高弹态高聚物的力学性质
- 格式:ppt
- 大小:2.73 MB
- 文档页数:26
高分子物理和化学名词解释(各种转)作者:刘方超CooDee1. 应力松弛:在恒定温度和形变保持不变的情况下,聚合物内部的应力随时间的增加而逐渐衰减的现象。
2. 氢键:是极性很强的X-H键上的氢原子,与另外一个键上电负性很大的原子Y的孤对电子相互吸引而形成的一种键。
3. 等规聚合物:指全同立构和间同的高聚物。
4. 等规度:高聚物中含有全同立构和间同立构总的百分数。
5. 聚合物的粘弹性:聚合物的形变和发展具有时间依赖性,这种性质介于理想弹性体和理想粘性体之间,称为粘弹性。
1999年1.玻璃化温度:玻璃态与高弹态之间的转变即玻璃化转变,所对应的转变温度。
2.脆点(化)温度:当温度低于某个温度Tb时,玻璃态高聚物不能发展强迫高弹形变,而必定发生脆性断裂,这个温度称为脆化温度。
3.溶解度参数:通常将内聚能密度的平方根定义为溶解度参数d,溶质和溶剂的溶解度参数愈接近,两者愈能相互溶解。
4.柔顺性:高分子链能够不断改变其构象的性质或高分子能够卷曲成无规线团的能力。
5.泊松比:材料横向单位宽度的减少与纵向单位长度的增加之比值。
6.表观粘度:与牛顿粘度定义相类比,将非牛顿流体的粘度定义为剪切应力与剪切速率之比,其值称为表观粘度,即。
2000年1. 链段:把由若干个键组成的一段链作为一个独立运动的单元,称为链段。
2. 构型:构型是对分子中的最近邻原子间的相对位置的表征,也就是指分子汇总由化学键所固定的原子在空间的几何排列。
3. 构象:由于单键内旋转而产生的分子在空间的不同形态。
4. 熔限:结晶高聚物有一个较宽的熔融温度范围,这个温度范围就叫熔限。
5. 熔点:高聚物结晶部分完全熔化的温度。
6. 剪切粘度:液体内部反抗在切应力作用系发生薄层流动的内摩擦力,称为剪切粘度。
7. 高聚物的屈服:聚合物在外力作用下产生的塑性变形。
2001年1.时温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT将某一温度下测定的力学数据变成另一温度下的力学数据。
1.应力松弛:在恒定温度和形变保持不变的情况下,聚合物内部的应力随时间的增加而逐渐衰减的现象。
2.氢键:是极性很强的X-H键上的氢原子,与另外一个键上电负性很大的原子Y的孤对电子相互吸引而形成的一种键。
3.等规聚合物:指全同立构和间同的高聚物。
4.等规度:高聚物中含有全同立构和间同立构总的百分数。
5.聚合物的粘弹性:聚合物的形变和发展具有时间依赖性,这种性质介于理想弹性体和理想粘性体之间,称为粘弹性。
1999年1.玻璃化温度:玻璃态与高弹态之间的转变即玻璃化转变,所对应的转变温度。
2.脆点(化)温度:当温度低于某个温度Tb时,玻璃态高聚物不能发展强迫高弹形变,而必定发生脆性断裂,这个温度称为脆化温度。
3.溶解度参数:通常将内聚能密度的平方根定义为溶解度参数d,溶质和溶剂的溶解度参数愈接近,两者愈能相互溶解。
4.柔顺性:高分子链能够不断改变其构象的性质或高分子能够卷曲成无规线团的能力。
5.泊松比:材料横向单位宽度的减少与纵向单位长度的增加之比值。
6.表观粘度:与牛顿粘度定义相类比,将非牛顿流体的粘度定义为剪切应力与剪切速率之比,其值称为表观粘度,即。
2000年1.链段:把由若干个键组成的一段链作为一个独立运动的单元,称为链段。
2.构型:构型是对分子中的最近邻原子间的相对位臵的表征,也就是指分子汇总由化学键所固定的原子在空间的几何排列。
3.构象:由于单键内旋转而产生的分子在空间的不同形态。
4.熔限:结晶高聚物有一个较宽的熔融温度范围,这个温度范围就叫熔限。
5.熔点:高聚物结晶部分完全熔化的温度。
6.剪切粘度:液体内部反抗在切应力作用系发生薄层流动的内摩擦力,称为剪切粘度。
7.高聚物的屈服:聚合物在外力作用下产生的塑性变形。
2001年1.时温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT将某一温度下测定的力学数据变成另一温度下的力学数据。
2002年1.高聚物的熔点:比容-温度曲线上熔融终点处对应的温度为高聚物的熔点。
●相对分子质量及分布对强度的影响
规律:强度随相对分子质量的增大而增加,分布宽窄影响不大,但低聚物部分增加时,因低分子部分发生分子间断裂而使强度下降。
●低分子掺合物对强度的影响
规律:低分子物质的加入降低强度。
▓实例增塑剂的加入能降低强度,但对脆性高聚物而言,少量加入低分子物质,能增加强度。
●交联对强度的影响
规律:适度交联增加强度,但过度交联,在受外力时,会使应力集中而降低强度。
▓实例橡胶的适度交联。
●结晶对强度的影响
规律:结晶度增大,强度增加,但材料变硬而脆;大球晶增加断裂伸长率,小球晶增加韧性、强度、模量等;纤维状晶体强度大于折叠晶体强度。
▓实例缓慢降温有利形成大球晶,淬火有利形成小球晶。
●取向对强度的影响
规律:取向能增加取向方向上材料的强度。
§5高聚物的力学性能
特例:以橡胶为改性剂,提高高聚物材料抗冲击性能。
对橡胶的要求:玻璃化温度必须远低于使用温度;橡胶不溶于刚性高聚物而形成二相;两种高聚物溶解行为上相似,有利于相互黏着。
若三条件达不到,加入第三组分。
效果:原脆性高聚物的冲击强度提高5~10倍。
1.玻璃态
T<Tg
(2)力学特征:形变量小(0.01 ~1%),模量高(109 ~1010Pa)。
形变与时间无关,呈普弹性。
(1)运动单元:键长、键角的改变或小尺寸单元的运动。
T d
T f
T g
2.玻璃化转变区(1)链段运动逐渐开始
(2)形变量ε增大,模量E降低。
T d
T f
T g
3.高弹态
T g ~T f
(1)运动单元:链段运动
(2)力学特征:高弹态
形变量大,100-1000﹪
模量小,105-107Pa T d
T f
T
g
4.粘流转变区
(2)形变量加大,模量降低,宏观上表现为流动
(1)整链分子逐渐开始运动,
T d
T f
T g
5.粘流态
T f ~T d
(2)力学特征:形变量更大
模量更低
流动
(3)T 与平均分子量有关
(1)运动单元:整链分子产生相对位移T d
T f
T g
T f
图5-9 高聚物的比容-压力曲线图5-10 高聚物的tanδ-lgν曲线
33。
1.应力松弛:在恒定温度和形变保持不变的情况下,聚合物内部的应力随时间的增加而逐渐衰减的现象。
2.氢键:是极性很强的X-H键上的氢原子,与另外一个键上电负性很大的原子Y的孤对电子相互吸引而形成的一种键。
3.等规聚合物:指全同立构和间同的高聚物。
4.等规度:高聚物中含有全同立构和间同立构总的百分数。
5.聚合物的粘弹性:聚合物的形变和发展具有时间依赖性,这种性质介于理想弹性体和理想粘性体之间,称为粘弹性。
1999年1.玻璃化温度:玻璃态与高弹态之间的转变即玻璃化转变,所对应的转变温度。
2.脆点(化)温度:当温度低于某个温度Tb时,玻璃态高聚物不能发展强迫高弹形变,而必定发生脆性断裂,这个温度称为脆化温度。
3.溶解度参数:通常将内聚能密度的平方根定义为溶解度参数d,溶质和溶剂的溶解度参数愈接近,两者愈能相互溶解。
4.柔顺性:高分子链能够不断改变其构象的性质或高分子能够卷曲成无规线团的能力。
5.泊松比:材料横向单位宽度的减少与纵向单位长度的增加之比值。
6.表观粘度:与牛顿粘度定义相类比,将非牛顿流体的粘度定义为剪切应力与剪切速率之比,其值称为表观粘度,即。
2000年1.链段:把由若干个键组成的一段链作为一个独立运动的单元,称为链段。
2.构型:构型是对分子中的最近邻原子间的相对位置的表征,也就是指分子汇总由化学键所固定的原子在空间的几何排列。
3.构象:由于单键内旋转而产生的分子在空间的不同形态。
4.熔限:结晶高聚物有一个较宽的熔融温度范围,这个温度范围就叫熔限。
5.熔点:高聚物结晶部分完全熔化的温度。
6.剪切粘度:液体内部反抗在切应力作用系发生薄层流动的内摩擦力,称为剪切粘度。
7.高聚物的屈服:聚合物在外力作用下产生的塑性变形。
2001年1.时温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT将某一温度下测定的力学数据变成另一温度下的力学数据。
2002年1.高聚物的熔点:比容-温度曲线上熔融终点处对应的温度为高聚物的熔点。
《高分子化学与物理》考试大纲本<<高分子化学与物理>>考试大纲适用于高分子化学与物理专业的硕士研究生入学考试。
高分子化学与物理是化学学科的基础理论课。
高分子化学内容主要包括连锁聚合反应、逐步聚合反应和聚合物的化学反应等聚合反应原理,要求考生熟悉相关高分子化学的基本概念,掌握常用高分子化合物的合成方法、合成机理及大分子化学反应,能够写出主要聚合物的结构式,熟悉其性能并且能够对给出的现象给以正确、合理的解释。
高分子物理内容主要包括高分子的链结构与聚集态结构,聚合物的分子运动,聚合物的溶液性质以及聚合物的流变性能、力学性能、介电性能、导电性能和热性能等,要求考生熟悉相关高分子物理的基本概念,掌握有关聚合物的多层次结构及主要物理、机械性能的基本理论和基本研究方法。
考生应具备运用高分子化学与物理的知识分析问题、解决问题的能力。
一、考试内容高分子化学部分(一)绪论1.高分子的基本概念;2.聚合物的命名及分类;3.分子量;4.大分子微结构;5.聚合物的物理状态;6.聚合物材料和强度。
(二)自由基聚合1.自由基聚合机理;2.链引发反应;3.聚合速率;4.分子量和链转移反应;5.分子量分布6.阻聚与缓聚7.聚合热力学8.可控/活性自由基聚合(三)自由基共聚合1.共聚物的类型和命名2.二元共聚物的组成3.竟聚率的测定和影响因素4.单体和自由基的活性5.Q-e概念(四)聚合方法1.本体聚合2.溶液聚合3.悬浮聚合4.乳液聚合(五)阳离子聚合1.阳离子聚合的单体;2.阳离子引发体系;3.阳离子聚合机理;4.影响阳离子聚合的因素;5.聚异丁烯和丁基橡胶。
(六)阴离子聚合1.阴离子聚合的单体;2.阴离子引发体系和引发;3.阴离子聚合引发剂和单体的匹配4.活性阴离子聚合5.丁基锂的缔合现象和定向聚合作用(七)开环聚合1.环烷烃开环聚合热力学2.杂环开环聚合机理和动力学特征3.环氧烷烃的阴离子开环聚合4.其他环醚的阳离子开环聚合;5.三聚甲醛(三氧六环)的阳离子开环聚合;6.环酰胺开环聚合;7.环硅氧烷的开环聚合8.羰基化合物的聚合(八)配位聚合1. 聚合物的立体异构现象1.配位聚合的基本概念2.Ziegler-Natta引发剂3.丙烯的配位聚合4.乙烯的配位聚合5.极性单体的配位聚合6.茂金属引发剂7.共轭二烯烃的配位聚合(九)逐步聚合反应1.缩聚反应;2.线形缩聚反应机理;3.线形缩聚动力学;4.影响线型缩聚物聚合度的因素及控制方法;5.分子量的分布;6.逐步缩合的实施方法;7.重要线型逐步聚合物;8.体型缩聚。
高分子物理课内实践——聚合物的高弹性和黏弹性一、高弹性:非晶态聚合物在玻璃化温度以上时处于高弹态。
高弹态的高分子链段有足够的自由体积可以活动,当它们受到外力后,柔性的高分子链可以伸展或蜷曲,能产生很大的形变,甚至超过百分之几百,但不是所有的聚合物都如此。
如果将高弹态的聚合物进行化学交联,形成交联网络,它的特点是受外力后能产生很大的形变,但不导致高分子链之间产生滑移,因此外力除去后形变会完全回复,这种大形变的可逆性称为高弹性。
它是相对于普弹性而言的。
所谓普弹性就是金属或其他无机材料的属性,即在力场作用下,应力与应变成正比,服从胡克定律,且形变量甚小,仅为千分之几或更小。
高弹态高聚物的弹性形变则数值很大,可达百分之几或更大,在绝热拉伸或压缩过程中,处于高弹态的高聚物(如橡胶)的温度能上升,金属的温度则下降。
在平衡状态时,橡胶的弹性模量与温度成正比,而金属的模量则与温度成反比。
高弹态是聚合物特有的基于链段运动的一种力学状态,高弹性是高分子材料极其重要的性能,其中尤以橡胶类物质的弹性最大。
它有如下特征:1.弹性模量很小而形变量很大。
由于热运动的作用,这种分子会不断的改变着自己的形状,就会显示出形变量比较大的特点,当外力作用对抗回缩力的时候形变就会自发回复,造成形变的可逆性,由于回缩力不大,在外力不大的时候就会可能发生比较大的形变,所以其弹性的模量表现比较小;2.弹性模量随温度的升高而增加。
在外力的作用下,这种回缩力与温度也有很大关系,会随着温度的升高,分子的热运动就会出现加强,回缩力也就会增大,弹性模量也就出现增加,弹性形变就会变小;3.泊松比大;4.形变需要时间。
由于在受到压力压缩的时候,形变就会总是随着时间的发展达到最大,随着压力的下降而消失。
不管是克服分子之间的作用力以及内摩擦力,还是从一种平衡的状态过渡到外力相适应的平衡状态,形变都是在外力作用之后所引起的,所以发生形变是需要时间的;5.形变时有热效应。