当前位置:文档之家› 一年级排队问题典型题型及方法总结

一年级排队问题典型题型及方法总结

一年级排队问题典型题型及方法总结
一年级排队问题典型题型及方法总结

高中数学各大题型详细方法总结

一三角函数 三角函数的题有两种考法,其中10%~20%的概率考解三角形,80%~90%的概率考三角函数本身。 1.解三角形 不管题目是什么,要明白,关于解三角形,只学了三个公式——正弦定理、余弦定理和面积公式。 所以,解三角形的题目,求面积的话肯定用面积公式。至于什么时候用正弦,什么时候用余弦,如果你不能迅速判断,都尝试一下也未尝不可。 2.三角函数 然后求解需要求的。套路一般是给一个比较复杂的式子,然后问这个函数的定义域、值域、周期、频率、单调性等问题。 解决方法就是,首先利用“和差倍半”对式子进行化简。化简成:

掌握以上公式,足够了。 关于题型,见下图: 二立体几何 立体几何的相关题目,稍微复杂一些,可能会卡住一些人。 这个题目一般有2~3问,一般会考查某条线的大小或者证明某个线/面与另外一个线/面平行或垂直,以及求二面角。 这类题目的解题方法有两种:空间向量法和传统法。这两种方法各有利弊。

向量法: 使用向量法的好处在于:没有任何思维含量,肯定能解出最终答案。缺点就是计算量大,且容易出错。 使用空间向量法,首先应该建立空间直角坐标系。建系结束后,根据已知条件可用向量确定每条直线。其形式为AB=(a,b,c),然后进行后续证明与求解。 箭头指的是利用前面的方法求解。如果有些同学会觉得比较乱,以下为无箭头标注的图。

传统法: 在学立体几何的时候,有很多性质定理和判定定理。但是针对高考立体几何大题而言,解题方法基本是唯一的,除了上图中6和8有两种解题方法以外,其他都是有唯一的方法。 所以,熟练掌握解题模型,拿到题目直接按照标准解法去求解便可。

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

高中数学各题型解法方法与技巧总结

高中数学各题型解法方法与技巧总结! 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。 选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。 随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。 从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题, 是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容。 因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2. 判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点; (2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。

3.两个平面平行的主要性质: (1)由定义知:“两平行平面没有公共点”。 (2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 (3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那 么它们的交线平行“。 (4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 (5)夹在两个平行平面间的平行线段相等。 (6)经过平面外一点只有一个平面和已知平面平行。 以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。 解答题分步骤解决可多得分 1. 合理安排,保持清醒。 数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。 2. 通览全卷,摸透题情。

导数各类题型方法总结(含答案)

导数各种题型方法总结 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0) 0302(3) 09330g m g m <-??<--=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == 2m ∴> (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)023011(2)0230F x x x F x x ?->--+>?????-<-+>??? 2b a ∴-=

数列题型及解题方法归纳总结

累加累积 归纳猜想证明 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了 典型 题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 ⑴递推式为a n+i =3+d 及a n+i =qa n (d ,q 为常数) 例1、 已知{a n }满足a n+i =a n +2,而且a i =1。求a n 。 例1、解 ■/ a n+i -a n =2为常数 ??? {a n }是首项为1,公差为2的等差数列 /? a n =1+2 (n-1 ) 即 a n =2n-1 1 例2、已知{a n }满足a n 1 a n ,而a 1 2,求a n =? 佥 1 2 解■/^ = +是常数 .■-傀}是以2为首顶,公比为扌的等比数 把n-1个等式累加得: .' ? an=2 ? 3n-1-1 ji i ? / ] — 3 ⑷ 递推式为a n+1=p a n +q n (p ,q 为常数) s 1 1 【例即己知何沖.衍二右札+ 吧求% 略解在如十冷)*的两边乘以丹得 2 严‘ *珞1 = ~〔2怙血)+1.令亠=2n 召 则也€%乜于是可得 2 2 n b n 1 n 1 n b n 1 b n (b n b n 1)由上题的解法,得:b n 3 2(—) ? a . n 3(—) 2(—) 3 3 2 2 3 ★说明对于递推式辺曲=+屮,可两边除以中叫得蹲= Q 計/斗引辅助财如(%=芒.徼十氣+护用 (5) 递推式为 a n 2 pa n 1 qa n 知识框架 数列 的概念 数列的分类 数列的通项公式 数列的递推关系 函数角度理解 (2)递推式为 a n+1=a n +f (n ) 1 2 例3、已知{a n }中 a 1 a n 1 a n 1 ,求 a n . 4n 2 1 等差数列的疋义 a n a n 1 d(n 2) 等差数列的通项公式 a n a 1 (n 1)d 等差数列 等差数列的求和公式 S n (a 1 a n ) na 1 n(n 1)d 2 2 等差数列的性质 a n a m a p a q (m n p q) 两个基 本数列 等比数列的定义 a n 1 q(n 2) 等比数列的通项公式 a n n 1 a 1q 数列 等比数列 a 1 a n q 3(1 q ) (q 1) 等比数列的求和公式 S n 1 q 1 q / n a 1(q 1) 等比数列的性质 S n S m a p a q (m n p q) 公式法 分组求和 错位相减求和 裂项求和 倒序相加求和 解:由已知可知a n 1 a n (2n 1)(2n 1)夕2n 1 2n 令n=1,2,…,(n-1 ),代入得(n-1 )个等式累加,即(a 2-a 1) + 1广 K z 1】、 =-[(1-" + J J 5 _■ 冷(一 Jr ★ 说明 只要和f ( 1) +f (2) 入,可得n-1个等式累加而求a n 。 ⑶ 递推式为a n+1=ps n +q (p , q 为常数) 1 a n a 1 (1 2 +?…+f 例 4、{a n }中,ai 1,对于 n > 1 (n € N) 有a n (a 3-a 2) + ? + (a n -a n-1) L )也 2n 1 4n 2 (n-1 )是可求的,就可以由 a n+1=a n +f (n )以n=1,2,…, 3a n 1 2 ,求 a n ? 数列 求和 解法一: 由已知递推式得 a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3 (a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为 a 2-a 1= (3X 1+2) -1=4 --a n+1 -a n =4 ? 3 - a n+1 =3a n +2 - - 3a n +2-a n =4 ? 3 即 a n =2 ? 3 -1 解法_ : 上法得{a n+1-a n }是公比为 3 的等比数列,于是有: a 2-a 1=4, a 3-a 2=4 ? 3, a 4-a 3=4 ? 3 ? 3 , 数列的应用 分期付款 其他

导数题型方法总结绝对经典

第一章 导数及其应用 一.导数的概念 1..已知x f x f x x f x ?-?+=→?) 2()2(lim ,1 )(0 则的值是( ) A. 4 1- B. 2 C. 41 D. -2 变式1:()()()为则设h f h f f h 233lim ,430--='→( ) A .-1 B.-2 C .-3 D .1 变式2:()()()00003,lim x f x x f x x f x x x ?→+?--??设在可导则等于 ( ) A .()02x f ' B .()0x f ' C .()03x f ' D .()04x f ' 导数各种题型方法总结 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x <

不等式【概念、方法、题型、易误点及应试技巧总结】

概念、方法、题型、易误点及应试技巧总结 不等式 一.不等式的性质: 1.同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若 ,a b c d ><,则a c b d ->-) ,但异向不等式不可以相加;同向不等式不可以相减; 2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); 3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >> 4.若0ab >,a b >,则 11a b <;若0ab <,a b >,则 11a b > 。如 (1)对于实数c b a ,,中,给出下列命题: ①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若; ④b a b a 11,0<<<则若; ⑤b a a b b a ><<则 若,0; ⑥b a b a ><<则若,0; ⑦b c b a c a b a c -> ->>>则 若,0; ⑧11, a b a b >> 若,则0,0a b ><。 其中正确的命题是______ (答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ (答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______ (答:12,2? ? -- ?? ? ) 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。其中比较法(作差、作商)是最基本的方法。如 (1)设0,10>≠>t a a 且,比较2 1 log log 2 1 +t t a a 和的大小 (答:当1a >时,1 1log log 22a a t t +≤(1t =时取等号);当01a <<时,1 1log log 2 2 a a t t +≥(1t =时取等号)); (2)设2a >,12 p a a =+ -,2 42 2-+-=a a q ,试比较q p ,的大小

数列题型及解题方法归纳总结

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持. 知识框架 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a =,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3, a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-=-n n n n b b b b 由上题的解法,得:n n b )3 2 (23-= ∴ n n n n n b a )31(2)21(32 -== (5)递推式为21n n n a pa qa ++=+ 思路:设21n n n a pa qa ++=+,可以变形为:211()n n n n a a a a αβα+++-=-, 想 于是{a n+1-αa n }是公比为β的等比数列,就转化为前面的类型。 求 n a 。 (6)递推式为S n 与a n 的关系式 关系; (2)试用n 表示a n 。 ∴ )2121( )(1 2 11--++- +-=-n n n n n n a a S S ∴1 112 1-+++ -=n n n n a a a ∴

导数题型方法总结(绝对经典)

第一章导数及其应用 一.导数的概念 1..已知的值是() A. B. 2 C. D. -2 变式1:() A.-1B.-2C.-3D.1 变式2:() A.B.C.D. 导数各种题型方法总结 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系(2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数, (1)若在区间上为“凸函数”,求m的取值范围; (2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值. 解:由函数得 (1)在区间上为“凸函数”, 则在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于

中考数学题型及方法总结

初中数学中的固定题型及惯性思维 一、角平分线的考点 1.定义 2.性质(垂直于角的两边) 3.对称性(垂直于角 平分线,构造全等,得到中点) 二、中点的三个考点 1.斜边中线(直角与中点) 2.三线合一(等腰与中点) 3.中位线(两个中点) 附注:中点常见作辅助线方法:过其中一个端点作另一个端点所在直线的平行线交延长线与一点。如果其中一个端点所在直线有多条,要结合题目已知条件进行判断,一般以已知线段长度的为主。 三、等腰三角形的考点 1.等角对等边 2.等边对等角 3.三线合一 四、全等三角形 1.五个全等三角形的判定定理 2.对应边对应角相等 五、轴对称图形 1.角的对称性(性质) 2.线段的对称性(性质) 3.等腰三角形的对称性(三线合一) 附注:对称轴是直线,轴对称图形既可以是一个图形本身,比如等腰三角形是轴对称图形,也可以说两个图形关于某条直线呈轴对称图形。 六、勾股定理 1.勾股定理的公式 2.勾股定理的逆定理(可以用来证明直角或者一个三角形是直角三角形) 附注:利用图形证明勾股定理一般都是利用部分面积之和等于整体面积,另外记住几组常见的勾股数,3,4,5;6,8,10; 5,12,13; 7,24,25 七、平面直角坐标系 1.平面直角坐标系是用来确定点及图像的位置的 2.坐标轴及象限的划分

附注:如果题目说不经过第二象限,应该有两种情况,一是经过一三四象限,二是经过一三象限,做此类题目不要思维定势。 八、二次根式 1.二次根式的非负性 2.同类二次根式 3.最简二次根式 4.二次根式的比较大小 5.二次根式的加减乘除 附注:如果题目的计算结果包含根式,一定要习惯性地判断是否是最简二次根式,切记因为细节问题失分;另外代数式有意义也要注意开方数大于等于0,千万不要漏掉等号。 九、一元二次方程 1.定义(二次项系数不为0) 2.四种解法(优先考虑因式分解法,主要是十字相乘) 3.一元二次方程根的个数的判别式 4.一元二次方程根与系数的关系,即韦达定理 附注:只要一个题目是求解有关一元二次方程的根的代数式的值的题目,只有两种方法,代入法与韦达定理,如果满足韦达定理的形式就用韦达定理,除此之外,一律使用代入法。 十、二次函数 1.定义(最高次为2,二次项系数不为0) 2.二次函数的图像(开口、与X轴的交点、对称轴、顶点坐标、与Y轴的交点位置) 3.二次函数的增减性 4.二次函数的动点问题 附注:初中阶段所有函数的知识点都比较少,更多的是知识点的迁移变化与综合应用。 十一、分式方程 1.分式方程的定义(有可能考选择题) 2.分式方程的解的情况 3.已知分式方程的解的情况,求未知实数的取值围 附注:1.增根是分式方程无解的特殊情况 2.如果告诉分式方程的解为负数,解出X之后,一方面x<0,另外千万不要忘记x不能等于增根,这个是比较容易出错的一个点。 十二、圆 1.相关定义,比如直径、圆心、弦、切线、弧、圆周角、圆心角等等 2.切线长定理 3.垂径定理 直径:直径所对圆周角是90度

导数各种题型方法总结

导数各种题型方法总结
请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2 变更主元;3 根分布;4 判别式法 5、二次函数区间最值求法: (1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次, 分析每种题型的本质, 你会发现大部分都在解决 “不等式恒成立问题” 以及“充分应用数形结合思想” ,创建不等关系求出取值范围。b5E2RGbCAP 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立;
1、此类问题提倡按以下三个步骤进行解决: 第一步:令 f ' ( x) ? 0 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种:
第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元) ;
(请同学们参看 2012 省统测 2) 例 1: 设函数 y ? f ( x) 在区间 D 上的导数为 f ?( x ) , f ?( x ) 在区间 D 上的导数为 g ( x) , 若在区间 D 上,
g ( x) ? 0 恒 成 立 , 则 称 函 数 y ? f ( x ) 在 区 间 D 上 为 “ 凸 函 数 ” ,已知实数 m 是常数,
f ( x) ?
x 4 mx3 3x 2 ? ? p1EanqFDPw 12 6 2 (1)若 y ? f ( x) 在区间 ? 0,3? 上为“凸函数” ,求 m 的取值范围;
(2)若对满足 m ? 2 的任何一个实数 m ,函数 f ( x ) 在区间 ? a, b ? 上都为“凸函数” ,求 b ? a 的最大
值.
x 4 mx3 3x 2 x3 mx 2 ? ? ? ? 3x 解:由函数 f ( x) ? 得 f ?( x) ? 12 6 2 3 2 ? g ( x) ? x2 ? mx ? 3
(1)
y ? f ( x) 在区间 ?0,3? 上为“凸函数” ,
2
则 ? g ( x) ? x ? mx ? 3 ? 0 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于 gmax ( x) ? 0
1 / 19

高考数学题型总结:不等式题型及解题方法

高考数学题型总结:不等式题型及解题方法 高考数学题型总结:不等式题型及解题方法 不等式 不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。知识整合 1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。

2。整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。 3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。 4。证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)变形判断符号(值)。

概率统计常见题型与方法总结

常见大题: 1. 全概率公式和贝叶斯公式问题 B 看做“结果”,有多个“原因或者条件 i A ”可以导致 B 这个“结果”发生,考虑结果B 发生的概率,或者求在B 发生的条件下,源于某个原因i A 的概率问题 全概率公式:()()() 1B |n i i i P B P A P A ==∑ 贝叶斯公式: 1(|)()() ()()n i i i j j j P A B P A P B A P A P B A ==∑|| 一(12分)今有四个口袋,它们是甲、乙、丙、丁,每个口袋中都装有a 只红球和b 只白球。先从甲口袋中任取一只球放入乙口袋,再从乙口袋中任取一只球放入丙口袋,然后再从丙口袋中任取一只球放入丁口袋,最后从丁口袋中任取一球,问取到红球的概率为多少? 解 i B 表示从第i 个口袋放入第1+i 个口袋红球,4,3,2,1=i i A 表示从第i 个口袋中任取一个球为红球, 2分 则 b a a B P += )(1, 2分 )()()()()(1111111B A P B P B A P B P A P += 111++++++++= b a a b a b b a a b a a b a a += 2分 依次类推 2分 b a a A P i += )( 二(10分)袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽),在袋中任取一只,将它投掷r 次,已知每次都出现国徽,问这只硬币是次品的概率为多少?

、解记B ={取到次品},B ={取到正品},A ={将硬币投掷r 次每次都出现国徽} 则()(),n m P B P B m n m n = = ++,()1P A B =,()1 2r P A B =―—5分 ()()1()212()()()()12 r r r n P B P A B n m n P B A n m n m P B P A B P B P A B m n m n ?+===++?+?++ 三、(10分)一批产品共100件,其中有4件次品,其余皆为正品。现在每次从中任取 一件产品进行检验,检验后放回,连续检验3次,如果发现有次品,则认为这批产品不合格。在检验时,一件正品被误判为次品的概率为0.05,而一件次品被误判为正品的概率为0.01。(1)求任取一件产品被检验为正品的概率;(2)求这批产品被检验为合格品的概率。 解设 A 表示“任取一件产品被检验为正品”,B 表示“任取一件产品是正品”,则 ()96100P B = ,()4 100 P B =,()|0.95P A B =,()|0.01P A B = (1)由全概率公式得 ()()()()()||0.9124P A P B P A B P B P A B =+= (2)这批产品被检验为合格品的概率为 ()3 3 0.91240.7596p P A ===???? 四、在电报通讯中不断发出信号‘0’和‘1’,统计资料表明,发出‘0’和‘1’的概 率分别为0.6和0.4,由于存在干扰,发出‘0’时,分别以概率0.7和0.1接收到‘0’和‘1’,以0.2的概率收为模糊信号‘x ’;发出‘1’时,分别以概率0.85和0.05收到‘1’和‘0’,以概率0.1收到模糊信号‘x ’。 (1)求收到模糊信号‘x ’的概率; (2)当收到模糊信号‘x ’时,以译成哪个信号为好?为什么? 解设i A =“发出信号i ”)1,0(=i ,i B =“收到信号i ”),1,0(x i =。由题意知 6.0)(0=A P ,4.0)(1=A P ,2.0)|(0=A B P x ,1.0)|(1=A B P x 。 (1)由全概率公式得 ) ()|()()|()(1100A P A B P A P A B P B P x x x += 4分 16.04.01.06.02.0=?+?=。 2分 (2)由贝叶斯公式得 75.016 .06 .02.0)()()|()|(000=?== x x x B P A P A B P B A P , 3分 25 .075.01)|(1)|(01=-=-=x x B A P B A P 3分

探究规律题型方法总结和练习

探究规律题型方法总结和练习 一、教学内容: 规律探究型问题 1. 图案变化规律 2. 数列、代数式运算规律 3. 几何变化规律 4. 探索研究 二、知识要点: 近年来,探索规律的题目成为数学中考的一个热点,目的是考查学生观察分析及探索的能力. 题目分为题设和结论两部分,通常题设部分给出一些数量关系或图形变换关系,通过观察分析,要求学生找出这些关系中存在的规律。这种数学题目本身存在一种数学探索的思想,体现了数学思想从特殊到一般的发现规律。是中考的一个难点,越来越引起考生重视。下面我们根据几种不同类型的规律变化类型题进行分析。 “规律探究型问题”根据学生已有的知识基础和认知特点,分别从直观形象和抽象符号上进行规律探索,突出数学的生活化,给学生提供更多机会体验学习和探索的“过程”与“经历”,使之拥有一定的问题解决、课题研究、社会调查的经验,使学生经历探索事物间的数量关系并用字母和代数式表示的过程,建立初步的符号感,发展抽象思维,进一步使学生体会到代数式是刻画现实世界的有效数学模型。现就规律探究的几个例子,来探讨一下这类专题: 一、规律探索型问题的分类: 1、数式规律 通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法,考查了学生的分析、归纳、抽象、概括能力。一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。 如:1、有一串单项式:a,2a2,3a3,4a4,…,19a19,20a20,…那么第n个单项式是。

2、争当小高斯:高斯在10岁的时候,曾计算出 1+2+3+4+······+100=_________;还有另外一种解法:设S= 1+2+3+······+99+100,那么也可以写成 S=100+99+98+97+······+2+1,把这两个等式左右两边分别相加,可以得到2S= (1+100)+(2+99)+(3+97)+······ +(99+2) +(100+1),2S=100×101,S= 由此,猜想前n个自然数和:1+2+3+4+······+n=-________,前n个偶数和:2+4+6+8+······+2n=________,前n个奇数和:1+3+5+7+ 9+······+ (2n-1) =________. 猜想归纳是解决这类问题的有效方法,通过对已给出的材料和信息对研究的对象进行观察、实验、比较、归纳和分析综合,作出符合一定规律与事实的推测性想象,从而发现一般规律.它是发现和认识规律的重要手段.平时的教学不能局限于课本,可以设计一些猜想性、类比性的活动,让学生经历一个观察、试验等活动过程,在活动中通过对大量特殊情形的观察猜想出一般情形的结论,从而探索事物的内在规律. 2、图形规律 根据一组相关图形的变化规律,从中总结图形变化所反映的规律。解决这类图形规律问题的方法有两种,一种是数图形,将图形转化成数字规律,再用数字规律的解决问题,一种是通过图形的直观性,从图形中直接寻找规律。如:1、下图是某同学在沙滩上用石子摆成的小房子. 观察图形的变化规律,写出第n个小房子用了_________块石子。 2、下面是按照一定规律画出的一列“树型”图:

排列组合问题题型方法总结

排列组合常用方法题型总结 【知识内容】 1.基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =???种不同的方法.又称乘法原理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类 计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素) 排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 排列数公式:A (1)(2) (1)m n n n n n m =---+,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合. 组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示. 组合数公式:(1)(2)(1)! C !!()! m n n n n n m n m m n m ---+= =-,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:1 1C C C m m m n n n -+=+.(规定0C 1n =)

相关主题
文本预览
相关文档 最新文档