生产函数模型
- 格式:ppt
- 大小:543.50 KB
- 文档页数:61
第七章单方程计量经济学应用模型在第一章中已经介绍过,计量经济学模型主要用于结构分析、政策评价、经济预测、理论检验与发展理论,这是从作用的角度讲的。
从计量经济学模型的应用领域来讲,可以说无所不在。
举例说,一般人们认为,在制度经济学领域,例如经济史的研究,是很难应用计量经济学模型的。
然而,1993年诺贝尔经济学奖获得者R.福格尔和D.诺思就是研究经济史的,属新制度经济学派,其获奖原因恰恰是“在经济史研究中的定量研究领域所作出的贡献”。
但是,计量经济模型的主要应用领域仍然是生产、需求、消费、投资、货币需求与供给、就业、福利以及宏观经济,本章与下一章将选择其中几个领域作为例子,介绍一些计量经济学应用模型。
其目的,一方面是使读者了解在这些应用领域的比较成熟的应用模型;另一方面,也是更重要的,是试图通过这些应用模型的介绍,使读者了解它们是如何发展而来的,即掌握建立与发展计量经济学应用模型的方法论。
时代在变,研究对象在变,同一研究对象的自身变化规律在变。
已有的模型,有的已经完全没有应用价值了,有的需要发展与改进。
但是,那些在模型发展与应用实践中形成的方法论,其价值是永存的。
掌握了这些方法论,我们可以去研究新问题,发展新模型。
§5.1生产函数模型在西方经济学中,生产理论是最重要内容之一;同样,在西方的计量经济学中,生产函数模型的研究与发展始终是一个重要的、最活跃的领域。
在我国也是这样。
一、几个重要概念⒈生产函数⑴定义生产函数是描述生产过程中投入的生产要素的某种组合同它可能的最大产出量之间的依存关系的数学表达式。
即(7.1.1)Y f A K L(,,,)其中Y为产出量,A、K、L分别为技术、资本、劳动等投入要素。
这里“投入的生产要素”是生产过程中发挥作用、对产出量产生贡献的生产要素;“可能的最大产出量”指这种要素组合应该形成的产出量,而不一定是实际产出量。
生产要素对产出量的作用与影响,主要是由一定的技术条件决定的,所以,从本质上讲,生产函数反映了生产过程中投入要素与产出量之间的技术关系。
生产函数模型
生产函数模型是一种描述生产过程的数学模型,它用数学方程式的形式将生产过程中的输入与输出联系起来。
生产函数模型通常表示为:
Y = f(K, L, M, ...)
其中,Y表示产出量,K、L、M表示生产要素,如资本、劳动、原材料等。
f表示生产函数,它描述了不同生产要素对产出量的影响关系。
生产函数模型可以用来评估效率、成本等关键生产要素的影响,为决策提供依据。
例如,生产函数模型可以帮助企业确定最优生产要素的组合,以获得最大的产出量和利润。
它也可以用来分析不同产业和国家之间的生产效率差异,评估经济政策的影响,优化资源配置等。
柯布-道格拉斯生产函数柯布—道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家保罗·道格拉斯(PaulH.Douglas)共同探讨投入和产出的关系时创造的生产函数,是以美国数学家C.W.柯布和经济学家保罗.H.道格拉斯的名字命名的,是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数。
是经济学中使用最广泛的一种生产函数形式,它在数理经济学与经济计量学的研究与应用中都具有重要的地位。
柯布-道格拉斯生产函数-简介保罗·道格拉斯柯布和道格拉斯研究的是1899年至1922年美国制造业的生产函数。
他们指出,制造业的投资分为,以机器和建筑物为主要形式的固定资本投资和以原料、半成品和仓库里的成品为主要形式的流动资本投资,同时还包括对土地的投资。
在他们看来,在商品生产中起作用的资本,是不包括流动资本的。
这是因为,他们认为,流动资本属于制造过程的结果,而非原因。
同时,他们还排除了对土地的投资。
这是因为,他们认为,这部分投资受土地价值的异常增值的影响较大。
因此,在他们的生产函数中,资本这一要素只包括对机器、工具、设备和工厂建筑的投资。
而对劳动这一要素的度量,他们选用的是制造业的雇佣工人数。
但是,不幸地是,由于当时对这些生产要素的统计工作既不是每年连续的,也不是恰好按他们的分析需要来分类统计的。
因而,他们不得不尽可能地利用有的一些其它数据,来估计出他们打算使用的数据的数值。
比如,用生铁、钢、钢材、木材、焦炭、水泥、砖和铜等用于生产机器和建筑物的原料的数量变化来估计机器和建筑物的数量的变化;用美国一两个州的雇佣工人数的变化来代表整个美国的雇佣工人数的变化等等。
经过一番处理,他们得到关于1899年至1922年间,产出量P、资本C和劳动L的相对变化的数据(以1899年为基准)。
令人佩服的是,在没有计算机的年代里,他们从这些数据中,得到了如下的生产函数公式:P=1.01L3/4C1/4柯布(C.W.Cobb)这一结果虽然与现代计算机统计软件的计算结果不同,但两者无本质上的差别。
柯布道格拉斯生产函数-详解(重定向自柯布—道格拉斯函数)柯布-道格拉斯生产函数(Cobb-Douglas production function)目录• 1 柯布-道格拉斯生产函数概述• 2 柯布-道格拉斯生产函数的基本形式• 3 柯布一道格拉斯生产函数的应用[1]• 4 参考文献柯布-道格拉斯生产函数概述柯布—道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家保罗·道格拉斯(Paul H. Douglas)共同探讨投入和产出的关系时创造的生产函数,是以美国数学家C.W.柯布和经济学家保罗.H.道格拉斯的名字命名的。
是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数。
是经济学中使用最广泛的一种生产函数形式,它在数理经济学与经济计量学的研究与应用中都具有重要的地位。
它是以美国数学家C·W·柯布和经济学家保罗·H·道格拉斯的名字命名的。
柯布—道格拉斯生产函数的一般形式可以表示为:他们根据有关历史资料,研究了从1899-1922年美国的资本和劳动对生产的影响,在技术经济条件不变的情况下,得出了产出与投入的劳动力及资本的关系。
但是柯布-道格拉斯生产函数中把技术水平A作为固定常数,难以反映出因技术进步而给产出带来的影响。
柯布—道格拉斯生产函数中,如果有任何一种投入品为零,则产出也为零,因此对于生产来说,每种生产要素都是必需的,没有一种要素可以完全替代另一种要素。
柯布—道格拉斯生产函数是采用的边际分析方法,可用于分析要素投入对产量(产出)的贡献率、规模收益和其他系列问题。
是生产函数中应用广泛的一种!根据研究目的和需要,现在有很多在柯布——道格拉斯生产函数基础上变形应用的函数形式。
柯布-道格拉斯生产函数的基本形式柯布-道格拉斯生产函数的基本形式为:Y = A(t)LαKβμ式中Y是工业总产值,At是综合技术水平,L是投入的劳动力数(单位是万人或人),K 是投入的资本,一般指固定资产净值(单位是亿元或万元,但必须与劳动力数的单位相对应,如劳动力用万人作单位,固定资产净值就用亿元作单位),α 是劳动力产出的弹性系数,β是资本产出的弹性系数,μ表示随机干扰的影响,μ≤1。
生产函数x=min 概述说明以及解释1. 引言1.1 概述生产函数是经济学中一个重要的概念,用于描述生产活动中输入和输出之间的关系。
它是一种数学函数,可以帮助我们理解和分析不同因素对生产过程的影响。
在现实世界中,我们会遇到各种各样的生产函数,其中一个常见的形式是x=min 函数。
1.2 文章结构本文将围绕生产函数x=min展开讨论,并按照以下结构进行组织:引言:介绍文章的背景和目的,提出需要解决的问题。
生产函数x=min:介绍该类型生产函数的理论背景、定义与解释以及其特点与应用。
正文:主要论述具体话题下的三个要点。
结论:总结概括全文,并对生产函数x=min的意义和局限性进行分析,并对未来研究方向进行展望。
1.3 目的本文旨在深入探讨生产函数x=min并阐明其在经济学中的重要性和应用价值。
通过分析该类型生产函数,我们可以更好地理解和评估不同因素对经济发展和资源配置的影响。
同时,本文也将探讨这种特殊类型生产函数可能存在的局限性并对未来研究提出展望,为相关领域的研究者提供参考和借鉴。
2. 生产函数x=min:2.1 理论背景:在经济学和生产理论中,生产函数是一种表示输入和输出之间关系的数学模型。
它描述了如何将投入转化为产出。
常见的生产函数包括线性生产函数、凹凸生产函数等。
而“生产函数x=min”是一种特殊类型的生产函数。
2.2 定义与解释:“生产函数x=min”是指当各种生产要素(如劳动力、资本等)存在时,输出或产量取决于最不充分要素的数量。
简单地说,这个函数表示了一个企业或经济体的绩效受制于其最低限度的资源。
这个特殊类型的生产函数可以形式化地表示为:Y = min(X1, X2, ..., Xn)其中Y是输出或总产量,X1, X2, ..., Xn代表不同的输入或要素。
这里通过比较各个要素,选择数量最少的那个作为决定总产量的因素。
举个例子来说明,“生产函数x=min”的应用场景:假设某工厂需要两种原材料A和B来进行产品制造,根据配比规定,每制造一个单位产品需要3单位的A 和5单位的B。
柯布-道格拉斯生产函数柯布—道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家保罗·道格拉斯(PaulH.Douglas)共同探讨投入和产出的关系时创造的生产函数,是以美国数学家C.W.柯布和经济学家保罗.H.道格拉斯的名字命名的,是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数。
是经济学中使用最广泛的一种生产函数形式,它在数理经济学与经济计量学的研究与应用中都具有重要的地位。
柯布-道格拉斯生产函数-简介保罗·道格拉斯柯布和道格拉斯研究的是1899年至1922年美国制造业的生产函数。
他们指出,制造业的投资分为,以机器和建筑物为主要形式的固定资本投资和以原料、半成品和仓库里的成品为主要形式的流动资本投资,同时还包括对土地的投资。
在他们看来,在商品生产中起作用的资本,是不包括流动资本的。
这是因为,他们认为,流动资本属于制造过程的结果,而非原因。
同时,他们还排除了对土地的投资。
这是因为,他们认为,这部分投资受土地价值的异常增值的影响较大。
因此,在他们的生产函数中,资本这一要素只包括对机器、工具、设备和工厂建筑的投资。
而对劳动这一要素的度量,他们选用的是制造业的雇佣工人数。
但是,不幸地是,由于当时对这些生产要素的统计工作既不是每年连续的,也不是恰好按他们的分析需要来分类统计的。
因而,他们不得不尽可能地利用有的一些其它数据,来估计出他们打算使用的数据的数值。
比如,用生铁、钢、钢材、木材、焦炭、水泥、砖和铜等用于生产机器和建筑物的原料的数量变化来估计机器和建筑物的数量的变化;用美国一两个州的雇佣工人数的变化来代表整个美国的雇佣工人数的变化等等。
经过一番处理,他们得到关于1899年至1922年间,产出量P、资本C和劳动L的相对变化的数据(以1899年为基准)。
令人佩服的是,在没有计算机的年代里,他们从这些数据中,得到了如下的生产函数公式:P=1.01L3/4C1/4柯布(C.W.Cobb)这一结果虽然与现代计算机统计软件的计算结果不同,但两者无本质上的差别。
0940503205 成芳娟生产要素对产出量的作用与影响,主要是由一定的技术条件决定的,所以,从本质上讲,生产函数反映了生产过程中投入要素与产出量之间的技术关系,而要素替代弹性是该技术关系的重要表征。
从生产活动的实际来看,技术的进步会影响产出量,一般来说,任何意义上的技术进步,都意味着生产函数的变动。
一、我们讨论将技术要素作为一个不变参数的生产函数模型。
① C-D生产函数模型其中K表示资本,L表示劳动,ɑ、β分别表示资本与劳动的产出弹性,模型中的待估参数A为效率系数,是广义技术进步水平的反映,是不变的参数。
C-D生产函数模型关于要素替代弹性为1的假设是具有缺陷,根据这一假设,不管研究对象是什么,样本区间是什么,也不管样本观测值是什么,要素替代弹性都为1,这是与实际不符的。
② CES生产函数模型其中,为分配系数,A表示广义技术进步水平,是不变的参数,表示替代参数,m表示规模报酬参数,m=1时规模报酬不变,m<1时,规模报酬递减,m>1时,规模报酬递增。
该模型中假定要素替代弹性与样本点无关。
③ VES生产函数模型模型假设要素替代弹性为要素比例的线性函数,即则要素比例不同,要素之间的替代性能也是不同的生产函数的一般形式为其中,,A表示广义技术的进步,是不变的参数。
二、改进的生产函数模型(1)技术进步的概念技术进步的概念来自经济学运用生产函数对经济增长的研究。
在考虑技术进步时,通常把生产函数定义为q=A(t)f(L,K),其中,L和K分别代表劳动和资本的投入,q代表产量。
A代表技术进步因子,为时间t的函数。
我们从广义上将技术进步定义为:能够使一定数量的投入组合,产出更多产品的所有因素共同作用的过程。
(2)技术进步的分类所谓狭义技术进步,仅指要素质量的提高。
例如,由于性能的改进,同样数量的资本在生产过程中的贡献是不一样的;由于文化水平的提高,同样数量的劳动在生产过程中的贡献是不一样的。
狭义的技术进步是体现在要素上的,它可以通过要素的“等价数量”来表示。
生产函数模型第一节生产函数及其性质一、 生产函数生产函数是经济学研究的一个重要函数, 它表示在一定技术条件下,生产要 素的某种组合同它可能生产的最大产出量之间的数量关系。
生产函数可以代表一 个企业的生产过程,也可以代表一个部门的生产过程, 在宏观经济模型中,它可 以代表将整个经济系统看作是一个总合企业时的生产过程。
假定有n 种生产要素,其投入量 分别为X i ,X 2,…,X n ,生产处于最佳状态 时,最大产出(生产)量为 Q ,生产函数可表示为Q = f X i ,X 2, ,X n( 3.1.1)生产函数表示了生产要素的投入与产出之间的技术关系, 这里的“技术关系” 是指在一定的时间内,技术水平不变的情况下,生产中的要素投入与最大产出量 之间的关系。
二、 关于生产函数的几个基本概念 (一)平均产量和边际产量总产量被某一投入要素量除就是该要素的平均产量。
如投入要素 X i 的平均产量记AP一种投入要素量增加一个单位,其它投入要素量不变时,产出的增加量称作 边际产量。
边际产量可用导数表示,如投入要素 X i的边际产量记作MP j(3.1.2)(二)边际替代率在技术水平不变的情况下,保持总产量不变,投入要素之间存在着替代性, 研究第i 种投入要素增加一个单位,可以减少第j 种投入要素的投入量,称作第i 种投入要素对第j 种投入要素的边际替代率,也称技术替代率。
用MRS j 表示要ARQ X i素i对要素j的边际替代率用增量形式表示:MRS j=—凶(这里X, X异号)①△X idX-用微分形式表示:MRS j=—j(323)j dX i对(3.1.1)式全微分,只考虑第i种投入要素和第j种投入要素的变动,其它投入要素不变,则有cf adQ dX i dX-「X i 「X j保持总产量不变,即dQ=O,得出dX- ;:f/;:Xj MP i即MRS-二空(3.1.4)j MP j第i种投入要素对第j种投入要素的边际替代率是它们边际产量的比率。
leontief生产函数
模型称为Leontief生产函数,由俄罗斯经济学家莫尔特·列昂尼耶福(Wassily Leontief)于1936年提出。
它是一种属性函数,表示输入到生产过程中的资源量,即输入因素,与输出产品量之间的关系。
Leontief生产函数定义为:
Q= F(K, L)
其中Q表示一定时期内的总产出,K表示在该时期内已投进去的机器资本,L 表示一定时期内已投进去的劳动资源。
|
Leontief生产函数用于衡量实际输入因素(机器资本和劳动力)与输出产出
之间的关系。
这种函数也称为输入-产出函数,因为它很容易将资源输入和产出等
分开。
Leontief生产函数虽然有一些假设,但是在许多实际应用中能够比较精确
地表示实际生产过程中的输入与产出之间的关系。
c-d生产函数计算
Cobb-Douglas production function是一种经济学中常用的生产函数模型。
它采用以下形式:
Q=A*K^α*L^(1-α)。
其中,Q表示总产出,K表示资本投入,L表示劳动投入,A表示技术进步的生产率,α是两个生产要素的加权比例。
为了计算Cobb-Douglas函数,我们需要已知以下几个数值:
-总产出量Q。
-资本投入量K。
-劳动投入量L。
-技术进步的生产率A。
-α值。
具体计算步骤如下:
1.将K和L的值代入公式中,用α和1-α的权重进行计算,得到生产要素的总乘积。
2.将生产要素的总乘积乘以A,得到总产出量。
3.如果我们知道α的数值,则可以直接带入公式中进行计算。
如果不知道,则需要通过实际数据进行拟合来确定。
例如,假设一个公司的Cobb-Douglas函数如下:
Q=2K^0.7L^0.3。
如果该公司的资本投入为100,劳动投入为50,技术进步的生产率为1,则可得到该公司的总产出量为:
Q=2x(100^0.7)x(50^0.3)x1=148.53。
如果要计算该公司的生产要素的平均产出,则可将总产出量除以生产要素的总投入量:
Y=Q/(K+L)=148.53/(100+50)=0.99。
这个结果表示,该公司每投入1单位的生产要素,可以获得0.99单位的平均产出。
柯布-道格拉斯生产函数例题柯布-道格拉斯生产函数是经济学中一种常用的生产函数形式,用于描述生产要素的投入与产出之间的关系。
它由经济学家柯布和道格拉斯于20世纪30年代提出,被广泛应用于经济增长和生产效率的研究中。
本文将以柯布-道格拉斯生产函数为主题,探讨其在实际应用中的意义和局限性。
一、柯布-道格拉斯生产函数的基本形式柯布-道格拉斯生产函数的基本形式为:Y = A * K^α * L^β其中,Y表示总产出,A表示总要素投入效率,K表示资本投入量,L 表示劳动投入量,α和β分别表示资本和劳动在总产出中所占比例。
二、柯布-道格拉斯生产函数在经济增长研究中的应用1. 经济增长与资本积累关系某国家想要实现经济增长,一种常见策略是通过增加资本积累来提高总要素投入量。
通过分析国家历史数据,并运用柯布-道格拉斯生产函数模型进行拟合与预测,在合理范围内增加资本投入量,可以预测未来经济增长的趋势,为决策者提供参考依据。
2. 人力资本投入与生产效率提升人力资本是指劳动者的知识、技能和经验等非物质财富。
通过提高劳动者的人力资本投入,可以提高劳动生产率和生产效率。
柯布-道格拉斯生产函数模型可以通过分析不同教育水平、技能水平等变量对总产出的影响,为教育和培训制定提供参考。
三、柯布-道格拉斯生产函数的局限性1. 假设限制柯布-道格拉斯生产函数假设总要素投入效率(A)是恒定不变的,即不受技术进步等因素影响。
然而,在现实经济中,技术进步是不可忽视的因素之一。
因此,在实际应用中需要对模型进行修正。
2. 数据获取与测量困难要准确估计柯布-道格拉斯生产函数中各个参数(如α和β),需要大量可靠数据进行计算。
然而,在现实情况下,获取到准确且全面的数据并非易事。
此外,由于不同国家和地区的数据采集和统计方法可能存在差异,可能导致数据的不可比性。
3. 忽略其他生产要素柯布-道格拉斯生产函数仅考虑了资本和劳动两个要素对总产出的影响,忽略了其他可能存在的生产要素,如自然资源、技术进步等。
三要素生产函数框架1.引言1.1 概述三要素生产函数框架是一种用于分析和衡量生产过程的工具。
它通过将输入要素(劳动力、资本和技术)与产出之间的关系进行建模,帮助我们理解和解释生产活动的特征和效率。
在现代经济学和管理学中,生产函数是一个重要的概念。
生产函数描述了一种经济系统中,输入要素如何被组合和转化为产出的过程。
三要素生产函数框架特指将劳动力、资本和技术作为生产要素,用数学模型来描述它们之间的关系。
在三要素生产函数框架中,劳动力被视为一种生产要素,指的是人们的工作能力和劳动投入。
资本则是指由人类创造的用于生产的物质财富,如机器、设备和建筑物等。
技术则代表了生产过程中所使用的知识、技能和创新。
这三个要素共同决定了产出的数量和质量。
通过建立数学函数来描述这三个要素之间的关系,我们可以量化它们的影响和贡献。
三要素生产函数框架通常以Cobb-Douglas生产函数为基础,该函数是一种常用的形式,能够较好地解释生产活动的要素组合方式和效率。
三要素生产函数框架在实际应用中有着广泛的用途。
它可以用于评估和比较不同产业或企业之间的效率水平,帮助决策者合理配置资源和优化生产过程。
此外,它也可以作为经济政策制定的参考,为政府和管理者提供定量依据。
然而,三要素生产函数框架也存在一些局限性。
首先,它仍然是一个简化和理论化的模型,没有考虑到实际生产中的各种复杂因素和细节。
其次,该框架中的要素权重和相互作用关系往往是固定的,无法灵活适应不同的生产环境。
最后,它假定了生产函数的形式和参数都是确定的,但在实际情况中,这些参数可能是随时间变化的。
综上所述,三要素生产函数框架是一种有用的工具,能够帮助我们理解和解释生产活动的本质和效率。
它提供了一种量化的方式来分析生产要素之间的关系,并为决策者和政策制定者提供了定量依据。
然而,我们也必须意识到该框架的局限性,并在实际应用中考虑到更多的复杂性和变化性。
1.2文章结构1.2 文章结构本文将按照以下结构展开分析三要素生产函数框架:1. 引言1.1 概述1.2 文章结构1.3 目的2. 正文2.1 三要素生产函数的概念2.2 三要素生产函数的构建3. 结论3.1 三要素生产函数框架的应用3.2 三要素生产函数框架的局限性在引言部分,首先对三要素生产函数框架的概念进行概述,介绍其基本思想和应用领域。
生产函数模型—-经济增长分析柯布-道格拉斯生产函数的基本的形式为:式中Y是工业总产值A(t)是综合技术水平L是投入的劳动力数(万人/人)K是投入的资本,一般指固定资产净值(亿元/万元,但必须与劳动力数的单位相对应,劳动力:万人,固定资产净值:亿元)α是劳动力产出的弹性系数β是资本产出的弹性系数μ表示随机干扰的影响,μ≤1从这个模型看出,决定工业系统发展水平的主要因素是投入的劳动力数L、固定资产K和综合技术水平A(t)(包括经营管理水平、劳动力素质、引进先进技术等).根据α 和β的组合情况,它有三种类型:①α+β〉1,递增报酬型,表明按现有技术水平扩大生产规模的来增加产出是有利的。
②α+β<1,递减报酬型,表明按现有技术水平扩大生产规模来增加产出是得不偿失的。
③α+β=1,不变报酬型,表明生产效率并不会随着生产规模的扩大而提高,只有提高技术水平,才会提高经济效益.美国经济学家R。
M。
斯诺提出的中性技术模式即斯诺模型属于不变报酬型.当μ=1时,斯诺模型为:根据柯布-道格拉斯生产函数可以得到下列经济参数(设μ=1):①劳动力边际生产力表示在资产不变时增加单位劳动力所增加的产值.②资产边际生产力表示在劳动力不变时增加单位资产所增加的产值.③劳力对资产的边际代换率表示产值不变时增加单位劳动力所能减少的资产值.④劳动力产出弹性系数,表示劳动力投入的变化引起产值的变化的速率。
⑤资产产出弹性系数,表示资产投入的变化引起产值变化的速率。
国际上一般取α=0.2~0。
4,β=0.8~0.6.中国根据国家计委测算一般可取α=0.2~0.3,β=0.8~0。
7。
(三)斯诺模型美国经济学家R.M。
斯诺提出的中性技术模式即斯诺模型属于不变报酬型。
当μ=1时,斯诺模型为:Y = A(t)L1 − εKε 或,式中(1-ε)是劳动力产出的弹性系数。
根据弹性系数的经济意义和数学意义,.这里p是产出价格,q是资本价格。
当p=q时,。
柯布-道格拉斯(Cobb-Douglas )生产函数模型齐微辽宁工程技术大学理学院,辽宁阜新(123000)E-mail: qiwei1119@摘 要:柯布-道格拉斯生产函数(Cobb-Douglas production function )用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数.本文对大量的生产数据进行处理,建立多项式拟合模型和线性规划模型对数据进行处理完成问题,对生产数据分析我们建立了多项式拟合,通过误差分析,多项式拟合模型是完全符合数据的.但通过使用线性回归方法求得的柯布-道格拉斯生产函数,通过对其进行误差分析我们知道柯布-道格拉斯生产函数与原始数据的误差比多项式拟合模型下的误差小的多.关键词:柯布-道格拉斯生产函数;多项式拟合;线性回归柯布-道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家道格拉斯(P.H.Douglas)共同探讨投入和产出的关系时创造的生产函数,是在生产函数的一般形式上作了改进,引入了技术资源这一因素.他们根据有关历史资料,研究了从1899-1922年美国的资本和劳动对生产的影响,认为在技术经济条件不变的情况下,产出与投入的劳动力及资本的关系可以表示为:Y AK L αβ=其中: Y —— 产量;A —— 技术水平;K —— 投入的资本量;L —— 投入的劳动量;,αβ——K 和L 的产出弹性.经济学中著名的柯布-道格拉斯(Cobb-Douglas )生产函数的一般形式为 (,),0,1Q K L aK L αβαβ=<< (1-1)其中,,Q K L 分别表示产值、资金、劳动力,式中,,a αβ要由经济统计数据确定.现有《中国统计年鉴(2003)》给出的统计数据如表(其中总产值取自“国内生产总值”,资金 取自“固定资产投资”,劳动力取自“就业人员”)[3].问题1:运用适当的方法,建立产值与资金、劳动力的优化模型,并做出模型的分析与检验.问题2:建立Cobb-Douglas 优化模型,并给出模型中参数,αβ的解释.问题3:将几个模型做出比较与分析.表0-1 经济统计数据年份 总产值/万亿元 资金/万亿元 劳动力/亿人1984 0.7171 0.0910 4.8179 1985 0.8964 0.2543 4.9873 1986 1.0202 0.3121 5.1282 1987 1.1962 0.3792 5.2783 1988 1.4928 0.4754 5.4334 1989 1.6909 0.4410 5.5329 1990 1.8548 0.4517 6.4749 1991 2.1618 0.5595 6.5491 1992 2.6638 0.8080 6.6152 1993 3.4634 1.3072 6.6808 1994 4.6759 1.7042 6.7455 1995 5.8478 2.0019 6.8065 1996 6.7885 2.2914 6.8950 1997 7.4463 2.4941 6.9820 1998 7.8345 2.8406 7.0637 1999 8.2068 2.9854 7.1394 2000 9.9468 3.2918 7.2085 2001 9.7315 3.7314 7.3025 2002 10.4791 4.3500 7.37401.问题一求解1.1 模型建立假设:有()()()t L t K t Q ,,分别表示产值,资金和劳动力,并假设()t Q 仅与()()t L t K ,有关[1]..由表0-1中的数据拟合出()()()t L t K t Q ,,的关系:用Matlab 画出表1-1中数据的关系图,应用Matlab 中的plot 画出图形如图1-1.图1-1产值、资金和劳动力数据关系图由图1-1可知:选定()t Q 看作是()()t L t K +的一元多项式的优化模型.从而建立模型()()()()t L t K G t Q +=.1.2 模型的求解通过Matlab 计算出()t Q 和()()t L t K + 数据之间拟合误差如表1-1.表1-1 数据拟合次数误差拟合次数 1 2 3 4 5 6 误差 3.0313 2.4294 1.5141 1.2366 1.0898 1.0887由上表得知五次拟合和六次拟合误差已经达到很接近,和四次拟合误差相差很大,所以本文选择五次拟合来求解模型()()()()t L t K G t Q +=.本文选用的是Matlab 中的plotfit 来五次拟合数据求解模型并用rcoplot 来误差分析. 得到的拟合多项式系数p 如表1-2.表1-2 多项式系数多项式次数5 4 3 2 1 0 相应系数 0.0062 -0.2711 4.6074-37.6090 148.3464 -226.4984这样就知道了模型多项式为:()()()()()()()()()()()()()()()54320.00620.2711 4.607437.6090148.3464226.4984Q K t L t K t L t K t L t K t L t K t L t =×+−×++×+−×++×+−(1-1) 多项式模型下,新的产值预测值如表1-3.表1-3 多项式模型的产值预测值年份1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 预测值0.5962 1.0362 1.1860 1.2929 1.3800 1.4008 1.9636 2.1686 2.6129 3.6773年份1994 1995 1996 1997 1998 1999 2000 2001 2002 预测值 4.7428 5.6358 6.5850 7.28598.23048.65859.27909.920810.4620程序运行所得到的残差图如图1-2.图1-2 模型数据的残差图由图1-2可以看到除了第十七个数据点偏离了原点,其他的点均在原点附近.继而得出模型:()()()()()()()()()()()()()()()54320.00620.2711 4.607437.6090148.3464226.4984Q K t L t K t L t K t L t K t L t K t L t =×+−×++×+−×++×+− (1-2)1.3 模型的误差分析 本文在假设的前提下,确定(),()()K t L t Q t 与的关系,即()Q t 可看作是()()K t L t +的一元多项式,从而本文做分析得到,做五次的多项式拟合达到最佳拟合.能从S 的值知道拟合误差,S 中有R 类似于回归中的判别系数、df 自由度、normr 拟合算法中用到的范德孟系数.本文通过预测值Y 值可以看到和原始值y 存在着误差,但是这些误差都是在可接受范围之内的误差[2].2 问题二的线性回归模型2.1模型的建立本文假设的是在1=+βα的情况下,用)(t Q ,)(t K ,)(t L 分别表示某一地区或部门在时刻t 的产值、资金和劳动力,它们的关系可以一般地记作))(),(()(t L t K F t Q =(2-1) 其中F 为待定函数.对于固定的时刻t ,上述关系可写作),(L K F Q =(2-2)为寻找F 的函数形式,引入记号L Q z =,L K y = (2-3) z 是每个劳动力的产值,y 是每个劳动力的投资.如下的假设是合理的:z 随着y 的增加而增长,但增长速度递减.进而简化地把这个假设表示为()z ag y =,αy y g =)(,10<<α (2-4)显然函数)(y g 满足上面的假设,常数0a >可看成技术的作用.由(2-3),(2-4)即可得到(2-2)式中F 的具体形式为1Q aK L αα−=,10<<α(2-5)由(2-5)式容易知道Q 有如下性质 0,>∂∂∂∂L Q K Q ,0,2222<∂∂∂∂LQ K Q (2-6) 记L Q Q K ∂∂=,K Q 表示单位资金创造的产值;LQ Q L ∂∂=,L Q 表示单位劳动力创造的产值,则从(2-5)式可得α=Q KQ K ,α−=1QLQ L ,Q LQ KQ L K =+ (2-7) (2-7)式可解释为:α是资金在产值中占有的份额,α−1是劳动力在产值中占有的份额.于是α的大小直接反映了资金、劳动力二者对于创造产值的轻重关系.2.2模型的求解本文求解得出1Q aK L αα−=中的()1b 和α值为:0.7784和0.7833,这样能求得a 的值为:2.1780,β的值为:1-0.7833,即为:0.2167.这样得到模型如下:()()()2167.07833.01780.2t L t K t Q ×= (2-8)利用以上模型求解出一组新的预测值如表2-1.表2-1 多项式模型的产值预测值年份预测值0.5962 1.0362 1.1860 1.2929 1.3800 1.4008 1.9636 2.1686 2.6129 3.6773年份1994 1995 1996 1997 1998 1999 2000 2001 2002 预测值 4.7428 5.6358 6.5850 7.28598.23048.65859.27909.9208 10.4620程序运行所得的残差图如图2-1所示:图2-1 模型数据残差图由图2-1可以看到除了第一个数据点偏离了原点,其他的点均在原点附近,这样可以得到线性回归模型是符合题目的.继而模型可得:()()()0.78330.21672.1780Q t K t L t =× (2-9)程序计算得到的r 和rint 值见表2-2.表2-2 r 和rint 值 r rint 0.4259 0.2705 0.5814-0.1634 -0.4602 0.1334-0.2005 -0.4950 0.0940-0.2001 -0.4979 0.0976-0.1620 -0.4691 0.14510.0175 -0.2999 0.33490.0572 -0.2568 0.37120.0402 -0.2775 0.3580-0.0410 -0.3620 0.2799-0.1575 -0.4687 0.1537-0.0672 -0.3857 0.25130.0284 -0.2901 0.34690.0690 -0.2462 0.38410.0923 -0.2200 0.40470.0387 -0.2747 0.35210.0439 -0.2686 0.35640.1576 -0.1427 0.45780.0347 -0.2737 0.3431-0.0136 -0.3188 0.29172.3 模型α和β的解释通过对柯布-道格拉斯生产函数传递变形后,进行求解得出βα,的值,同样也进行预测数据和原始数据比较.从图上可以知道模型中参数βα,的解释:α是劳动力产出的弹性系数,β是资本产出的弹性系数,从这个模型看出,决定工业系统发展水平的主要因素是投入的劳动力数、固定资产和综合技术水平(包括经营管理水平、劳动力素质、引进先进技术等).根据α和β的组合情况,它有三种类型:①1αβ+>称为递增报酬型,表明按现有技术用扩大生产规模来增加产出是有利的.②1<+βα称为递减报酬型,表明按现有技术用扩大生产规模来增加产出是得不偿失的.③1=+βα称为不变报酬型,表明生产效率并不会随着生产规模的扩大而提高,只有提高技术水平,才会提高经济效益.3 问题三:模型比较分析模型一是通过假设后进行拟合得到模型关系式,模型二是通过变形后线性回归运算得到模型.他们与实际之间都存在误差.五次多项式拟合模型的数据误差数是:1.0898.线性回归模型数据误差:r =[0.4259 -0.1634 -0.2005 -0.2001 -0.1620 0.0175 0.0572 0.0402 -0.0410 -0.1575 -0.0672 0.0284 0.0690 0.0923 0.0387 0.0439 0.1576 0.0347 -0.0136];m=sum(r)得到这个模型的误差数:m=1.0000e-004.可以看出1.0000e-004<1.0898,很明显柯布-道格拉斯(Cobb-Douglas )生产函数比假设的多项式拟合函数更接近实际数据,更加准确.在生产产值上的预测,柯布-道格拉斯(Cobb-Douglas )生产函数预测的结果近似就是准确生产值[4].4 评价和结论4.1 模型缺点一定历史时期的生产函数是反映当时的社会生产力水平的.只有明确一定历史阶段的社会生产力特征才能构造出最能反映当时生产力发展水平的生产函数.在工业时代,生产力水平是以单位量的资本和劳动力的投入所能获得的产成品的数量来衡量的.也就是说工业时代的生产力是以产量、能耗、劳动生产率等针对物质、能量的生产和利用等概念构成的.而对工业时代生产力水平的衡量是以投入产出的数量为依据的,表现在:(1)工业时代的生产是在一个较为稳定的生产技术条件下形成的,是针对某一生产和设计都很成熟的产品进行物质性生产.(2)工业时代衡量生产技术水平的标志是在一定的时间范围内,单位量的资本和劳动力的投人所能获得的产成品的数量.(3)工业时代的生产力水平体现为以某一生产技术组织资本和劳动力的投入,从而获得最接近于该生产技术所能达到的产出极限.柯布—道格拉斯生产函数正是在工业经济时代所构造出的反映工业经济时代生产力特征的函数模型.当人类进入到信息经济时代,由于信息资源的加入、技术的不断进步,导致生产力发展的特征和性能发生了变化,信息时代的经济发展特征是以性能、质量、产品的差异性组合,客户服务和信息管理等为主要竞争手段的.这样也就决定了信息时代这种以非物质,非能量的信息经济的生产力的概念与工业时代截然不同.如果仍然以工业时代测算生产力的方法去考察信息时代中信息技术对生产力的作用的话,肯定无法对其做出准确的判断.同样,原有的柯布——道格拉斯生产函数已经不能再适应新的经济发展形态,在工业时代用以衡量生产力水平的产量,资本投入量和劳动力投入量已经不能完全适应信息时代的生产力发展水平了;在信息经济时代,所投入的生产要素的核心成分从资本、劳动力逐渐转变为以信息技术为代表的高新技术.当信息资源应用于生产中时,对生产人员、资本、流程等形成革命性的影响作用,极大地提高了生产要素生产率,促进了经济发展.综合上述原因,需要对柯布——道格拉斯生产函数做出了一定的修正,使之适用于信息时代的生产力发展水平.4.2 模型改进4.2.1 对投入量的计量对投入的计量应包含:信息技术设备的资本投入,如电脑、数控设备、信息化管理设备、网络设备和其他软件等等;信息技术的劳动力投入,如电脑软件编制人员、硬件安装维护人员、信息化管理人员等等;非信息技术设备的资本投入,如传统的工业技术装备、生产设备、厂房等其他在工业时代类似的资本投入;非信息技术的劳动力投入,比如生产线上的操作工、一般管理人员等,这里需要指出的是“非信息技术的劳动力”既包括一般意义上的蓝领工人,也包括其他一些白领管理人员.4.2.2 对产出量的计量对产出量的计量则不应仅包含单位生产成品数量,而是应该考虑到生产者的盈利水平是否提高.因为从工业时代过渡到信息时代,企业的竞争手段已经从“低成本生产”转向了“全方位的优质服务”.这其实也是竞争发展到一定阶段的必然结果.所以,考察信息技术对生产力具有怎样的影响务必要从一个新的视角出发,不能仅仅衡量其对产成品数量的影响,更应从信息技术是否对提高整体赢利水平,扩大市场份额和增强竞争实力等方面进行综合考察.4.2.3 改进后的模型改进后的柯布—道格拉斯生产函数的表现形式为:0011a b c d Y K L K L =式中: Y —— 产量;0K —— 非信息技术设备的资本投入;0L —— 非信息技术的劳动力投入;1K —— 信息技术设备的资本投入;1L —— 信息技术的劳动力投入;,,,a b c d —— 产出弹性.此模型较原来的模型增加了信息技术设备的资本投入1K 和信息技术的劳动力投入1L ,使得模型成为更贴近时代的生产模型,改进后的柯布—道格拉斯生产函数0011a b c d Y K L K L =是在现代信息工业经济时代构造出的反映了现代信息工业经济时代生产力特征的函数模型.改进后的柯布—道格拉斯生产函数模型更具有时代特色,适用性更广、更具时代感.参考文献[1]唐焕文,贺明峰.《数学模型引论》[M],北京:教育出版社,2005.[2]雷功炎.《数学模型讲义》[M],北京:京大学出版社,2002.[3]白其峰.《数学建模案例分析》[M],京:洋出版社,2000.[4]李庆杨,王能超,易大意.《数值分析》[M],京:华大学出版社,2005.Cobb-Douglas production function modelQiweiCollege of Science,Liaoning Technology University,Fuxin (123000)AbstractCobb-Douglas production function used to predict national and regional systems or large industrial enterprises in production and development of the means of production of an economic model, called the production function. In this paper, a large number of production data Process, the establishment of polynomial fitting model and the linear programming model for data processing is complete problems, the production data analysis We have established a polynomial fitting, through error analysis, polynomial fitting model is fully consistent with the data . But through the use of linear regression obtained O'Brien - Douglas production function, through its error analysis we know that O'Brien - Douglas production function with the raw data of error than polynomial fitting model of the small number of errors .Keywords: Cobb-Douglas production function; polynomial fitting; linear regression。
柯布-道格拉斯生产函数概述(来源背景作用)柯布—道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家保罗·道格拉斯(Paul H. Douglas)共同探讨投入和产出的关系时创造的生产函数,是以美国数学家C.W.柯布和经济学家保罗.H.道格拉斯的名字命名的。
是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数。
是经济学中使用最广泛的一种生产函数形式,它在数理经济学与经济计量学的研究与应用中都具有重要的地位。
他们根据有关历史资料,研究了从1899-1922年美国的资本和劳动对生产的影响,在技术经济条件不变的情况下,得出了产出与投入的劳动力及资本的关系。
但是柯布-道格拉斯生产函数中把技术水平A作为固定常数,难以反映出因技术进步而给产出带来的影响。
柯布—道格拉斯生产函数中,如果有任何一种投入品为零,则产出也为零,因此对于生产来说,每种生产要素都是必需的,没有一种要素可以完全替代另一种要素。
柯布—道格拉斯生产函数是采用的边际分析方法,可用于分析要素投入对产量(产出)的贡献率、规模收益和其他系列问题。
是生产函数中应用广泛的一种!根据研究目的和需要,现在有很多在柯布——道格拉斯生产函数基础上变形应用的函数形式。
[编辑]柯布-道格拉斯生产函数的基本形式柯布-道格拉斯生产函数的基本形式为:Y = A(t)LαKβμ式中Y是工业总产值,At是综合技术水平,L是投入的劳动力数(单位是万人或人),K是投入的资本,一般指固定资产净值(单位是亿元或万元,但必须与劳动力数的单位相对应,如劳动力用万人作单位,固定资产净值就用亿元作单位),α 是劳动力产出的弹性系数,β是资本产出的弹性系数,μ表示随机干扰的影响,μ≤1。
从这个模型看出,决定工业系统发展水平的主要因素是投入的劳动力数、固定资产和综合技术水平(包括经营管理水平、劳动力素质、引进先进技术等)。