第四章--核磁共振氢谱和碳谱.
- 格式:ppt
- 大小:2.17 MB
- 文档页数:96
核磁共振(NMR)技术是一种非常重要的化学分析方法,它在有机化学和药物研究等领域中得到了广泛的应用。
其中,核磁共振氢谱和碳谱确定同分异构体是其中一项重要的应用。
1. 概述核磁共振是一种实验技术,通过核磁共振现象来研究原子核周围的环境。
而核磁共振氢谱和碳谱是两种常见的NMR技术,它们通过观察分子内氢原子和碳原子的核磁共振信号来确定化合物的结构和构型。
2. 同分异构体的概念同分异构体是指分子式相同、结构不同的化合物。
它们具有相同的分子式,但由于原子的排列方式不同,导致了化合物的性质也不同。
3. 核磁共振氢谱和碳谱在确定同分异构体中的应用核磁共振氢谱和碳谱可以通过观察氢原子和碳原子的化学位移、耦合常数和积分峰面积来确定分子中原子的环境和相对数量。
这些信息可以帮助我们确定同分异构体的结构和构型。
4. 核磁共振氢谱的解析在核磁共振氢谱中,化学位移可以告诉我们不同氢原子的化学环境,耦合常数可以揭示氢原子之间的相对位置关系,而峰面积则可以给出氢原子的数量信息。
通过这些信息,我们可以确定同分异构体中不同原子的位置和数量。
5. 核磁共振碳谱的解析与氢谱类似,碳谱也可以通过化学位移、耦合常数和峰面积来确定同分异构体中碳原子的环境和数量。
碳谱对于确定分子中碳原子的排列和连接方式非常重要,尤其在复杂结构的有机化合物中。
6. 个人观点和理解从我个人的角度来看,核磁共振氢谱和碳谱在确定同分异构体中的应用是非常重要的。
它们为化学家提供了一种强大的工具,可以帮助他们确定未知化合物的结构和构型,并且对于有机合成、天然产物和药物研究具有重要意义。
总结在本文中,我们对核磁共振氢谱和碳谱在确定同分异构体中的应用进行了全面的介绍。
通过分析化学位移、耦合常数和峰面积等信息,我们可以确定同分异构体分子的结构和构型。
这两种技术为化学研究提供了重要的帮助,也为未来的科学研究和产业应用提供了新的思路和方法。
通过本文的阅读,我相信您对核磁共振氢谱和碳谱在确定同分异构体中的应用有了更深入的理解。
简述核磁共振氢谱和碳谱的关系核磁共振氢谱和碳谱是两种常见的谱学技术,它们分别以氢和碳原子的核磁共振现象为基础,可用于分析物质的结构及化学性质。
这两种谱学技术在有机化学等领域中扮演着重要的角色,它们的关系也是十分密切的。
首先,我们需要了解核磁共振氢谱和碳谱的基本原理。
核磁共振的原理是:当原子核处于磁场中时,其核自旋会产生一个磁矩,它可以被外加的旋转磁场所感应,由此产生共振信号。
核磁共振氢谱是以氢原子的磁共振现象为基础的谱学技术,它可以用于分析含有氢原子的化合物。
碳谱则以碳原子的核磁共振现象为基础,它可以用于分析含有碳原子的有机化合物。
在有机化学中,氢原子和碳原子通常被认为是最常见的元素。
因为它们是有机化合物中的主要成分。
因此,核磁共振氢谱和碳谱被广泛应用于化合物的结构分析。
在某些情况下,仅使用其中一种谱学技术可能无法提供足够的信息,此时就需要同时使用核磁共振氢谱和碳谱来确定化合物的结构。
核磁共振氢谱和碳谱的信号有很多,这些信号与化合物的结构和电子云分布有密切关系。
因此,在分析核磁共振氢谱和碳谱时,需要考虑诸多因素。
例如,有机化合物中,每个不同的氢或碳原子都具有不同的环境,因此它们的化学位移也各不相同。
通常,化学位移是表示核磁共振信号位置的重要参数。
化学位移的大小和结构有关,因此,当分析化合物时,需要考虑到其结构的类型及其化学环境。
此外,核磁共振氢谱和碳谱也可以搭配使用,实现特定结构的化合物的结构分析。
例如,在有机化学中,如果其中包含一些环结构,那么核磁共振氢谱和碳谱的结合使用将是非常有价值的。
有机化合物中的环结构通常由碳原子及其周围的氢原子组成。
在分析环结构中的碳原子时,可以使用碳谱,通过观察其对应的氢谱来进一步分析相邻的氢原子的化学位移。
这种结合使用可以在研究复杂化合物和有机反应机理时非常有用。
总之,核磁共振氢谱和碳谱是化学领域中常用的分析工具。
它们的结合使用可以提供更加全面的结构分析信息,同时也可以加深对有机化学反应机理的理解。
核磁共振氢谱和碳谱案场各岗位服务流程销售大厅服务岗:1、销售大厅服务岗岗位职责:1)为来访客户提供全程的休息区域及饮品;2)保持销售区域台面整洁;3)及时补足销售大厅物资,如糖果或杂志等;4)收集客户意见、建议及现场问题点;2、销售大厅服务岗工作及服务流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。
班中工作程序服务流程行为规范迎接指引递阅资料上饮品(糕点)添加茶水工作要求1)眼神关注客人,当客人距3米距离时,应主动跨出自己的位置迎宾,然后侯客迎询问客户送客户注意事项15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!”3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人;4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品);7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等待;阶段工作及服务流程班中工作程序工作要求注意事项饮料(糕点服务)1)在所有饮料(糕点)服务中必须使用托盘;2)所有饮料服务均已“对不起,打扰一下,请问您需要什么饮品”为起始;3)服务方向:从客人的右面服务;4)当客人的饮料杯中只剩三分之一时,必须询问客人是否需要再添一杯,在二次服务中特别注意瓶口绝对不可以与客人使用的杯子接触;5)在客人再次需要饮料时必须更换杯子;下班程序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导;2)填写物资领用申请表并整理客户意见;3)参加班后总结会;4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.3.3吧台服务岗1.3.3.3.1吧台服务岗岗位职责1)为来访的客人提供全程的休息及饮品服务;2)保持吧台区域的整洁;3)饮品使用的器皿必须消毒;4)及时补充吧台物资;5)收集客户意见、建议及问题点;1.3.3.3.2吧台服务岗工作及流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。
第四章核磁共振碳谱一、判断题[1]自由衰减信号(FID)是频率域信号。
()[2]碳谱的化学位移范围范围较宽(0-200),所以碳谱的灵敏度高于氢谱。
()[3]在宽带去耦碳谱中,不同类型的碳核产生的裂分峰数目不同。
()[4]氢质子在二甲基亚砜中的化学位移比在氯仿中要小。
()[5]在13C NMR谱中,由于13C-13C相连的概率很低,所以通常不考虑13C核只见到耦合。
()[6]含19F的化合物,可观测到19F对13C核的耦合裂分,且谱带裂分数符合n+1规律。
()[7]但在固相核磁共振波谱中,分子运动受到限制,由于磁各向异性作用将是谱线带变宽,分辨率大大下降。
()[8]在碳谱中,13C-1H会发生耦合作用,但是13C-1H的耦合常数远比1H-1H之间的耦合常数小.()[9]在135°DEPT试验中,CH、CH2和CH3均出正峰,季碳原子不出现谱峰。
()[10]在APT实验中,CH和CH3均出正峰,CH2出负峰,季碳原子不出现谱峰。
()二、选择题(单项选择)[1] 下列原子核没有自旋角动量的是哪一种?()。
A. 14N7B. 12C6C. 31P15D. 13C6[2] 在13C NMR波谱中在化学位移125-140产生两个信号的化合物是()。
A. 1,2,3,-三氯苯;B. 1,2,4,-三氯苯;C. 1,3,5,-三氯苯[3] 在13C NMR波谱中在化学位移125-140产生六个信号的化合物是()。
A. 1,2,3,-三氯苯;B. 1,2,4,-三氯苯;C. 1,3,5,-三氯苯[4] 在13C NMR波谱中在化学位移125-140产生三个信号的化合物是()。
A. 对二氯苯;B. 邻二氯苯;C. 间二氯苯。
[5] 在13C NMR中在化学位移0-60产生3个信号;在1H NMR中在化学位移0-5产生3个信号(最低场信号为多重峰)的化合物是()。
A. 1,1-二氯丙烷;B. 1,2二氯丙烷;C. 2,2-二氯丙烷;D. 1,3二氯丙烷。
核磁共振氢谱核磁共振---NMR1945年美国斯坦福大学的 F. Block 和哈佛大学的 E. M. Purcell 同时发现了核磁共振现象,并因此荣获了1952年的 Nobel 物理奖。
核磁共振谱可为化合物鉴定提供下列信息:1.磁核的类型:由化学位移来判别,如在1HNMR 中,可判别甲基氢、芳氢、烯氢、醛氢等。
2.磁核的化学环境:由偶合常数和自旋-自旋裂分来判别,如在 1H-NMR 中可判定甲基是与-CH 2-相连,还是与苯环相连。
3.各类磁核的相对数量:氢谱中,通过积分面积或积分曲线来判断。
4 .核自旋弛豫时间:13CNMR 可提供 T 1,并用于结构归属指定,构象的测定,以及窥测体 系的运动情况。
5 .核间相对距离:通过核的 Overhause 效应可测得。
3.1核磁共振的基本原理3.1.1原子核的磁矩原子核是带正电荷的粒子,自旋将产生磁矩,但并非所有同位素的原子核有自旋,只有有自旋才有磁矩。
具有自旋运动的原子核具有一定自旋量子数(I ),I=1/2 *n ,那1,2,3···1. 核电荷数和和质量数均为偶数的原子核没自旋。
2. 核电荷数为奇数或偶数,核质量数为奇数,有自旋现象。
3. 核电荷数为奇数,核质量数为偶数,I 为整数的原子核有自旋现象。
对于自旋不为零的核来说,当其自旋时由于形成环电流,故而产生一个小磁场,这个小磁场可用核磁矩 μ 表示。
μ 是矢量,其大小由下式确定:πγγμ2)1(hI I p +==式中 γ ---核的磁旋比 p---自旋角动量不同的核有不同的 γ 值,是确定同位素核的特征常数。
3.1.2自旋核在磁场中的取向和能级对于I 不为零的核来说,如果不受外来磁场的干扰,其自旋轴的取向将是任意的。
当它们处于外加静磁场(磁场强度为H0)中时,根据量子力学理论,它们的自旋轴的取向不再是任意的,而只有(2I+1)种,这叫核自旋的空间量子化。
每一种取向可用一个磁量子数m 表示,则m=I,I-1,I-2,…-I+1,-I。
核磁共振碳谱总结————————————————————————————————作者: ————————————————————————————————日期:第4章核磁共振碳谱在C的同位素中,只有13C有自旋现象,存在核磁共振吸收,其自旋量子数I=1/2。
13C NMR的原理与1H NMR一样。
由于γc= γH/4,且13C的天然丰度只有1.1%,因此13C核的测定灵敏度很低,大约是H核的1/6000,测定困难。
加之H核的偶合干扰,使得13C NMR 信号变得很复杂,难以测得有实用价值的图谱。
知道二十世纪七十年代后期,质子去偶技术和傅里叶变换技术的发展和应用,才使13CNMR的测定变的简单易得。
4.1 核磁共振碳谱的特点1. 灵敏度低由于γc= γH/4,且13C的天然丰度只有1.1%,因此13C核的测定灵敏度很低,大约是H核的1/6000,测定困难。
2. 分辨能力高氢谱的化学位移δ值很少超过10ppm,而碳谱的δ值可以超过200ppm,最高可达600ppm。
这样,复杂和分子量高达400的有机物分子结构的精细变化都可以从碳谱上分辨。
同时13C自身的自旋-自旋裂分实际上不存在,虽然质子和碳核之间有偶合,但可以用质子去偶技术进行控制。
3. 能给出不连氢碳的吸收峰有机化合物分子骨架主要由 C 原子构成,因而13C NMR能更全面地提供有关分子骨架的信息。
而1HNMR中不能给出吸收信号的C=O、C=C、C≡C、C≡N以及季碳等基团,在13CNMR 中都可以直接给出特征吸收峰。
13CNMR 可直接观测不带氢的含碳官能团,如羰基、氰基等。
4. 不能用积分高度来计算碳的数目13C NMR的常规谱是质子全去偶谱。
对大多数碳,尤其是质子化碳,他们的信号强度都会由去偶的同时产生的NOE效应而大大增强。
因此不到呢国家的碳原子的数目不能通过常规共振谱的谱线强度来确定。
5. 弛豫时间T1可作为化合物结构鉴定的波谱参数在化合物中,处于不同环境的13C核,他们的弛豫时间数值相差较大,可以达到2~3个数量级,通过T1可以致人结构归属,窥测体系的运动情况等。
氢谱和碳谱
氢谱和碳谱是核磁共振(NMR)谱的两种类型,它们在化学和生物化学领域被广泛应用,用于确定有机化合物的结构。
氢谱主要检测的是化合物中氢原子的核磁共振信号。
在氢谱中,不同的氢原子因其所处的化学环境不同,会产生不同的化学位移,从而在谱图上呈现出不同的峰。
通过分析这些峰的位置和强度,可以确定化合物中氢原子的种类和数量,进而推断出化合物的结构。
碳谱则主要检测的是化合物中碳原子的核磁共振信号。
与氢谱类似,碳原子也会因其所处的化学环境不同而产生不同的化学位移。
通过分析碳谱中的峰,可以确定化合物中碳原子的种类和连接方式,从而得到更为详细的分子结构信息。
氢谱和碳谱各有其优点和局限性。
氢谱的灵敏度高,因为氢核的天然丰度很高,而且旋磁比也大,这使得氢谱的信号相对较强。
但是,氢谱的分辨率较低,对于结构复杂的化合物,可能会出现峰的重叠,使得解析变得困难。
碳谱的分辨率较高,可以提供更为详细的结构信息,但是碳谱的灵敏度较低,因为碳核的天然丰度很低。
在实际应用中,氢谱和碳谱通常会结合使用,以得到更为准确和全面的结构信息。
通过比较氢谱和碳谱的数据,可以验证结构推断的正确性,并发现可能存在的错误或遗漏。
氢谱和碳谱是两种重要的核磁共振技术,它们在有机化合物结构确定中发挥着不可替代的作用。
核磁共振氢谱核磁共振---NMR1945年美国斯坦福大学的 F. Block 和哈佛大学的 E. M. Purcell 同时发现了核磁共振现象,并因此荣获了1952年的 Nobel 物理奖。
核磁共振谱可为化合物鉴定提供下列信息:1.磁核的类型:由化学位移来判别,如在1HNMR 中,可判别甲基氢、芳氢、烯氢、醛氢等。
2.磁核的化学环境:由偶合常数和自旋-自旋裂分来判别,如在 1H-NMR 中可判定甲基是与-CH 2-相连,还是与苯环相连。
3.各类磁核的相对数量:氢谱中,通过积分面积或积分曲线来判断。
4 .核自旋弛豫时间:13CNMR 可提供 T 1,并用于结构归属指定,构象的测定,以及窥测体 系的运动情况。
5 .核间相对距离:通过核的 Overhause 效应可测得。
3.1核磁共振的基本原理3.1.1原子核的磁矩原子核是带正电荷的粒子,自旋将产生磁矩,但并非所有同位素的原子核有自旋,只有有自旋才有磁矩。
具有自旋运动的原子核具有一定自旋量子数(I ),I=1/2 *n ,那1,2,3···1. 核电荷数和和质量数均为偶数的原子核没自旋。
2. 核电荷数为奇数或偶数,核质量数为奇数,有自旋现象。
3. 核电荷数为奇数,核质量数为偶数,I 为整数的原子核有自旋现象。
对于自旋不为零的核来说,当其自旋时由于形成环电流,故而产生一个小磁场,这个小磁场可用核磁矩 μ 表示。
μ 是矢量,其大小由下式确定:πγγμ2)1(hI I p +==式中 γ ---核的磁旋比 p---自旋角动量不同的核有不同的 γ 值,是确定同位素核的特征常数。
3.1.2自旋核在磁场中的取向和能级对于I 不为零的核来说,如果不受外来磁场的干扰,其自旋轴的取向将是任意的。
当它们处于外加静磁场(磁场强度为H0)中时,根据量子力学理论,它们的自旋轴的取向不再是任意的,而只有(2I+1)种,这叫核自旋的空间量子化。
每一种取向可用一个磁量子数m 表示,则m=I,I-1,I-2,…-I+1,-I。