数学建模题目及其答案
- 格式:doc
- 大小:674.50 KB
- 文档页数:22
《数学建模建立函数模型解决实际问题》试卷(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、某公司每小时生产零件的数量与时间的关系可以用下面哪个函数模型来表示?每天工作8小时,且生产数量随着工龄增加而增加。
A、f(t) = 100 + 2tB、f(t) = 100 + 2t^2C、f(t) = 100 + 2t^3D、f(t) = 100 + 2e^t2、一个城市为了改善交通状况,计划拓宽一条现有道路。
现有道路的宽度为10米,经过调查发现,道路的宽度每增加1米,道路的日均车流量会减少100辆。
设道路宽度从10米增加到x米,日均车流量减少的辆数为(100(x−10))。
根据上述情况,下列哪个函数模型描述了道路宽度与日均车流量之间的关系?A.(y=1000x)B.(y=1000(10−x))C.(y=1000(x+10))D.(y=1000(10−x))3、已知某工厂生产某种产品,每增加一个工人的工作效率,每天能多生产50个产品。
现有10名工人,每天能生产1000个产品。
设工人人数为x,每天生产的产品数量为y,根据题意可建立函数模型为()A. y = 50x + 1000B. y = 50x + 100C. y = 50x + 50D. y = 50x - 10004、某次数学建模活动中,参与者需要根据给定的数据建立一个线性函数模型来描述某种商品的销售量与价格之间的关系。
已知当价格为10元时,销售量为200件;当价格为15元时,销售量为150件。
若设销售量为y,价格为x,则建立的线性函数模型为()。
x)A、(y=200−53x)B、(y=−200+53C、(y=−200+5x)D、(y=−200+10x)5、在研究某种商品的需求关系时,研究人员得到一组数据如下:商品价格(元)为10, 15, 20, 25, 30,商品销售量(件)为500, 450, 400, 350, 300。
为了建立商品价格与销售量之间的关系,最适合采用的数学模型是:A. 二次函数模型B. 线性函数模型C. 几何模型D. 对数函数模型6、在解决实际问题时,以下哪个函数模型最适合描述某城市人口随时间的变化?A、一次函数模型C、对数函数模型D、幂函数模型7、若一家工厂每天生产x件产品,每件产品的成本为c元,售价为p元,每天的固定成本为f元,则该工厂的日利润y与x的关系式为:A)y = x(p - c) - fB)y = x(c - p) - fC)y = x(c - p) + fD)y = x(p - c) + f8、已知某工厂生产一批产品,根据实验数据得出每增加一个工时,产品的合格率增加2%,生产x个工时后,产品的合格率为y%,那么函数模型可以表示为:A、y = 2x + 1B、y = 2x² + 1C、y = x + 2D、y = 2x² + 2(x + 1)二、多选题(本大题有3小题,每小题6分,共18分)1、以下哪些函数模型可以用来描述现实生活中的实际问题?A. 线性函数模型B. 二次函数模型C. 指数函数模型D. 对数函数模型2、一个直角三角形的两直角边长分别为a和b,斜边长为c。
数学建模试卷及参考答案一、选择题1. 已知函数 $y = 2x^3 - 5x^2 + 3x - 7$,求导数函数 $y'$ 的值。
A) $6x^2 - 10x + 3$\B) $6x - 10x^2 + 3$\C) $6x - 10x + 3$\D) $6x^2 - 10x^2 + 3$答案:A2. 设矩形的长为 $x$,宽为 $y$,满足 $x^2 + y^2 = 25$。
当矩形的面积最大时,求矩形的长和宽。
A) 长为 4,宽为 3\B) 长为 5,宽为 3\C) 长为 4,宽为 2.5\D) 长为 5,宽为 2.5答案:A3. 一条直线过点 $A(1,2)$ 和点 $B(3,-1)$,与另一条直线 $2x + y - 4 = 0$ 平行。
求该直线的方程。
A) $2x - y + 3 = 0$\B) $2x - y - 3 = 0$\C) $-2x + y - 3 = 0$\D) $2x - y - 5 = 0$答案:B4. 已知函数 $y = e^x$,求 $y$ 的微分值。
A) $e^x$\B) $e^x + C$\C) $e^x - C$\D) $C \cdot e^x$答案:A5. 一辆汽车以每小时 60 公里的速度行驶,途中经过两座相距 60 公里的城市。
假设两座城市间有一辆以每小时90 公里的速度行驶的列车,两车同时出发。
求两辆车首次相遇的时间。
A) 0.5 小时\B) 1 小时\C) 1.5 小时\D) 2 小时答案:A二、填空题6. 已知函数 $f(x) = \sin(x)$,求函数 $g(x) = f^{\prime}(x)$。
答案:$g(x) = \cos(x)$7. 若直线 $3x + ky = 2$ 与直线 $2x - y = 3$ 相垂直,则 $k$ 的值为\_\_\_。
答案:$k = 6$8. 设抛物线 $y = ax^2 - 3x + 2$ 的顶点为 $(2,1)$,则 $a$ 的值为\_\_\_。
数学建模 试卷及参考答案一.概念题(共3小题,每小题5分,本大题共15分)1、一般情况下,建立数学模型要经过哪些步骤?(5分)答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。
2、学习数学建模应注意培养哪几个能力?(5分)答:观察力、联想力、洞察力、计算机应用能力。
3、人工神经网络方法有什么特点?(5分)答:(1)可处理非线性;(2)并行结构.;(3)具有学习和记忆能力;(4)对数据的可容性大;(5)神经网络可以用大规模集成电路来实现。
二、模型求证题(共2小题,每小题10分,本大题共20分)1、 某人早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分) 证明:记出发时刻为t=a,到达目的时刻为t=b,从旅店到山顶的路程为s.设某人上山路径的运动方程为f(t), 下山运动方程为g(t),t 是一天内时刻变量,则f(t),g(t)在[a,b]是连续函数。
作辅助函数F(t)=f(t)-g(t),它也是连续的,则由f(a)=0,f(b)>0和g(a)>0,g(b)=0,可知F (a )<0, F(b)>0,由介值定理知存在t0属于(a,b)使F(t0)=0, 即f(t0)=g(t0) 。
2、三名商人各带一个随从乘船过河,一只小船只能容纳二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?(15分)解:模型构成记第k 次渡河前此岸的商人数为k x ,随从数为k y ,k=1,2,........,k x ,k y =0,1,2,3。
将二维向量k s =(k x ,k y )定义为状态。
安全渡河条件下的状态集合称为允许状态集合,记做S 。
09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。
试作合理的假设并建立数学模型说明这个现象。
(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。
因此对这个问题我们假设 :(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。
那么,总可以让桌子的三条腿是同时接触到地面。
现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。
以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。
当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。
容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。
为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。
由假设(1),()f θ,()g θ均为θ的连续函数。
又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。
不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。
证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。
作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。
数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。
试构造模型并求解。
答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。
f 和g 都是连续函数。
椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。
不妨设0)0(,0)0(g >=f 。
当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。
这样,改变椅子的位置使四只脚同时着地。
就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。
证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。
根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。
第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。
1. 食品厂用三种原料生产两种糖果,糖果的成分要求和销售价见表1。
各种原料的可供量和成本见表2。
该厂根据订单至少需要生产600公斤高级奶糖,800公斤水果糖,为求最大利润,试建立线性规划模型并求解。
2.某商业公司计划开办5家新商店。
为了尽早建成营业,商业公司决定由5家建筑公司分别承建。
已知建筑公司i A (5,4,3,2,1=i )对新商店j B (5,4,3,2,1=j )的建造费用的报价(万元)为ij c (5,4,3,2,1,=j i ),见表3。
商业公司应当对5家建筑公司怎样分配建造任务,才能使总的建造费用最少?
3.求解下列方程的三个实根
x x 24=
提示:首先在21≤≤-x 和172≤≤x 两个不同区域中绘制函数图形。
4\.求图1所示网络中s v 到t v 的最短路径及长度。
2
v 5
t
图1 网络图
5.某商业公司计划开办5家新商店。
为了尽早建成营业,商业公司决定由5家建筑公司分别承建。
已知建筑公司i A (5,4,3,2,1=i )对新商店j B (5,4,3,2,1=j )的建造费用的报价(万元)为ij c (5,4,3,2,1,=j i ),见表3。
商业公司应当对5家建筑公司怎样分配建造任务,才能使总的建造费用最少?。
数学建模小学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是偶数?A. 2B. 3C. 4D. 5答案:A2. 一个长方形的长是8厘米,宽是4厘米,那么它的面积是多少平方厘米?A. 16B. 24C. 32D. 48答案:C3. 一个数的3倍是45,这个数是多少?A. 15B. 12C. 10D. 5答案:A4. 一个班级有40名学生,其中女生占全班人数的1/3,那么女生有多少人?A. 10B. 13D. 20答案:D5. 一个数加上它的一半等于10,这个数是多少?A. 5B. 6C. 7D. 8答案:B6. 一个圆的直径是10厘米,那么它的半径是多少厘米?A. 5B. 10C. 15D. 20答案:A7. 一个数的4倍是32,这个数是多少?A. 6B. 8C. 10D. 12答案:B8. 一个班级有60名学生,其中男生占全班人数的2/3,那么男生有多少人?A. 40B. 50C. 60D. 809. 一个数减去它的1/4等于9,这个数是多少?A. 12B. 11C. 10D. 9答案:A10. 一个长方形的长是10厘米,宽是5厘米,那么它的周长是多少厘米?A. 30B. 25C. 20D. 15答案:A二、填空题(每题4分,共20分)1. 一个数的5倍加上20等于50,这个数是______。
答案:62. 一个数的3倍减去10等于20,这个数是______。
答案:103. 一个班级有50名学生,其中男生占全班人数的3/5,那么男生有______人。
答案:304. 一个数的2倍减去5等于15,这个数是______。
答案:105. 一个长方形的长是12厘米,宽是8厘米,那么它的面积是______平方厘米。
答案:96三、解答题(每题10分,共50分)1. 一个数的4倍加上8等于40,求这个数。
答案:设这个数为x,则有4x + 8 = 40。
解这个方程,我们得到4x = 32,所以x = 8。
一、名词解释1.Table命令的使用格式;2.Solve命令的使用格式;3.Do命令的使用格式;4.Plot命令的使用格式;5.ListPlot命令的使用格式;6.Reduce命令的使用格式;7.Expand命令的使用格式;8.FindRoot命令的使用格式;9.Switch命令的使用格式;lO.ConstrainedMin命令的使用格式;11 .Factor命令的特点与几种使用格式。
12.Clear命令的特点与使用格式二、计算题1. 1959年8月4日是星期几,这一天与2001年12月4日之间共有多少天?2.求我国北京市的地理经纬度。
3.北美地区有几个国家?写出它们的名字。
4.求解递归关系式a” = 3% _2a”_2,ao =1,4 = 2。
5.求斐波那契(Fibonacci)数列Fibonacci[n]从n=l至【Jn = 50的值。
6.分别以0.1、0.01、0.001为误差上限,将J方化成近似分数。
7 .求下列矩阵的特征值与对应的特征向量:13•求解方程7% -和"—张+ 1X 14.求1+ 28+38+...+n 8的简洁表达式。
15.求Pell 方程.r 2 -234y 2 -1的最小正整数解。
16.将16进制的数字20转化为10进制的数字。
17.求下列矩阵的行列逆矩阵与转置矩‘1 2 3、A= 2 3 1、3 1 2,8.求多项式 f=( X1 + X2 +X3 + X4 + X5严中 Xi 3 x 23 X35 X42 X55 的系数。
9•求208素因子分解。
10. 用Lindo 求解下列整数线性规划问题。
max / = 20 兀 1 +10%兀1 +兀2 +兀3 = 30y, + y 2 + = 2020x l +10% = 30X 2 + 20y 2 = 25 x 3 + 15y 3s.tA 20兀i +10% <20*30 + 10*2030兀2+20y2 <30*30 + 20*20 25兀3+15儿 <25*30 + 15*20 x t , y j > 0,integers11. 求中国香港的地理经纬度。
2.设银行的年利率为0.2,则五年后的一百万元相当于现在的 万元.3.在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关: (1)参加展览会的人数n ;(2)气温T 超过10℃;(3)冰淇淋的售价由此建立的冰淇淋销量的比例模型应为 。
二、简答题:(25分)1、建立数学模型的基本方法有哪些?写出建模的一般步骤。
(5分)2、 写出优化模型的一般形式和线性规划模型的标准形式。
(10分) 三、(每小题15分,共60分)1、设某产品的供给函数)(p ϕ与需求函数)(p f 皆为线性函数: 9)(,43)(+-=+=kp p f p p ϕ其中p 为商品单价,试推导k 满足什么条件使市场稳定。
2、1968年,介壳虫偶然从澳大利亚传入美国,威胁着美国的柠檬生产。
随后,美国又从澳大利亚引入了介壳虫的天然捕食者——澳洲瓢虫。
后来,DDT 被普通使用来消灭害虫,柠檬园主想利用DDT 进一步杀死介壳虫。
谁料,DDT 同样杀死澳洲瓢虫。
结果,介壳虫增加起来,澳洲瓢虫反倒减少了。
试建立数学模型解释这个现象。
3.建立捕鱼问题的模型,并通过求解微分方程的办法给出最大的捕捞量数学建模 参考答案2.约40.18763.p T Kn N /)10(-=,(T ≥10℃),K 是比例常数 二、1、建立数学模型的基本方法:机理分析法,统计分析法,系统分析法2、优化模型的一般形式将一个优化问题用数学式子来描述,即求函数 ,在约束条件下的最大值或最小值,其中 为设计变量(决策变量), 为目标函数为可行域三、1、解:设Pn 表示t=n 时的市场价格,由供求平衡可知:)()(1n n p f p =-ϕ9431+-=+-n n kp p即: kp k p n n 531+-=- .,...,,,)(m i h i 210==x )(x f u =.,...,,),)(()(p i g g i i 2100=≥≤x x x)(x f Ω∈x Ω∈=x x f u )(max)min(or .,...,,,)(..m i h t s i 210 ==x .,...,,),)(()(p i g g i i 2100=≥≤x x经递推有:kk p kkk k p k p n nn nn n 5)3()3(5)53(31102⋅-+⋅-=++-⋅-=-=-∑Λ0p 表示初始时的市场价格:∞→时当n 若即市场稳定收敛则时,,30,13n p k 即k<<<-。
09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。
试作合理的假设并建立数学模型说明这个现象。
(15分) 解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。
因此对这个问题我们假设 : (1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。
那么,总可以让桌子的三条腿是同时接触到地面。
现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。
以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D 的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。
当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。
容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。
为消除这一不确定性,令()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。
由假设(1),()f θ,()g θ均为θ的连续函数。
又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。
不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为: 已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。
证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。
作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。
高考数学数学建模练习题及答案一、综合分析题某城市2019年的二氧化硫(SO2)和氮氧化物(NOx)排放量分别为15.2万吨和20.8万吨。
根据监测数据,该城市出现了严重的空气污染,为了改善空气质量,政府制定了下列措施:1. 实施尾气治理方案,使汽车尾气排放的SO2和NOx总量每年减少10%。
2. 推广清洁能源车辆,使其占机动车保有量的比例增加4%。
3. 建设新的绿化景观,增加每年吸收的SO2和NOx总量3%。
根据以上措施,解答以下问题:1. 计算2023年该城市汽车尾气排放的SO2和NOx总量。
2. 估计2023年该城市机动车保有量。
3. 计算新绿化景观每年吸收的SO2和NOx总量。
解答:1. 计算2023年汽车尾气排放的SO2和NOx总量:2019年汽车尾气排放的SO2总量:15.2万吨2019年汽车尾气排放的NOx总量:20.8万吨汽车尾气排放的SO2和NOx总量每年减少10%,即每年剩余原量的90%。
2023年汽车尾气排放的SO2总量:15.2万吨 * 0.9 = 13.68万吨 2023年汽车尾气排放的NOx总量:20.8万吨 * 0.9 = 18.72万吨因此,2023年该城市汽车尾气排放的SO2总量为13.68万吨,NOx总量为18.72万吨。
2. 估计2023年该城市机动车保有量:假设2019年该城市机动车保有量为A辆。
推广清洁能源车辆,使其占机动车保有量的比例每年增加4%。
这可以表示为公式:A * (1 + 0.04)^4 = 1.04^4 * A2023年该城市机动车保有量:1.04^4 * A因此,估计2023年该城市机动车保有量为1.1699A辆。
3. 计算新绿化景观每年吸收的SO2和NOx总量:新绿化景观每年吸收的SO2和NOx总量增加3%。
假设2019年新绿化景观每年吸收的SO2总量为B吨,NOx总量为C吨。
2023年新绿化景观每年吸收的SO2总量:B * (1 + 0.03)^42023年新绿化景观每年吸收的NOx总量:C * (1 + 0.03)^4因此,2023年新绿化景观每年吸收的SO2总量为B * 1.1255吨,NOx总量为C * 1.1255吨。
第一章部分习题3(5). 决定十字路口黄灯亮的时间长度.4. 在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四角的连线呈正方形改为长方形,其余不变,试构造模型并求解.5. 模仿1.4节商人过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少.6. 利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型: (1) 分段的指数增长模型. 将时间分为若干段,分别确定增长率r. (2) 阻滞增长模型. 换一种方法确定固有增长率r 和最大容量x m .7. 说明1.5节中Logistic 模型(9)可以表示为()()01t t r mex t x --+=,其中t 0是人口增长出现拐点的时刻,并说明t 0与r ,x m 的关系.8. 假定人口的增长服从这样的规律:时刻t 的人口为x (t),t 到t +△t 时间内人口的增量与x m -x (t)成正比(其中为x m 最大容量). 试建立模型并求解. 作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.9(3). 甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。
甲乙之间一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。
问开往甲乙两站的电车经过丙站的时刻表是如何安排的。
参考答案3(5). 司机看到黄灯后停车要有一定的刹车距离1s ,设通过十字路口的距离为2s ,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线1s 之内的汽车能通过路口,即()vs s t 21+≈其中s 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.4. 相邻两椅脚与地面距离之和分别定义为()()θθg f 和,将椅子旋转ο180,其余作法与1.3节相同.5. 人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。
09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。
试作合理的假设并建立数学模型说明这个现象。
(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。
因此对这个问题我们假设 : (1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。
那么,总可以让桌子的三条腿是同时接触到地面。
现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。
以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A、B、C、D 处,A、B,C、D的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A、B,C、D 平行。
当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。
容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。
为消除这一不确定性,令()f θ为A、B 离地距离之和,()g θ为C、D 离地距离之和,它们的值由θ唯一确定。
由假设(1),()f θ,()g θ均为θ的连续函数。
又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。
不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为: 已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。
证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。
作()()()h f g θθθ=−,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =−<而()()()0h f g πππ=−>,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。
第一部分课后习题1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。
学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。
(2)2.1节中的Q值方法。
(3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。
你能解释这种方法的道理吗。
如果委员会从10人增至15人,用以上3种方法再分配名额。
将3种方法两次分配的结果列表比较。
(4)你能提出其他的方法吗。
用你的方法分配上面的名额。
2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。
比如洁银牙膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。
试用比例方法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。
价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。
(2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w的增加c减少的程度变小。
解释实际意义是什么。
3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。
假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):先用机理分析建立模型,再用数据确定参数4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应多大(如图)。
若知道管道长度,需用多长布条(可考虑两端的影响)。
如果管道是其他形状呢。
5.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便、有效的排列方法,使加工出尽可能多的圆盘。
2.设银行的年利率为0.2,则五年后的一百万元相当于现在的 万元.3.在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关: (1)参加展览会的人数n ;(2)气温T 超过10℃;(3)冰淇淋的售价由此建立的冰淇淋销量的比例模型应为 。
二、简答题:(25分)1、建立数学模型的基本方法有哪些?写出建模的一般步骤。
(5分)2、 写出优化模型的一般形式和线性规划模型的标准形式。
(10分) 三、(每小题15分,共60分)1、设某产品的供给函数)(p ϕ与需求函数)(p f 皆为线性函数: 9)(,43)(+-=+=kp p f p p ϕ其中p 为商品单价,试推导k 满足什么条件使市场稳定。
2、1968年,介壳虫偶然从澳大利亚传入美国,威胁着美国的柠檬生产。
随后,美国又从澳大利亚引入了介壳虫的天然捕食者——澳洲瓢虫。
后来,DDT 被普通使用来消灭害虫,柠檬园主想利用DDT 进一步杀死介壳虫。
谁料,DDT 同样杀死澳洲瓢虫。
结果,介壳虫增加起来,澳洲瓢虫反倒减少了。
试建立数学模型解释这个现象。
3.建立捕鱼问题的模型,并通过求解微分方程的办法给出最大的捕捞量数学建模 参考答案2.约40.18763.p T Kn N /)10(-=,(T ≥10℃),K 是比例常数 二、1、建立数学模型的基本方法:机理分析法,统计分析法,系统分析法2、优化模型的一般形式将一个优化问题用数学式子来描述,即求函数 ,在约束条件下的最大值或最小值,其中 为设计变量(决策变量), 为目标函数为可行域三、1、解:设Pn 表示t=n 时的市场价格,由供求平衡可知:)()(1n n p f p =-ϕ9431+-=+-n n kp p即: kp k p n n 531+-=- .,...,,,)(m i h i 210==x )(x f u =.,...,,),)(()(p i g g i i 2100=≥≤x x x)(x f Ω∈x Ω∈=x x f u )(max)min(or .,...,,,)(..m i h t s i 210 ==x .,...,,),)(()(p i g g i i 2100=≥≤x x经递推有:kk p kkk k p k p n nn nn n 5)3()3(5)53(31102⋅-+⋅-=++-⋅-=-=-∑Λ0p 表示初始时的市场价格:∞→时当n 若即市场稳定收敛则时,,30,13n p k 即k<<<-。
建模数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是线性方程的标准形式?A. \( ax + by = c \)B. \( ax^2 + by^2 = c \)C. \( ax^3 + by^3 = c \)D. \( ax + by + cz = d \)答案:A2. 函数 \( f(x) = x^2 \) 的导数是什么?A. \( 2x \)B. \( x^2 \)C. \( x \)D. \( 1 \)答案:A3. 以下哪个是二阶微分方程?A. \( y' = 2x \)B. \( y'' = 2x \)C. \( y = 2x \)D. \( y' + y = 2x \)答案:B4. 积分 \( \int x^2 dx \) 的结果是?A. \( \frac{x^3}{3} + C \)B. \( x^3 + C \)C. \( 2x^2 + C \)D. \( 3x^2 + C \)答案:A5. 以下哪个是矩阵?A. \( [a] \)B. \( (a, b) \)C. \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \)D. \( \{a, b\} \)答案:C6. 以下哪个是概率论中的随机变量?A. 一个固定的数字B. 一个确定的函数C. 一个可能取不同值的变量D. 一个常数答案:C7. 以下哪个是线性代数中的基本概念?A. 函数B. 微分C. 向量空间D. 积分答案:C8. 函数 \( f(x) = \sin(x) \) 的不定积分是什么?A. \( -\cos(x) + C \)B. \( \cos(x) + C \)C. \( \sin(x) + C \)D. \( \tan(x) + C \)答案:B9. 以下哪个是微分方程?A. \( y = 2x \)B. \( y' = 2x \)C. \( y'' = 2x \)D. \( y''' = 2x \)答案:B10. 以下哪个是统计学中的基本概念?A. 函数B. 微分C. 样本D. 积分答案:C二、填空题(每题2分,共20分)1. 线性方程 \( ax + by = c \) 的斜率是 _______。
数学建模疾病的诊断现要你给出疾病诊断的一种方法。
胃癌患者容易被误诊为萎缩性胃炎患者或非胃病者。
从胃癌患者中抽取5人(编号为1-5),从萎缩性胃炎患者中抽取5人(编号为6-10),以及非胃病者中抽取5人(编号为11-15),每人化验4项生化指标:血清铜蓝蛋白(X)、1蓝色反应(X)、尿吲哚乙酸(3X)、中性硫化物(4X)、测得数据如表1 2所示:表1. 从人体中化验出的生化指标根据数据,试给出鉴别胃病的方法。
论文题目:胃病的诊断摘要在临床医学中,诊断试验是一种诊断疾病的重要方法。
好的诊断试验方法将对临床诊断的正确性和疾病的治疗效果起重要影响。
因此,对于不同疾病不断发现新的诊断试验方法是医学进步的重要标志。
传统的诊断试验方法有生化检测、DNA检测和影像检测等方法。
而本文则通过利用多元统计分析中的判别分析及SPSS软件的辅助较好地解决了临床医学中胃病鉴别的问题。
在临床医学上,既提高了临床诊断的正确性,又对疾病的治疗效果起了重要效果,同时也减轻了病人的负担。
判别分析是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。
其基本原理是按照一定的判别准则,建立一个或多个判别函数,用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标。
首先,由判别分析定义可知,只有当多个总体的特征具有显著的差异时,进行判别分析才有意义,且总体间差异越大,才会使误判率越小。
因此在进行判别分析时,有必要对总体多元变量的均值进行是否不等的显著性检验。
其次,利用判别分析中的费歇判别和贝叶斯判别进行判别函数的建立。
最后,利用所建立的判别函数进行回判并测得其误判率,以及对其修正。
本文利用SPSS软件实现了对总体间给类变量的均值是否不等的显著性检验并根据样本建立了相应的费歇判别函数和贝叶斯判别函数,最后进行了回判并测得了误判率,从而获得了在临床诊断中模型,给临床上的诊断试验提供了新方法和新建议。
关键词:判别分析;判别函数;Fisher判别;Bayes判别一问题的提出在传统的胃病诊断中,胃癌患者容易被误诊为萎缩性胃炎患者或非胃病患者,为了提高医学上诊断的准确性,也为了减少因误诊而造成的病人死亡率,必须要找出一种最准确最有效的诊断方法。
为诊断疾病,必须从人体中提取4项生化指标进行化验,即血清铜蓝蛋白、蓝色反应、尿吲哚乙酸、中性硫化物。
但是,从人体中化验出的生化指标,必须要确定一个精准的指标来判断疾病所属的类型。
设想,使用判别分析法,利用SPSS 软件对各个变量进行系统的分析,使该问题得到有效地解决。
二、问题的分析由题意可知,目的就是为了建立一种模型,解决医学上的这种误诊问题。
在该问题中,必须确定血清铜蓝蛋白、蓝色反应、尿吲哚乙酸、中性硫化物与胃癌、萎缩性胃炎的关系。
衡量该四项指标的数学要点必然是相应的标准差、方差、均值等,同时,会建立一个或几个函数分析其间关系的正相关或负相关,即其具有一定的相关性,然后利用所给数据求解出一定的数学模型表达式,便可求解出胃病的鉴别方法。
三、符号的说明X1:血清铜蛋白X2:蓝色反应X3:尿吲哚乙酸X4:中型硫化物N:被调查的样本数Wilks的lambda:组内平方和与总平方和之比(当所有观测的组均值相等时,Wilks的lambda值为1;当组内变异与总变异相比小时,Wilks的lambda值接近于0。
因此,Wilks的lambda值大,表示各个组的均值基本相等;Wilks的lambda小表示组间有差异。
在判别分析中,只有组均值不等时,判别分析才有意义)F:F值,F分布中的统计检定值df:自由度sig.:统计显著性,即出现目前样本的机率P:p值四、问题的假设1.该四项生化指标是分别可以测得的。
2.每个生化指标都不是其他三个指标的线性组合,即两两之间无相关性。
3.被抽取的三类人员中彼此没有任何血缘关系。
4.除了本题研究的疾病外,被调查的人员无任何疾病。
五、模型的建立根据以上的分析,回忆所学的知识,发现该问题符合判别分析法的要求,因此可以用判别分析法来求解,其中,判别分析法可以分为:距离判别法、Fisher 判别法、Bayes 判别法等。
SPSS 软件是统计分析软件之一,它可以进行各种统计分析工作。
另外,它所具有的强大的图形输出功能,使运行该软件不仅可以得到各种数字分析结果,还可以得到各种直观、清晰、漂亮的统计图形。
从而利用软件SPSS ,将所有的数据输入进去,便可以得到协方差矩阵、自由度、p 值、均值、标准差等与该问题相关的有利于分析问题的数据及图形。
现在主要利用Fisher 判别法、Bayes 判别法来处理该问题。
Fisher 判别法的基本思想: 从k 个总体中抽取具有p 个指标的样品观测数据,借助方差分析的构造一个线性判别函数:1122()p p U u X u X u X '=+++=X u X ,其中系数),,,(21'=p u u u u 确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。
有了线性判别函数U 后,对于一个新的样品,将它的p 个指标值代入以上线性判别函数式中求出()U X 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。
Bayes 判别法的基本思想:设有k 个总体k G G G ,,,21 ,其各自的分布密度函数)(,),(),(21x x x k f f f 互不相同的,假设k 个总体各自出现的概率分别为k q q q ,,,21 (先验概率),0≥i q ,11=∑=ki i q 。
假设已知若将本来属于i G 总体的样品错判到总体j G 时造成的损失为)|(i j C ,k j i ,,2,1, =。
在这样的情形下,对于新的样品X 判断其来自哪个总体。
通过这两种方式利用软件SPSS 来求解,得出的数据在分析比较后,就可以得出结果。
六、模型的求解1.spss 操作步骤如下 (1)建立数据文件在数据窗口中输入上入待分析的数据。
(2)按顺序单击分析→分类→判别菜单项,如图-1所示,系统弹出判别分析的对话框,如图-2所示图-1 先选择菜单进入判别分析对话框注:X1:血清铜蛋白X2:蓝色反应X3:尿吲哚乙酸X4:中型硫化物(3)选择参与判别分析的变量及其他相关设置1)分组变量框:从左侧选入分类变量“类型”于分组变量框中。
2)定义范围按钮:定义分类变量的取值范围。
单击分类变量按钮,系统弹出一个对话框,如图-3所示。
最小值输入1,最大只输入3.完成设置后,单击继续按钮,返回判别分析主对话框,见图-2.图-2 判别分析的主对话框图-3 指定分类变量范围对话框3)自变量列表框:从左侧的变量列表将参与判别分析的变量“X1—X4”于其中,如图-4所示。
4)一起输入变量单按钮:表示选择所有变量参与判别分析,如图-4所示。
图-4(4)判别分析的统计输出设置。
单击统计量按钮,系统弹出一个对话框,如图-5所示。
图-5 判别分析的统计输出设置1)描述性框:描述统计量选项组,包括3个复选框项,复选均值复选框和单变量复选框。
如图-5所示均值复选框:各类中个变量的均值、标准差和各自变量总样本的均值、标准差;单变量复选框:变量均值的单因子差异假设实验。
2)函数系数框:判别函数系数选项组,复选Fisher复选框和未标准化复选框,如图-5所示。
Fisher复选框:给出贝叶斯判别函数的系数。
未标准化复选框:给出未标准化的Fisher判别函数的系数。
(5)指定判别分析的有关参数及有关输出结果设置。
单击分类按钮,系统弹出一个对话框,如图-6所示。
图-6 指定参数与结果对话框1)先验概率框:先验概率选项组,包括两个单选项,单选所有组相等框如图-6所示。
所有组相等框:个二类先验概率相等。
2)输出框:分类结果选项组,包括三个复选项,复选个案结果、摘要表和不考虑该个案时的分类复选框如图-6所示。
个案结果复选项:对每个样品输出判别函数值、实际类、预测类和后验概率。
摘要表复选项:输出分类小结,给出正确分类的样品数、错分样品数和错分率。
不考虑该个案时的分类复选项:交叉验证的判别分类结果。
3)使用协方差矩阵框:分类使用的协方差矩阵,单选在组内单选项如图-6所示。
在组内单选项:使用合并类内协方差矩阵。
4)图框:复选合并组、分组和区域图复选框如图-6所示。
合并组复选项:使出包括各个类的散点图。
分组复选项:每类输出一个散点图。
区域图复选项:输出领域图。
所有设置完成后,单击继续按钮返回判别分析主对话框。
图-7 建立新变量对话框(6)单击保存按钮,系统弹出一个对话框,复选预测组成员、判别得分和组成员概率复选项如图-7所示。
1)预测组成员复选项:根据判别函数的值,按后验概率计算预测分类结果。
2)判别得分复选项:建立判别函数值变量。
3)组成员概率复选项:建立新变量,表明每一个样品属于某一类的概率。
所有设置完成后,单击继续按钮返回判别分析主对话框。
(7)上述设置完成后,单击确定按钮进行判别分析,得到输出结果。
七、模型的结果(1)描述性输出分析案例处理摘要未加权案例N 百分比有效15 100.0排除的缺失或越界组代码0 .0至少一个缺失判别变量0 .0缺失或越界组代码还有至少一0 .0个缺失判别变量合计0 .0合计15 100.0图-8图-8表示有效样本及样本变量的实际情况。
图-9由图-9可知显著水平X2、X3最大,而X1、X4显著水平最小。
但是由于判别变量间可能相互关联,仅单独检验是不够的。
但是通过将X1和X4分别与X2和X3联合后发现,他们对判别的提高有很大的贡献。
组统计量类型均值标准差有效的 N(列表状态)未加权的已加权的1 x1 188.6000 57.13843 5 5.000x2 150.4000 16.50152 5 5.000x3 .1380 .05933 5 5.000x4 .2000 .13323 5 5.0002 x1 163.0000 53.80520 5 5.000x2 115.0000 14.81553 5 5.000x3 .0700 .01871 5 5.000x4 .1360 .07537 5 5.0003 x1 151.0000 33.80089 5 5.000x2 121.4000 13.01153 5 5.000x3 .0500 .01871 5 5.000x4 .0900 .06782 5 5.000合计x1 167.5333 48.47513 15 15.000x2 128.9333 21.04915 15 15.000x3 .0860 .05221 15 15.000x4 .1420 .10094 15 15.000图-10上表(图-10)表示各组变量的描述统计情况,给出了各个类型的均值、标准差等统计量。