点睛】本题考查的是勾股定理的逆定理的应用,掌握勾股定理的逆定理是解题的关键.二、填空题13.不合格【解析】试题分析:延长ABDC 相交F 连接FE 并延长至G 根据三角形的外角的性质可得(∠A+∠AFG )+(∠D+∠DFG )=∠AEG+∠DEG 再根据∠AFD=∠AFG+∠DFG=∠AED-∠A-∠解析:不合格【解析】试题分析:延长AB 、DC 相交F ,连接F 、E 并延长至G .根据三角形的外角的性质可得(∠A+∠AFG )+(∠D+∠DFG )=∠AEG+∠DEG ,再根据∠AFD=∠AFG+∠DFG=∠AED-∠A-∠D 即可作出判断.延长AB 、DC 相交F ,连接F 、E 并延长至G .则有(∠A+∠AFG )+(∠D+∠DFG )=∠AEG+∠DEG=∠AED=143°;∵∠A=23°,∠D=31°,∴∠AFD=∠AFG+∠DFG=∠AED-∠A-∠D=143°-23°-31°=89°≠90°.所以零件不合格.考点:三角形的外角的性质点评:解题的关键是熟练掌握三角形的外角的性质:三角形的任何一个外角等于和它不相邻的两个内角的和.14.经过直线外一点有且只有一条直线与已知直线平行经过直线外一点有且只有一条直线与已知直线平行【分析】直接利用反证法的基本步骤以及结合平行线的性质分析得出答案【详解】解:假设∠EOB≠∠EOD过点O作直线解析:经过直线外一点,有且只有一条直线与已知直线平行,经过直线外一点,有且只有一条直线与已知直线平行.【分析】直接利用反证法的基本步骤以及结合平行线的性质分析得出答案.【详解】解:假设∠EOB≠∠EO'D,过点O作直线A'B',使∠EOB'=∠EO'D,依据基本事实同位角相等,两直线平行,可得A'B'∥CD.这样过点O就有两条直线AB,A′B′都平行于直线CD,这与基本事实:经过直线外一点,有且只有一条直线与已知直线平行矛盾,说明∠EOB≠∠EO'D的假设是不对的,于是有∠EOB=∠EO'D.故答案为:经过直线外一点,有且只有一条直线与已知直线平行;经过直线外一点,有且只有一条直线与已知直线平行.【点睛】本题考查了反证法,正确掌握反证法的基本步骤是解题的关键.15.8【分析】根据二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程可得|m|-2=12m-n=1解出mn的值可得答案【详解】解:由题意知|m|-2=12m-n=1且m+3≠0解得m=解析:8【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得|m|-2=1,2m-n=1,解出m、n的值可得答案.【详解】解:由题意,知|m|-2=1,2m-n=1且m+3≠0.解得m=3,n=5.所以m+n=3+5=8.故答案是:8.【点睛】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.16.7【分析】由x与y互为相反数得到y=﹣x代入方程组求出a的值即可【详解】解:由xy互为相反数得到x+y=0即y=﹣x代入方程组得:解得:故答案为:7【点睛】本题考查相反数的性质二元一次方程组的解法熟解析:7【分析】由x与y互为相反数得到y=﹣x,代入方程组求出a的值即可.【详解】解:由x、y互为相反数,得到x+y=0,即y=﹣x,代入方程组6293x yx y a=-⎧⎨-=-⎩得:6293x xx x a=+⎧⎨+=-⎩,解得:x=-6 a=7⎧⎨⎩,故答案为:7.【点睛】本题考查相反数的性质,二元一次方程组的解法,熟练掌握基础知识是关键.17.【分析】根据题意分点Q的坐标是(aa)和点Q的坐标是(b-b)两种情况然后根据点Q在直线y=-x+4上分别求出点Q的坐标是多少即可【详解】解:(1)当点Q的坐标是(aa)时a=-a+4解得a=2∴点解析:()2,2【分析】根据题意,分点Q的坐标是(a,a)和点Q的坐标是(b,-b)两种情况,然后根据点Q在直线y=-x+4上,分别求出点Q的坐标是多少即可.【详解】解:(1)当点Q的坐标是(a,a)时,a=-a+4,解得a=2,∴点Q的坐标是(2,2);(2)当点Q的坐标是(b,-b)时,-b=-b+4,此方程无解.∴点Q的坐标是(2,2).故答案为:(2,2).【点睛】此题主要考查了一次函数图象上点的坐标特征.注意考虑两种情况.18.4【分析】根据点的坐标表示方法得到点A(3-4)到x轴的距离是纵坐标的绝对值即|-4|然后去绝对值即可【详解】解:点A(3-4)到x轴的距离为|-4|=4故答案为4【点睛】本题考查了点的坐标:在平面解析:4【分析】根据点的坐标表示方法得到点A(3,-4)到x轴的距离是纵坐标的绝对值即|-4|,然后去绝对值即可.【详解】解:点A(3,-4)到x轴的距离为|-4|=4.故答案为4.【点睛】本题考查了点的坐标:在平面直角坐标系中,过一个点分别作x 轴和y 轴的垂线,用垂足在x 轴和y 轴上的坐标分别表示这个点的横纵坐标.19.3;【分析】由可求出由可分别求出继而可计算出结果【详解】解:(1)由题意可知:则(2)由题意可知:则∴故答案为:3;【点睛】本题主要考查定义新运算读懂题意掌握运算方法是解题关键解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知: 4216=,43=81,则2log 164=,3log 814=, ∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.20.或【分析】本题已知直角三角形的两边长但未明确这两条边是直角边还是斜边因此两条边中的较长边5既可以是直角边也可以是斜边所以求第三边的长必须分类讨论即5是斜边或直角边的两种情况然后利用勾股定理求解【详解解析:4【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边5既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即5是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】设第三边为x ,①若5是直角边,则第三边x 是斜边,由勾股定理得:②若5是斜边,则第三边x 为直角边,由勾股定理得:所以第三边的长为4故答案为:4【点睛】本题考查勾股定理,熟练掌握勾股定理,并且分情况讨论是解题关键.三、解答题21.∠CDE ;∠DEF ;两直线平行,内错角相等;两直线平行,同位角相等;∠DEF ;∠FEB ;角平分线的定义.【分析】根据平行线的性质和平行线的判定及等量代换等来完成解答即可.【详解】解:证明:∵CD 平分∠ACB (已知),∴∠DCA=∠DCE (角平分线的定义),∵AC ∥DE (已知),∴∠DCA=∠CDE (两直线平行,内错角相等),∴∠DCE=∠CDE ( 等量代换),∵CD ∥EF ( 已知 ),∴∠DEF=∠CDE (两直线平行,内错角相等),∠DCE=∠FEB (两直线平行,同位角相等),∴∠DEF=∠FEB (等量代换),∴EF 平分∠DEB ( 角平分线的定义 ).故答案为:∠CDE ;∠DEF ;两直线平行,内错角相等;两直线平行,同位角相等;∠DEF ;∠FEB ;角平分线的定义.【点睛】本题考查了平行线的性质和平行线的判定在几何证明中的应用,明确相关性质及定理是解题的关键.22.(1)见详解;(2)1l 与2l 不相交;【分析】(1)将点的横坐标代入直线2l ,求得y 的值;如果y 的值恰好等于点的纵坐标,则点在直线2l 上;否则点不在直线2l 上;(2)通过1l 过原点和P 点,可求解直线1l 的解析式;把2m =代入2l 中,求解2l 的解析式;两直线是否相交,通过判断对应的方程组是否有解.【详解】(1)将点(2,3)--的横坐标2x =-代入直线2l :23y mx m =+-(0)m ≠;可得:3y =-;3y =-恰等于点(2,3)--的纵坐标;∴点(2,3)--在直线2l 上;(2)由题知:设直线1l 的解析式为:y kx b =+(0)k ≠;又1l 过原点(0,0)和(),2P m m 点,将点代入:y kx b =+(0)k ≠,可得:2k =,0b =;∴ 直线1l 的解析式为:2y x =;把2m =代入2l 中,∴ 直线2l 的解析式为:21y x =+;∴把两直线组成方程组:221y x y x =⎧⎨=+⎩⇒221x x =+⇒01=,显然不成立;所以方程组无解,∴ 直线1l 与2l 不相交;∴ 直线1l 与2l 不相交.【点睛】本题主要考查点与直线及直线与直线之间的关系;重点在于熟练应用直线是否相交,通过对应方程组是否有解进行判断,有解则相交,无解则不相交.23.(1)1y =60x (0≤x≤15),2y =﹣90x+900(0≤x≤10);(2)A 加油站到甲地距离为300km 或420km .【分析】(1)直接运用待定系数法就可以求出1y 、2y 关于x 的函数图关系式;(2)分A 加油站在甲地与B 加油站之间,B 加油站在甲地与A 加油站之间两种情况列出方程求解即可.【详解】(1)设1y =1k x ,由图可知,函数图象经过点(15,900),∴151k =900,解得:1k =60,∴1y =60x (0≤x≤15),设2y =2k x+b ,由图可知,函数图象经过点(0,900),(10,0),则290010k b 0b =⎧⎨+=⎩, 解得:2k 90b 900=-⎧⎨=⎩, ∴2y =﹣90x+900(0≤x≤10);(2)由题意,得①当A 加油站在甲地与B 加油站之间时,(﹣90x+900)﹣60x =150,解得x =5,此时,A 加油站距离甲地:60×5=300km ,②当B 加油站在甲地与A 加油站之间时,60x ﹣(﹣90x+900)=150,解得x =7,此时,A 加油站距离甲地:60×7=420km ,综上所述,A 加油站到甲地距离为300km 或420km .【点睛】本题考查了一次函数的应用,一次函数解析式的确定;熟练运用待定系数法求一次函数解析式,根据图象准确获取信息是解题的关键.24.(1)见解析;(2)B (−3,−1);(3)见解析.【分析】(1)根据点A 的坐标(0,3),即可建立正确的坐标系;(2)根据所作平面直角坐标系确定点B 的位置,即可得到点B 的坐标;(3)分别作出点A 、B 、C 关于x 轴的对称点,再顺次连接即可.【详解】解:(1)所建立的平面直角坐标系如图所示:(2)点B 的坐标为:(−3,−1).(3)所作△A'B'C'如下图所示:【点睛】本题考查了平面直角坐标系与轴对称变换,掌握平面直角坐标系中点的坐标特点并根据轴对称变换规律作出变换后的对应点是解题的关键.25.23【分析】实数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:2116(2019)|52732π-⎛⎫--- ⎪⎝⎭=361|5334+---2315334=+-23=【点睛】本题考查实数的混合运算、二次根式的性质和负整数指数幂的运算等知识,掌握运算顺序和计算法则正确计算是解题关键.26.(1)①114°;②∠2=∠1+2∠C;(2)74;(3)3或6【分析】(1)①根据三角形外角的性质求得∠DFC的度数,然后再次利用三角形外角的性质求得∠2的度数;②利用三角形外角的性质推理计算;(2)设BD=x,根据折叠的性质结合勾股定理列方程求解;(3)在Rt△ABC中,∠ABC=90°,AB=6,BC=8,根据勾股定理求得AC=10,根据翻折的性质得AE=AB=6,DE=BD,∠AED=∠B=90°,然后分∠DEC=90°和∠EDC=90°两种情况,结合勾股定理求解.【详解】解:(1)①由折叠性质可得∠C=∠C′=37°∴∠DFC=∠1+∠C′=77°∴∠2=∠DFC+∠C=77+37=114°故答案为:114°②由折叠性质可得∠C=∠C′∴∠DFC=∠1+∠C′∴∠2=∠DFC+∠C=∠1+∠C′+∠C=∠1+2∠C故答案为:∠2=∠1+2∠C(2)∵90B ∠=︒,6AB =,8BC =设BD=x ,则CD=AD=8-x∴在Rt △ABD 中,2226(8)x x +=-,解得:74x =∴BD 的长为74(3)在Rt △ABC 中,∠ABC=90°,AB=6,BC=8,∴AC=22AB BC +=10,∵△AED 是△ABD 以AD 为折痕翻折得到的,∴AE=AB=6,DE=BD ,∠AED=∠B=90°.当△DEC 为直角三角形,①如图,当∠DEC=90°时,∵∠AED+∠DEC=180°,∴点E 在线段AC 上,设BD=DE=x ,则CD=8-x ,∴CE=AC-AE=4,∴DE 2+CE 2=CD 2,即x 2+42=(8-x )2,解得:x=3,即BD=3;②如图,当∠EDC=90°,∴∠BDE=90°,∵∠BDA=∠ADE,∴∠BDA=∠ADE=45°,∴∠BAD=45°,∴AB=BD=6.综上所述:当△DEC为直角三角形时,BD的长为3或6.【点睛】本题考查了三角形外角的性质及折叠问题,勾股定理,等腰直角三角形的判定和性质,分类讨论思想的应用是解题的关键.解题时设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.。
一、选择题1.使分式21xx -有意义的x 的取值范围是( )A .x ≠1B .x ≠0C .x ≠±1D .x 为任意实数2.若a =1,则2933a a a -++的值为( ) A .2B .2-C .12D .12-3.计算()3222()m m m -÷⋅的结果是( )A .2m -B .22mC .28m -D .8m -4.2a ab b a ++-的结果是( ).A .2a-B .4aC .2b a b--D .b a- 5.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( ) A .6x ±B .-1或4814x C .29x - D .6x ±或1-或29x -6.已知435x y +-与2(24)x y --互为相反数,则x y 的值为( ) A .2-B .2C .1-D .17.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如左图可以用来解释(a+b )2-(a -b )2=4ab .那么通过右图面积的计算,验证了一个恒等式,此等式是( )A .22()()a b a b a b -=+-B .22()(2)a b a b a ab b -+=+-C .222()2a b a ab b -=-+D .222()2a b a ab b +=++ 8.下列运算中错误的是( ). A .-(-3a n b)4=-81a 4n b 4B .(a n+1+b n )4 = a 4n+4b 4nC .(-2a n )2.(3a 2)3 = -54a 2n+6D .(3x n+1-2x n )5x=15x n+2-10x n+19.如图,在ABC 中,18cm AC =,20cm BC =,点M 从点A 出发以每秒2cm 的速度向点C 运动,点N 从点C 出发以每秒1.6cm 的速度向点B 运动,其中一个动点到达终点时,另一个动点也随之停止运动,当CMN △是以MN 为底的等腰三角形时,则这时等腰三角形的腰长是( )A .5cmB .6cmC .7cmD .8cm10.如图,AC AD =,BC BD =,则有( )A .AB 与CD 互相垂直平分 B .CD 垂直平分ABC .CD 平分ACB ∠D .AB 垂直平分CD11.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 12.下列长度(单位:cm )的三条线段能组成三角形的是( )A .13,11,12B .3,2,1C .5,12,7D .5,13,5二、填空题13.符号“a b c d”称为二阶行列式,规定它的运算法则为:a b c d=ad ﹣bc ,请你根据上述规定求出下列等式中x 的值.若2111111xx =--,那么x =__.14.已知关于x 的方程321x mx -=-的解是正数,则m 的取值范围为____________. 15.已知10的整数部分是a .小数部分是b ,则2a b -=______.16.若2x y a +=,2x y b -=,则22x y -的值为____________.17.如图,在△ABC 中,直线l 垂直平分BC ,射线m 平分∠ABC ,且l 与m 相交于点P ,若∠A =60°,∠ACP =24°,则∠ABP =_____°.18.如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =________19.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),则当△ACP 与△BPQ 全等时,点Q 的运动速度为__cm/s .20.如图,ABC 中,40A ∠=︒,72B ∠=︒,CE 平分ACB ∠,CD AB ⊥于D ,DF CE ⊥交CE 于F ,则CDF ∠=______.三、解答题21.计算.(1)因式分解:243x y xy y ++.(2)解方程:22312442x x x x-=--+-. 22.分式计算与解方程:(1)21211a a a a ----; (2)121221xx x +=-+. 23.材料:数学兴趣一小组的同学对完全平方公式进行研究:因2()0a b -≥,将左边展开得到2220a ab b -+≥,移项可得222a b ab +≥.(当且仅当a b =时,取“=”)数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m ,n ,都存在2m n mn +≥(当且仅当m n =时,取“=”)并进一步发现,两个非负数m ,n 的和一定存在着个最小值. 根据材料,解答下列问题:(1)22(3)(4)x y +≥________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭________(0x >);(2)求312(0)4x x x+>的最小值; (3)已知2x >,当x 为何值时,代数式43201036x x ++-有最小值?并求出这个最小值.24.如图,在平面直角坐标系中有ABC :(1)已知111A B C △和ABC 关于y 轴对称,在图中画出111A B C △; (2)将111A B C △沿x 轴向右平移4个单位,在图中画出平移后的222A B C △; (3)222A B C △和ABC 关于某条直线l 对称,在图中画出对称轴l . 25.如图,AB AD =,AC AE =,CAE BAD ∠=∠.求证:B D ∠=∠.26.如图,已知长方形ABCD 中,10cm AD =,6cm DC =,点F 是DC 的中点,点E 从A 点出发在AD 上以每秒1cm 的速度向D 点运动,运动时间设为t 秒.(假定0t 10<<)(1)当5t =秒时,求阴影部分(即三角形BEF )的面积;(2)用含t 的式子表示阴影部分的面积;并求出当三角形EDF 的面积等于3时,阴影部分的面积是多少?(3)过点E 作//EG AB 交BF 于点G ,过点F 作//FH BC 交BE 于点H ,请直接写出在E 点运动过程中,EG 和FH 的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围. 【详解】由题意,得x 2−1≠0, 解得:x≠±1, 故选:C . 【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.B解析:B 【分析】根据同分母分式减法法则计算,再将a=1代入即可求值. 【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2, 故选:B . 【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键.3.C解析:C 【分析】先分别计算积的乘方运算,再利用单项式除以单项式法则计算即可. 【详解】 解:()3222()m m m -÷⋅=()468mm -÷ =()468m m -÷=28m -, 故选:C . 【点睛】本题考查单项式除以单项式,积的乘方运算.在做本题时需注意运算顺序,先计算积的乘方,再算除法.4.C解析:C 【分析】根据分式的加减运算的法则计算即可. 【详解】222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.5.D解析:D 【分析】根据完全平方公式计算解答. 【详解】解:添加的方法有4种,分别是: 添加6x ,得9x 2+1+6x=(3x+1)2; 添加﹣6x ,得9x 2+1﹣6x=(3x ﹣1)2; 添加﹣9x 2,得9x 2+1﹣9x 2=12; 添加﹣1,得9x 2+1﹣1=(3x )2, 故选:D . 【点睛】此题考查添加一个整式得到完全平方式,熟记完全平方式的特点是解题的关键.6.D解析:D 【分析】根据相反数和非负数的性质即可求出x 、y 的值,再代入xy 中即可. 【详解】根据绝对值和偶次方的性质可知,4350x y +-≥,224)0(x y --≥又∵435x y +-和2(24)x y --是相反数,即2435(24)0x y x y +-+--=.∴435=024=0x y x y +-⎧⎨--⎩ ,解得:=2=1x y ⎧⎨-⎩,∴2(1)1x y =-=. 故选:D . 【点睛】本题考查相反数和非负数的性质、代数式求值以及求解二元一次方程组.根据题意列出二元一次方程组求出x 、y 的值是解答本题的关键.7.C解析:C 【分析】利用不同的方法表示出空白部分的面积:一种是利用公式2()a b -直接计算,另一种是割补法得222a ab b -+,根据面积相等即可建立等式,得出结论. 【详解】解:空白部分的面积:2()a b -, 还可以表示为:222a ab b -+, ∴此等式是222()2a b a ab b -=-+. 故选:C . 【点睛】本题考查了完全平方公式的几何意义,注意图形的分割与拼合,会用不同的方法表示出空白部分的面积是解题的关键.8.C解析:C 【分析】根据幂的乘方法则、积的乘方法则、单项式乘法法则以及多项式乘以单项式的运算法则计算即可. 【详解】 解:A:()()4444443381n n n a b a b a b --=--=- ,故答案正确;B:()41444n nn na b a b +++=+ ,故答案正确; C:()()232262623427108n nn a a a a a +-⋅=⋅= ,故答案错误;D:()113253525n nn nx x x x x x x ++-=⋅-⋅ =211510n n x x ++- ,故答案正确.故选:C . 【点睛】此题考查了积的乘方法则、幂的乘方法则、单项式乘法法则以及多项式乘以单项式的运算法则,熟练掌握运算法则是解题的关键.9.D解析:D 【分析】要求运动后得到的等腰三角形的腰长,首先要求出动点所运动的时间.我们可以设M 、N 运动的时间为x 秒. 【详解】设M 、N 运动的时间为x 秒.当CMN △是以MN 为底的等腰三角形时,,182, 1.6CM CN CM x CN x ==-= 即182 1.6x x -=,解得5x =. ∴腰长为5 1.68cm ⨯= 故选D .【点睛】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度.10.D解析:D 【分析】根据线段垂直平分线的判定定理解答. 【详解】∵AC AD =,BC BD =, ∴AB 垂直平分CD , 故D 正确,A 、B 错误, OC 不平分∠ACB ,故C 错误, 故选:D . 【点睛】此题考查线段垂直平分线的判定:到线段两个端点距离相等的点在这条线段的垂直平分线上.11.D解析:D 【分析】易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确; 【详解】∵ BD 为∠ABC 的角平分线, ∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA , ∴△ABD EBC ∆∆≌(SAS),故①正确; ∵ BD 平分∠ABC ,BD=BC ,BE=BA , ∴ ∠BCD=∠BDC=∠BAE=∠BEA , ∵△ABD ≌△EBC , ∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°, 故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE , ∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA , ∴∠DCE=∠DAE , ∴△ACE 是等腰三角形, ∴AE=EC , ∵△ABD ≌△EBC , ∴AD=EC ,∴AD=AE=EC,故③正确;作EG⊥BC,垂足为G,如图所示:∵ E是BD上的点,∴EF=EG,在△BEG和△BEF中BE BE EF EG=⎧⎨=⎩∴△BEG≌△BEF,∴BG=BF,在△CEG和△AFE中EF EG AE CE=⎧⎨=⎩∴△CEG≌△AFE,∴ AF=CG,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF,故④正确;故选:D.【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;12.A解析:A【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【详解】解:根据三角形的三边关系,A、11+12>13,能组成三角形,符合题意;B、1+2=3,不能组成三角形,不符合题意;C、5+7=12,不能组成三角形,不符合题意;D、5+5<13,不能组成三角形,不符合题意;故选A.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.二、填空题13.4【分析】首先根据题意由二阶行列式得到一个分式方程解分式方程即得问题答案【详解】解:∵=1∴方程两边都乘以x ﹣1得:2+1=x ﹣1解得:x =4检验:当x =4时x ﹣1≠01﹣x≠0即x =4是分式方程的解析:4【分析】首先根据题意由二阶行列式得到一个分式方程,解分式方程即得问题答案 .【详解】解:∵211111xx --=1, ∴21111x x-=--, 方程两边都乘以x ﹣1得:2+1=x ﹣1,解得:x =4,检验:当x =4时,x ﹣1≠0,1﹣x≠0,即x =4是分式方程的解,故答案为:4.【点睛】本题考查分式方程与新定义实数运算的综合运用,通过观察所给运算式子归纳出运算规律并得到分式方程再求解是解题关键.14.m >2且m≠3【分析】先给分式方程去分母化为整式方程用m 表示出方程的解再由解为正数求出m 的取值范围即可【详解】解:去分母得:3x ﹣m=2(x ﹣1)解得:x=m ﹣2∵分式方程的解是正数且x≠1∴m ﹣2解析:m >2且m≠3【分析】先给分式方程去分母化为整式方程,用m 表示出方程的解,再由解为正数求出m 的取值范围即可.【详解】解:去分母,得:3x ﹣m=2(x ﹣1),解得:x=m ﹣2,∵分式方程的解是正数,且x≠1,∴m ﹣2>0,且m ﹣2≠1,解得:m >2且m≠3,故答案为:m >2且m≠3.【点睛】本题考查了分式方程的解、解一元一次不等式,熟练掌握分式方程的解法是解答的关键,注意分式的分母不能为零.15.6-16【分析】先估算确定ab 的值进而即可求解【详解】∵<<∴3<<4又∵a 是的整数部分b 是的小数部分∴a =3b =−3∴3-(−3)2=3-(10-6+9)=3-10+6-9=6-16故答案是:6-解析:-16【分析】,确定a ,b 的值,进而即可求解.【详解】 ∵∴3<4,又∵a b 的小数部分,∴a =3,b−3,∴2a b -=−3)2-16.故答案是:-16.【点睛】本题考查无理数的估算、完全平方公式,确定a 、b 的值是解决问题的关键.16.【分析】应用平方差把多项式因式分解再整体代入即可【详解】解:把代入原式=故答案为:【点睛】本题考查了运用平方差公式因式分解和整体代入求值能够熟练运用平方差把多项式因式分解并整体代入求值是解题的关键 解析:4ab .【分析】应用平方差把多项式22x y -因式分解,再整体代入即可.【详解】解:22()()x y x y x y -=+-,把2x y a +=,2x y b -=代入,原式=224a b ab ⨯=,故答案为:4ab .【点睛】本题考查了运用平方差公式因式分解和整体代入求值,能够熟练运用平方差把多项式因式分解并整体代入求值,是解题的关键. 17.32【分析】根据角平分线定义求出∠ABP =∠CBP 根据线段的垂直平分线性质得出BP =CP 根据等腰三角形的性质得到∠CBP =∠BCP 根据三角形内角和定理得出方程3∠ABP+24°+60°=180°解方解析:32【分析】根据角平分线定义求出∠ABP =∠CBP ,根据线段的垂直平分线性质得出BP =CP ,根据等腰三角形的性质得到∠CBP =∠BCP ,根据三角形内角和定理得出方程3∠ABP +24°+60°=180°,解方程得到答案.【详解】解:∵BP 平分∠ABC ,∴∠ABP =∠CBP ,∵直线l 是线段BC 的垂直平分线,∴BP =CP ,∴∠CBP =∠BCP ,∴∠ABP =∠CBP =∠BCP ,∵∠A +∠ACB +∠ABC =180°,∠A =60°,∠ACP =24°,∴3∠ABP +24°+60°=180°,解得:∠ABP =32°,故答案为:32.【点睛】本题考查角平分线的定义和垂直平分线的性质,解题的关键是掌握角平分线的定义和垂直平分线的性质.18.25°【分析】先根据AB=AD 利用三角形内角和定理求出∠B 和∠ADB 的度数再根据三角形外角的性质即可求出∠C 的大小【详解】解:∵AB=AD ∴∠B=∠ADB ∵∠BAD=80°∴∠B=∠ADB==50°解析:25°【分析】先根据AB=AD ,利用三角形内角和定理求出∠B 和∠ADB 的度数,再根据三角形外角的性质即可求出∠C 的大小.【详解】解:∵AB=AD ,∴∠B=∠ADB ,∵∠BAD=80°,∴∠B=∠ADB =180802︒︒-=50°, ∵AD=DC ,∴∠C=∠ACD ,∴∠C=12∠ADB=25°, 故答案为:25°.【点睛】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,解答此题的关键是利用三角形一个外角等于与它不相邻的两个内角的和.19.1或15【分析】分两种情况讨论:当△ACP ≌△BPQ 时从而可得点的运动速度;当△ACP ≌△BQP 时可得:从而可得点的运动速度从而可得答案【详解】解:当△ACP ≌△BPQ 时则AC =BPAP =BQ ∵AC解析:1或1.5【分析】分两种情况讨论:当△ACP ≌△BPQ 时,1AP BQ ==, 从而可得Q 点的运动速度;当△ACP ≌△BQP 时,可得:23AP BP BQ ===,, 从而可得Q 点的运动速度,从而可得答案.【详解】解:当△ACP ≌△BPQ 时,则AC =BP ,AP =BQ ,∵AC =3cm ,∴BP =3cm ,∵AB =4cm ,∴AP =1cm ,∴BQ =1cm ,∴点Q 的速度为:1÷(1÷1)=1(cm/s );当△ACP ≌△BQP 时,则AC =BQ ,AP =BP ,∵AB =4cm ,AC =BD =3cm ,∴AP =BP =2cm ,BQ =3cm ,∴点Q 的速度为:3÷(2÷1)=1.5(cm/s );故答案为:1或1.5.【点睛】本题考查的是全等三角形的判定与性质,分类讨论的数学思想,掌握利用分类讨论解决全等三角形问题是解题的关键.20.74°【分析】先根据三角形的内角和定理求得∠ACB 的度数再根据CE 平分∠ACB 求得∠ACE 的度数则根据三角形的外角的性质就可求得∠CED =∠A+∠ACE 再结合CD ⊥ABDF ⊥CE 就可求解【详解】解:解析:74°【分析】先根据三角形的内角和定理求得∠ACB 的度数,再根据CE 平分∠ACB 求得∠ACE 的度数,则根据三角形的外角的性质就可求得∠CED =∠A +∠ACE ,再结合CD ⊥AB ,DF ⊥CE 就可求解.【详解】解:∵∠A =40°,∠B =72°,∴∠ACB =180°﹣40°﹣72°=68°,∵CE 平分∠ACB ,∴∠ACE =∠BCE =34°,∴∠CED =∠A +∠ACE =74°,∵CD ⊥AB ,DF ⊥CE ,∴∠CDF +∠ECD =∠ECD +∠CED =90°,∴∠CDF =∠CED =74°,故答案为:74°.【点睛】此题主要考查了三角形的内角和定理、三角形的外角的性质、以及角平分线定义和垂直定义.三、解答题21.(1)(1)(3)y x x ++;(2)3x =【分析】(1)先提取公因式,再用十字相乘分解即可;(2)先去分母,把方程化为整式方程,再解整式方程,最后检验即可.【详解】解:(1)原式()243(1)(3)y x x y x x =++=++.(2)22312442x x x x-=--+- 方程两边同时乘()22x -得,2(2)3(2)x x --=--去括号,2432x x --=-+移项合并同类项,39x =系数化为1,3x =,检验:把3x =代入,(2)(2)0x x -+≠,所以,3x =是原方程的解.【点睛】本题考查了因式分解和解分式方程,要注意:因式分解要彻底,分式方程要检验. 22.(1)1a -;(2)13x =【分析】(1)先对分式变形化成同分母的分式,然后利用同分母分式的运算法则运算即可; (2)利用分式的性质,将分式方程化成整式方程,然后再求解,最后验根得出结果.【详解】 解:(1)21211a a a a ----21211a a a a -=+--2211a a a -+=-()211a a -=-1a =-;(2)121221x x x +=-+ 方程两边同乘()()221x x -+,得:()()()()2122122x x x x x ++-+=- 解得:13x =, 检验:当13x =时,()()2210x x -+≠, 所以,原方程的解为13x =. 【点睛】本题考查分式的加减运算及解分式方程,熟练掌握分式运算的法则及解分式方程的方法是解题的关键.23.(1)24xy ,2;(2)6;(3)83x =,最小值为2020 【分析】(1)根据阅读材料可得结论;(2)根据阅读材料介绍的方法即可得出结论;(3)把已知代数式变形为4(36)201636x x -++-,再利用阅读材料介绍的方法即可得出结论.【详解】解:(1)∵0x >,0y >∴22(3)(4)x y +≥23424x y xy ⨯⨯=∵0x > ∴221x x ⎛⎫+≥ ⎪⎝⎭122x x ⨯⨯= 故答案为:24xy ,2 (2)∵0x >时,12x ,34x 均为正数,∴31264x x +≥= ∴3124x x+的最小值是6 (3)当2x >时,3x ,36x -,436x -均为正数 ∴43201036x x ++-44(36)20162(36)20163636x x x x =-++≥-⋅+-- 242016=+2020=当43636x x -=-时,即8433x =或(舍去)时,有最小值, ∴当83x =时,代数式43201036x x ++-的最小值是2020. 【点睛】此题主要考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.24.(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用关于y 轴对称点的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)直接利用轴对称的性质得出对称轴的位置进而得出答案.【详解】解:(1)如图所示:(2)如图所示;(3)如图所示.【点睛】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键. 25.见解析【分析】先证明BAC DAE ∠=∠,再根据“SAS”证明ABC ADE △≌△即可.【详解】证明:CAE BAD ∠=∠,CAE EMB BAD EAB ∴∠+∠=∠+∠,即BAC DAE ∠=∠.在ABC 和ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,()ABC ADE SAS ∴≌.B D ∴∠=∠.【点睛】题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.26.(1)4522cm ;(2)23302t cm ⎛⎫- ⎪⎝⎭;218cm ;(3)53EG FH = 【分析】(1)由长方形的性质得出10cm BC AD ==,6cm AB DC ==,由5t =得AE=5,DE=10-5=5,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形即可求解;(2)由题意得AE=t ,DE=10-t ,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形表示出阴影部分的面积;由12EDF S DE DF =⋅△求出t 的值,代入计算即可; (3)由长方形ABCD 得AD CD ⊥,根据平行线的性质得EG HF ⊥,根据平行线间的距离相等可得DE ,AE ,DF ,CF 分别等于,,,EGF EGB EHF BHF △△△△的高,由BEF S的面积即可得出结论.【详解】解:(1)∵长方形ABCD 中,10cm AD =,6cm DC =,∴10cm BC AD ==,6cm AB DC ==,∵点F 是DC 的中点,∴3cm DF CF ==,当5t =秒时,AE=5cm ,DE=10-5=5 cm ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()()1111066510353222⨯-⨯-⨯-⨯ =156015152--- =4522cm ; (2)由题意得AE=t ,DE=10-t , ∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()1111066103310222t t ⨯-⨯-⨯-⨯⨯-=360315152t t ---+=3302t -, ∴用含t 的式子表示阴影部分的面积为:23302t cm ⎛⎫-⎪⎝⎭; 当三角形EDF 的面积等于3时,12EDF S DE DF =⋅△=()13102t ⨯⨯-=3, 解得:8t =, 8t =时,38=30=182S ⨯-阴影2cm ; (3)∵长方形ABCD ∴AD CD ⊥,//,//AB CD AD BC ,∵//EG AB ,//FH BC ,∴EG HF ⊥,,AD EG CD HF ⊥⊥,∴DE ,AE 分别等于,EGF EGB △△的EG 边上的高,DF ,CF 分别等于,EHF BHF △△的FH 边上的高, ∴11112222BEF S EG DE EG AE HF DF HF CF =⋅+⋅=⋅+⋅△, ∴()()1122EG DE AE HF DF CF +=+,即EG AD HF CD ⋅=⋅, ∵10cm AD =,6cm DC =,∴106EG HF =,即53EG FH =.【点睛】本题是一个动点问题,考查了平行线间的距离,三角形面积的计算,解题的关键是熟练掌握平行线的性质和三角形面积的计算方法.。
一、选择题1.下列各分式中,最简分式是( )A .6()8()x y x y -+B .22y x x y --C .2222x y x y xy ++D .222()x y x y -+2.若a 与b 互为相反数,则22201920212020a bab+=( )A .-2020B .-2C .1D .23.若数a 使关于x 的分式方程2311a x x+=--的解为非负数,且使关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5B .6C .7D .84.下列式子的变形正确的是( )A .22b b a a=B .22+++a b a b a b=C .2422x y x yx x --=D .22m nn m-=- 5.若2x y +=,1xy =-,则()()1212x y --的值是( ) A .7-B .3-C .1D .96.当代数式2()2020x y ++的值取到最小..时,代数式222||2||x y x y -+-=……( ) A .0 B .2- C .0或2-D .以上答案都不对7.设, a b 是实数,定义一种新运算:()2*a b a b =-.下面有四个推断: ①**a b b a =; ②()222**a b a b =; ③()()**a b a b -=-; ④()**a b c a b a c +=+*. 其中所有正确推断的序号是( ) A .①②③④ B .①③④ C .①② D .①③ 8.若|m ﹣3n ﹣2019|=1,则(2020﹣m +3n )2的值为( )A .1B .0C .1或2D .0或4 9.已知一个等腰三角形两个内角度数之比为1:4,则这个等腰三角形顶角度数为( ) A .75°B .90°C .105°D .120°或20°10.如图,已知点D 为ABC 内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若6AC =,4BC =,则BD 的长为( )A .2B .1.5C .1D .2.5 11.在尺规作图作一个角的平分线时的两个三角形全等的依据是( ) A .SASB .AASC .SSSD .HL12.如图,直线//,65,30AB CD A E ∠=︒∠=︒,则C ∠等于( )A .30°B .35°C .40°D .45°二、填空题13.关于x 的分式方程3122m x x-=--无解,则m 的值为_____. 14.计算:22311x x x -=+-____________. 15.已知2m a =,5n a =,则2m n a -=___________. 16.若a - b = 1, ab = 2 ,则a + b =______.17.如图,已知60AOB ︒∠=,点P 在边OA 上, 10OP =,点,M N 在边OB 上,PM PN =,若3,MN =则OM 的长是__________.18.如图,∠ABC 的平分线BF 与△ABC 中∠ACB 的相邻外角∠ACG 的平分线CF 相交于点F ,过F 作DF ∥BC ,交AB 于D ,交AC 于E ,若BD =8cm ,DE =3cm ,AE =2,求AC 的长为_____cm .19.如图,在ABC 中,AB AC =,BD CD =,点E ,F 是AD 上的任意两点、若8BC =,6AD =,则图中阴影部分的面积为__________.20.如图,∠BAK +∠B +∠C +∠CDE +∠E +∠F +∠MGN +∠H +∠K =________.三、解答题21.先化简:22122441a a a a a a ⎛⎫-÷ ⎪-⎭-⎝+-+,然后从0,2,3中选择一个合适的数代入求值.22.(1)计算:0(23)43218π-+-- (2)解不等式:452(1)x x +≤+23.小王购买了一套一居室,他准备将房子的地面全部铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m ,n 的代数式表示地面的总面积S ;(2)已知 1.5n =,且客厅面积是卫生间面积的6倍与厨房面积的和,如果铺1平方米地砖的平均费用为100元,那么小王铺地砖的总费用为多少元?24.如图,在平面直角坐标系中,ABC 三个顶点坐标分别为()3,3A ,()1,1B ,()4,1C -.(1)画出ABC ,并求出ABC 的面积;(2)在图中作出ABC 关于y 轴对称的图形111A B C △,并写出2B 、1C 两点的坐标.25.如图,△ABC 中,AB=AC ,∠BAC=90°,CD 平分∠ACB ,BE ⊥CD ,垂足E 在CD 的延长线上.求证:CD=2BE .26.已知22a m n =+,2b m =,c mn =,且m >n >0. (1)比较a ,b ,c 的大小;(2)请说明以a ,b ,c 为边长的三角形一定存在.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分式的分子和分母没有公因式的分式即为最简分式,根据定义解答. 【详解】 A 、6()8()x y x y -+=3()4()x y x y -+,故该项不是最简分式;B 、22y x x y--=-x-y ,故该项不是最简分式;C 、2222x y x y xy ++分子分母没有公因式,故该项是最简分式; D 、222()x y x y -+=x yx y-+,故该项不是最简分式;故选:C . 【点睛】此题考查最简分式定义,化简分式,掌握方法将分式的化简是解题的关键.2.B解析:B 【分析】a 与b 互为相反数,由相反数的定义与性质得22=,a b a b -=,将代数式中字母统一成b,合并约分即可. 【详解】∵a 与b 互为相反数, ∴22=,a b a b -=,222222019202120192021220202020a b b b ab b ++==--,故选择:B . 【点睛】本题考查分式求值问题,掌握相反数的定义与性质,会利用相反数将代数式的字母统一为b 是解题关键.3.C解析:C 【分析】 根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值. 【详解】 解分式方程2311a x x+=--,得53a x -=,∵分式方程2311ax x+=--的解为非负数, ∴503a-≥, 解得a ≤5,∵关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩,∵不等式组的解集为2y <-, ∴2a ≥-, ∵x-1≠0, ∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个, 故选:C . 【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.4.C解析:C 【分析】根据分式的性质逐一判断即可. 【详解】解:A. 22b b a a=不一定正确;B. 22+++a b a b a b=不正确;C. 2422x y x yx x --=分子分母同时除以2,变形正确; D.22m nn m-=-不正确; 故选:C . 【点睛】本题考查分式的基本性质,掌握分式的基本性质是解题的关键.5.A解析:A 【分析】利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值. 【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7; 故选:A . 【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.A解析:A 【分析】由题意,当0x y +=时,代数式取到最小值,则有x y =-,根据绝对值的意义进行化简,即可得到答案. 【详解】 解:根据题意, ∵2()0x y +≥,∴当0x y +=时,代数式2()2020x y ++的值取到最小值2020, ∴x y =-, ∴x y =-, ∴0x y --=, ∴22,x y x y ==, ∴222||2||0x y x y -+-=; 故选:A . 【点睛】本题考查了乘方的定义,绝对值的意义,以及求代数式的值,解题的关键是掌握运算法则,正确得到0x y +=和x y =-.7.D解析:D 【分析】根据a*b 的定义,将每个等式的左右两边分别计算,再进行判断即可. 【详解】①∵a*b=()2a b -,b*a=()()22b a a b -=-, ∴a*b=b*a 成立; ②(a*b)2=()()()224a b a b -=-,a 2*b 2=()()()22222a b a b a b -=-+,∵()()()422a b a b a b -≠-+∴(a*b )2=a 2*b 2不成立;③∵(−a)*b=()()22a b a b --=+,a*(−b)= ()()22a b a b --=+⎡⎤⎣⎦, ∴−a*b=a*(−b)成立;④∵a*(b+c)= ()()22a b c a b c -+=--⎡⎤⎣⎦,a*b+a ∗c=()()()222a b a c a b c -+-≠--, ∴a*(b+c) =a*b+a ∗c 不成立; 故选:D .【点睛】本题考查了新定义下实数的运算,正确理解题意是解题的关键.8.D解析:D【分析】依据绝对值的性质,即可得到m﹣3n=2020或2018,进而得出m﹣3n的值,再根据平方运算,即可得到(2020﹣m+3n)2的值.【详解】∵|m﹣3n﹣2019|=1,∴m﹣3n﹣2019=±1,即m﹣3n=2020或2018,∴2020﹣m+3n=2020﹣(m﹣3n)=0或2,∴(2020﹣m+3n)2的值为0或4,故选:D.【点睛】本题考查绝对值的性质和代数式求值,利用整体思想求出m﹣3n的值且注意去绝对值时的两种情况.9.D解析:D【分析】设两内角的度数为x、4x,分两种情况,列出方程,即可求解.【详解】解:设两内角的度数为x、4x,当等腰三角形的顶角为x时,x+4x+4x=180°,x=20°;当等腰三角形的顶角为4x时,4x+x+x=180°,x=30°,4x=120°;因此等腰三角形的顶角度数为20°或120°.故选:D.【点睛】本题考查了等腰三角形的性质,掌握分类讨论思想方法是解题的关键.10.C解析:C【分析】延长BD与AC交于点E,由题意可推出BE=AE,依据等角的余角相等,即可得等腰三角形BCE,可推出BC=CE,AE=BE=2BD,根据AC=6,BC=4,即可推出BD的长度.【详解】解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=6,BC=4,∴CE=4,∴AE=AC-EC=6-4=2,∴BE=2,∴BD=1.故选:C.【点睛】本题主要考查等腰三角形的判定与性质,比较简单,关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.11.C解析:C【分析】根据作图过程可知用到的三角形全等的判定方法是SSS.【详解】解:尺规作图-作一个角的角平分线的作法如下:①以O为圆心,任意长为半径画弧,交AO、BO于点F、E,②再分别以F、E为圆心,大于12EF长为半径画弧,两弧交于点M,③画射线OM,射线OM即为所求.由作图过程可得用到的三角形全等的判定方法是SSS.故选:C.【点睛】本题主要考查了基本作图以及全等三角形的判定,关键是掌握作一个角的平分线的基本作图方法.12.B解析:B 【分析】根据平行线和三角形外角的性质即可求出C ∠的大小. 【详解】如图,设AE 和CD 交于点F , ∵//AB CD ,∴65A DFE ∠=∠=︒(两直线平行同位角相等), ∵DFE ∠是CEF △的外角,∴653035C DFE E ∠=∠-∠=︒-︒=︒.故选:B . 【点睛】本题考查平行线和三角形外角的性质.熟练利用两个性质证明和求解是解答本题的关键.二、填空题13.-3【分析】先求解分式方程得到用m 表示的根然后再确定该分式方程的增根最后让分式方程的根等于增根并求出m 的值即可【详解】解:m+3=x-2x=m+5由的增根为x=2令m+5=2解得m=-3故填:-3【解析:-3 【分析】先求解分式方程得到用m 表示的根,然后再确定该分式方程的增根,最后让分式方程的根等于增根并求出m 的值即可. 【详解】 解:3122m x x -=-- 3122m x x +=-- 312m x +=- m+3=x-2 x=m+5由3122m x x-=--的增根为x=2 令m+5=2,解得m=-3.故填:-3.【点睛】 本题主要考查了解分式方程以及分式方程的增根,理解增根的定义是解答本题的关键. 14.【分析】根据通分可化成同分母分式根据同分母分式的加减可得答案【详解】故答案为:【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键 解析:323x x x-- 【分析】根据通分,可化成同分母分式,根据同分母分式的加减,可得答案.【详解】()()()()()()()3313323111111x x x x x x x x x x x x x x x x-----==+-+-+--. 故答案为:323x x x--. 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键. 15.【分析】根据幂的乘方与同底数幂的除法法则解答即可【详解】∵(am )2÷an =22÷5=4÷5=故答案为:【点睛】本题主要考查了幂的乘方与同底数幂的除法熟记幂的运算法则是解答本题的关键 解析:45【分析】根据幂的乘方与同底数幂的除法法则解答即可.【详解】∵2m a =,5n a =,2m n a -=(a m )2÷a n =22÷5=4÷5=45. 故答案为:45. 【点睛】 本题主要考查了幂的乘方与同底数幂的除法,熟记幂的运算法则是解答本题的关键. 16.【分析】根据完全平方公式及开方运算即可求解【详解】解:∵∴故答案为:【点睛】本题考察完全平方公式熟练掌握完全平方公式是解题的关键 解析:3±【分析】根据完全平方公式及开方运算即可求解.【详解】解:∵()()22241429a b a b ab +=-+=+⨯=, ∴93a b +=±=±故答案为:3±.【点睛】本题考察完全平方公式,熟练掌握完全平方公式是解题的关键. 17.5【分析】作PH ⊥MN 于H 如图根据等腰三角形的性质得MH=NH=MN=15在Rt △POH 中由∠POH=60°得到∠OPH=30°则根据在直角三角形中30°角所对的直角边等于斜边的一半可得OH=OP=解析:5【分析】作PH ⊥MN 于H ,如图,根据等腰三角形的性质得MH=NH=12MN=1.5,在Rt △POH 中由∠POH=60°得到∠OPH=30°,则根据在直角三角形中,30°角所对的直角边等于斜边的一半可得OH=12OP=5,然后计算OH-MH 即可. 【详解】作PH ⊥MN 于H ,如图,∵PM=PN ,∴MH=NH=12MN=1.5, 在Rt △POH 中,∵∠POH=60°,∴∠OPH=30°,∴OH=12OP=12×10=5, ∴OM=OH-MH=5-1.5=3.5.故答案为:3.5.【点睛】本题考查了含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.也考查了等腰三角形的性质.18.7【分析】根据已知条件BFCF分别平分∠ABC∠ACB的外角且DE∥BC可得∠DBF=∠DFB∠ECF=∠EFC根据等角对等边得出DF=BDCE=EF根据BD-CE=DE即可求得【详解】解:∵BFC解析:7【分析】根据已知条件,BF、CF分别平分∠ABC、∠ACB的外角,且DE∥BC,可得∠DBF=∠DFB,∠ECF=∠EFC,根据等角对等边得出DF=BD,CE=EF,根据BD-CE=DE即可求得.【详解】解:∵BF、CF分别平分∠ABC、∠ACB的外角,∴∠DBF=∠CBF,∠FCE=∠FCG,∵DE∥BC,∴∠DFB=∠CBF,∠EFC=∠FCG,∴∠DBF=∠DFB,∠FCE=∠EFC,∴BD=FD,EF=CE,∴BD-CE=FD-EF=DE,∴EF=DF-DE=BD-DE=8-3=5cm,∴EC=5cm,∴AC=AE+EC=2+5=7cm,故答案为:7.【点睛】本题主要考查了等腰三角形的性质以及平行线的性质,利用边角关系并结合等量代换来推导证明是本题的特点.19.12【分析】利用SSS证明△ADC≌△ADB可得△ABD的面积=△ACD的面积通过拼接可得阴影部分的面积=△ABD的面积再利用三角形的面积公式可求解【详解】解:∵AB=ACBD=CDAD=AD∴△A解析:12【分析】利用SSS证明△ADC≌△ADB,可得△ABD的面积=△ACD的面积,通过拼接可得阴影部分的面积=△ABD的面积,再利用三角形的面积公式可求解.【详解】解:∵AB=AC,BD=CD,AD=AD,∴△ADC≌△ADB(SSS),∴S△ADC=S△ADB,∵BC=8,∴BD=4,∵AB=AC,BD=DC,∴AD⊥BC,∴EB=EC,FB=FC,∵EF=EF,∴△BEF≌△CEF(SSS)∴S△BEF=S△CEF,∵AD=6,∴S阴影=S△ADB=12BD•AD=12×4×6=12.故答案为:12.【点睛】本题考查了全等三角形的性质与判定,三角形的面积,理解S阴影=S△ADB是解题的关键.20.540°【分析】连接AGGD先根据∠H+∠K=∠HGA+∠KAG∠E+∠F=∠EDG+∠FGD最后根据多边形的面积公式解答即可【详解】解:连接AGGD∵∠H+∠K+∠HMK=180°∠HGA+∠KA解析:540°【分析】连接AG、GD,先根据∠H+∠K=∠HGA+∠KAG, ∠E+∠F=∠EDG+∠FGD,最后根据多边形的面积公式解答即可.【详解】解:连接AG、GD,∵∠H+∠K+∠HMK=180°,∠HGA+∠KAG +∠AMG=180°,∠HMK=∠AMG∴∠H+∠K=∠HGA+∠KAG;同理:∠E+∠F=∠EDG+∠FGD∴∠BAK+∠B+∠C+∠CDE+∠E+∠F+∠MGN+∠H+∠K=∠BAK+∠B+∠C+∠CDE+∠EDG+∠FGD+∠MGN+∠HGA+∠KAG=五边形的内角和=(5-2)×180°=540°故答案为540°.【点睛】本题考查了三角形内角和定理和多边形内角和定理,根据题意正确作出辅助线成为解答本题的关键.三、解答题21.3a;1 【分析】 根据分式的减法和除法可以化简题目中的式子,然后从0,2,3中选择一个使得原分式有意义值,代入化简后的式子即可解答本题.【详解】 解:22122441a a a a a a ⎛⎫-÷ ⎪-⎭-⎝+-+ ()()2212222a a a a a a a ⎛-+-=---÷⎪⎝⎭-⎫ 22322a a a a3a= ∵当0a =或2时,原式没有意义,∴当3a =时,原式1=.【点睛】本题考查分式的化简求值,明确分式化简求值的方法和分式有意义的条件是解答本题的关键. 22.(1)3-;(2)x≤32-. 【分析】(1)原式利用零指数幂法则,绝对值的意义,以及算术平方根性质计算即可得到结果; (2)去括号,移项,合并同类项,系数化成1即可求出不等式的解集.【详解】解:(1)原式=14+-3-;(2)去括号,得4x+5≤2x+2,移项合并同类项得,2x≤-3,解得x≤32-. 【点睛】此题考查了实数的运算和解一元一次不等式,零指数幂,熟练掌握运算法则是解本题的关键.23.(1)S =6m +2n +18;(2)4500元.【分析】(1)根据总面积等于四个部分矩形的面积之和列式整理即可得解;(2)根据题意求出m 的值,把m ,n 的值代入计算即可.【详解】解:(1)S=2n+6m+3×4+2×3=6m+2n+18.(2)n=1.5时2n=3根据题意,得6m=8×3=24,m=4,∵铺1平方米地砖的平均费用为100元,∴铺地砖的总费用为:100(6m+2n+18)=100×(24+3+18)=4500.答:铺地砖的总费用4500元.【点睛】本题考查了列代数式,准确表示出各部分矩形的长和宽是解题的关键.24.(1)画图见解析;5 (2)画图见解析;()11,1B -,()14,1C --【分析】(1)先根据A 、B 、C 三点坐标描点,再顺次连接即可得到ABC ,再运用割补法即可求出ABC 的面积;(2)分别作出A 、B 、C 三点关于y 轴的对称点,再顺次连接即可,根据作图即可写出2B 、1C 两点的坐标.【详解】解:(1)ABC 如图所示: 111341422235222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=△;(2)111A B C △如图所示:()11,1B -,()14,1C --.【点睛】本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质. 25.见解析【分析】根据等角的余角相等求出∠ACD=∠ABF ,再利用“角边角”证明△AFB ≌△ADC 可得CD=BF ,利用“角边角”证明△BCE 和△FCE 全等,根据全等三角形对应边相等BE=EF ,整理即可得证.【详解】证明:∵BE ⊥CD ,∠BAC=90°,∴∠ACD+∠F=180°-90°=90°,∠ABF+∠F=180°-90°=90°,∴∠ACD=∠ABF ,在△AFB 和△ADC 中,90ACD ABF AB ACCAD BAF ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△AFB ≌△ADC (ASA );∴CD=BF ,∵CD 平分∠ACB ,∴∠BCE=∠FCE ,在△BCE 和△FCE 中,90BCE FCE CE CEBEC FEC ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△BCE ≌△FCE (ASA ),∴BE=EF ,∴BF=2BE∴CD=2BE .【点睛】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的证明方法并准确识图是解题的关键.26.(1)a >b >c ;(2)见解析【分析】(1)a 、b 、c 两两作差可得出a 、b 、c 之间的大小关系;(2)对于任意一个三角形的三边a ,b ,c ,满足任意两边之和大于第三边,任意两边之差小于第三边.【详解】(1)∵a -b =m 2+n 2-m 2=n 2>0;a -c =m 2+n 2-mn =(m -n )2+mn >0;b -c = m 2-mn =m (m -n )>0∴a >b >c ;(2)由(1)a >b >c 可得,a +b >c∵a -b = m 2+n 2-m 2=n 2<mn∴a -b <c∴以a、b、c为边长的三角形一定存在.【点睛】本题主要考查了利用差比法比较代数式的大小和用三角形三边关系证明三角形的存在.。
一、选择题1.下列说法正确的有( )①每个定理都有逆定理;②每个命题都有逆命题;③假命题没有逆命题;④真命题的逆命题是真命题A .1个B .2个C .3个D .4个2.在下列条件中:①A C B ∠=∠-∠,②::2:3:5A B C ∠∠∠=,③90A B ∠=︒-∠,④90B C ∠-∠=︒中,能确定ABC 是直角三角形的条件有( )A .1个B .2个C .3个D .4个3.下列命题中的假命题是( )A .三角形的一个外角大于内角B .同旁内角互补,两直线平行C .21x y =-⎧⎨=⎩是二元一次方程231x y +=-的一个解 D .方差是刻画数据离散程度的量4.已知关于x ,y 的方程组22331x y k x y k +=⎧⎨+=-⎩,以下结论:①当0k =时,方程组的解也是方程24-=-x y 的解;②存在实数k ,使得0x y +=;③不论k 取什么实数,3x y +的值始终不变;④当1y x ->-时,1k >.其中正确的是( )A .①②③B .①②④C .①③④D .②③④ 5.已知关于x ,y 的两个方程组 48312ax by x y -=-⎧⎨+=⎩ 和 35180516ax by x y +=⎧⎨+=⎩具有相同的解,则a ,b 的值是( ) A .=202a b -⎧⎨=⎩ B .=202a b ⎧⎨=-⎩C .=202a b ⎧⎨=⎩D .=202a b -⎧⎨=-⎩ 6.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为1-,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .1B .3C .3(1)m -D .3(2)2m - 7.一辆货车从A 地开往B 地,一辆小汽车从B 地开往A 地,同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s (千米),货车行驶的时间为t (小时),s 与t 之间的函数关系如图所示,下列说法:①A 、B 两地相距60千米:②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶了60千米;⑤出发2小时,小货车离终点还有80千米,其中正确的有A .5个B .4个C .3个D .2个 8.如图,宽为25cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积是( )A .2200cmB .2150cmC .2100cmD .275cm 9.在平面直角坐标系xOy 中,直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,则下列直线中,与x 轴的交点在线段AB 上的是( )A .y=x+2B .22y x =+C .y=4x-12D .33y x =- 10.如图,在平面直角坐标系中,有点A (1,0) ,点A 第一次跳动至()11,1A -,第二次点1A 跳动至()22,1A ,第三次点2A 跳动至()32,2A -,第四次点3A 跳动至()43,2A …,依次规律跳动下去,则点2019A 与点2020A 之间的距离是( )A.2019 B.2020 C.2021 D.202211.估算65的值,它的整数部分是()A.2 B.3 C.4 D.512.如图,在△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2-MB2等于()A.29 B.32 C.36 D.45二、填空题13.如图,已知CD⊥DA,DA⊥AB,∠1=∠4.试说明DF∥AE.请你完成下列填空,把证明过程补充完整.证明:∵_________(___________)∴∠CDA=90°,∠DAB=90°(_________).∴∠4+∠3=90°,∠2+∠1=90°.又∵∠1=∠4,∴_____(_____),∴DF∥AE(______).14.如图所示,D是ABC的边BC上的一点,且∠1=∠2,∠3=∠4,∠BAC=63°,则∠DAC=_________.15.如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,−3),B(4,−1).(1)若P(p,0)是x 轴上的一个动点,则△PAB 的最小周长为___________(2)若C(a,0),D(a+3,0)是x 轴上的两个动点,则当a=___________时,四边形ABDC 的周长最短;16.已知24x y -=,用含x 的代数式表示y 为:y =____________.17.一次函数y=kx+2(k≠0)的图象与x 轴交于点A (n ,0),当n >0时,k 的取值范围是_____.18.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点A (0,4),点B (a ,0)是x 轴正半轴上的点,若△AOB 内部(不包括边界)的整点个数为6,则 a 的取值范围是_____.19.若最简二次根式41a -和135a b -+可以合并,则b a -=______.20.如图,l 1∥l 2∥l 3,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3.若点A ,B ,C 分别在直线l 1,l 2,l 3上,且AC ⊥BC ,AC =BC ,则AB 的长是_____.三、解答题21.如图,点B ,F ,C ,E 在一条直线上,AB =DE ,FB =CE ,AB ∥ED .求证:AC ∥FD .22.已知0k ≠,将关于x 的方程0kx b +=记作方程☆.(1)当3k =,2b =-时,方程☆的解为______.(2)若方程☆的解为5x =-,写出一组满足条件的k ,b 值:k =______,b =______; (3)若方程☆的解为3x =,求关于y 的方程()250k y b --=的解.23.如图1,对于平面内的点A 、P ,如果将线段PA 绕点P 逆时针旋转90°能得到线段PB ,就称点B 是点A 关于点P 的“旋垂点”.(1)在平面直角坐标系xOy 中,点()3,1S -关于原点O 的“旋垂点”是 ;(2)如图2,90AOB ∠=︒,OC 平分AOB ∠,将直角三角板的直角顶点P 放在OC 上,两直角边分别交OA 、OB 于点M 、N ,试说明:点N 是点M 关于点P 的“旋垂点”;(3)如图3,直线3y kx =+与x 轴交于点P ,与y 轴交于点Q ,点Q 关于点P 的“旋垂点”记为点(),T m n ,若点P 在x 轴上,且03OP <<,点T 的横坐标m 满足21m -<≤-,求k 的取值范围.24.如图,在平面直角坐标系中,(2,4)A ,(3,1)B ,(2,1)C --.(1)在图中作出ABC 关于x 轴的对称图形111A B C △,并直接写出点1C 的坐标:________;(2)求ABC 的面积:(3)点(),2P a a -与点Q 关于x 轴对称,若6PQ =,则点P 的坐标为________. 25.已知23a =+,23b =-,求a 2+b 2﹣3ab 的值.26.如图,△ABC 中,AB =AC ,BC =4cm ,作AD ⊥BC ,垂足为D ,若AD =4cm ,求AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据逆定理的定义,某一定理的条件和结论互换所得命题是真命题是这个定理的逆定理可以判断①,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题,可判断②,利用命题分类分为真命题与假命题都是命题,都有逆命题,可判断③,真命题是正确的命题,真命题的逆命题有真假命题之分,可判断④即可.【详解】解:①每个定理都有逆命题,看根据逆命题的条件能否推出正确的结论,能推出,由逆定理,不能推出,没有逆定理,故①不正确;②每个命题都有逆命题;故②正确;③假命题也是命题,命题都有逆命题,故③不正确;④真命题的逆命题可能是假命题,也可能是真命题,根据条件能否推出正确的结论有关,能推出,由是真命题,不能推出,是假命题,故④不正确.正确的说法只有一个②.故选择:A.【点睛】本题考查命题,真命题,假命题,逆命题,定理,逆定理,掌握命题,真命题,假命题,逆命题,定理,逆定理的定义,以及它们的区别是解题关键.2.C解析:C【分析】根据直角三角形的判定方法对各个选项进行分析,从而得到答案.【详解】①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A:∠B:∠C=2:3:5,设∠A=2x,则2x+3x+5x=180,x=18°,∠C=18°×5=90°,所以△ABC是直角三角形;③因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC是直角三角形;④因为∠B﹣∠C=90°,则∠B=90°+∠C,所以三角形为钝角三角形.所以能确定△ABC是直角三角形的有①②③.故选:C.【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°;理解三角形内若有一个内角为90°,则△ABC是直角三角形.3.A解析:A【分析】根据三角形的外角、平行线的判断、二元一次方程的解以及方差即可判断出结果.【详解】解:在三角形内角中大于90°角的外角是一个锐角,故A 选项符合题目要求;同旁内角互补,两直线平行,故B 选项不符合题目要求;21x y =-⎧⎨=⎩是二元一次方程231x y +=-的一个解,故C 选项不符合题目要求; 方差是刻画数据离散程度的量,故D 选项不符合题目要求.故选:A【点睛】本题主要考查的是命题与定理的知识,正确的掌握这些知识点是解题的关键.4.A解析:A【分析】直接利用二元一次一次方程组的解法表示出方程组的解进而分别分析得出答案.【详解】解:①当0k =时,原方程组可整理得:20231x y x y +=⎧⎨+=-⎩, 解得:21x y =-⎧⎨=⎩, 把21x y =-⎧⎨=⎩代入2x y -得: 2224x y -=--=-,即①正确,②解方程组22331x y k x y k +=⎧⎨+=-⎩得: 321x k y k =-⎧⎨=-⎩, 若0x y +=,则(32)(1)0k k -+-=, 解得:12k =, 即存在实数k ,使得0x y +=,即②正确,③解方程组22331x y k x y k +=⎧⎨+=-⎩得: 321x k y k=-⎧⎨=-⎩, 3323(1)1x y k k ∴+=-+-=,∴不论取什么实数,3x y +的值始终不变,故③正确;④解方程组22331x y k x y k +=⎧⎨+=-⎩得: 321x k y k =-⎧⎨=-⎩, 当1y x ->-时,1321k k --+>-,1k ∴<,故④错误,故选:A .【点睛】本题主要考查解二元一次方程组的能力,熟练掌握解二元一次方程组的技能和二元一次方程的解得定义.5.C解析:C【分析】联立不含a 与b 的方程组成方程组,求出方程组的解得到x 与y 的值,代入剩下的方程计算即可求出a 与b 的值.【详解】联立得:312516x y x y +=⎧⎨+=⎩, 解得:26x y =⎧⎨=⎩, 将26x y =⎧⎨=⎩代入得:124530a b a b -=-⎧⎨+=⎩, 解得:202a b =⎧⎨=⎩, 故选:C .【点睛】本题考查了同解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键. 6.B解析:B【分析】根据横坐标分别求出A,B,C 的坐标,利用坐标的几何性质求面积即可.【详解】解:当x=-1时y=-2×(-1)+m=2+m,故A 点坐标(-1,2+m);当x=0时,y=-2×0+m=m,故一次函数与y 轴交点为(0,m);当x=1时,y=-2×1+m=-2+m,故B 点坐标(1,-2+m);当x=2时,y=-2×2+m=-4+m,故C点坐标(2,-4+m),则阴影部分面积之和为1112m m22⨯⨯+-+×1×[m-(-2+m)]+12×1×[(-2+m)-(-4+m)]=1+1+1=3,故选B.【点睛】本题考查了一次函数的图像和性质,中等难度,利用坐标表示底和高是解题关键.7.C解析:C【分析】根据图象中t=0时,s=120可得A、B两地相距的距离,进而可判断①;根据图象中t=1时,s=0的实际意义可判断②;由图象t=1.5和t=3的实际意义,得到货车和小汽车的速度,从而可判断③;根据路程=速度×时间分别计算出货车与小汽车出发1.5小时后的路程,进而可判断④;先求出出发2小时货车行驶的路程,进而可计算出小货车离终点的距离,于是可判断⑤,于是可得答案.【详解】解:由图象可知,当t=0时,货车、汽车分别在A、B两地,s=120,所以A、B两地相距120千米,故①错误;当t=1时,s=0,表示出发1小时,货车与小汽车相遇,故②正确;根据图象知,汽车行驶1.5小时达到终点A地,货车行驶3小时到达终点B地,故小汽车的速度为:120÷1.5=80(千米/小时),货车的速度为:120÷3=40(千米/小时),∴小汽车的速度是货车速度的2倍,故③正确;出发1.5小时货车行驶的路程为:1.5×40=60(千米),小汽车行驶1.5小时达到终点A 地,即小汽车1.5小时行驶路程为120千米,所以出发1.5小时,小汽车比货车多行驶了60千米,故④正确;出发2小时,货车行驶了40×2=80(千米),离终点还有120-80=40(千米),故⑤错误.∴正确的说法有②③④三个.故选:C.【点睛】此题主要考查了一次函数的应用,属于常考题型,正确理解题意、读懂图象信息、熟练掌握路程、速度与时间的关系是解题的关键,8.C解析:C【分析】根据矩形的两组对边分别相等,可知题中有两个等量关系:小长方形的长+小长方形的宽=25,小长方形的长×2=小长方形的长+小长方形的宽×4,根据这两个等量关系,可列出方程组,再求解.【详解】设一个小长方形的长为xcm ,宽为ycm ,由图形可知,2524x y x x y+=⎧⎨=+⎩, 解得:205x y =⎧⎨=⎩, 所以一个小长方形的面积为205100⨯=(cm 2) .故选:C .【点睛】本题考查了二元一次方程的应用,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小正方形的长与宽的关系.9.D解析:D【分析】先确定A ,B 的坐标,从而确定交点横坐标的取值范围,后逐一计算选项直线与x 轴的交点,判断横坐标是否在求得的范围内,在范围内,满足条件,否则,不满足.【详解】∵直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,∴A (-1,0),B (2,0),∴-1≤x≤2,∵y=x+2交x 轴于点A (-2,0),且x= -2不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵2y =+交x 轴于点A (0),且x= -1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵y=4x-12交x 轴于点A (3,0),且x= 3不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵3y =-交x 轴于点A 0),且-1≤x≤2的解,∴与x 轴的交点在线段AB 上,故选D .【点睛】本题考查了一次函数与x 轴的交点问题,利用交点的横坐标建立不等式解集,验证新直线与x 轴交点的横坐标是否是解集的解是解题的关键.10.C解析:C【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点2019A 与点2020A 的坐标,进而可求出点2019A 与点2020A 之间的距离;【详解】观察发现,第2次跳动至点的坐标是()2,1,第4次跳动至点的坐标是()3,2,第6次跳动至点的坐标是()4,3,第8次跳动至点的坐标是()5,4,⋯第2n 次跳动至点的坐标是()1,+n n ,则第2020次跳动至点的坐标是()1011,1010,第2019次跳动至点的坐标是()1010,1010-,∵点2019A 与点2020A 的纵坐标相等,∴点2019A 与点2020A 之间的距离()101110102021=--=;故选C .【点睛】本题主要考查了规律型点的坐标应用,准确理解是解题的关键. 11.B解析:B【分析】-1,最后两边都加上6,即可求出它的整数部分.【详解】 解:253<<,32∴-<-,364∴<<, ∴63和4之间,它的整数部分是3,故选:B .【点睛】本题考查了估算无理数的大小,主要考查学生的计算能力,属于基础题,能够确定带根号无理数的范围是解题的关键.12.D解析:D【分析】在Rt △ABD 及Rt △ADC 中可分别表示出BD 2及CD 2,在Rt △BDM 及Rt △CDM 中分别将BD 2及CD 2的表示形式代入表示出BM 2和MC 2,然后作差即可得出结果.【详解】解:在Rt △ABD 和Rt △ADC 中,BD 2=AB 2−AD 2,CD 2=AC 2−AD 2,在Rt △BDM 和Rt △CDM 中,BM 2=BD 2+MD 2=AB 2−AD 2+MD 2,MC 2=CD 2+MD 2=AC 2−AD 2+MD 2,∴MC 2−MB 2=(AC 2−AD 2+MD 2)−(AB 2−AD 2+MD 2)=AC 2−AB 2=45.故选:D .【点睛】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC 2和MB 2是本题的难点,重点还是在于勾股定理的熟练掌握.二、填空题13.CD ⊥DADA ⊥AB ;已知;垂直定义;∠2=∠3;等角的余角相等;内错角相等两直线平行【分析】先根据垂直的定义得到再根据等角的余角相等得出最后根据内错角相等两直线平行进行判定即可【详解】证明:∵CD解析:CD ⊥DA ,DA ⊥AB ;已知;垂直定义;∠2=∠3;等角的余角相等;内错角相等,两直线平行【分析】先根据垂直的定义,得到1290∠+∠=︒,3490∠+∠=°,再根据等角的余角相等,得出23∠∠=,最后根据内错角相等,两直线平行进行判定即可.【详解】证明:∵ CD ⊥DA ,DA ⊥AB (已知)∴∠CDA=90°,∠DAB=90° ( 垂直定义 ).∴∠4+∠3=90°,∠2+∠1=90°.又∵∠1=∠4,∴∠2=∠3 ( 等角的余角相等 ),∴DF ∥AE ( 内错角相等,两直线平行 ).故答案为:.CD ⊥DA ,DA ⊥AB , 已知;垂直定义;∠2=∠3 ,等角的余角相等;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定以及垂直的定义,解题时注意:内错角相等,两直线平行. 14.【分析】先根据三角形的外角性质可得再根据三角形的内角和定理可得然后根据角的和差即可得的度数由此即可得【详解】又解得故答案为:【点睛】本题考查了三角形的外角性质三角形的内角和定理等知识点熟练掌握三角形 解析:24︒【分析】先根据三角形的外角性质可得4321∠=∠=∠,再根据三角形的内角和定理可得18041DAC ∠=︒-∠,然后根据角的和差即可得1∠的度数,由此即可得.【详解】12∠=∠,31221∴∠=∠+∠=∠,34∠∠=,421∴∠=∠,1804318041DAC ∴∠=︒-∠-∠=︒-∠,118031BAC DAC ∴∠=∠+∠=︒-∠,又63BAC ∠=︒,1803163∴︒-∠=︒,解得139∠=︒,1804118043924DAC ∴∠=︒-∠=︒-⨯︒=︒,故答案为:24︒.【点睛】本题考查了三角形的外角性质、三角形的内角和定理等知识点,熟练掌握三角形的角的性质是解题关键.15.【分析】(1)根据题意设出并找到B (4-1)关于x 轴的对称点是B 其坐标为(41)算出AB′+AB 进而可得答案;(2)过A 点作AE ⊥x 轴于点E 且延长AE 取AE=AE 做点F (1-1)连接AF 利用两点间的解析:54 【分析】(1)根据题意,设出并找到B (4,-1)关于x 轴的对称点是B',其坐标为(4,1),算出AB′+AB 进而可得答案;(2)过A 点作AE ⊥x 轴于点E ,且延长AE ,取A'E=AE .做点F (1,-1),连接A'F .利用两点间的线段最短,可知四边形ABDC 的周长最短等于A'F+CD+AB ,从而确定C 点的坐标值.【详解】解:(1)设点B (4,-1)关于x 轴的对称点是B',可得坐标为(4,1),连接AB′, 则此时△PAB 的周长最小,∵∴△PAB 的周长为故答案为:2522+;(2)过A点作AE⊥x轴于点E,且延长AE,取A'E=AE.作点F(1,-1),连接A'F.那么A'(2,3).设直线A'F的解析式为y=kx+b,则132k bk b-=+⎧⎨=+⎩,解得:45kb=⎧⎨=-⎩,∴直线A'F的解析式为y=4x-5,∵C点的坐标为(a,0),且在直线A'F上,∴a=54,故答案为:54.【点睛】本题考查最短路径问题,同时考查了根据两点坐标求直线解析式,运用解析式求直线与坐标轴的交点等知识.16.2x-4【分析】【详解】由2x-y=4得:-y=4-2x∴y=2x-4故答案为:2x-4解析:2x-4【分析】【详解】由2x-y=4得:-y=4-2x,∴ y=2x-4,故答案为:2x-417.k<0【解析】分析:根据题意可以用含k的式子表示n从而可以得出k的取值范围详解:∵一次函数y=kx+2(k≠0)的图象与x轴交于点A(n0)∴n=﹣∴当n>0时﹣>0解得k<0故答案为k<0点睛:本解析:k<0【解析】分析:根据题意可以用含k的式子表示n,从而可以得出k的取值范围.详解:∵一次函数y=kx+2(k≠0)的图象与x轴交于点A(n,0),∴n=﹣2k,∴当n>0时,﹣2k>0,解得,k<0,故答案为k<0.点睛:本题考查一次函数图象与系数的关系,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.18.4<a<【分析】通过实验法当a=4时得到直线y=-x+4此时三角形内部有3个格点当直线经过(41)时三角形内部有6个格点此时是a的临界值求出这个值即可【详解】画图如下当直线y=-x+4时三角形内部有解析:4<a<16 3.【分析】通过实验法,当a=4时,得到直线y= -x+4,此时三角形内部有3个格点,当直线经过(4,1)时,三角形内部有6个格点,此时是a的临界值,求出这个值即可.【详解】画图如下,当直线y=-x+4时,三角形内部有3个格点,直线有3个格点,令y=0,得x=4,因此当a>4时,满足了形内有6个格点;当直线经过(4,1)时,三角形内部有6个格点,此时直线为y=34x +4,令y=0,得x=163,因此当a<163时,满足了形内有6个格点;所以a满足的条件是4< a<16 3.故应填4< a<16 3.【点睛】本题考查了坐标系中的格点问题,学会利用数形结合思想,通过画图的方式,判断满足条件的直线的界点位置是解题的关键.19.【分析】由最简二次根式的定义以及同类二次根式的定义先求出ab 的值然后进行计算即可得到答案【详解】解:∵最简二次根式和可以合并∴和是同类二次根式∴∴∴;故答案为:【点睛】本题考查了最简二次根式的定义以 解析:19【分析】由最简二次根式的定义,以及同类二次根式的定义,先求出a 、b 的值,然后进行计算,即可得到答案.【详解】解:∵41a -和135b -+ ∴41a -和135b -+∴124135a a b -=⎧⎨-=+⎩, ∴32a b =⎧⎨=⎩, ∴2139b a --==; 故答案为:19. 【点睛】 本题考查了最简二次根式的定义,以及同类二次根式的定义,解题的关键是熟记所学的定义,正确求出a 、b 的值.20.【分析】过点A 作AD ⊥l3于D 过点B 作BE ⊥l3于E 易证明∠BCE =∠CAD 再由题意可证明△ACD ≌△CBE (AAS )得出结论BE =CD 由l1l2之间的距离为2l2l3之间的距离为3即得出CD 和AD解析:17 【分析】 过点A 作AD ⊥l 3于D ,过点B 作BE ⊥l 3于E ,易证明∠BCE =∠CAD ,再由题意可证明△ACD ≌△CBE (AAS ),得出结论BE =CD ,由l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,即得出CD 和AD 的长,利用勾股定理即可求出AC 的长,从而得到AB 的长.【详解】如图,过点A 作AD ⊥l 3于D ,过点B 作BE ⊥l 3于E ,则∠CAD+∠ACD =90°,∵AC ⊥BC ,∴∠BCE+∠ACD =180°﹣90°=90°,∴∠BCE =∠CAD ,∵在△ACD 和△CBE 中,BCE CAD ADC CEB 90AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴BE =CD ,∵l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,∴CD =3,AD =2+3=5,在Rt △ACD 中,AC 2222AD CD 5334=+=+=,∵AC ⊥BC ,AC =BC ,∴△ABC 是等腰直角三角形,∴AB 2=AC 234=⨯=217.故答案为:17【点睛】本题考查三角形全等的判定和性质、平行线的性质、直角三角形的性质以及勾股定理.作出辅助线并证明BE =CD 是解答本题的关键.三、解答题21.见解析【分析】由“SAS ”可证△ABC ≌△DEF ,可得∠ACB =∠DFE ,可得结论.【详解】证明:∵AB ∥DE ,∴∠B =∠E ,∵BF =CE ,∴BC =EF ,在△ABC 和△DEF 中,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ),∴∠ACB =∠DFE ,∴AC ∥FD .【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,掌握全等三角形的判定定理是本题的关键.22.(1)x=23;(2)1,5(答案不唯一);(3)y=1 【分析】(1)将k 和b 代入后解方程即可;(2)将x=-5代入方程,得到k 和b 的关系,取一组特殊值即可;(3)将x=3代入方程☆:得3b k =-,从而得到关于y 的方程()220k y -=,结合k≠0求出y 值即可.【详解】解:(1)当k=3,b=-2时,方程☆为:3x-2=0,解得:x=23. 故答案为:x=23; (2)∵方程☆的解为x=-5,∴-5k+b=0,∴k=1,b=5,故答案为:1,5(答案不唯一);(3)∵方程的解为x=3,代入方程☆,则30k b +=,∴3b k =-,解关于y 的方程:()250k y b --=,即()2530k y k -+=,得:()220k y -=,∵k≠0,∴2y-2=0.解得:y=1.【点睛】本题考查了一元一次方程的解,二元一次方程的解,熟练掌握解一元一次方程是关键.23.(1)()1,3--;(2)见解析;(3)332k -<≤-. 【分析】(1)由“旋垂点”的定义可直接进行求解;(2)过点P 分别作PD ⊥OA ,PE ⊥OB ,根据题意易得PD=PE ,∠PMD=∠PNE ,进而可证△PDM ≌△PEN ,然后可得PM=PN ,则问题可求解;(3)过点T 作TA ⊥x 轴,根据题意易证△APT ≌△OQP ,则有AP=OQ ,进而可得AP=OQ=3,3OP k =-,然后可得33m k=--,最后问题可求解. 【详解】解:(1)如图,过点S 作SA ⊥x 轴,过点P 作PB ⊥x 轴,由“旋垂点”可得:△SAO ≌△PBO ,∴OB=OA ,PB=SA ,∵点()3,1S -,∴PB=1,OB=3,∴点()1,3P --,故答案为()1,3--;(2)过点P 分别作PD ⊥OA ,PE ⊥OB ,如图所示:∵OC 平分∠AOB ,∴PD=PE ,∵∠AOB=∠MPN=90°,∴由四边形内角和定理得:∠PMO+∠PNO=180°,∵∠PMO+∠PMD=180°,∴∠PMD=∠PNE ,∵∠PDM=∠PEN=90°,∴△PDM ≌△PEN (AAS ),∴PM=PN ,∴点N 是点M 关于点P 的“旋垂点”;(3)过点T 作TA ⊥x 轴,如图所示:∴PQ=PT ,∵∠APT+∠APQ=90°,∠APQ+∠PQO=90°,∴∠APT=∠OQP ,∴△APT ≌△OQP (AAS ),∴AP=OQ ,令y=0时,则03kx =+,解得:3x k =-, 当x=0时,则3y =,∴AP=OQ=3,3OP k =-, ∴OA=AP-OP=33k +, ∴33m k=--, ∵21m -<≤-,0k <, ∴3231k -<--≤-, 解得:332k -<≤-. 【点睛】本题主要考查一次函数与几何综合及一元一次不等式组的解法,熟练掌握一次函数与几何综合及一元一次不等式组的解法是解题的关键.24.(1)作图见详解,(−2,1);(2)8.5;(3)(5,3)或(−1,−3)【分析】(1)分别作出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)利用分割法求解即可.(3)先根据P ,Q 关于x 轴对称,得到Q 的坐标,再构建方程求解即可.【详解】(1)如图,△A 1B 1C 1即为所求.点C 1的坐标(−2,1).故答案为:(−2,1);(2)S △ABC =5×5−12×1×3−12×4×5−12×2×5=8.5. (3)∵点(),2P a a -与点Q 关于x 轴对称,∴Q (),2a a -,∵6PQ =,∴|(a-2)-(2-a)|=6,解得:a=5或a=-1,∴P (5,3)或(−1,−3).故答案为:(5,3)或(−1,−3).【点睛】本题考查了作图−轴对称变换,三角形的面积等知识,解题的关键是理解题意,掌握关于坐标轴对称的两点的坐标特征,属于中考常考题型.25.11【分析】利用二次根式的运算法则首先计算出a+b ,ab 的值,然后利用配方法对多项式进行变形整理,再代入,进行计算即可.【详解】解:∵23a =23b =∴a +b =4,(23)(23)431ab ==-=,∴a 2+b 2﹣3ab =(a +b )2﹣5ab =42﹣5×1=11.【点睛】本题考查二次根式的混合运算,掌握运算顺序和计算法则并能灵活应用完全平方公式进行计算是解题关键.26.5【分析】根据等腰三角形的性质和勾股定理即可得到结论.【详解】解:∵AB =AC ,BC =4cm ,AD ⊥BC ,∴BD=1BC=2,2∵AD=4cm,∴在直角三角形ABD中AB.【点睛】本题考查的是等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键.。
鲁教版八年级数学上册期末测试题(附参考答案)满分150分 考试时间120分钟一、选择题:本题共12个小题,每小题4分,共48分。
每小题只有一个选项符合题目要求。
1.下列因式分解正确的是( ) A .2a 2-4a +2=2(a -1)2 B .a 2+ab +a =a (a +b ) C .4a 2-b 2=(4a +b )(4a -b ) D .a 3b -ab 3=ab (a -b )22.若k 为任意整数,则(2k +3)2-4k 2的值总能( ) A .被2整除 B .被3整除 C .被5整除D .被7整除3.分式x 2−xx−1的值为0,则x 的值是( ) A .0 B .-1 C .1D .0或14.某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设大货车每辆运输x 吨,则所列方程正确的是( ) A .75x−5=50x B .75x =50x−5 C .75x+5=50x D .75x =50x+55.甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及其方差如表:A.甲B.乙C.丙D.丁6.如图,一束太阳光平行照射在放置于地面的正六边形上,若∠1=19°,则∠2的度数为( )A.41°B.51°C.42°D.49°7.如图,在四边形ABCD中,AB∥CD,若添加一个条件,使四边形ABCD为平行四边形,则下列正确的是( )A.AD=BC B.∠ABD=∠BDCC.AB=AD D.∠A=∠C8.如图,□ABCD的对角线AC,BD相交于点O,∠ADC的平分线与边AB相交于点P,E是PD的中点.若AD=4,CD=6,则EO的长为( )A.1 B.2C.3 D.49.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是( )10.在正数范围内定义一种运算“※”,其规则为a※b=1a +1b,如2※4=12+14,根据这个规则,方程3※(x-1)=1的解为( ) A.x=52B.x=-1C.x=12D.x=-311.如图,在平面直角坐标系中,△ABC各点坐标分别为A(-2,1),B(-1,3),C(-4,4).先作△ABC关于x轴成轴对称的△A1B1C1,再把△A1B1C1平移后得到△A 2B2C2.若B2(2,1),则点A2的坐标为( )A.(1,5) B.(1,3)C.(5,3) D.(5,5)12.如图,在△ABC中,AB=AC,若M是边BC上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )A.AB=ANB.AB∥NCC.∠AMN=∠ACND.MN⊥AC二、填空题:本题共6个小题,每小题4分,共24分。
八年级数学上册期末考试试卷(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共36分)1.一组数据9.5,9,8.5,8,7.5的极差是()A. 0.5B. 8.5C. 2.5D. 22.二元一次方程组的解是()A. B. C. D.3.如图,直线a∥b,直线l与直线a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠2=40°,则∠1的度数为()A. 20°B. 30°C. 40°D. 50°4.在一次中学生汉字听写大赛中,某中学代表队6名同学的笔试成绩分别为:75,85,91,85,95,85.关于这6名学生成绩,下列说法正确的是()A. 平均数是87B. 中位数是88C. 众数是85D. 方差是2305.用加减法解方程组时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:① ②③④,其中变形正确的是()A. ①②B. ③④C. ①③D. ②④6.下列运算正确的是()A. B. C. D.7.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达该建筑物的最大高度是()A. 12米B. 13米C. 14米D. 15米8.如果函数y=x﹣b与y=﹣2x+4的图象的交点坐标是(2,0),那么二元一次方程组的解是()A. (2,0)B.C.D. 以上答案都不对9.如图,直线a∥b,∠1的度数比∠2的度数大56°,若设∠1=x°,∠2=y°,则可得到的方程组为( )A. B. C. D.10.如图,不能判定AB∥DF的是()A. ∠1=∠2B. ∠A=∠4C. ∠1=∠AD. ∠A+∠3=180°11.甲、乙两名自行车运动员同时从A地出发到B地,在直线公路上进行骑自行车训练.如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程S(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时乙在甲前10千米;④3小时时甲追上乙.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(共6题;共24分)12.某校甲乙两个体操队队员的平均身高相等,甲队队员身高的方差是S甲2=1.9,乙队队员身高的方差是S 2=1.2,那么两队中队员身高更整齐的是________队.(填“甲”或“乙”)乙13.如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12cm2,则图中阴影部分的面积是________ cm2.14.已知关于x,y的二元一次方程组的解互为相反数,则k的值是________.15.如图,⊙O中,BD为⊙O直径,弦AD长为3,AB长为5,AC平分∠DAB,则弦AC的长为________.16.在Rt△ABC中,∠C=90°,∠A=50°,则∠B=________.17.如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A n的坐标为________三、计算题(共6题;共60分)18.a,b互为相反数,c,d互为倒数,m的绝对值等于3,求m2+(cd+a+b)+(cd)2018的值.19.解方程或方程组:(1)(2)20.甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,8,8,9乙:5,9,7,10,9(1)填写下表(2)教练根据5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1此,命中8环,那么乙的射击成绩的方差有什么变化?21.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD= AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.22.如图1,A、D分别在x轴和y轴上,CD∥x轴,BC∥y轴.点P从D点出发,以1cm/s的速度,沿五边形DOABC的边匀速运动一周.记顺次连接P、O、D三点所围成图形的面积为Scm2,点P运动的时间为ts.已知S与t之间的函数关系如图2中折线段OEFGHI所示.(1)求A、B两点的坐标;(2)若直线PD将五边形OABCD分成面积相等的两部分,求直线PD的函数关系式.23.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为,其图象如图所示:栽花所需费用y2(元)与x(m2)的函数关系式为y2=﹣0.01x2﹣20x+30000(0≤x≤1000).(1)请直接写出k1、k2和b的值;(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.答案一、单选题1. D2. B3. D4. C5. B6.C7. A8.B9. B 10. C 11. C二、填空题12.乙13.6 14. -1 15.16.40°17.(2n﹣1,0)三、计算题18. 解:∵a,b互为相反数,c,d互为倒数,m的绝对值等于3,∴a+b=0,cd=1,|m|=3,∴m2+(cd+a+b)+(cd)2018=9+1+1=1119.(1)解:4或x=0(2)解:解得20.解:(1)甲的众数为8;乙的平均数==8,乙的中位数==8;(2)因为甲乙的平均数相等,而甲的方差小,成绩比较稳定,所以选择甲参加射击比赛;(3)如果乙再射击1次,命中8环,平均数不变,根据方差公式可得乙的射击成绩的方差变小.故答案为8,8,8;变小.21. 应用:解:①若PB=PC,连接PB,则∠PCB=∠PBC,∵CD为等边三角形的高,∴AD=BD,∠PCB=30°,∴∠PBD=∠PBC=30°,∴PD= DB= AB,与已知PD= AB矛盾,∴PB≠PC,②若PA=PC,连接PA,同理可得PA≠PC,③若PA=PB,由PD= AB,得PD=BD,∴∠APD=45°,故∠APB=90°;探究:解:∵BC=5,AB=3,∴AC= = =4,①若PB=PC,设PA=x,则x2+32=(4﹣x)2,∴x= ,即PA= ,②若PA=PC,则PA=2,③若PA=PB,由图知,在Rt△PAB中,不可能.故PA=2或.22.(1)解:连接AD,设点A的坐标为(a,0),由图2知,DO+OA=6cm,则DO=6﹣AO=6﹣a,由图2知S△AOD=4,∴DO•AO= a(6﹣a)=4,整理得:a2﹣6a+8=0,解得a=2或a=4,由图2知,DO>3,∴AO<3,∴a=2,∴A的坐标为(2,0),D点坐标为(0,4),在图1中,延长CB交x轴于M,由图2,知AB=5cm,CB=1cm,∴MB=3,∴AM==4.∴OM=6,∴B点坐标为(6,3)(2)解:因为P在OA、BC、CD上时,直线PD都不能将五边形OABCD分成面积相等的两部分,所以只有点P一定在AB上时,才能将五边形OABCD分成面积相等的两部分,设点P(x,y),连PC、PO,则S四边形DPBC=S△DPC+S△PBC= S五边形OABCD= (S矩形OMCD﹣S△ABM)=9,∴×6×(4﹣y)+ ×1×(6﹣x)=9,即x+6y=12,同理,由S四边形DPAO=9可得2x+y=9,由,解得x= ,y= .∴P(,),设直线PD的函数关系式为y=kx+4(k≠0),则= k+4,∴k=﹣,∴直线PD的函数关系式为y=﹣x+4.23. (1)解:将x=600、y=18000代入y1=k1x,得:18000=600k1,解得:k1=30;将x=600、y=18000和x=1000、y=26000代入,得:,解得:;(2)解:当0≤x<600时,W=30x+(﹣0.01x2﹣20x+30000)=﹣0.01x2+10x+30000,∵﹣0.01<0,W=﹣0.01(x﹣500)2+32500,∴当x=500时,W取得最大值为32500元;当600≤x≤1000时,W=20x+6000+(﹣0.01x2﹣20x+30000)=﹣0.01x2+36000,∵﹣0.01<0,∴当600≤x≤1000时,W随x的增大而减小,∴当x=600时,W取最大值为32400,∵32400<32500,∴W取最大值为32500元;(3)解:由题意得:1000﹣x≥100,解得:x≤900,由x≥700,则700≤x≤900,∵当700≤x≤900时,W随x的增大而减小,∴当x=900时,W取得最小值27900元.。
八年级数学上册期末试题1.若分式值为0,则a的取值是()A.a=0B.a=1C.a=﹣1D.a≠02.下列图形中,对称轴条数最少的图形是()A.等边三角形B.正方形C.圆D.角3.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.众数B.中位数C.平均数D.极差4(4分)已知,在平行四边形ABCD中,∠A的平分线分BC成4cm和3cm两条线段,则平行四边形ABCD的周长为()cm.A.11B.22C.20D.20或225(4分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()B.C.D.A.6(3分)若正多边形的内角和是540°,则该正多边形的一个外角为()A.45°B.60°C.72°D.90°7(3分)下列图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.8(3分)图为在某居民小区中随机调查的10户家庭一年的月均用水量(单位:t)的条形统计图,则这10户家庭月均用水量的众数和中位数分别是()A.6.5,6.5B.6.5,7C.7,7D.7,6.59(3分)下列四个多项式,能因式分解的是()A.a﹣1B.a2+1C.x2﹣4y D.x2﹣6x+910(3分)如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是()A.∠B=∠F B.∠B=∠BCF C.AC=CF D.AD=CF 11(3分)如果分式的值为0,那么x的值为()A.﹣1B.1C.﹣1或1D.1或012.(3分)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD 于点E,AB=6,EF=2,则BC长为()A.8 B.10C.12D.1413(3分)下列关于防范“新冠肺炎”的标志中既是轴对称图形,又是中心对称图形的是()A.B.C.D.14(3分)下列多项式中,能用完全平方公式分解因式的是()A.a2+4B.x2+6x+9C.x2﹣2x﹣1D.a2+ab+b2 15.(3分)已知一组数据:2,6,4,6,7,则这组数据的中位数和众数分别是()A.4,4B.4,6C.6,6D.6,16(3分)一多边形的每一个内角都等于它相邻外角的4倍,则该多边形的内角和是()A.360°B.900°C.1440°D.1800°17在坐标系中,点A的坐标为(3,﹣4),它关于y轴的对称点B的坐标是,18八年级一班的教室卫生为85分,环境卫生成绩为90分,个人卫生为95分.若这三项成绩分别按30%、40%和30%计入总成绩,则该班这次卫生检查的总成绩是分.20.(3分)已知一组数据1,7,10,8,x,6,0,3,若=5,则x应等于.21.(3分)分解因式:3m2﹣6mn+3n2=.22.(3分)若式子有意义,则实数x的取值范围是.23.学校图书馆购进A,B两种图书.每套图书A比每套图书B的价格多5元,用3500元购买图书A与用2700元购买的图书B的套数相等,设购买的图书A每套的价格为x元,则可列分式方程为.24如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:四边形BFDE是平行四边形.25先化简,再求值:,其中a=5.26在平面直角坐标系中,△ABC的三个顶点分别是A(﹣3,5),B(﹣4,1),C(﹣1,2).(1)△A1B1C1是由△ABC平移得到的,若C点对应的点C1(3,2),请画出△A1B1C1;(2)画出△ABC关于点O的中心对称图形△A2B2C2;(3)分别连接点B与点B1,点C与点C1,判断四边形BCC1B1的形状为.(直接写出答案,无需说明理由)27(1)化简:(2)解方程:28.先化简,再求值:(﹣)÷,其中a=3.29.进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数30.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.31(5分)如图,▱ABCD中,E为BC边的中点,连AE并与DC的延长线交于点F,求证:DC=CF.32(8分)如图,点D是ABC内一点,点E,F,G,H分别是AB,AC,CD,BD的中点.(1)求证:四边形EFGH是平行四边形;(2)如果∠BDC=90°,∠DBC=30°,AD=6,CD=3,求四边形EFGH的周长.。
一、选择题1.某市铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天铺设的管道长比计划增加10%,结果提前6天完工,求实际每天铺设管道长度及实际施工天数,小明列出方程:660660(110%)x x -+=6,题中x 表示的量为( ) A .实际每天铺设管道长度 B .实际施工天数 C .计划施工天数D .计划每天铺设管道的长度 2.若关于x 的分式方程122x a x -=-的解为非负数,且关于x 的不等式组5x x a ≥⎧⎨>⎩的解集是5x ≥,则符合条件的整数a 有( ) A .1个 B .2个C .3个D .4个 3.若x 2y 5=,则x y y+的值为( ) A .25 B .72 C .57 D .754.为推进垃圾分类,推动绿色发展,宜宾天原化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台,两种型号机器人的单价和为140万元.若设乙型机器人每台x 万元,根据题意,所列方程正确的是( )A .4605801x 140x -=- B .4605801140x x =-- C .4605801x 140x =+- D .4605801140x x -=- 5.如果249x mx -+是一个完全平方式,则m 的值是( ) A .12± B .9 C .9± D .126.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52- B .52 C .5 D .-57.当代数式2()2020x y ++的值取到最小..时,代数式222||2||x y x y -+-=……( ) A .0B .2-C .0或2-D .以上答案都不对 8.下列计算正确的是( ) A .a 3+a 3=a 6 B .a 3·a=a 4 C .a 3÷a 2=a 3 D .(2a 2)3 =6a 5 9.如图,在边长为9的等边△ABC 中,CD ⊥AB 于点D ,点E 、F 分别是边AB 、AC 上的两个点,且AE=CF=4cm ,在CD 上有一动点P ,则PE +PF 的最小值是( )A .4B .4.5C .5D .8 10.等腰三角形腰上的高与另一腰的夹角为30,则底角度数是( ) A .30B .60︒C .40︒或50︒D .30或60︒ 11.如图,ABC 和DEF 中,∠A=∠D ,∠C=∠F ,要使ABC DEF ≅,还需增加的条件是( )A .AB=EFB .AC=DFC .∠B=∠ED .CB=DE 12.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( )A .3cmB .10cmC .4cmD .6cm 二、填空题13.规定一种新的运算“ JX x A B →+∞”,其中A 和B 是关于x 的多项式,当A 的次数小于B 的次数时. 0JX x A B →+∞=;当A 的次数等于B 的次数时, JX x A B→+∞的值为A 、B 的最高次项的系数的商,当A 的次数大于B 的次数时, JX x A B →+∞不存在,例如: 201JX x x →+∞=-,2 2212312JXx x x x →+∞+=+-,若223410211A x x B x x -⎛⎫=-÷ ⎪--⎝⎭,则 JX x A B →+∞的值为__________. 14.计算:22824x x-=+-__________. 15.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是:__________;(请选择正确的一个)A .2222()a ab b a b -+=-B .22()()a b a b a b -=+-C .2()a ab a a b +=+(2)应用:利用所选(1)中等式两边的等量关系,完成下面题目:若46x y +=,45x y -=,则221664x y -+的值为__________.16.若a - b = 1, ab = 2 ,则a + b =______.17.如图,AOB 与COB △关于边OB 所在的直线成轴对称,AO 的延长线交BC 于点D .若46BOD ∠=︒,22C ∠=︒,则ADC ∠=______°.18.如图所示的网格是正方形网格,点A ,B ,C ,D ,O 是网格线交点,那么AOB ∠___________COD ∠(填“>”,“<”或“=”).19.如图,∠1=∠2,要使△ABC ≌△ADC ,还需添加条件:_____.(填写一个你认为正确的即可)20.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP ∠=___________度.三、解答题21.水果店在批发市场购买某种水果销售,第一次用2000元购进若干千克,并以每千克9元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用2496元所购买的水果比第一次多20千克,以每千克10元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.(1)第一次水果的进价是每千克多少元?(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元? 22.解分式方程:63122x x x -=--. 23.因式分解:(1)382a a - (2)()()24129x y x y +-+-24.如图,△ABC 为等边三角形,直线l 经过点C ,在l 上位于C 点右侧的点D 满足∠BDC =60°.(1)如图1,在l 上位于C 点左侧取一点E ,使∠AEC = 60°,求证:△AEC ≌△CDB ; (2)如图2,点F 、G 在直线l 上,连AF ,在l 上方作∠AFH =120°,且AF =HF ,∠HGF =120°,求证:HG +BD =CF ;(3)在(2)的条件下,当A 、B 位于直线l 两侧,其余条件不变时(如图3),线段HG 、CF 、BD 的数量关系为 .25.直线CD 经过BCA ∠的顶点C ,CA=CB .E ,F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)(数学思考)若直线CD 经过BCA ∠的内部,且E ,F 在射线CD 上,请解决下面两个问题:①如图1,若90BCA ∠=︒,90α∠=︒,求证:EF BE AF =-;②如图2,若090BCA ︒<∠<︒,当α∠与BCA ∠之间满足________关系时,①中结论仍然成立,并给予证明.(2)(问题拓展)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.26.如图,已知1,23180BDE ︒∠=∠∠+∠=.(1)证明://AD EF .(2)若DA 平分BDE ∠,FE AF ⊥于点F ,140∠=︒,求BAC ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据计划所用时间-实际所用时间=6,可知方程中未知数x 所表示的量.【详解】解:设原计划每天铺设管道x 米,则实际每天铺设管道()110%x +, 根据题意,可列方程:6606(110%)660x x -=+, 所以小明所列方程中未知数x 所表示的量是计划每天铺设管道的长度,故选:D .【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是依据所给方程还原等量关系. 2.C解析:C【分析】解分式方程的得出x=2a-2,根据解为非负数得出2a-2≥0,且2a-2≠2,据此求出解得a≥1且a≠2;解不等式组两个不等式,根据解集得出a<5;综合以上两点得出整数a的值,从而得出答案.【详解】解:分式方程122x ax-=-,去分母,得:2(x-a)=x-2,解得:x=2a-2,∵分式方程的解为非负数,∴2a-2≥0,且2a-2≠2,解得a≥1且a≠2,∵不等式组5xx a≥⎧⎨>⎩的解集是x≥5,∴1≤a<5,且a≠2,则整数a的值为1、3、4共3个,故选:C.【点睛】本题主要考查分式方程的解和解一元一次不等式组,解题的关键是根据分式方程的解的情况及不等式组解集的情况得出a的取值范围.3.D解析:D【分析】根据同分母分式的加法逆运算得到x y x yy y y+=+,将x2y5=代入计算即可.【详解】解:∵x2y5 =,∴x y x y2y y y5+=+=+175=,故选:D.【点睛】此题考查同分母分式的加减法,已知式子的值求分式的值.4.B解析:B【分析】设乙型机器人每台x万元,由两种型号机器人的单价和为140万元得甲型机器人每台()140x -万元,根据用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台列得方程.【详解】解:设乙型机器人每台x 万元,则甲型机器人每台()140x -万元,根据题意,可得4605801140x x=--. 故选:B.【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程解决实际问题是解题的关键.5.A解析:A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】解:∵()22249=23x mx x mx -+-+,∴223mx x -=±⨯⨯ ,解得m=±12.故选:A .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要. 6.B解析:B【分析】把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值.【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,∴5-2a=0,∴a=52. 故选B .【点睛】 本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.7.A解析:A【分析】由题意,当0x y +=时,代数式取到最小值,则有x y =-,根据绝对值的意义进行化简,即可得到答案.【详解】解:根据题意,∵2()0x y +≥,∴当0x y +=时,代数式2()2020x y ++的值取到最小值2020,∴x y =-, ∴x y =-, ∴0x y --=, ∴22,x y x y ==,∴222||2||0x y x y -+-=;故选:A .【点睛】本题考查了乘方的定义,绝对值的意义,以及求代数式的值,解题的关键是掌握运算法则,正确得到0x y +=和x y =-. 8.B解析:B【分析】直接利用合并同类项法则、同底数幂的乘除运算法则以及幂的乘方运算法则、积的乘方运算法则分别化简得出答案.【详解】A 、3332a a a +=,故此选项错误;B 、34·a a a =,故此选项正确;C 、32a a a ÷=,故此选项错误;D 、236(2)8a a =,故此选项错误;故选:B .【点睛】本题主要考查了同底数幂的乘除运算以及幂的乘方运算、积的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.9.C解析:C【分析】作点E 关于AD 的对称点G ,所以连接FG ,与CD 的交点即为P 点.此时PF+PE=FG 最小,通过计算证明△AFG是等边三角形,从而得出结果.【详解】作点E关于AD的对称点G,连接FG与CD的交点即为P点,如图:∴PG=PE,此时PF+PE=PF+ PG有最小值,最小值为FG,∵△ABC是边长为9等边三角形,且CD⊥AB,AE=CF=4,∴AD=BD=1AB=4.5,AF=AC-CF=9-4=5,∠A=60 ,2∴ED=GD= AD- AE=4.5-4=0.5,∴AG=AE+ED+GD=5= AF,∴△AFG是等边三角形,∴FG= AF=5,∴PF+PE的最小值是5,故选:C.【点睛】本题主要考查了轴对称-最短路径问题,等边三角形的判定和性质,掌握轴对称-最短路径的确定方法是解题的关键.10.D解析:D【分析】由三角形的高可在三角形的内部,也可在三角形的外部,所以分锐角三角形和钝角三角形两种情况作出符合题意的图形,再结合等腰三角形的性质与三角形的内角和定理求解即可.【详解】解:如图,分两种情况:①如图,当三角形的高在三角形的内部时,AB=AC,BD⊥AC,∠ABD=30°,∴∠A=60°,∴∠C=∠ABC=1802A ︒-∠ =60°; ②如图,当三角形的高在三角形的外部时,AB=AC ,BD ⊥AC ,∠ABD=30°, ∴∠DAB=60°,∠BAC=120°,∴∠C=∠ABC=180302BAC ︒-∠=︒. 故选:D .【点睛】本题考查了等腰三角形的性质和直角三角形的两锐角互余,三角形的内角和定理的应用,三角形的高的含义,分类讨论的数学思想,掌握分类讨论解决问题是解题的关键. 11.B解析:B【分析】 根据AAS 定理或ASA 定理即可得.【详解】在ABC 和DEF 中,,A C F D ∠∠∠=∠=,∴要使ABC DEF ≅,只需增加一组对应边相等即可,即需增加的条件是AB DE =或AC DF =或BC EF =,观察四个选项可知,只有选项B 符合,故选:B .【点睛】本题考查了三角形全等的判定定理,熟练掌握三角形全等的判定定理是解题关键. 12.D解析:D【分析】根据三角形的三边关系解答.【详解】解:∵三角形的两边为3cm ,7cm ,∴第三边长的取值范围为7-3<x <7+3,即4<x <10,只有D 符合题意,故选:D .【点睛】本题考查了三角形的三边关系,要知道,三角形的两边之和大于第三边.二、填空题13.【分析】根据已知条件化简分式即可求出答案【详解】解:∵的次数等于的次数故答案为:【点睛】本题考查了分式的混合运算熟练分解因式是解题的关键 解析:12【分析】根据已知条件,化简分式即可求出答案.【详解】 解:223410(2)11A x xB x x -=-÷-- ()()()225223111x x x x x x ---⎛⎫=÷ ⎪-+-⎝⎭ ()()()1125112252x x x x x x x x +--+⎛⎫=⨯= ⎪--⎝⎭ 12x x+=, ∵A 的次数等于B 的次数, ∴12x A JXB →+∞=, 故答案为:12. 【点睛】 本题考查了分式的混合运算,熟练分解因式是解题的关键.14.【分析】根据异分母分式的加减法则解答即可【详解】解:原式=故答案为:【点睛】本题考查了分式的加减属于基础题目熟练掌握分式的加减运算法则是解题的关键 解析:22x - 【分析】根据异分母分式的加减法则解答即可.【详解】解:原式=()()()()()()()()()()22242222222282222x x x x x x x x x x x x +++-+-+=--==++--. 故答案为:22x -.【点睛】本题考查了分式的加减,属于基础题目,熟练掌握分式的加减运算法则是解题的关键. 15.B ;【分析】(1)先求出图1中剩余部分的面积为a2-b2再求出图2中图形的面积即可列得等式;(2)利用平方差公式分解因式后代入求值即可【详解】(1)图1中边长为a 的正方形的面积为:a2边长为b 的正方解析:B ; 94【分析】(1)先求出图1中剩余部分的面积为a 2-b 2,再求出图2中图形的面积即可列得等式; (2)利用平方差公式分解因式后代入求值即可.【详解】(1)图1中,边长为a 的正方形的面积为:a 2,边长为b 的正方形的面积为:b 2,∴图1中剩余部分面积为:a 2-b 2,图2中长方形的长为:a+b ,长方形的宽为:a-b ,∴图2长方形的面积为:(a+b )(a-b ),故选:B ;(2)∵46x y +=,45x y -=,∴221664x y -+=(4)(4)64x y x y +-+=6564⨯+=94,故答案为:94.【点睛】此题考查几何图形中平方差公式的应用,利用平方差公式进行计算,掌握平方差计算公式是解题的关键.16.【分析】根据完全平方公式及开方运算即可求解【详解】解:∵∴故答案为:【点睛】本题考察完全平方公式熟练掌握完全平方公式是解题的关键 解析:3±【分析】根据完全平方公式及开方运算即可求解.【详解】解:∵()()22241429a b a b ab +=-+=+⨯=, ∴3a b +==±故答案为:3±.【点睛】本题考察完全平方公式,熟练掌握完全平方公式是解题的关键.17.70【分析】根据三角形的外角和定理得和再根据轴对称的性质得和列式求出的值即可得到结果【详解】解:∵是的外角∴∵是的外角∴∵与关于边OB 所在的直线成轴对称∴∴即解得∴故答案是:【点睛】本题考查轴对称的 解析:70【分析】根据三角形的外角和定理,得ADC A ABC ∠=∠+∠和ADC BOD OBD ∠=∠+∠,再根据轴对称的性质得12OBD ABC ∠=∠和22C A ∠=∠=︒,列式求出ABC ∠的值,即可得到结果.【详解】解:∵ADC ∠是ABD △的外角, ∴ADC A ABC ∠=∠+∠, ∵ADC ∠是BOD 的外角, ∴ADC BOD OBD ∠=∠+∠, ∵AOB 与COB △关于边OB 所在的直线成轴对称, ∴12OBD ABC ∠=∠,22C A ∠=∠=︒, ∴12A ABC BOD ABC ∠+∠=∠+∠, 即122462ABC ABC ︒+∠=︒+∠, 解得48ABC ∠=︒, ∴224870ADC A ABC ∠=∠+∠=︒+︒=︒.故答案是:70.【点睛】本题考查轴对称的性质和三角形外角和定理,解题的关键是熟练运用这两个性质定理进行求解.18.>【分析】如图过点B 作BE ⊥AC 于E 证明△BOE 是等腰直角三角形得到∠BOE=过点C 作CF ⊥OC 使FC=OC 证明△OCF 是等腰直角三角形得到∠FOC=由图知∠FOC>∠COD 即可得到∠AOB>∠CO解析:>【分析】如图,过点B 作BE ⊥AC 于E ,证明△BOE 是等腰直角三角形,得到∠BOE=45︒,过点C 作CF ⊥OC ,使FC=OC ,证明△OCF 是等腰直角三角形,得到∠FOC=45︒,由图知∠FOC>∠COD ,即可得到∠AOB>∠COD .【详解】如图,过点B 作BE ⊥AC 于E ,∵OB=OE=2,∠BEO=90︒,∴△BOE是等腰直角三角形,∴∠BOE=45︒,过点C作CF⊥OC,使FC=OC,∴∠FCO=90︒,∴△OCF是等腰直角三角形,∴∠FOC=45︒,由图知∠FOC>∠COD,∴∠AOB>∠COD,故答案为:>..【点睛】此题考查等腰直角三角形的判定及性质,角的大小比较,根据图形确定角的位置关系是解题的关键.19.AB=AD(答案不唯一)【分析】根据题目中条件和图形可以得到∠1=∠2AC=AC然后即可得到使得△ABC≌△ADC需要添加的条件本题得以解决【详解】由已知可得∠1=∠2AC=AC∴若添加条件AB=A解析:AB=AD(答案不唯一)【分析】根据题目中条件和图形,可以得到∠1=∠2,AC=AC,然后即可得到使得△ABC≌△ADC 需要添加的条件,本题得以解决.【详解】由已知可得,∠1=∠2,AC=AC,∴若添加条件AB=AD,则△ABC≌△ADC(SAS);若添加条件∠ACB=∠ACD,则△ABC≌△ADC(ASA);若添加条件∠ABC=∠ADC,则△ABC≌△ADC(AAS);故答案为:AB=AD(答案不唯一).【点睛】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.20.10或50【分析】分点P在AB的上方点P在AB与CD的中间点P在CD的下方三种情况再分别根据平行线的性质三角形的外角性质求解即可得【详解】由题意分以下三种情况:(1)如图点P在AB的上方;(2)如图解析:10或50【分析】分点P 在AB 的上方、点P 在AB 与CD 的中间、点P 在CD 的下方三种情况,再分别根据平行线的性质、三角形的外角性质求解即可得.【详解】由题意,分以下三种情况:(1)如图,点P 在AB 的上方,30,20BPD PBA ∠=︒∠=︒,150BPD PBA ∴∠=∠+∠=︒,//AB CD ,150CDP ∴∠=∠=︒;(2)如图,点P 在AB 与CD 的中间,延长BP ,交CD 于点E ,//,20AB CD PBA ∠=︒,20BED PBA ∴∠=∠=︒,30BPD ∠=︒,10CDP BPD BED ∴∠=∠-∠=︒;(3)如图,点P 在CD 的下方,//,20AB CD PBA ∠=︒,120PBA ∴∠=∠=︒,30BPD ∠=︒,13030CDP BPD CDP ∴∠=∠+∠=∠+︒>︒与120∠=︒不符,即点P 不可能在CD 的下方;综上,10CDP ∠=︒或50CDP ∠=︒,故答案为:10或50.【点睛】本题考查了平行线的性质、三角形的外角性质,依据题意,正确分三种情况讨论是解题关键.三、解答题21.(1)第一次水果进价是每千克4元;(2)该水果店在这两次销售中,总体上是盈利,且盈利3104元【分析】(1)设第一次水果的进价是每千克x 元,则第二次水果的进价是每千克1.2x 元,根据数量=总价÷单价结合第二次比第一次多购进20千克,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用数量=总价÷单价可求出第一次购进水果数量,由总利润=每千克利润×销售数量可求出第一次购进水果的销售利润,同理可求出第二次购进水果的销售利润,将二者相加即可得出结论.【详解】解:(1)设第一次水果进价为每千克x 元,则第二次水果进价为每千克1.2x 元. 依题意列方程得,2000249620 1.2x x+= 解得,4x =经检验,4x =是方程的根,且符合题意. ∴第一次水果进价是每千克4元.(2)第一次售完水果盈利为:()20009425004-⨯=(元) 第二次售完水果盈利为:()()200010 4.81005 4.8(20100)6044-⨯+-⨯+-=(元) 25006043104+=(元)∴该水果店在这两次销售中,总体上是盈利,且盈利3104元.【点睛】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.22.1x =-【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解【详解】解:方程两边乘()2x -,得632x x +=-.1x =-.检验:当1x =-时,20x -≠.所以,原方程的解为1x =-.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(1)()()22121a a a +-;(2)()2332x y -+ 【分析】(1)首先提取公因式2a ,再利用平方差公式分解因式得出答案;(2)原式利用完全平方公式分解即可.【详解】解:(1)8a 3-2ab 2=2a (4a 2-1)=2a (2a+1)(2a-1),(2)原式=[3(x-y )+2]2=(3x-3y+2)2.【点睛】本题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.24.(1)证明见解析;(2)证明见解析;(3)HG=CF+BD .【分析】(1)先利用角的和差证明∠BCD=∠EAC ,然后利用AAS 即可证明△AEC ≌△CDB ; (2)在l 上C 点左侧取一点E ,使∠AEC=60°,连接AE ,依次证明△AEC ≌△CDB 和△HGF ≌△FEA 即可得出结论;(3)在l 上位于C 点右侧取一点E ,使∠AED=60°,连接AE ,在l 上取一点M ,使BM=BD ,依次证明△ACE ≌△CBM 和△HGF ≌△FEA 即可得出结论.【详解】解:(1)证明:∵△ABC 是等边三角形,∴AC=BC ,∠ACB=60°,∴∠BCD+∠ACE=120°,∵∠AEC=60°,∴∠ACE+∠EAC=120°,∴∠BCD=∠EAC ,在△AEC 和△CDB 中∵60AEC BDC BCD EAC AC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴△AEC ≌△CDB (AAS );(2)证明:如图2,在l 上C 点左侧取一点E ,使∠AEC=60°,连接AE ,由(1)知:△AEC ≌△CDB ,∴BD=CE,∵∠AEC=60°,∴∠AEF =120°,∵∠AFH =120°,∴∠AFE+∠FAE=∠AFE+∠GFH=60°,∴∠FAE=∠GFH,∵∠HGF=∠AEF=120°,AF=FH,∴△HGF≌△FEA(AAS),∴GH=EF,∴CF=EF+CE=HG+BD;(3)解:HG=CF+BD,理由是:如图3,在l上位于C点右侧取一点E,使∠AED=60°,连接AE,在l上取一点M,使BM=BD,∵∠BDC=60°,∴△BDM是等边三角形,∴∠BMD=60°,∵∠AED=60°,∴∠AEC=∠CMB=120°,∵∠ACB=60°,∴∠ACE+∠BCE=∠ACE+∠CAE=60°,∴∠CAE=∠BCE,∵AC=BC,∴△ACE≌△CBM(AAS),∴CE=BM=BD,由(2)可证△HGF≌△FEA(AAS),∴GH=FE,∵EF=CF+CE∴HG=CF+BD.故答案为:HG=CF+BD .【点睛】本题考查等边三角形的性质和判定,全等三角形的性质和判断,三角形外角的性质等.掌握一线三等角的模型,能借助一线三等角证明对应角相等是解题关键.25.(1)证明见解析;(2)180ACB α∠+∠=︒,证明见解析;(3)EF BE AF =+,证明见解析.【分析】(1)①求出∠BEC =∠AFC =90°,∠CBE =∠ACF ,根据AAS 证△BCE ≌△CAF ,推出BE =CF ,CE =AF 即可;②当∠α+∠ACB =180°,证明∠BEC =∠AFC ,∠CBE =∠ACF ,根据AAS 证△BCE ≌△CAF ,推出BE =CF ,CE =AF 即可;(2)求出∠BEC =∠AFC ,∠CBE =∠ACF ,根据AAS 证△BCE ≌△CAF ,推出BE =CF ,CE =AF 即可.【详解】(1)①在图1中,90BEC AFC ∠=∠=︒,90ACB ∠=︒,90BCE ACF ∠+∠=︒,90EBC BCE ∠+∠=︒,EBC ACF ∴∠=∠,在BCE 和CAF 中,EBC ACF BEC AFC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BCE CAF AAS ∴≅,BE CF ∴=,CE AF =,EF CF CE BE AF ∴=-=-;②当180ACB α∠+∠=︒时,①中结论仍然成立;证明:在图2中,BEC CFA a ∠=∠=∠,180ACB α∠+∠=︒,BCE ACF EBC BCE ∴∠+∠=∠+∠,EBC ACF ∴∠=∠,在BCE 和CAF 中,EBC ACF BEC AFC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BCE CAF AAS ∴≅,BE CF ∴=,CE AF =,EF CF CE BE AF ∴=-=-.故答案为180ACB α∠+∠=︒;(2)不成立,结论:EF BE AF =+.理由:在图3中,BEC CFA a ∠=∠=∠,a BCA ∠=∠,又180EBC BCE BEC +∠+∠=︒,180BCE ACF ACB ∠+∠+∠=︒, EBC BCE BCE ACF ∴∠+∠=∠+∠,EBC ACF ∴∠=∠,在BEC △和CFA △中,EBC FCA BEC CFA BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BEC CFA AAS ∴≅,AF CE ∴=,BE CF =,=+,EF CE CF∴=+.EF BE AF【点睛】本题综合考查三角形综合题、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,注意这类题目图形发生变化,结论基本不变,证明方法完全类似,属于中考常考题型.26.(1)见解析;(2)70°【分析】(1)根据平行线的判定得出AC//DE,根据平行线的性质得出∠2=∠ADE,求出∠3+∠ADE=180°,根据平行线的判定得出即可;(2)求出∠BDE的度数,求出∠2的度数,求出∠3的度数,根据四边形的内角和定理求出∠B,再根据三角形内角和定理求出即可.【详解】(1)证明:∵∠1=∠BDE,∴AC//DE,∴∠2=∠ADE,∵∠2+∠3=180°,∴∠3+∠ADE=180°,∴AD//EF;(2)∵∠1=∠BDE,∠1=40°,∴∠BDE=40°,∵DA平分∠BDE,∠BDE=20°,∴∠ADE=12∴∠2=∠ADE=20°,∵∠2+∠3=180°∴∠3=160°,∵FE⊥AF,∴∠F=90°,∴∠B=360°-90°-160°-40°=70°,在△ABC中,∠BAC=180°-∠1-∠B=180°-40°-70°=70°.【点睛】本题考查了平行线的性质和判定,多边形的内角和定理,角平分线的定义,能灵活运用知识点进行推理和计算是解此题的关键.。
一、选择题1.若关于x的方程10 44m xx x--= --无解,则m的值是()A.2-B.2 C.3-D.32.下列变形不正确的是()A.1122x xx x+-=---B.b a a bc c--+=-C.a b a bm m-+-=-D.22112323x xx x--=---3.若数a关于x的不等式组()()11223321xxx a x⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y的分式方程13y2a2y11y--=---的解为正数,则所有满足条件的整数a的值之和是()A.2 B.3 C.4 D.54.下列计算正确的个数为()①555•2a a a=;②5510b b b+=;③1644n n÷=;④247••y y y y=;⑤()()23•x x x--=-;⑥()7214a a--=;⑦()()234214•a a a-=;⑧()242a a a÷-=-;⑨()03.141π-=.A.2 B.3 C.4 D.55.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是()(用含有a、b的代数式表示).A.a-b B.a+b C.ab D.2ab6.在下列的计算中正确的是()A.23a ab a b⋅=;B.()()2224a a a+-=+;C.235x y xy+=;D.()22369x x x-=++7.下列运算正确的是().A.()2326ab a b=B.()325a a=C.236a a a⋅=D.347a a a+=8.已知代数式2a-b=7,则-4a+2b+10的值是()A.7 B.4 C.-4 D.-79.如图,AD 是ABC 的角平分线,DE AC ⊥,垂足为E ,//BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠,2AE BF =.下列四个结论中:①DE DF =;②DB DC =;③AD BC ⊥;④3AB BF =.其中正确的结论共有( )A .4个B .3个C .2个D .1个10.如图,在Rt ABC ∆中, 90,30,ACB A CD ︒︒∠=∠=是斜边AB 上的高,2BD =,那么AD 的长为( )A .2B .4C .6D .811.如图O 是ABC 内的一点,且O 到三边AB 、BC 、CA 的距离==OF OD OE .若70A ∠=︒,则BOC ∠( ).A .125°B .135°C .105°D .100°12.如图,AB 和CD 相交于点O ,A C ∠=∠,则下列结论中不正确的是( ).A .B D ∠=∠B .1A D ∠=∠+∠C .2D ∠>∠ D .C D ∠=∠二、填空题13.已知关于x 的方程321x m x -=-的解是正数,则m 的取值范围为____________. 14.计算:()30120202-⎛⎫---= ⎪⎝⎭______. 15.若x 、y 为有理数,且22(2)0x y ++-=,则2021()xy的值为____. 16.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是:__________;(请选择正确的一个)A .2222()a ab b a b -+=-B .22()()a b a b a b -=+-C .2()a ab a a b +=+(2)应用:利用所选(1)中等式两边的等量关系,完成下面题目:若46x y +=,45x y -=,则221664x y -+的值为__________.17.如图,在四边形ABCD 中,130DAB ∠=︒,90D B ∠=∠=︒,点M ,N 分别是CD ,BC 上两个动点,当AMN 的周长最小时,AMN ANM ∠+∠的度数为_________.18.已知,点()1,3A a -与点()2,21B b --关于x 轴对称,则2a b +___________. 19.如图,AB =8cm ,AC =5cm ,∠A =∠B ,点P 在线段AB 上以2cm/s 的速度由点A 向B 运动,同时,点Q 以x cm/s 的速度从点B 出发在射线BD 上运动,则△ACP 与△BPQ 全等时,x 的值为_____________20.如图,点D ,E ,F 分别是边BC ,AD ,AC 上的中点,若图中阴影部分的面积为3,则ABC 的面积是________.三、解答题21.计算:(1)|﹣3|﹣1162+×38-+(﹣2)2; (2)xy 2•(﹣2x 3x 2)3÷4x 5. 22.水果店在批发市场购买某种水果销售,第一次用2000元购进若干千克,并以每千克9元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用2496元所购买的水果比第一次多20千克,以每千克10元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.(1)第一次水果的进价是每千克多少元?(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元? 23.(1)23235ab a b ab (2)23233x x x x 24.如图,已知:射线AM 是△ABC 的外角∠NAC 的平分线.(1)作BC 的垂直平分线PF ,交射线AM 于点P ,交边BC 于点F ;(要求:尺规作图,保留作图痕迹,不必写作法和证明)(2)过点P 作PD ⊥BA ,PE ⊥AC ,垂足分别为点D ,E ,请补全图形并证明BD =CE .25.如图,点D ,E 分别在AB 和AC 上,DE//BC ,点F 是AD 上一点,FE 的延长线交BC 延长线BH 于点G .(1)若∠DBE =40°,∠EBC =35°,求∠BDE 的度数;(2)求证:∠EGH >∠ADE ;(3)若点E 是AC 和FG 的中点,△AFE 与△CEG 全等吗?请说明理由.26.在ABC ∆中,已知3,7AB AC ==,若第三边BC 的长为偶数,求ABC ∆的周长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】 根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值.【详解】解:去分母得:m +1−x =0, ∵方程1044m x x x--=--无解, ∴x =4是方程的增根,∴m =3.故选:D .【点睛】 本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根. 2.A解析:A【分析】答题首先清楚分式的基本性质,然后对各选项进行判断.【详解】解:A 、1122x x x x +--=---,故A 不正确; B 、b a a b c c--+=-,故B 正确;C 、a b a b m m-+-=-,故C 正确; D 、22112323x x x x--=---,故D 正确. 故答案为:A .【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.3.A解析:A【分析】先解不等式得出解集x≤2且x≥2a -,根据其有两个整数解得出0<2a -≤1,解之求得a 的范围;解分式方程求出y =2a −1,由解为正数且分式方程有解得出2a −1>0且2a - 1≠1,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案.【详解】 解:()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥--⎩①②,解不等式①得:x≤2,解不等式②得:x≥2a -,∵不等式组恰有三个整数解,∴-1<2a -≤0,解得12a ≤<, 解分式方程132211y a y y--=---, 得:21y a =-,由题意知210211a a ->⎧⎨-≠⎩, 解得12a >且1a ≠, 则满足12a ≤<,12a >且1a ≠的所有整数a 的值是2, 所有满足条件的整数a 的值之和为2.故选择:A .【点睛】 本题主要考查解一元一次不等式组和求方程的正数解,解题的关键是根据不等式组整数解和方程的正数解得出a 的范围,再求和即可.4.C解析:C【分析】根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,零指数幂及积的乘方可得答案.【详解】解:①5510•a a a =,故①错误;②5552b b b +=,故②错误;③2164444n n n n n ÷=÷=,故③错误;④247••y y y y =,故④正确;⑤()()23•x x x --=-,故⑤正确;⑥()7214a a --=,故⑥正确; ⑦()()23428614•a a a a a -=-⋅=-,故⑦错误; ⑧()242a a a ÷-=,故⑧错误;⑨()03.141π-=,故⑨正确,正确的有4个.故选:C .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,零指数幂及积的乘方,解题的关键是灵活运用运算法则. 5.C解析:C【分析】设小正方形的边长为x ,大正方形的边长为y ,列方程求解,用大正方形的面积减去4个小正方形的面积即可.【详解】解:设小正方形的边长为x ,大正方形的边长为y ,则:22x y a y x b +=⎧⎨-=⎩, 解得:42a b x a b y -⎧=⎪⎪⎨+⎪=⎪⎩, ∴阴影面积=(2a b +)2﹣4×(4a b -)22222224444a ab b a ab b ab ++-+=-==ab . 故选C .【点睛】本题考查了整式的混合运算,求得大正方形的边长和小正方形的边长是解题的关键.解析:A【分析】根据单项式的乘法,平方差公式,完全平方公式,对各选项计算后利用排除法求解.【详解】A 、a 2•ab =a 3b ,正确;B 、应为(a +2)(a−2)=a 2−4,故本选项错误;C 、2x 与3y 不是同类项不能合并;D 、应为(x−3)2=x 2−6x +9,故本选项错误.故选:A .【点睛】本题主要考查平方差公式,单项式的乘法法则,完全平方公式,熟练掌握运算法则和公式是解题的关键,合并同类项时,不是同类项的不能合并.7.A解析:A【分析】分别根据同底数幂的乘法、幂的乘方与积的乘方的法则进行逐一计算即可.【详解】A 选项:()2326ab a b =,正确,符合题意;B 选项:()326a a =,错误,不符合题意; C 选项:235a a a ⋅=,错误,不符合题意;D 选项:347a a a +≠,错误,不符合题意.故选:A .【点睛】本题主要考查了同底数幂的乘法、幂的乘方与积的乘方,熟练掌握性质和法则是解题的关键.8.C解析:C【分析】直接将原式变形,进而把已知代入求出答案.【详解】解:∵-4a +2b +10=10-2(2a-b ),把2a-b=7代入上式得:原式=10-2×7=10-14=-4.故选:C .【点睛】此题主要考查了代数式求值,正确将原式变形是解题关键.解析:A【分析】根据角平分线的定义、平行线的性质得到∠ABC=∠C ,得到AC=AB ,根据等腰三角形的性质得到DB=DC ,AD ⊥BC ,证明△CDE ≌△BDF ,根据全等三角形的性质证明得到答案.【详解】解:∵BC 平分∠ABF ,∴∠ABC=∠FBC ,∵BF ∥AC ,∴∠C=∠FBC ,∴∠ABC=∠C ,∴AC=AB ,∵AC=AB ,AD 是△ABC 的角平分线,∴DB=DC ,AD ⊥BC ,故②、③说法正确;在△CDE 和△BDF 中,C DBF CD DBCDE BDF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△CDE ≌△BDF (ASA ),∴DE=DF ,故①说法正确;∵△CDE ≌△BDF ,∴BF=CE ,∵AE=2BF ,∴AB=AC=3BF ,故④说法正确;故选:A .【点睛】本题考查的是等腰三角形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.10.C解析:C【分析】根据∠ACB=90°,∠A=30°,CD 是斜边AB 上的高,利用互余关系求∠BCD=30°,DB=2,可求BC ,在Rt △ABC 中,再利用含30°的直角三角形的性质求AB ,再用线段的差求AD .【详解】解:Rt △ABC 中,∵∠ACB=90°,∠A=30°,∴∠B=90°-∠A=90°-30°=60°,CD 是斜边AB 上的高,∴∠CDB=90°,∴∠BCD=90°-∠B=30°,∴BC=2BD=4,同理,AB=2BC=8,AD=AB-BD=8-2=6,故选:C.【点睛】本题考查了含30°的直角三角形的性质,准确运用在直角三角形中,30°角所对直角边等于斜边的一半是解题关键.11.A解析:A【分析】根据到角的两边距离相等的点在角的平分线上判断出点O是三角形三条角平分线的交点,再根据三角形的内角和定理求出∠ABC+∠ACB,然后求出∠OBC+∠OCB,再利用三角形的内角和定理列式计算即可得解.【详解】解:∵O到三边AB、BC、CA的距离OF=OD=OE,∴点O是三角形三条角平分线的交点,∵∠BAC=70°,∴∠ABC+∠ACB=180°-70°=110°,∴∠OBC+∠OCB= 12(∠ABC+∠ACB)=12×110°=55°,在△OBC中,∠BOC=180°-(∠OBC+∠OCB)=180°-55°=125°.故选:A.【点睛】本题考查了角平分线判定定理,三角形的内角和定理,要注意整体思想的利用.12.D解析:D【分析】利用三角形的外角性质,对顶角相等逐一判断即可.【详解】∵∠1=∠2,∠A=∠C,∠1=∠A+∠D,∠2=∠B+∠C,∴∠B=∠D,∴选项A、B正确;∵∠2=∠A+∠D,∴2D∠>∠,∴选项C正确;没有条件说明C D∠=∠故选:D.【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键.二、填空题13.m >2且m≠3【分析】先给分式方程去分母化为整式方程用m 表示出方程的解再由解为正数求出m 的取值范围即可【详解】解:去分母得:3x ﹣m=2(x ﹣1)解得:x=m ﹣2∵分式方程的解是正数且x≠1∴m ﹣2解析:m >2且m≠3【分析】先给分式方程去分母化为整式方程,用m 表示出方程的解,再由解为正数求出m 的取值范围即可.【详解】解:去分母,得:3x ﹣m=2(x ﹣1),解得:x=m ﹣2,∵分式方程的解是正数,且x≠1,∴m ﹣2>0,且m ﹣2≠1,解得:m >2且m≠3,故答案为:m >2且m≠3.【点睛】本题考查了分式方程的解、解一元一次不等式,熟练掌握分式方程的解法是解答的关键,注意分式的分母不能为零.14.9【分析】根据零指数幂与负整数指数幂的运算法则进行求解【详解】故答案为:9【点睛】本题考查了零指数幂与负整数指数幂熟练掌握其运算法则是解题的关键解析:9【分析】根据零指数幂与负整数指数幂的运算法则进行求解.【详解】()30120201(8)1892-⎛⎫---=--=+= ⎪⎝⎭. 故答案为:9.【点睛】 本题考查了零指数幂与负整数指数幂,熟练掌握其运算法则是解题的关键.15.﹣1【分析】根据绝对值的非负性及偶次方的非负性求出x=-2y=2代入求值即可【详解】∵且∴x+2=0y-2=0∴x=-2y=2∴=-1故答案为:-1【点睛】此题考查代数式的求值计算正确掌握绝对值的非解析:﹣1【分析】根据绝对值的非负性及偶次方的非负性求出x=-2,y=2,代入求值即可.∵22(2)0x y ++-=,且220,(2)0x y +≥-≥,∴x+2=0,y-2=0,∴x=-2,y=2, ∴2021()xy=-1, 故答案为:-1.【点睛】此题考查代数式的求值计算,正确掌握绝对值的非负性及偶次方的非负性求出x=-2,y=2是解题的关键.16.B ;【分析】(1)先求出图1中剩余部分的面积为a2-b2再求出图2中图形的面积即可列得等式;(2)利用平方差公式分解因式后代入求值即可【详解】(1)图1中边长为a 的正方形的面积为:a2边长为b 的正方解析:B ; 94【分析】(1)先求出图1中剩余部分的面积为a 2-b 2,再求出图2中图形的面积即可列得等式; (2)利用平方差公式分解因式后代入求值即可.【详解】(1)图1中,边长为a 的正方形的面积为:a 2,边长为b 的正方形的面积为:b 2,∴图1中剩余部分面积为:a 2-b 2,图2中长方形的长为:a+b ,长方形的宽为:a-b ,∴图2长方形的面积为:(a+b )(a-b ),故选:B ;(2)∵46x y +=,45x y -=,∴221664x y -+=(4)(4)64x y x y +-+=6564⨯+=94,故答案为:94.【点睛】此题考查几何图形中平方差公式的应用,利用平方差公式进行计算,掌握平方差计算公式是解题的关键.17.100°【分析】作点A 关于BC 的对称点A′关于CD 的对称点A″根据轴对称确定最短路线问题连接A′A″与BCCD 的交点即为所求的点MN 利用三角形的内角和定理列式求出∠A′+∠A″再根据轴对称的性质和三【分析】作点A关于BC的对称点A′,关于CD的对称点A″,根据轴对称确定最短路线问题,连接A′A″与BC、CD的交点即为所求的点M、N,利用三角形的内角和定理列式求出∠A′+∠A″,再根据轴对称的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠AMN+∠ANM=2(∠A′+∠A″),然后计算即可得解.【详解】解:如图,作点A关于BC的对称点A′,关于CD的对称点A″,连接A′A″与BC、CD的交点即为所求的点M、N,∵∠BAD=130°,∠B=∠D=90°,∴∠A′+∠A″=180°-∠130°=50°,由轴对称的性质得:A′N= AN,A″M=AM∴∠A′=∠A′AN,∠A″=∠A″AM,∴∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°.故答案为:100°【点睛】本题考查了轴对称确定最短路线问题,轴对称的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,确定出点M、N的位置是解题的关键,要注意整体思想的利用.18.7【分析】根据关于x轴对称的点横坐标相同纵坐标互为相反数列方程求解即可【详解】解:∵点A(a-13)与点B(2-2b-1)关于x轴对称∴a-1=2-2b-1=-3解得a=3b=1∴=2×3+1=7故解析:7【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程求解即可.【详解】解:∵点A(a-1,3)与点B(2,-2b-1)关于x轴对称,∴a-1=2,-2b-1=-3,解得a=3,b=1,∴2a b =2×3+1=7.故答案为:7.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.19.2或【分析】由∠A=∠B可知△ACP与△BPQ全等时CP和PQ是对应边则分AP=BQ和AP=PB两种情况进行讨论即可【详解】设动点的运动时间为t秒则AP=2tBP=AB-AP=8-2tBQ=xt∵∠解析:2或5 2【分析】由∠A=∠B,可知△ACP与△BPQ全等时,CP和PQ是对应边,则分AP=BQ和AP=PB两种情况进行讨论即可.【详解】设动点的运动时间为t秒,则AP=2t,BP=AB-AP=8-2t,BQ=xt,∵∠A=∠B,∴CP和PQ是对应边,当△ACP与△BPQ全等时,①AP=BQ,即:2t= xt,解得:x=2,②AP=PB,即:2t=8-2t,解得:t=2,此时,BQ=AC,xt=5,即:2x=5,解得:x=5 2故填:2或52.【点睛】本题考查全等三角形的性质,“分类讨论”的数学思想是关键.20.8【分析】利用三角形的中线将三角形分成面积相等的两部分S△ABD=S△ACD=S△ABCS△BDE=S△ABDS△ADF=S△ADC再得到S△BDE=S△ABCS△DEF=S△ABC所以S△ABC=解析:8【分析】利用三角形的中线将三角形分成面积相等的两部分,S△ABD=S△ACD=12S△ABC,S△BDE=12S△ABD,S△ADF=12S△ADC,再得到S△BDE=14S△ABC,S△DEF=18S△ABC,所以S△ABC=83S阴影部分.【详解】解:∵D 为BC 的中点,∴12ABD ACD ABC S S S ==△△△, ∵E ,F 分别是边,AD AC 上的中点, ∴111,,222BDE ABD ADF ADC DEF ADF SS S S S S ===, ∴111,448BDE ABC DEF ADC ABC S S S S S ===,∵113488BDE DEF ABC ABC ABC S SS S S S =+=+=阴影部分, ∴888333ABC S S ⨯===阴影部分, 故答案为:8.【点睛】本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S △=12×底×高.三角形的中线将三角形分成面积相等的两部分. 三、解答题21.(1)2;(2)﹣2x 11y 2【分析】(1)先根据绝对值、算术平方根、立方根、乘方的意义化简,再根据实数运算法则计算即可;(2)先算乘方,再算乘除即可.【详解】解:(1)21|3|(2)2-- =134(2)42-+⨯-+ =3﹣4﹣1+4=2; (2)xy 2•(﹣2x 3x 2)3÷4x 5=xy 2•(﹣2x 5)3÷4x 5=xy 2•(﹣8x 15)÷4x 5=(﹣8÷4)x 1+15﹣5y 2=﹣2x 11y 2.【点睛】考查了整式的混合运算,有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.同时考查了实数的运算.22.(1)第一次水果进价是每千克4元;(2)该水果店在这两次销售中,总体上是盈利,且盈利3104元【分析】(1)设第一次水果的进价是每千克x 元,则第二次水果的进价是每千克1.2x 元,根据数量=总价÷单价结合第二次比第一次多购进20千克,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用数量=总价÷单价可求出第一次购进水果数量,由总利润=每千克利润×销售数量可求出第一次购进水果的销售利润,同理可求出第二次购进水果的销售利润,将二者相加即可得出结论.【详解】解:(1)设第一次水果进价为每千克x 元,则第二次水果进价为每千克1.2x 元. 依题意列方程得,2000249620 1.2x x+= 解得,4x =经检验,4x =是方程的根,且符合题意. ∴第一次水果进价是每千克4元.(2)第一次售完水果盈利为:()20009425004-⨯=(元) 第二次售完水果盈利为:()()200010 4.81005 4.8(20100)6044-⨯+-⨯+-=(元) 25006043104+=(元)∴该水果店在这两次销售中,总体上是盈利,且盈利3104元.【点睛】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.23.(1)10615a b ;(2)23221x x -- 【分析】(1)先算乘方,再确定符号,把系数,相同字母分别相乘除即可;(2)先利用多项式乘以多项式和平方差公式计算,然后去括号合并同类项.【详解】解:(1)23235ab a b ab 24935a b a b ab1175a b ab10615a b =; (2)23233x xx x 23233x x x x2222369x x x x2222129x x x 23221x x .【点睛】本题主要考查了整式的混合运算,熟悉相关计法是解题的关键.24.(1)见解析;(2)见解析【分析】(1)利用基本作图作BC 的垂直平分线即可;(2)先根据几何语言画出对应几何图形,再连接PB 、PC ,根据线段垂直平分线的性质得到PB =PC ,根据角平分线的性质得PD =PE ,则可判断Rt △BDP ≌Rt △CEP ,从而得到BD =CE .【详解】解:(1)如图,PF 为所作;(2)证明:如图,连接PB 、PC ,如图,∵PF 垂直平分BC ,∴PB =PC ,∵AM 是△ABC 的外角∠NAC 的平分线,PD ⊥BA ,PE ⊥AC ,∴PD =PE ,在Rt △BDP 和Rt △CEP 中,PB PC PD PE =⎧⎨=⎩,∴Rt △BDP ≌Rt △CEP (HL ),∴BD =CE .【点睛】本题考查了线段垂直平分线和角平分线的性质以及全等三角形的判定和性质,掌握相关性质定理正确推理论证是解题关键.25.(1)∠BDE =105°;(2)见解析;(3)全等,理由见解析.【分析】(1)根据平行线的性质得出∠DEB=∠EBC=35°,再根据三角形的内角和定理即可得到结论;(2)根据三角形的外角性质得出∠EGH >∠ABC ,又根据平行线的性质得出∠ABC=∠ADE ,即可得出答案;(3)根据全等三角形判定的“SAS”定理即可得到结论.【详解】(1)解:∵DE//BC ,∠EBC =35°,∴∠DEB =∠EBC =35°,又∵∠BDE+∠DEB+∠DBE =180°,∠DBE =40°,∴∠BDE =105°;(2)证明:∵∠EGH 是△FBG 的外角,∴∠EGH >∠ABC ,又∵DE//BC ,∴∠ABC =∠ADE ,∴∠EGH >∠ADE ;(3)全等.证明:E 是AC 和FG 的中点,∴AE =CE ,FE =GE ,在△AFE 和△CEG 中,AE CE AEF CEG FE GE =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△CGE (SAS ).【点睛】本题考查了三角形的外角性质,平行线的性质的应用,全等三角形的判定,三角形内角和定理,能运用三角形外角性质进行推理是解此题的关键.26.周长为16或18.【分析】利用三角形三边关系定理,先确定第三边的范围,再根据第三边BC 的长为偶数求出符合条件的BC 值,即可求出周长.【详解】 解:在ABC ∆中,3,7AB AC ==,∴第三边BC 的取值范围是:410,BC <<∴符合条件的偶数是6或8,∴当6BC =时,ABC ∆的周长为:36716++=;当8BC =时,ABC ∆的周长为:37818++=.ABC ∆∴的周长为16或18.【点睛】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.。
一、选择题1.化简2111313x x x x +⎫⎛-÷ ⎪---⎝⎭的结果是( ) A .2B .23x - C .41x x -- D .21x - 2.下列各式计算正确的是( )A .33x x y y=B .632m m m=C .22a b a b a b+=++D .32()()a b a b b a -=-- 3.若分式 2132x x x --+的值为0,则x 的值为( ) A .1-B .0C .1D .±14.已知有理数a ,b 满足:1ab =,1111M a b =+++,11a b N a b=+++,则M ,N 的关系为( ) A .M N > B .M N <C .M N =D .M ,N 的大小不能确定5.按照如图所示的运算程序,能使输出y 的值为5的是( )A .1,4m n ==B .2,5m n ==C .5,3m n ==D .2,2m n ==6.若3a b +=,1ab =,则()2a b -的值为( ) A .4B .5C .6D .77.设, a b 是实数,定义一种新运算:()2*a b a b =-.下面有四个推断: ①**a b b a =; ②()222**a b a b =; ③()()**a b a b -=-; ④()**a b c a b a c +=+*. 其中所有正确推断的序号是( ) A .①②③④ B .①③④ C .①② D .①③ 8.下列各多项式中,能用平方差公式分解因式的是( )A .21x -+B .21x +C .21x --D .221x x -+9.如图,在平面直角坐标系xOy 中,点A 的坐标为()4,3-,点P 在x 轴上,且使AOP 为等腰三角形,符合题意的点P 的个数为( ).A .2B .3C .4D .510.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法:①△ABE 的面积=△BCE 的面积;②∠AFG =∠AGF ;③∠FAG =2∠ACF ;④BH =CH .其中正确的是( )A .①②③④B .①②③C .②④D .①③11.如图,已知,CAB DAE ∠=∠,AC AD =.下列五个选项:①AB AE =,②BC ED =,③C D ∠=∠,④B E ∠=∠,⑤12∠=∠,从中任选一个作为已知条件,其中能使ABC AED ≌△△的条件有( )A .2个B .3个C .4个D .5个12.下列每组数分别三根小木棒的长度,用它们能摆成三角形的是( ) A .3,4,8cm cm cmB .7,8,15cm cm cmC .12,13,22cm cm cmD .10,10,20cm cm cm二、填空题13.计算2216816a a a -++÷428a a -+=__________.14.计算22111m m m ---,的正确结果为_____________. 15.若已知x +y =﹣3,xy =4,则3x +3y ﹣4xy 的值为_____.16.如图,在ABC 和ADE 中,90BAC DAE ∠=∠=︒,AB AC =,AD AE =,其中点C ,D ,E 在同一条直线上,连接BD ,BE .以下四个结论:①ACE DBC ∠=∠;②45ACE DBC ∠+∠=︒;③BD CE ⊥;④BD CE =.一定正确的是______.17.如图,在ABC 中,AB AC =,40B ∠=︒,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于点E ,在点D 从B 向C 运动过程中,如果ADE 是等腰三角形,则BDA ∠的度数是____________18.若9m =4,27n =2,则32m ﹣3n =__.19.已知△ABC ≌△DEF ,△ABC 的三边分别为3,m ,n ,△DEF 的三边分别为5,p ,q .若△ABC 的三边均为整数,则m+n+p+q 的最大值为________. 20.如图所示,∠A+∠B+∠C+∠D+∠E+∠F=____.(填写度数).三、解答题21.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为30元,用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同. (1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共50件,其中甲种玩具不低于22件,商场决定此次进货的总资金不超过750元,求商场共有几种进货方案?22.雪梨是石家庄市某地的特色时令水果.雪梨上市后,水果店的老板用2400元购进一批雪梨,很快售完;老板又用3750元购进第二批雪梨,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)求第一批雪梨每件进价是多少元?(2)老板以每件225元的价格销售第二批雪梨,售出80%后,为了尽快售完,剩下的决定打折促销,要使得第二批雪梨的销售利润为2460元,剩余的雪梨每件售价应该打几折?(利润=售价-进价) 23.先化简,再求值:()()()()()2442225x y x y x y x y x y x ⎡⎤+--+-+-÷⎣⎦,其中x ,y 满足()2320x y ++-=.24.(1)如图①,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE BD CE =+.(2)如图②,将(1)中的条件改为:在ABC 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC a ∠=∠=∠=,其中a 为任意锐角或钝角.请问结论DE BD CE =+是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图③,D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF 和ACF 均为等边三角形,连接BD 、CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF 的形状.(不需要说明理由)25.已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅; (2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.26.如果正多边形的每个内角都比它相邻的外角的4倍多30°. (1)它是几边形?(2)这个正多边形的内角和是多少度?(3)求这个正多边形对角线的条数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用乘法分配律计算即可【详解】解:原式=11(3)(3)3(1)(1)xx xx x x+⋅--⋅--+-=1-31xx--=21x-,故选D.【点睛】本题主要考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.2.D解析:D【分析】根据分式的基本性质进行判断即可得到结论.【详解】解:A、33xy是最简分式,所以33x xy y≠,故选项A不符合题意;B、624mmm=,故选项B不符合题意;C、22a ba b++是最简分式,所以22a ba ba b+≠++,故选项C不符合题意;D、3322()()()()a b a ba bb a a b--==---,正确,故选:D.【点睛】此题考查了分式的约分,以及最简分式的判断,分式的约分关键是找公因式,约分时,分式分子分母出现多项式,应先将多项式分解因式后再约分,最简分式即为分式的分子分母没有公因式.3.A【分析】根据分式值为零的条件列出方程和不等式,解方程和不等式得到答案. 【详解】由题意得:|x|−1=0,x 2−3x+2≠0,解得,x =-1, 故选:A . 【点睛】本题考查的是分式为零的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键.4.C解析:C 【分析】先通分,再利用作差法可比较出M 、N 的大小即可. 【详解】 解:∵1111M a b=+++ ()()1111b a a b +++=++()()211b aa b ++=++,()()()()()()1121111a b b a a ab bN a b a b +++++==++++,∴()()()()221111b a a ab bM N a b a b ++++-=-++++()()2211a b a ab ba b ++---=++ ()()2211aba b -=++,∵1ab =, ∴220ab -=, ∴0M N -=,即M N .故选:C. 【点睛】本题考查的是分式的加减法及分式比较大小的法则,分式比较大小可以利用作差法、作商法等.5.D解析:D根据题意逐一计算即可判断. 【详解】A 、当m=1,n=4时,则m n <,∴2224210y n =+=⨯+=,不合题意;B 、当m=2,n=5时,则m n <,∴2225212y n =+=⨯+=,不合题意;C 、当m=5,n=3时,则m n >,∴3135114y m =-=⨯-=,不合题意;D 、当m=2,n=2时,则m n >,∴313215y m =-=⨯-=,符合题意; 故选:D . 【点睛】本题考查了代数式求值,有理数的混合运算等知识,解题的关键是理解题意,属于中考常考题型.6.B解析:B 【分析】由3a b +=结合完全平方式即可求出22a b +的值,再由222()2a b a b ab -=+-,即可求出结果. 【详解】 ∵3a b +=,∴22()3a b +=,即2229a ab b ++=, 将1ab =代入上式得:229217a b +=-⨯=. ∵222()2a b a b ab -=+-, ∴2()725a b -=-=. 故选:B . 【点睛】本题考查代数式求值以及因式分解.熟练利用完全平方式求解是解答本题的关键.7.D解析:D 【分析】根据a*b 的定义,将每个等式的左右两边分别计算,再进行判断即可. 【详解】①∵a*b=()2a b -,b*a=()()22b a a b -=-, ∴a*b=b*a 成立; ②(a*b)2=()()()224a b a b -=-,a 2*b 2=()()()22222a ba b a b -=-+,∵()()()422a b a b a b -≠-+∴(a*b )2=a 2*b 2不成立;③∵(−a)*b=()()22a b a b --=+,a*(−b)= ()()22a b a b --=+⎡⎤⎣⎦, ∴−a*b=a*(−b)成立;④∵a*(b+c)= ()()22a b c a b c -+=--⎡⎤⎣⎦,a*b+a ∗c=()()()222a b a c a b c -+-≠--, ∴a*(b+c) =a*b+a ∗c 不成立; 故选:D . 【点睛】本题考查了新定义下实数的运算,正确理解题意是解题的关键.8.A解析:A 【分析】根据平方差公式:两个数平方的差,等于这两个数的和与差的平方解答. 【详解】A 、21x -+,能用平方差公式分解因式;B 、21x +,不能用平方差公式分解因式;C 、21x --,不能用平方差公式分解因式;D 、221x x -+,不能用平方差公式分解因式; 故选:A . 【点睛】此题考查平方差公式:22()()a b a b a b -=+-,掌握公式中多项式的特点是解题的关键.9.C解析:C 【分析】以O 为圆心,AO 长为半径画圆可得与x 轴有2个交点,再以A 为圆心,AO 长为半径画圆可得与x 轴有1个交点,然后再作AO 的垂直平分线可得与x 轴有1个交点. 【详解】 解:如图所示:点P 在x 轴上,且使△AOP 为等腰三角形,符合题意的点P 的个数共4个, 故选:C .【点睛】此题主要考查了等腰三角形的判定,关键是考虑全面,作图不重不漏.10.B解析:B【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC=∠CAD,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG=∠ACD,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【详解】∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠FAG=2∠ACF,故③正确;根据已知条件不能推出∠HBC =∠HCB ,即不能推出BH =CH ,故④错误; 故选:B . 【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键,题目比较好,属于中考题型.11.B解析:B 【分析】添加条件①可以用“SAS”证明,添加条件③可以用“ASA”证明,添加条件④可以用“AAS”证明. 【详解】解:①在ABC 和AED 中,AC AD CAB DAE AB AE =⎧⎪∠=∠⎨⎪=⎩, ∴()ABC AED SAS ≅△△;②不可以;③在ABC 和AED 中,C D AC ADCAB DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ABC AED ASA ≅;④在ABC 和AED 中,B E CAB DAE AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABC AED AAS ≅;⑤不可以; 故选:B . 【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的所有判定定理.12.C解析:C 【分析】根据三角形两边之和大于第三边,两边之差小于第三边计算判断即可.【详解】∵3+4<8,∴A 选项错误;∵7+8=15,∴B 选项错误;∵12+13>22,∴C 选项正确;∵10+10=20,∴D 选项错误;故选C.【点睛】本题考查了三角形的存在性,熟练掌握三角形的三边关系定理是解题的关键.二、填空题13.-2【分析】原式利用除法法则变形约分即可得到结果【详解】解:原式==-2故答案为:-2【点睛】本题考查了分式的除法熟练掌握运算法则是解本题的关键解析:-2【分析】原式利用除法法则变形,约分即可得到结果【详解】解:原式=2(4)(4)2(4)(4)4a a a a a-++-⋅+-=-2, 故答案为:-2.【点睛】本题考查了分式的除法,熟练掌握运算法则是解本题的关键.14.【分析】根据分式的加减法运算法则平方差公式因式分解计算即可解答【详解】解:===故答案为:【点睛】本题考查分式的加减运算平方差公式因式分解熟记公式掌握分式的加减运算法则是解答的关键 解析:11m - 【分析】根据分式的加减法运算法则、平方差公式因式分解计算即可解答.【详解】 解:22111m m m --- =22111m m m +--=1(1)(1)m m m ++- =11m -, 故答案为:11m -. 【点睛】本题考查分式的加减运算、平方差公式因式分解,熟记公式,掌握分式的加减运算法则是解答的关键.15.﹣25【分析】将3x+3y ﹣4xy 变形为3(x+y )﹣4xy 再整体代入求值即可【详解】解:∵x+y =﹣3xy =4∴3x+3y ﹣4xy =3(x+y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25故解析:﹣25【分析】将3x +3y ﹣4xy 变形为3(x +y )﹣4xy ,再整体代入求值即可.【详解】解:∵x +y =﹣3,xy =4,∴3x +3y ﹣4xy =3(x +y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25,故答案为:﹣25.【点睛】此题考查已知式子的值求代数式的值,将代数式变形为已知式子的形式是解题的关键. 16.②③④【分析】根据题意易证△ABD ≌△ACE 根据三角形全等的性质及余角的性质角的和差关系可进行判断进而得出正确答案【详解】解:∠DAC=∠DAC △ABD ≌△ACEBD=CE ∠ABD=∠ACE④正确;解析:②③④【分析】根据题意易证△ABD ≌△ACE ,根据三角形全等的性质及余角的性质、角的和差关系可进行判断,进而得出正确答案.【详解】 解:90BAC DAE ∠=∠=︒,∠DAC=∠DAC ,∴BAD CAE ∠=∠,AB AC =,AD AE =,∴△ABD ≌△ACE ,∴BD=CE ,∠ABD=∠ACE ,④正确;∵AB AC =,90BAC ∠=︒,∴∠ABC=∠ACB=45°,即∠ABC=∠ABD+∠DBC=45°,∴45ACE DBC ∠+∠=︒,②正确;∵90BAC ∠=︒,∴∠ABC+∠ACB=90°,∴∠DBC+∠DCB=90°,∴BD ⊥CE ,③正确;∴由题意可知ACE DBC ∠=∠不一定成立,综上所述:②③④正确;故答案为:②③④.【点睛】本题主要考查全等三角形的性质与判定及直角三角形的性质,熟练掌握全等三角形的性质与判定及直角三角形的性质是解题的关键.17.110°或80°【分析】根据等腰三角形的性质先求出∠BAC 的度数然后分3种情况:①AD =AE 时②AD =ED 时③当AE =DE 时分别求解即可【详解】∵在△ABC 中AB =AC ∠B =40°∴∠B =∠C=40解析:110°或80°【分析】根据等腰三角形的性质,先求出∠BAC 的度数,然后分3种情况:①AD =AE 时,②AD =ED 时,③当AE =DE 时,分别求解,即可.【详解】∵在△ABC 中,AB =AC ,∠B =40°,∴∠B =∠C=40°∴∠BAC =100°,①AD =AE 时,∠AED =∠ADE =40°,∴∠DAE =100°,此时,点D 与点B 重合,不符合题意舍去,②AD =ED 时,∠DAE =∠DEA ,∴∠DAE =12(180°−40°)=70°, ∴∠BAD =∠BAC−∠DAE =100°−70°=30°,∴∠BDA =180°−∠B−∠BAD =110°,③当AE =DE 时,∠DAE =∠ADE =40°,∴∠BAD =100°−40°=60°,∴∠BDA =180°−40°−60°=80°,综上所述:∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形,故答案是:110°或80°【点睛】此题主要考查学生对等腰三角形的性质,三角形内角和定理的理解和掌握,解本题的关键是分类讨论,是一道基础题目.18.2【分析】根据指数的运算把32m ﹣3n 改写成同底数幂除法再用幂的乘方的逆运算即可【详解】解:32m ﹣3n =32m÷33n ==9m÷27n =4÷2=2;故答案为:2【点睛】本题考查了幂的乘方与同底数幂解析:2【分析】根据指数的运算,把32m﹣3n 改写成同底数幂除法,再用幂的乘方的逆运算即可.【详解】解:32m ﹣3n ,=32m ÷33n ,=23(3)(3)m n=9m ÷27n ,=4÷2,=2;故答案为:2.【点睛】本题考查了幂的乘方与同底数幂的除法的逆运算,根据指数的运算特点,把原式改写成对应的幂的运算是解题关键. 19.22【分析】由三角形全等性质可得mn 中有一边为5pq 中有一边为3mn 与pq 中剩余两边相等再由三角形三边关系可知mn 与pq 中剩余两边最大为7如此即可得到m+n+p+q 的最大值【详解】∵△ABC ≌△DE解析:22【分析】由三角形全等性质可得m 、n 中有一边为5,p 、q 中有一边为3,m 、n 与p 、q 中剩余两边相等,再由三角形三边关系可知m 、n 与p 、q 中剩余两边最大为7,如此即可得到m+n+p+q 的最大值.【详解】∵△ABC ≌△DEF ,∴m 、n 中有一边为5,p 、q 中有一边为3,m 、n 与p 、q 中剩余两边相等, ∵3+5=8,∴两三角形剩余两边最大为7,∴m+n+p+q 的最大值为:3+5+7+7=22.【点睛】本题考查三角形全等与三角形三边关系的综合运用,灵活运用三角形全等的性质及三角形三边关系的应用是解题关键 .20.360°【分析】连接BE 先利用三角形内角和定理得出∠C+∠D=∠PBE+∠PEB 继而在四边形ABEF 中利用内角和定理进行求解即可【详解】连接BE ∵∠C+∠D+∠DPC=180°∠PBE+∠PEB+∠解析:360°【分析】连接BE ,先利用三角形内角和定理得出∠C+∠D=∠PBE+∠PEB ,继而在四边形ABEF 中利用内角和定理进行求解即可.【详解】连接BE,∵∠C+∠D+∠DPC=180°,∠PBE+∠PEB+∠BPE=180°,∠DPC=∠BPE,∴∠C+∠D=∠PBE+∠PEB,在四边形ABEF中,∠A+∠ABE+∠BEF+∠F=(4-2)×180°=360°,∴∠A+∠ABP+∠PBE+∠PEB+∠PEF+∠F=360°,∴∠A+∠ABP+∠C+∠D+∠PEF+∠F=360°,故答案为:360°.【点睛】本题考查了三角形内角和定理以及四边形内角和的应用,正确添加辅助线,准确识图,熟练应用相关知识是解题的关键.三、解答题21.(1)甲,乙两种玩具分别是16元/件,14元/件;(2)4种【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(30﹣x)元/件,然后根据用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同列分式方程求解,注意结果要检验;(2)设购进甲种玩具y件,则购进乙种玩具(50﹣y)件,然后利用甲种玩具不低于22件,商场决定此次进货的总资金不超过750元列不等式求解,从而确定y的取值【详解】解:(1)设甲种玩具进价x元/件,则乙种玩具进价为(30﹣x)元/件依题意得:80x=7030x解得:x=16,经检验x=16是原方程的解.∴30﹣x=14.甲,乙两种玩具分别是16元/件,14元/件;(2)设购进甲种玩具y件,则购进乙种玩具(50﹣y)件,依题意得: 16y+14(50-y)≤750,解得:y≤25,又∵y≥22∴22≤y≤25因为y 为非负整数,∴y 取22,23,24, 25共有4种方案.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式组. 22.(1)120元;(2)六折【分析】(1)设第一批雪梨每件进价是x 元,则第二批每件进价是(x +5)元,再根据等量关系:第二批仙桃所购件数是第一批的32倍,列方程解答; (2)设剩余的雪梨每件售价打y 折,由利润=售价﹣进价,根据第二批的销售利润为2460元,可列方程求解.【详解】解:(1)设第一批雪梨每件进价为x 元, 依题意列方程,得24003375025x x +⋅=,解方程,得120x =.经检验,120x =是原分式方程的解,且符合实际题意.答:第一批雪梨每件进价为120元;(2)设剩余的雪梨每件售价打y 折, 依题意列方程,得()22580%225180%0.137502460y ++⨯⨯+⨯⨯-⨯-=3750375012051205. 解得y =6.答:剩余的雪梨每件售价应该打六折.【点睛】本题考查分式方程、一元一次方程的应用,关键是根据数量作为等量关系列出分式方程,根据利润作为等量关系列出一元一次方程求解.23.22x y -+,10【分析】首先利用平方差公式、完全平方公式、多项式乘以多项式计算中括号里面的式子,再合并同类项,化简后,计算括号外的除法,最后代入x 、y 的值即可.【详解】解:原式()()222222164425210x y x xy y x xy xy y x ⎡⎤=--++--+-÷⎣⎦()2222221644210420x y x xy y x xy xy y x =-----+-+÷()222x xy x =-+÷22x y =-+.∵()230x +=,∴30x +=,20y -=,∴3x =-,2y =.∴原式()23226410=-⨯-+⨯=+=.【点睛】本题主要考查了整式的混合运算,关键是掌握整式乘、除、加、减的各种运算法则. 24.(1)见解析;(2)成立,证明见解析;(3)DEF 为等边三角形【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD ,然后根据“AAS”可判断△ADB ≌△CEA ,则AE=BD ,AD=CE ,于是DE=AE+AD=BD+CE ;(2)由∠BDA=∠AEC=∠BAC ,就可以求出∠BAD=∠ACE ,进而由AAS 就可以得出△BAD ≌△ACE ,就可以得出BD=AE ,DA=CE ,即可得出结论;(3)由等边三角形的性质,可以求出∠BAC=120°,就可以得出△BAD ≌△ACE ,就有BD=AE ,进而得出△BDF ≌△AEF ,得出DF=EF ,∠BFD=∠AFE ,而得出∠DFE=60°,即可推出△DEF 为等边三角形.【详解】(1)证明:∵BD ⊥直线m ,CE ⊥直线m ,∴90BDA CEA ∠=∠=︒∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒∵90BAD ABD ∠+∠=︒,∴CAE ABD ∠=∠.在ADB △和CEA 中:CAE ABD BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADB CEA AAS ≌()△△. ∴AE BD =,AD CE =.∴DE AE AD BD CE =+=+.(2)成立.证明如下:∵∠BDA=∠BAC=α,又∵DBA ADB BAC CAE ∠+∠=∠+∠∴∠DBA=∠CAE ,在ADB △和CEA 中:DBA CAE BDA AEC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()ADB CEA AAS ≌△△. ∴AE BD =,AD CE =,∴DE AE AD BD CE =+=+.(3)DEF 为等边三角形.证明:∵△ABF 和△ACF 均为等边三角形,∴AB=AF=AC ,∠ABF=∠CAF=60°,BF=AF,∴由(2)可知,△ADB ≌△CEA ,∴BD=AE ,∠DBA=∠CAE ,∴∠DBA+∠ABF=∠CAE+∠CAF ,∴∠DBF=∠FAE ,∵在△DBF 和△EAF 中,BD AE DBF FAE BF AF ⎧⎪∠∠⎨⎪⎩=== ∴△DBF ≌△EAF (SAS ),∴DF=EF ,∠BFD=∠AFE ,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF 为等边三角形.【点睛】本题属于三角形综合题,主要考查了全等三角形与等边三角形的综合应用,解题的关键是熟练掌握全等三角形的判定与性质以及等边三角形的判定与性质并灵活运用,属于中考常考题型.25.(1)见详解;(2)DE =BD +CE .理由见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等,得∠CAE =∠ABD ,然后根据“AAS”可判断△ABD ≌△CAE ;(2)由∠BDA =∠AEC =∠BAC ,就可以求出∠BAD =∠ACE ,进而由ASA 就可以得出△ABD ≌△CAE ,就可以得出BD =AE ,DA =CE ,即可得出结论.【详解】(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ADB AEC ABD CAE AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CAE (AAS );(2)DE =BD +CE .理由如下:如图②,∵∠BDA =∠AEC =∠BAC ,∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE ,∴∠ABD =∠CAE ,∠BAD =∠ACE ,在△ABD 和△CAE 中,ABD CAE AB ACBAD ACE ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABD ≌△CAE (ASA ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE .【点睛】本题考查了全等三角形的判定与性质以及三角形内角和定理的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题.26.(1)十二边形;(2)这个正多边形的内角和为1800︒;(3)对角线的总条数为54 条.【分析】(1)设一个外角为x°,则内角为(4x+30)°,根据内角与相邻的外角是互补关系可得x+4x+30=180,解方程可得x 的值,再利用外角和360°÷外角的度数可得边数; (2)利用多边形内角和公式即可得到答案;(3)根据n 边形有()32n n -条对角线,即可解答. 【详解】(1)设这个正多边形的一个外角为x ︒,依题意有430180x x ++=,解得30x =, 3603012︒÷︒=∴这个正多边形是十二边形.(2)这个正多边形的内角和为(122)1801800-⨯︒=︒;(3)对角线的总条数为()12312542⨯=-(条) . 【点睛】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和公式寻求等量关系,构建方程求解即可.另外还要注意从n 边形一个顶点可以引(n-3)条对角线.。
第一学期初二期末考试数学试卷一、选择题1.若点P (b a ,)在第三象限,则点Q (1-a ,32-b )在A .第一象限B .第二象限C .第三象限D .第四象限2.下列方程组中,是二元一次方程组的是A .⎩⎨⎧==-21xy y xB .⎩⎨⎧=-=-3214x y y xC .⎩⎨⎧=-=-323z x y xD .⎪⎩⎪⎨⎧=+=-03211y x y x3.函数①x y 2=,②xy 2=,③22x y -=,④32-=x y 中,y 是x 的一次函数的个数为 A .1个B .2个C .3个D .4个4.实数x 在数轴上的位置如下图所示,则x ,2x x ,的大小关系是A .x xx <<2B .2x x x <<C .2x x x <<D .x x x <<25.若△ABC 的三边长分别为c b a ,,,则下列条件不能推出△ABC 是直角三角形的是A .222b c a =-B .C B A ∠=∠+∠ C .ab b a 222=+D .C 2B 2A ∠=∠=∠6.将平面直角坐标系内某图形各点的横坐标不变,纵坐标都乘以-1,所得图形与原图形的关系是A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .重合7.若函数b x y +-=的图像不经过第一象限,则常数b 的取值是A .0>bB .0<bC .0≥bD .0≤b8.小孙设的微机密码由6位数字组成,每位上的数字都是0—9这十个数字中的一个。
小孙忘了密码,如果他任意拨一个密码,恰好打开微机的概率是 A .6101 B .5101 C .4101 D .31019.方程组⎩⎨⎧-=-=+14343y x y x 的解是A .⎩⎨⎧-=-=11y xB .⎩⎨⎧==11y xC .⎩⎨⎧=-=22y xD .⎩⎨⎧-=-=12y x10.如下图所示的象棋盘上,若的坐标是(-2,-2),的坐标是(3,2),则的坐标是A .(-3,-1)B .(-3,0)C .(-3,-2)D .(-2,-3) 11.某班共有学生49人,一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半,若设该班男生人数为x ,女生人数为y ,则可列方程组是 A .⎩⎨⎧+==-)1(249x y y xB .⎩⎨⎧+==+)1(249x y y x C .⎩⎨⎧-==-)1(249x y y x D .⎩⎨⎧-==+)1(249x y y x12.已知函数式63--=x y ,当自变量x 增加1时,函数值A .增加3B .减少3C .增加1D .减少113.如下图,△ABC 中,AB=AC ,AB 的垂直平分线DE 交BC 的延长线于E ,交AC 于F ,交AB 于D ,连接BF 。
八年级数学上册期末考试卷(鲁教版)(二)满分:120分时间:120分钟一、选择题(每题3分,共36分)1.下列各组图形可以通过平移得到的是()2.【数学文化】剪纸是我国具有独特艺术风格的民间艺术,反映了劳动人民对现实生活的深刻感悟.下列剪纸图形中,是中心对称图形的有()A.①②③B.①②④C.①③④D.②③④3.下列分式是最简分式的是()A.-2x2y10xy B.x+yx2-y2C.2y-2x3x-3yD.x2+y2x2-y24.一个多边形的内角和与外角和相加之后的结果是2 520°,则这个多边形的边数为()A.12 B.13 C.14 D.155.【2022·济南历下区期中】某单位招聘大堂经理,考核项目为个人形象、交际能力、专业知识三个项目,且权重之比为2∶3∶5,应聘者高颖三个方面的得分依次为80分、90分、80分,则她的最终得分为()A.79分B.83分C.85分D.87分6.【2023·淄博张店区月考】下列因式分解正确的是()A.a2+b2=(a+b)2B.5m2-20mn=m(5m-20n)C.-x2+y2=(y-x)(x+y)D.a3-a=a(a2-1)7.某中学篮球队12名队员的年龄情况如下表:年龄/岁12 13 14 15 16人数 1 3 4 2 2 关于这12名队员的年龄,下列说法正确的是()A.众数为14岁B.极差为3岁C.中位数为13岁D.平均数为14岁8.【2023·青岛城阳区期末】若分式方程x+3x-5=2-m5-x有增根,则m=()A.8 B.6 C.5 D.49.【2022·枣庄】如图,将△ABC先向右平移1个单位,再绕点P按顺时针方向旋转90°,得到△A′B′C′,则点B的对应点B′的坐标是()A.(4,0) B.(2,-2) C.(4,-1) D.(2,-3)10.【2022·呼和浩特】如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△EDC,使点B的对应点D恰好落在AB边上,AC,ED交于点F.若∠BCD=α,则∠EFC的度数是(用含α的代数式表示)()A.90°+12αB.90°-12αC.180°-32αD.32α11.【2023·济南期中】如图,在Rt△ABC中,∠B=90°,AB=3,AC=5,点D在BC上,以AC为对角线的所有▱ADCE中,DE的最小值是()A.3 B.4C.2 D.112. 【2023·烟台龙口市期末】如图,△ABC的周长为a,以它的各边的中点为顶点作△A1B1C1,再以△AB1C1各边的中点为顶点作△A2B2C2,…如此下去,则△A n B n C n的周长为()A.12n a B.13n a C.12n-1a D.13n-1a二、填空题(每题3分,共18分)13.【2022·赤峰】分解因式:2x3+4x2+2x=________.14.【2023·泰安新泰市月考】当x=________时,分式|x|-3(x+2)(x-3)的值为0.15.如果一组数据的方差s=112×[(x1-20)2+(x2-20)2+…+(x12-20)2],已知9是这组数据中的一个数据,现把9去掉,所得新的一组数据的平均数是________.16.【2023·青岛市北区期中】如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位长度后,得到△A′B′C′,连接A′C,则△A′B′C的周长为________________________________________.17.如图,▱ABCD绕点A逆时针旋转32°,得到▱AB′C′D′,点B′恰好落在BC 边上,B′C′和CD交于点P,则∠B′PC的度数是________.18.若关于x的分式方程3xx-1=m1-x+2的解为正数,则m的取值范围是______________.三、解答题(19题6分,20,22,24题每题8分,其余每题12分,共66分) 19.已知a,b,c为△ABC的三边长,求证:(a-c)2-b2是负数.20.先化简,再求值:(1)【2023·淄博高青县期中】4x 2-12-4x ÷4x 2+4x +1x ,其中x =14; (2)⎝ ⎛⎭⎪⎫x -1x -x -2x +1÷2x 2-xx 2+2x +1,其中x 满足x 2-2x -2=0.21.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (-1,0),B (-4,1),C (-2,2).(1)点B 关于原点对称的点B ′的坐标是________;(2)平移△ABC ,使平移后点A 的对应点A 1的坐标为(2,1),请画出平移后的△A 1B 1C 1;(3)画出△ABC 绕原点O 逆时针旋转90°后得到的△A 2B 2C 2.22.【2022·丹东】为推动家乡学校篮球运动的发展,某公司计划出资12 000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10 000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?23.【母题:教材P149复习题T7】如图,E,F分别是▱ABCD的边AD,BC 的中点.(1)求证:BE=DF;(2)连接AF,EC,分别交BE,DF于点M,N,判断四边形MFNE是不是平行四边形,说明理由.24.如图,在△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A按顺时针方向旋转60°得到△AB′C′,连接C′B,求:(1)∠ABC′的度数;(2)C′B的长.25.【2022·襄阳】在“双减”背景下,某区教育部门想了解该区A,B两所学校九年级各500名学生的课后书面作业时长情况,从这两所学校分别随机抽取50名九年级学生的课后书面作业时长数据(保留整数),整理分析过程如下:【收集数据】A学校50名九年级学生中,课后书面作业时长在70.5≤x<80.5组的具体数据如下:(单位:分钟)74,72,72,73,74,75,75,75,75,75,75,76,76,76,77,77,78,80.【整理数据】不完整的两所学校的频数分布表如下,不完整的A学校频数直方图如图所示:【分析数据】两组数据的平均数、众数、中位数、方差如下表:根据以上信息,回答下列问题:(1)本次调查是________调查(填“抽样”或“全面”);(2)统计表中a=________,b=________;(3)补全频数直方图;(4)在这次调查中,课后书面作业时长波动较小的是______学校(填“A”或“B”);(5)按规定,九年级学生每天课后书面作业时长不得超过90分钟,估计两所学校1 000名学生中,能在90分钟内(包括90分钟)完成当日课后书面作业的学生共有________人.答案一、1.C2.A3.D4.C5.B6.C7.A8.A 【点拨】x +3x -5=2-m5-x ,去分母,得x +3=2(x -5)+m ,解得x =13-m ,∵分式方程有增根,∴x -5=0,∴x =5.把x =5代入x =13-m ,得5=13-m ,解得m =8.9.C【点拨】作出旋转后的图形如图.∴点B ′的坐标为(4,-1).10.C【点拨】由旋转的性质可知BC =CD ,∠B =∠EDC ,∠A =∠E ,∠ACE =∠BCD .∵∠BCD =α,∴∠B =∠BDC =180°-α2=90°-α2,∠ACE =α.∵∠ACB =90°,∴∠A =90°-∠B =α2.∴∠E =α2.∴∠EFC =180°-∠ECF -∠E =180°-32α.11.A 【点拨】∵在Rt △ABC 中,∠B =90°,∴BC ⊥AB .∵四边形ADCE 是平行四边形,∴OD =OE ,OA =OC .∴当OD 取最小值时,线段DE 最短,此时OD ⊥BC .∴OD ∥AB .∵BD ∥AE ,∴四边形ABDE 是平行四边形,∴DE =AB =3.12.A 【点拨】∵点A 1,B 1,C 1分别为BC ,AC ,AB 的中点,∴B 1C 1=12BC ,A 1C 1=12AC ,A 1B 1=12AB ,∴△A 1B 1C 1的周长=12a ,同理,△A 2B 2C 2的周长=14a =122a ,…∴△A n B n C n 的周长=12n a .二、13.2x (x +1)214.-3【点拨】∵分式|x |-3(x +2)(x -3)的值为0,|-3=0①,x +2)(x -3)≠0②,由①得x =±3,由②得x ≠-2且x ≠3,∴x =-3.15.21【点拨】由题意知新的一组数据的平均数是(20×12-9)÷11=21.16.12【点拨】∵△ABC 沿射线BC 方向平移2个单位长度后,得到△A ′B ′C ′,∴BB ′=2,A ′B ′=AB =4,∠A ′B ′C ′=∠B =60°,∴B ′C =BC -BB ′=6-2=4,∴A ′B ′=B ′C ,∴△A ′B ′C 为等边三角形,∴△A ′B ′C 的周长=3B ′C =12.17.42°【点拨】∵▱ABCD绕点A逆时针旋转32°,得到▱AB′C′D′,∴AB=AB′,∠BAB′=32°,∠ABC=∠AB′C′,∠B+∠C=180°,∴∠B=∠AB′B=74°,∴∠C=106°,∠AB′C′=∠B=74°,∴∠CB′P=32°,∴∠B′PC=180°-∠C-∠CB′P=180°-106°-32°=42°.18.m<-2且m≠-3【点拨】去分母,得3x=-m+2(x-1),去括号、移项、合并同类项,得x=-m-2.∵关于x的分式方程3xx-1=m1-x+2的解为正数,∴-m-2>0.∴m<-2.由题意得x-1≠0,∴x≠1.∴-m-2≠1.∴m≠-3.∴m<-2且m≠-3.三、19.证明:∵a,b,c为△ABC的三边长,∴a+b>c,b+c>a,即a-c+b>0,a-c-b<0.∴(a-c)2-b2=(a-c+b)(a-c-b)<0,∴(a-c)2-b2是负数.20.解:(1)原式=(2x-1)(2x+1)-2(2x-1)·x(2x+1)2=x-2(2x+1)=x-4x-2,当x=14时,原式=14-4×14-2=14-1-2=-112.(2)原式=(x-1)(x+1)-x(x-2)x(x+1)·(x+1)2x(2x-1)=x2-1-x2+2xx·x+1x(2x-1)=2x -1x ·x +1x (2x -1)=x +1x2.∵x 2-2x -2=0,∴x 2=2x +2=2(x +1),∴原式=x +12(x +1)=12.21.解:(1)(4,-1)(2)如图,△A 1B 1C 1即为所求.(3)如图,△A 2B 2C 2即为所求.22.解:设每个篮球的原价是x 元,则每个篮球的实际价格是(x -20)元,根据题意,得12000x =10000x -20.解得x =120.经检验x =120是原方程的根.答:每个篮球的原价是120元.23.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC .∵E ,F 分别是▱ABCD 的边AD ,BC 的中点,∴DE =12AD ,BF =12BC ,∴DE =BF .∵DE ∥BF ,∴四边形BEDF 是平行四边形,∴BE=DF.(2)解:四边形MFNE是平行四边形.理由如下:如图,由(1)得四边形BEDF是平行四边形,∴BE∥DF.同理:四边形AECF是平行四边形,∴AF∥EC,∴四边形MFNE是平行四边形.24.解:(1)连接BB′,由题意,得AC′=B′C′,∠BAB′=60°,BA=B′A,∴△ABB′为等边三角形.∴∠ABB′=60°,AB=B′B.在△ABC′和△B′BC′AC′=B′C′,AB=B′B,BC′=BC′,∴△ABC′≌△B′BC′(SSS).∴∠ABC′=∠B′BC′=30°.(2)延长BC′交AB′于点M.∵AB=B′B,∠MBB′=∠MBA.∴BM⊥AB′,且AM=B′M.在Rt△ABC中,∠C=90°,AC=BC=2,∴AB=AC2+BC2=2.∴AB′=AB=2.∴AM=1.∴易得C′M=AM=1.在Rt△ABM中,AM=1,AB=2,∴BM=AB2-AM2=3,∴C′B=BM-C′M=3-1. 25.解:(1)抽样(2)18;74.5(3)补全频数直方图如图.(4)A(5)920。
最新五四制鲁教版初二上学期数学期末试题一、选择题(3*8=24)1. 如图2,在△ABC 中,AB=AC ,BD 平分∠ABC ,若∠BDC=120°,则∠A 的度数为( ) A .110° B .100° C .80° D .60°2.已知:在△ABC 中,AB=AC ,O 为不同于A 的一点,且OB=OC ,则直线AO 与底边BC 的关系为( )A .平行 B.AO 垂直且平分BC C.斜交 D.AO 垂直但不平分BC 3、下列图形是轴对称图形的是( )A B C D4.以面积为9cm2的正方形的对角线为边,作一个正方形,其面积为( ) A. 9cm2B. 12cm2C. 18cm2D. 249m25.下列各式中,正确的是( ).A.3355-=- B.6.06.3-=- C.13)13(2-=- D.636±= 6.一学生误将点A 的横纵坐标次序颠倒,写成(a ,b ),另一学生误将点B 的坐标写成关于y 轴的对称点的坐标,写成(-b ,-a ),则A ,B 两点原来的位置关系是( )A .关于y 轴对称B .关于x 轴对称C .A 和B 重合D .关于原点对称7.一只七星瓢虫自点(-2,4)先水平向右爬行3个单位,然后又竖直向下爬行2个单位,则此时这只七星瓢虫的位置是 ( ) (A )(-5,2) (B )(1,4) (C )(2,1) (D )(1,2) 8.如图4,在直角坐标系中,△AOB 的顶点O 和B 的坐标分别是 O (0,0),B (6,0),且∠OAB =90°,AO =AB ,则顶点A 关于x 轴的对称点的坐标是( )(A )(3,3 (B )(-3,3) (C )(3,-3)(D )(-3,-3) 二、填空题(3*6=18)9.等腰三角形的周长为80cm ,若以它的底边为边的等边三角形的周长为30cm ,则该等腰三角形的腰长为__________ cm.10.如图1,DE 是AB 边的垂直平分线,若BD+CD=2017,则AC 的长度为 11.如图2,长方体底面长为4,宽为3,高为12,求长方体对角线MN 的长为_______.(图1) (图)12.点A )2,(a 和点B ),3(b 关于x 轴对称,则ab 的立方根是 .13.点(-2,4)在一次函数2+=kx y 的图象上,则该直线经过_________ 象限. 14.某种储蓄的月利率为0.15%,现存入1000元,则本息和y (元)与所存月数x 之间的函数关系式是_________________________________________ .图4O AB yECADCDAB第2题M三、尺规作图:(4分)15、如图,在△ABC中,点D,E分别是AB,AC边上的中点,请你在BC边上确定一点P,使△PDE的周长最小.在图中作出点P.(保留作图痕迹,不写作法.)四.解答题16、(3*4=12)(1)=9 (2 )(3)一个正数x 的平方根分别是与,求和的值17、如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱? (7分)18.(2012•宁德)如图,点E、F分别是AD上的两点,AB∥CD,AB=CD,AF=DE.问:线段CE、BF有什么数量关系和位置关系?并加以证明.(8分)19、如图: △ABC中,若AD平分∠BAC,CE∥AD,CE交BA的延长线于E,问△ACE是什么三角形?为什么?(8分)20、如图,在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,求AC的值.(8分)21.如图,在平面直角坐标系中,已知A(-1,5),CDBAABD CEB(-1,0),C(-4,3).(8分)(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.22、如图是某市出租车单程收费y (元)与行驶路程x (千米)之间的函数关系图象,根据图象回答下列问题:(12分)(1)当行使路程为8千米时,收费应为元;(2)从图象上你能获得哪些信息?(请写出2条)①②(3)求出收费y (元)与行使路程x (千米) (x≥3)之间的函数关系式.23.(12分)我们学校准备添置一批电脑,有两个方案可供选择:方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装工工资等其它费用合计3000元.设学校需要电脑x台,方案1与方案2的费用分别为y1、y2元.(1)分别写出y1、y2的函数解析式;(2)当学校添置多少台电脑时,两种方案的费用相同?(3)若我们学校需要添置台电脑50台,你认为采用哪一种方案较省钱?说说你的理由.。
鲁教版八年级上册数学期末试卷一.选择题1.下列关于x 的方程中,是分式方程的是()A.3x=B.=C.=2 D. 3x﹣2y=12.下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2 B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2 D. ax2﹣ a=a(x2﹣1)3.把多项式 a2﹣4a 分解因式,结果正确的是()A.a(a﹣4)B.(a+2)( a﹣ 2)C. a( a+2)( a ﹣2)D.(a﹣2 )2﹣44.为了满足顾客的需求,某商场将 6kg 奶糖,4kg 酥心糖和 4kg 水果糖混合成什锦糖出售.已知奶糖的售价为每千克 30 元,酥心糖为每千克 10 元,水果糖为每千克 8 元,混合后什锦糖的售价应为每千克()A.15 元B.16 元C. 18 元D. 18.5 元5.下列多项式中,在实数范围不能分解因式的是()A.x2+y2 +2x+2y B.x2+y2+2xy﹣ 2C. x2﹣y2+4x+4y D.x2﹣y2+4y﹣ 46.下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣ 3x2B.(y+1)2﹣( y﹣1)2C.( y+1)2﹣( y2﹣1) D.(y+1)2+2( y+1)+17.某校排球队 10 名队员的身高(厘米)如下:195,186, 182,188,188, 182,186,188,186, 188.这组数据的众数和中位数分别是()A.186,188 B.188,187C.187, 188D. 188, 1868.如图,△ ABC的面积为 12,将△ ABC沿 BC方向移到△ A′B′C′的位置,则△ A′ B′ C′的面积为()A.12 B. 8C.6D. 49.如图,已知凸五边形ABCDE的边长均相等,且∠ DBE=∠ABE+∠CBD,AC=1,则 BD必定满足()A.BD< 2B.BD=2C.BD> 2D.以上情况均有可能10.如图,要测定被池塘隔开的A, B 两点的距离.可以在AB外选一点 C,连接 AC, BC,并分别找出它们的中点D,E,连接 DE.现测得 AC=30m,BC=40m, DE=24m,则 AB=()A.50m B. 48m C.45m D. 35m11.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B. 9C.10D. 1112.如图,在△ ABC中,AB=AC, E,F 分别是 BC,AC的中点,以 AC为斜边作 Rt△ ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ ECD=112.5°B. DE平分∠ FDC C.∠ DEC=30° D .AB= CD二.填空题213.因式分解: m﹣ m=.14.分解因式:(a+5)(a﹣5)+7(a+1) =.15.化简:÷=.16.一组数据 2,3,2,5,4 的中位数是.17.甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85 分,如果甲比赛成绩的方差为S甲2=16.7,乙比赛成绩的方差为S乙2=28.3,那么成绩比较稳定的是(填“甲”或“乙”)三.解答题18.因式分解:(1)4(a﹣b)2﹣16( a+b)244(2)81a ﹣b .19.化简代数式÷.20.解方程:.21.坐火车从上海到娄底,高铁 G1329次列车比快车 575 次列车要少 9 小时,已知上海到娄底的铁路长约 1260 千米, G1329的平均速度是 575 的 2.5 倍.(1)求 575 的平均速度 .(2)高铁 G1329从上海到娄底只需几小时?22.某体育老师对自己任教的 55 名男生进行一百米摸底测试,若规定男生成绩为 16 秒合格,下表是随机抽取的 10 名男生分 A,B 两组测试的成绩与合格标准的差值(比合格标准多的秒数为正,少的秒数为负).A 组﹣ 1.5+1.5﹣1﹣ 2﹣ 2B 组+1+3﹣3+2﹣ 3(1)请你估算这 55 名男生中合格的人数大约是多少.(2)通过相关的计算,说明哪个组的成绩比较均匀.(3)至少举出三条理由说明 A 组成绩好于 B 组成绩,或找出一条理由说明 B 组好于 A 组.23.如图,四边形 ABCD为平行四边形,∠ BAD和∠ BCD的平分线 AE, CF分别交 DC,BA 的延长线于点 E, F,交边 BC,AD于点 H, G.求证:四边形 AECF是平行四边形 .。
鲁教版八年级上册数学期末试卷一.选择题1.下列式子中是分式的是()A. B.C.D.2.下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+an B.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x3.多项式m2﹣m与多项式2m2﹣4m+2的公因式是()A.m﹣1 B.m+1 C.m2﹣1 D.(m﹣1)24.当a,b互为相反数时,代数式a2+ab﹣2的值为()A.2 B.0 C.﹣2 D.﹣15.下列多项式中,能用完全平方公式分解因式的是()A.﹣x2﹢1 B.﹣x2+2x﹣1 C.x2﹣2x﹣2 D.x2﹣2x6.因式分解3y2﹣6y+3,结果正确的是()A.3(y﹣1)2B.3(y2﹣2y+1)C.(3y﹣3)2D.7.下列方程是分式方程的是()A.(a,b为常数)B.x=c(c为常数)C.x=5(b为常数)D.8.计算﹣的结果是()A.B.C.D.9.为了满足顾客的需求,某商场将5kg奶糖,3kg酥心糖和2kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克()A.25元B.28.5元 C.29元D.34.5元10.截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是()A.28 B.29 C.30 D.3111.数据21,12,18,16,20,21的众数和中位数分别是()A.21和19 B.21和17 C.20和19 D.20和1812.若数据10,9,a,12,9的平均数是10,则这组数据的方差是()A.1 B.1.2 C.0.9 D.1.4二.填空题13.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD 的周长为.14.如图,点B,C,D在同一条直线上,△ABC和△ECD都是等边三角形,△EBC可以看作是由△DAC绕点C逆时针旋转°得到的.15.给出以下4个图形:①平行四边形,②正方形,③等边三角形,④圆.其中,既是轴对称图形又是中心对称图形的是.(填写序号)16.如图,点E,F分别在平行四边形ABCD的边BC,AD上,AC,EF交于点O,请你添加一个条件(只添一个即可),使四边形AECF是平行四边形,你所添加的条件是.17.如图所示,DE是△ABC的中位线,若BC=8,则DE= .三.解答题18.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.19.因式分解:﹣3a3b+6a2b2﹣3ab3.20.(1)计算:(a﹣b)(a2+ab+b2)(2)利用所学知识以及(1)所得等式,化简代数式÷.21.先化简,再求值:÷﹣,其中x=.22.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元.23.张明、李成两位同学初二学年10次数学单元自我检测的成绩(成绩均为整数,且个位数为0)分别如下图所示:利用图中提供的信息,解答下列问题.(1)完成下表:姓名平均成绩中位数众数方差张明8080李成260(2)如果将90分以上(含90分)的成绩视为优秀,则优秀率高的同学是;(3)根据图表信息,请你对这两位同学各提一条不超过20个字的学习建议.24.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.求证:△AGE≌△BGF.。
八年级上学期数学期末试卷(3)一.选择题1.把多项式m2﹣9m分解因式,结果正确的是()A.m(m﹣9)B.(m+3)(m﹣3)C.m(m+3)(m﹣3)D.(m﹣3)22.下列各式从左边到右边的变形是因式分解的是()A.(a+1)(a﹣1)=a2﹣1 B.a2﹣6a+9=(a﹣3)2C.2+2+1=(+2)+1 D.﹣184y3=﹣62y2•32y3.多项式15m3n2+5m2n﹣20m2n3的公因式是()A.5mn B.5m2n2C.5m2n D.5mn24.如果多项式2﹣m+6分解因式的结果是(﹣3)(+n),那么m,n的值分别是()A.m=﹣2,n=5 B.m=2,n=5 C.m=5,n=﹣2 D.m=﹣5,n=25.在中,分式的个数是()A.2 B.3 C.4 D.56.若分式有意义,则的取值范围是()A.>3 B.<3 C.≠3 D.=37.若分式的值为零,则等于()A.2 B.﹣2 C.±2 D.08.若,y的值均扩大为原的2倍,则下列分式的值保持不变的是()A.B.C.D.9.化简分式:(1﹣)÷的结果为()A.B.C.D.10.下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解《人民的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况11.如图,在平行四边形ABCD中,对角线AC的垂直平分线分别交AD,BC于点E,F,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .2412.如图,△ABC 中,D 是AB 的中点,E 在AC 上,且∠AED=90°+∠C ,则BC +2AE 等于( )A .AB B .AC C .ABD .AC二.填空题 13.某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:名学生平均每人植树 棵. 14.如图,在Rt △ABC 中,∠C=90°,AC=4,将△ABC 沿CB 方向平移得到△DEF ,若四边形ABED 的面积等于8,则平移的距离为 .15.如图,A ,B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C ,连接CA ,CB ,分别延长到点M ,N ,使AM=AC ,BN=BC ,测得MN=200m ,则A ,B 间的距离为 m .16.因式分解:a 3﹣4a= .17.化简:=.三.解答题18.已知分式,试问:(1)当m为何值时,分式有意义?(2)当m为何值时,分式值为0?19.解方程:=1﹣.20.阅读后填空:某家灯具厂为了比较甲、乙两种灯的使用寿命,各抽出8支做试验,结果如下(单位:小时).甲:457,438,460,443,464,459,444,451;乙:466,455,467,439,459,452,464,438.试说明哪种灯的使用寿命长?哪种灯的质量比较稳定?21.如图,在平行四边形ABCD中,点E是AB边的中点,DE的延长线与CB的延长线交于点F.求证:BC=BF.22.如图,点C是AB的中点,AD=CE,CD=BE.(1)求证:△ACD≌△CBE;(2)连接DE,求证:四边形CBED是平行四边形.23.△ABC的中线BD,CE相交于O,F,G分别是BO,CO的中点,求证:EF∥DG,且EF=DG.24.如图:小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°照这样走下去,他第一次回到出发点A时,一共走了多少米?。
最新鲁教版初中数学八年级上册期末测试题一、选择题(本大题满分36分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内 )1.对于x +2y ,312+a ,13a ,z y x +-,n n k )2(-, 其中分式有 A .1个 B .2个 C .3个 D .4个2.下列各式中,无论x 取何值,分式都有意义的是A .121x +B .21x x +C .231x x+ D .2221x x + 3.下列运算正确的是A .212=a a B .y x a y x a 333+=+ C .414+=-a c c a D .b a c bc a 22=• 4.若x ,y 的值均扩大为原来的2倍,则下列分式的值保持不变的是A .y x 73B .225y xC .y x 332D .2323yx 5.已知4a =5b =6c ,且a -b +c =10,则a +b -c 的值为 A . 7 B . 6 C . 5 D . 3 6. 在正数范围内定义一种运算☆,其规则为a ☆b =b a 11+,根据这个规则x ☆23)1(=+x 的解为 A .=x 1 B .1=x 或32- C .32=x D .32=x 或1- 7.“十一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加旅游的同学共x 人,则所列方程为A .32180180=+-x x B .31802180=-+x x C .32180180=--x x D .31802180=--x x 8.如果把yx y 322-中的x 和y 都扩大5倍,那么分式的值:(A )扩大5倍 (B )不变 (C )缩小5倍 (D )扩大4倍9.已知0432≠==c b a ,则c b a +的值为: (A )54 (B )2 (C )45 (D )21 10. 关于x 的方程21--x x =2-x m 无解,则m 的值是: (A)-1 (B)0 (C)1 (D)211.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/小时,若设该轮船在静水中的速度为x 千米/小时,则可列方程:(A)9448448=-++x x (B)9448448=-++xx (C)9448=+x (D)9496496=-++x x 12. 如图α=∠CGE ,则F E D C B A ∠+∠+∠+∠+∠+∠等于:(A)α-ο360 (B )α-ο270(C)α2 (D )α+ο180 二、填空题(本大题满分18分,每小题3分,请你将答案填写在题目中的横线上)13.分式xy x 413-,)(322x y x y -,yx 221-的最简公分母为________________. 14. 一名同学军训时连续射靶10次,命中的环数分别为4,7,8,6,8,6,5,9,10,7,这名同学射击环数的标准差是 .15. 计算1211112--+--x x x =_________. 三、解答题 (本大题满分66分, 解答要写出必要的文字说明或推演步骤)16、 计算下列各题:(1) 22343b b a b b a --- ; (2)a b b b a a --+--2222;(3)x y x y xy •÷-23)3(22.(第10题)解分式方程: 1412112-=-++x x x .18.(本题满分7分) 先化简21)44451(2-+÷+--+x x x x x , 再选取一个你喜欢的数代入求值.19.(本题满分7分)阅读下面对话:小红妈:“售货员,请帮我买些梨.”售货员:“小红妈,您上次买的那种梨都卖完了,我们还没来得及进货,我建议这次您买些新进的苹果,价格比梨贵一点,不过苹果的营养价值更高.”小红妈:“好,你们很讲信用,这次我照上次一样,也花30元钱.”对照前后两次的电脑小票,小红妈发现:每千克苹果的价是梨的1.5倍,苹果的重量比梨轻2.5千克.试根据上面对话和小红妈的发现,分别求出梨和苹果的单价.20.(本题满分10分) 某工人师傅原计划若干天内生产840个零件,开始4天按原计划进行生产,以后每天生产的零件比原计划增加了25%,结果提前2天完成了任务.求工人师傅原计划多少天完成任务?在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需天数;(2)求两队合做完成这项工程所需天数.22.(本题满分10分) 如图,ACB ABC ∠=∠,BD 平分ABC ∠,CE 平分ACB ∠,F DBF ∠=∠,则EC 与DF 平行吗?若平行,试证明;若不平行,说明理由.。
鲁教版八年级上册数学期末试卷一.选择题21.把多项式m﹣9m 分解因式,结果正确的是()A.m(m﹣9)B.(m+3)(m﹣3)C.m(m+3)(m﹣3)D.( m﹣3)22.下列各式从左边到右边的变形是因式分解的是()A.(a+1)(a﹣1)=a2﹣1 B.a2﹣6a+9=(a﹣3)2C.x2+2x+1=x(x+2x)+1 D.﹣18x4y3 =﹣6x2y2?3x2y3 2 2 2 33.多项式15mn +5mn﹣20mn 的公因式是()2 2 2 2A.5mn B.5mn C.5mn D.5mn4.如果多项式x2﹣mx+6 分解因式的结果是(x﹣3)(x+n),那么m,n 的值分别是()A.m=﹣2,n=5 B.m=2,n=5 C.m=5,n=﹣2 D.m=﹣5,n=25.在中,分式的个数是()A.2 B.3 C.4 D.56.若分式有意义,则x 的取值范围是()A.x>3 B.x<3 C.x≠3 D.x=37.若分式的值为零,则x 等于()A.2 B.﹣2 C.±2 D.08.若x,y 的值均扩大为原的 2 倍,则下列分式的值保持不变的是()A. B .C.D.9.化简分式:(1﹣)÷的结果为()A.B.C.D.10.下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解《人民的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况11.如图,在平行四边形ABCD 中,对角线AC 的垂直平分线分别交AD,BC 于点E,F,连接CE,若△CED 的周长为6,则?ABCD 的周长为()A.6 B.12 C.18 D.2412.如图,△ABC 中,D 是AB 的中点,E 在AC 上,且∠AED=90°+ ∠C,则BC+2AE 等于()A.AB B.AC C.ABD.AC二.填空题13.某校组织学生参加植树活动,活动结束后,统计了九年级甲班50 名学生每人植树的情况,绘制了如下的统计表:植树棵数 3 4 5 6人数20 15 10 5那么这50 名学生平均每人植树棵.14.如图,在Rt △ABC 中,∠C=90°,AC=4,将△ABC 沿CB 方向平移得到△DEF,若四边形ABED 的面积等于8,则平移的距离为.15.如图,A,B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM=AC,BN=BC,测得MN=200m,则A,B 间的距离为m.16.因式分解:a3﹣4a= .17.化简:= .三.解答题18.已知分式,试问:(1)当m 为何值时,分式有意义?(2)当m 为何值时,分式值为0?19.解方程:=1﹣.20.阅读后填空:某家灯具厂为了比较甲、乙两种灯的使用寿命,各抽出8 支做试验,结果如下(单位:小时).甲:457,438,460,443,464,459,444,451;乙:466,455,467,439,459,452,464,438.试说明哪种灯的使用寿命长?哪种灯的质量比较稳定?21.如图,在平行四边形ABCD 中,点E 是AB 边的中点,DE 的延长线与CB 的延长线交于点F.求证:BC=BF.22.如图,点C 是AB 的中点,AD=CE,CD=BE.(1)求证:△ACD≌△CBE;(2)连接DE,求证:四边形CBED 是平行四边形.23.△ABC 的中线BD,CE 相交于O,F,G 分别是BO,CO 的中点,求证:EF∥DG,且EF=DG.24.如图:小亮从 A 点出发,沿直线前进10 米后向左转30°,再沿直线前进10 米,又向左转30°照这样走下去,他第一次回到出发点 A 时,一共走了多少米?。
鲁教版八年级上册数学期末试卷
一.选择题
1.下列式子中是分式的是()
A. B.C.D.
2.下列各式由左到右的变形中,属于分解因式的是()
A.a(m+n)=am+an B.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2
C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x
3.多项式m2﹣m与多项式2m2﹣4m+2的公因式是()
A.m﹣1 B.m+1 C.m2﹣1 D.(m﹣1)2
4.当a,b互为相反数时,代数式a2+ab﹣2的值为()
A.2 B.0 C.﹣2 D.﹣1
5.下列多项式中,能用完全平方公式分解因式的是()
A.﹣x2﹢1 B.﹣x2+2x﹣1 C.x2﹣2x﹣2 D.x2﹣2x
6.因式分解3y2﹣6y+3,结果正确的是()
A.3(y﹣1)2B.3(y2﹣2y+1)C.(3y﹣3)2D.
7.下列方程是分式方程的是()
A.(a,b为常数)B.x=c(c为常数)
C.x=5(b为常数)D.
8.计算﹣的结果是()
A.B.C.D.
9.为了满足顾客的需求,某商场将5kg奶糖,3kg酥心糖和2kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克()
A.25元B.28.5元 C.29元D.34.5元
10.截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是()
A.28 B.29 C.30 D.31
11.数据21,12,18,16,20,21的众数和中位数分别是()
A.21和19 B.21和17 C.20和19 D.20和18
12.若数据10,9,a,12,9的平均数是10,则这组数据的方差是()
A.1 B.1.2 C.0.9 D.1.4
二.填空题
13.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD 的周长为.
14.如图,点B,C,D在同一条直线上,△ABC和△ECD都是等边三角形,△EBC可以看作是由△DAC绕点C逆时针旋转°得到的.
15.给出以下4个图形:①平行四边形,②正方形,③等边三角形,④圆.其中,既是轴对称图形又是中心对称图形的是.(填写序号)
16.如图,点E,F分别在平行四边形ABCD的边BC,AD上,AC,EF交于点O,请你添加一个条件(只添一个即可),使四边形AECF是平行四边形,你所添加的条件是.
17.如图所示,DE是△ABC的中位线,若BC=8,则DE= .
三.解答题
18.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.19.因式分解:﹣3a3b+6a2b2﹣3ab3.
20.(1)计算:(a﹣b)(a2+ab+b2)
(2)利用所学知识以及(1)所得等式,化简代数式÷.
21.先化简,再求值:÷﹣,其中x=.
22.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元.
23.张明、李成两位同学初二学年10次数学单元自我检测的成绩(成绩均为整数,且个位数为0)分别如下图所示:
利用图中提供的信息,解答下列问题.
(1)完成下表:
分)的成绩视为优秀,则优秀率高的同学是;
(3)根据图表信息,请你对这两位同学各提一条不超过20个字的学习建议.
24.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,
连接AF,BE.求证:△AGE≌△BGF.。