中考数学(人教版)总复习 热点专题突破训练:专题一 图表信息
- 格式:pdf
- 大小:326.76 KB
- 文档页数:3
人教版中考数学知识点专题集训《图形的变换》经典题型突破与提升练习一.选择题.1. 下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A B C D2.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分的面积为( )A.48B.96C.84D.423. 如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90°后,点B的对应点B′的坐标是( )A.(-1,2)B.(1,4)C.(3,2)D.(-1,0)4.下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是()A B CA.(0,0)B.(1,1)C.(0,1)D.(1,0)5. 如图,在矩形纸片ABCD 中,AB =3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC =∠ECA ,则AC 的长是( )A .33 B .4 C .5 D . 6 6. 如图,将△ABC 绕点A 顺时针旋转角α,得到△ADE ,若点E 恰好在CB 的延长线上,则∠BED 等于( )A .2B .32α C .α D .180°-α 7. 剪纸是我国传统的民间艺术.将一张纸片按图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )8. 如图,在四边形ABCD 中(AB >CD ),∠ABC =∠BCD =90°AB =3,BC =3,把Rt △ABC 沿着AC 翻折得到Rt △AEC ,若tan ∠AED =32,则线段DE 的长度为( )A D EB C A . B . C . D .A.63B.73C.32D.2759. 如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F,若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为()A B C D10.如图,在平面直角坐标系xOy中,Rt△AOB的直角顶点B在y轴上,点A的坐标为(1,将Rt△AOB沿直线y=-x翻折,得到Rt△A′OB′,过A′作A′C 垂直于OA′交y轴于点C,则点C的坐标为( )A.(0,-) B.(0,-3) C.(0,-4) D.(0,-)二.填空题.11. 如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于.12.如图,将周长为8的△ABC沿BC边向右平移2个单位,得到△DEF,则四边形ABFD的周长为______.13. 如图,正方形ABCD的边长为1,将其绕顶点C按逆时针方向旋转一定角度到CEFG位置,使得点B落在对角线CF上,则阴影部分的面积是______.14. 如图,已知△ABC中,∠C=90°,AC=BC=2√2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为.15.如图,在矩形ABCD中,AD=4,将∠A向内翻析,点A落在BC上,记为A1,折痕为DE.若将∠B沿EA1向内翻折,点B恰好落在DE上,记为B1,则AB=.16. 如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB′C′,AB′,AC′分别交对角线BD于点E,F,若AE=4,则EF•ED的值为 .17.如图,矩形纸片ABCD,AB=6cm,BC=8cm,E为边CD上一点.将△BCE 沿BE所在的直线折叠,点C恰好落在AD边上的点F处,过点F作FM⊥BE,垂足为点M,取AF的中点N,连接MN,则MN=cm.18.△ABC内接于⊙O,AB为⊙O的直径,将△ABC绕点C旋转到△EDC,点E在⊙上,已知AE=2,tanD=3,则AB= .三.解答题.19. 如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC的三个顶点A(5,2)、B(5,5)、C(1,1)均在格点上.(1)将△ABC向下平移5个单位得到△A1B1C1,并写出点A1的坐标;(2)画出△A1B1C1绕点C1逆时针旋转90°后得到的△A2B2C1,并写出点A2的坐标;(3)在(2)的条件下,求△A1B1C1在旋转过程中扫过的面积(结果保留π).20. 如图,AB的垂直平分线MP交BC于点P,AC的垂直平分线NQ交BC于点Q,若△APQ的周长为16cm,求BC的长.21.如图,Rt△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,点D落在线段AB上,连接BE.(1)求证:DC平分∠ADE;(2)试判断BE与AB的位置关系,并说明理由;(3)若BE=BD,求tan∠ABC的值.22.图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E 、E ′两点的距离.23. 已知: △ABC 为等边三角形,点E 为射线AC 上一点,点D 为射线CB 上一点, AD=DE.(1)如图1,当E 在AC 的延长线上且 CE=CD 时,AD 是 △ABC 的中线吗?请说明理由.(2)如图2,当E 在AC 的延长线上时, AB+BD 等于AE 吗?请说明理由.(3)如图3,当D 在线段CB 的延长线上,E 在线段AC 上时,请直接写出AB,BD,AE 的数量关系.24. 如图1,在等腰直角三角形ADC 中,4,90==∠AD ADC .点E 是AD 的中点,以DE 为边作正方形DEFG ,连接CE AG ,.将正方形DEFG 绕点D 顺时针旋转,旋转角为)900( <<αα.(1)如图2,在旋转过程中,①判断AGD ∆与CED ∆是否全等,并说明理由;②当CD CE =时,AG 与EF 交于点H ,求GH 的长.(2)如图3,延长CE 交直线AG 于点P .①求证:CP AG ⊥;②在旋转过程中,线段PC 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.。
图表信息复习专题图表信息题是近几年中考热点内容之一,也是今后中考的出题方向.这类题常以实际生活为背景,将相关的数学知识信息巧无声息的隐含在创设的生活素材、图象、图表中,我们只有通过对生活素材、图象、图表等相关信息的分析、观察、猜想、抽象、概括,从中获取图表中隐含的解题信息和思路、方法,然后再进行推理、探究、发现和计算的一种题型.图表信息的内容大多取材于现实生活,主要包括生活图景、表格信息、图象信息、统计图表、几何图形等各种类型.解决图表信息题的核心是“分析识别图表”和“用图表”.即通过观察、分析图象和图表,捕捉有效信息,并对已获得的信息进行加工、处理和整理,分清变量之间的关系,选择适当的数学工具,将实际问题转化为相应的数学模型来解决问题.一、在生活情境、素材中提炼与构建图像例1(2010年湖南益阳)如图,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A. B. C.D.解析:随着火车进入隧道的时间x的增加,火车在隧道内的长度y从0开始,逐渐增长,当火车完全进入隧道时,在隧道内的长度y不变;当火车出隧道时,长度y逐渐减小,最后隧道内的长度为0.根据以上x、y的变化情况,并结合函数图象可选A.点评:数学来源于生活,从现实生活中的某个片断、情境或素材取材,进而酝酿数学,构建数学,是近年的中考亮点与趋势.为此要求我们在平时多用数学的眼光生活,发现数学影子,从数学的角度运用有关知识酝酿与构建数学模型,进而分析与解决现实问题.解决此类问题的关键是要从素材、图象提供的已知条件出发,弄清变量之间的内在关系、含义(x,y)及其中蕴含的数学模型.二、从生活图景中体验与获取例2(2010年吉林)在课间活动中,小英、小丽和小敏在操场上画出两个区域,一起玩投沙包游戏.沙包落在区域所得分值与落在区域所得分值不同.当每人各投沙包四次时,其落点和四次总分如图所示.请求出小敏的四次总分.解析:设沙包落在区域得分,落在区域得分,根据小英、小丽的得分图,可以找到两个相等关系,从而得到解得答:小敏的四次总分为30分.点评:从同学日常游戏中取材、立意,创设熟悉的生活图景,是近年的中考热点.主要是考查从中获取信息,分析和处理数据的能力,能将实际问题转化为数学问题,进行有关知识的构建与建模,进而分析和解决日常生活中的实际问题.三、从统计图中体验与获取例3(2010福建福州)近日从省家电下乡联席办获悉,自2009年2月20日我省家电下乡全面启动以来,最受农户热捧的四种家电是冰箱、彩电、洗衣机和空调,其销售量比为5:4:2:1,其中空调已销售了15万台.根据上述销售情况绘制了两个不完整的统计图:请根据以上信息解答问题:(1)补全条形统计图;(2)四种家电销售总量为_______万台;(3)扇形统计图中彩电部分所对应的圆心角是_______度;(4)为跟踪调查农户对这四种家电的使用情况,从已销售的家电中随机抽取一台家电,求抽到冰箱的概率.思路点拨:结合销售量比,可设每份为x,根据条件可得x=15,从而可得各种家电的数量,完成条形图的制作及家电总销量;计算出彩电所占比例,进而得出它所对应的圆心角的度数.解:(1)如图所示;(2)180;(3)120;(4)解:P(抽到冰箱)==.答:抽到冰箱的概率是.点评:以当前的家电下乡为背景设置的一道统计知识的综合运用题,读题与读图时,一定要彼此图文对照,找出数据之间的内在联系,明确各种统计图都有各自的特征和作用,条形统计图可清楚地表示出每个项目的具体数目,扇形统计图能直观地反映各部分的百分比的大小,两种统计图的合用,各个项目的具体数目和百分比都可从其相互关系,通过计算得出,正确理解各种统计图的含义及作用,是综合应用统计图进行数据分析和整理的前提.四、从函数图象中体验与获取例4(2010浙江湖州)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像.思路点拨:结合直线上两点(1.5,70)、(2,0),运用待定系数法求解出直线的解析式,进而求出点A的坐标,即甲乙两地之间的距离;借助有关两车的路程问题构建方程组求解两车的速度和时间;通过分析可知y关于x的函数的图像还存在两段:两车同时行驶两车的距离和慢车到达甲地后快车继续行驶时两车的距离与x的关系.解析:(1)线段AB所在直线的函数解析式为:y=kx+b,将(1.5,70)、(2,0)代入得:,解得:,所以线段AB所在直线的函数解析式为:y=-140x+280,当x=0时,y=280,所以甲乙两地之间的距离280千米.(2)设快车的速度为m千米/时,慢车的速度为n千米/时,由题意得:,解得:,所以快车的速度为80千米/时,所以.(3)如图所示.点评:函数图象与实际问题结合是近年中考的热点问题,这类问题通常是从函数图象中得出需要的信息,然后利用待定系数法求出一次函数解析式,再利用解析式解决问题.由图象提供解题信息,需要将“图形、图象语言”转化成“符号语言”,这要求同学具有多方位观察、多角度思维及触类旁通的能力.在本题中函数图象是自变量与函数值变化的最直观,最形象的反映,通过图象的特征确定函数的自变量与函数值之间的变化规律,其中最重要的环节是利用数形结合思想分析图象,理解图象,获取信息,理清各种量之间的关系,建立函数模型最终将问题解决.五、从表格中体验与获取例5(2010年辽宁本溪)自2010年6月1日起我省开始实施家电以旧换新政策,政府100台.这批货的进价若购进的电视和洗衣机数量相同,均为x台,这100台家电政府补贴为y元,商场所获利润为w元(利润=售价-进价).(1)请分别求出y与x、w与x的函数表达式.(2)若商场决定购进每种商品不少于30台,则有几种进货方案?怎样安排进货,才能获得最大利润,同时政府需要支付补贴多少钱?解析:(1)y=400x+1800×10%x +2400×10%(100-2x)=400x+180x +24000-480x=100x+24000.w=400x+300x +400(100-2x)=-100x+40000.(2)根据题意,得解得,30≤x≤35.又为x整数,故x=30,31,32,33,34,35 因此共有6种进货方案.对于w=-100x+40000,∵k=-100<0,30≤x≤35,∴当x取最小值30时,w有最大值.所以当购进30台电视,30台洗衣机,40台冰箱时商场将获得最大利润.因此,政府补贴为y=100×30+24000=27000(元).点评:此类题材往往取材于日常家电以旧换新政策的事件,由表格中的信息通过分析整理得到相关数据和函数关系式,并运用它解决一定的实际问题,解题的关键是读懂题目的要求和表格中数据的层次性,注意思考的层次性及其中蕴含的数量关系.六、从几何图形的运动中体验与获取例6(2010福建龙岩)如图,A、B、C、D为⊙O的四等分点,若动点P从点C出发,沿C→D→O→C路线作匀速运动,设运动时间为t,∠APB的度数为y,则y与t之间函数关系的大致图象是()A BC D解析:因为A、B、C、D为⊙O的四等分点,所以∠AOB=90°,当点P在弧CD上运动时,根据圆周角定理,知∠APB=∠AOB=45°,P在DO上运动时,∠APB逐渐增大到90°(此时P与O重合),之后在OC上运动时又逐渐减小.故选C.点评:近年来,有关数学元素(点、线、图、学具等)的运动变化(点P沿C→D→O →C路线运动,引起∠APB的变化),导致问题的结论或者改变,或者保持不变的几何问题,是中考数学的“亮点”,解这类试题需要发挥自己的想象力,整体地把握命题条件及相关几何图形的变换与操作,抓住在运动变化过程中暂时静止的某一瞬间(点O、点C、点D),不被“动”所迷,化动为静,进行观察联想,猜测,分析,归纳,运用数学眼光审视、分析、概括在动态中所出现的现象(∠APB的度数变化),运用数形结合的思想,揭示其数学本质及内在联系,构建出变量关系式及相应的函数图象.2011-01-11 人教网。
中考数学压轴题强化训练:图表信息题1.永州市内货摩(运货的摩托)的运输价格为:2千米内运费5元;路程超过2千米的,每超过1千米增加运费1元,那么运费y元与运输路程x千米的函数图象是()2.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程y与经过的时间x之间的函数关系.请根据图象填空:(1)________出发的早,早了_______小时;(2)_________先到达,先到________小时;(3)电动自行车的速度为_________km/h,汽车的速度为_________km/h.3.某企业在生产甲、乙两种节能产品时需用A、B两种原料,生产每吨节能产品所需原料的数量如下表所示:销售甲、乙两种产品的利润m(万元)与销售量n(吨)之间的函数关系如图所示.已知该企业生产了甲种产品x吨和乙种产品y吨,共用去A原料200吨.(1)写出x与y满足的关系式;(2)为保证生产的这批甲种、乙种产品售后的总利润不少于220万元,那么至少要用B原料多少吨?4.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O-A-B-C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为__________分钟,小聪返回学校的速度为_______千米/分钟.(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?5、某商店能过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如下表:第1个第2个第3个第4个…第n个x1x2=6 x3=72 x4…x n调整前单价x(元)y1y2=4 y3=59 y4…y n调整后单价x(元)已知这n个玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为_x,_y,猜想_y与_x的关系式,并写出推导出过.6、小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发.家到公园的距离为2500m,如图是小明和爸爸所走路程s(m)与步行时间t(min)的函数图象.(1)直接写出小明所走路程s与时间t的函数关系式;(2)小明出发多少时间与爸爸第三次相遇?(3)在速度不变的情况下,小明希望比爸爸早20min到达公园,则小明在步行过程中停留时间需作怎样调整?7、根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:OO打开排水孑L开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.8、甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同。
2022年春人教版九年级数学中考复习《与圆有关的最值问题》专题突破训练(附答案)1.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是BC、AB的中点,则MN长的最大值是()A.10B.5C.10D.202.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,P A⊥PB,且P A、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3B.4C.6D.83.如图,点P(3,4),⊙P半径为2,A(2.8,0),B(5.6,0),点M是⊙P上的动点,点C是MB的中点,则AC的最小值是()A.1.4B.C.D.2.64.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为()A.B.2﹣2C.2﹣2D.45.如图,在平面直角坐标系中,C(0,4),A(3,0),⊙A半径为2,P为⊙A上任意一点,E是PC的中点,则OE的最小值是()A.1B.C.2D.6.如图,AB是半圆O的直径,点D在半圆O上,AB=2,AD=10,C是弧BD上的一个动点,连接AC,过D点作DH⊥AC于H,连接BH,在点C移动的过程中,BH的最小值是()A.5B.6C.7D.87.如图,⊙O的半径为1,点A、P、B、C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形;(2)填空:①PC、PB、P A之间的数量关系是;②四边形APBC的最大面积为.8.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为.9.如图,△ABC为等边三角形,AB=2.若P为△ABC内一动点,且满足∠P AB=∠ACP,则线段PB长度的最小值为.10.如图,已知△ABC,外心为O,BC=10,∠BAC=60°,分别以AB,AC为腰向形外作等腰直角三角形△ABD与△ACE,连接BE,CD交于点P,则OP的最小值是.11.等腰直角△ABC中,∠C=90°,AC=BC=6,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为.12.如图,在半径为4,圆心角为90°的扇形OAB的上有一动点P,过P作PH⊥OA于H.设△OPH的内心为I,当点P在上从点A运动到点B时,内心I所经过的路径长为.13.如图,正方形ABCD的边长为4,点E是AB边上一个动点,点F是CD边上一个动点,且AE=CF,过点B作BG⊥EF于点G,连接AG,则AG长的最小值是.14.如图,已知等腰三角形ABC,∠ACB=120°且AC=BC=4,在平面内任作∠APB=60°,BP最大值为.15.如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,点D是半径为2的⊙A上一动点,点M是CD的中点,则BM的最大值是.16.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为.17.如图,在Rt△ABC中,∠ACB=90°,BC=5,AC=12,点D是边BC上的一动点,连接AD,作CE⊥AD于点E,连接BE,则BE的最小值为.18.如图,在Rt△ABC中,∠ACB=90°,BC=4,AC=10,点D是AC上的一个动点,以CD为直径作圆O,连接BD交圆O于点E,则AE的最小值为.19.如图,扇形AOB,且OB=4,∠AOB=90°,C为弧AB上任意一点,过C点作CD⊥OB于点D,设△ODC的内心为E,连接OE、CE.当点C从点B运动到点A时,内心E所经过的路径长为.20.如图,在正方形ABCD中,AB=4,E,F分别为BC,AD上的点,过点E,F的直线将正方形ABCD的面积分为相等的两部分,过点A作AG⊥EF于点G,连接DG,则线段DG的最小值为.参考答案1.解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=10,∴AD=20,∴MN=AD=10,故选:A.2.解:∵P A⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3、MQ=4,∴OM=5,又∵MP′=2,∴OP′=3,∴AB=2OP′=6,故选:C.3.解:如图,连接OP交⊙P于M′,连接OM,由勾股定理得:OP==5,∵OA=AB,CM=CB,∴AC=OM,∴当OM最小时,AC最小,∴当M运动到M′时,OM最小,此时AC的最小值=OM′=(OP﹣PM′)==,故选:B.4.解:如图∵AE⊥BE,∴点E在以AB为直径的半⊙O上,连接CO交⊙O于点E′,∴当点E位于点E′位置时,线段CE取得最小值,∵AB=4,∴OA=OB=OE′=2,∵BC=6,∴OC===2,则CE′=OC﹣OE′=2﹣2,故选:B.5.解:如图,连接AC,取AC的中点H,连接EH,OH.∵CE=EP,CH=AH,∴EH=P A=1,∴点E的运动轨迹是以H为圆心半径为1的圆,∵C(0,4),A(3,0),∴H(1.5,2),∴OH==2.5,∴OE的最小值=OH﹣EH=2.5﹣1=1.5,故选:B.6.解:如图,取AD的中点M,连接BD,HM,BM.∵DH⊥AC,∴∠AHD=90°,∴点H在以M为圆心,MD为半径的⊙M上,∴当M、H、B共线时,BH的值最小,∵AB是直径,∴∠ADB=90°,∴BD==12,BM===13,∴BH的最小值为BM﹣MH=13﹣5=8.故选:D.7.(1)在⊙O中,∠BAC与∠CPB是所对圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;故答案为:等边三角形;(2)①如图1,在PC上截取PD=AP,又∵∠APC=60°,∴△APD是等边三角形,∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.又∵∠APB=∠APC+∠BPC=120°,∴∠ADC=∠APB,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,又∵PD=AP,∴CP=BP+AP,故答案为:CP=BP+AP;②当点P为的中点时,四边形APBC的面积最大.理由如下,如图2,过点P作PE⊥AB,垂足为E.过点C作CF⊥AB,垂足为F.∵S△APB=AB•PE,S△ABC=AB•CF,∴S四边形APBC=AB•(PE+CF),当点P为的中点时,PE+CF=PC,PC为⊙O的直径∴此时四边形APBC的面积最大.又∵⊙O的半径为1,∴其内接正三角形的边长AB=,∴S四边形APBC=×2×=.,故答案为:.8.解:如图,∵AE⊥BE,∴点E在以AB为直径的半⊙O上,连接CO交⊙O于点E′,∴当点E位于点E′位置时,线段CE取得最小值,∵AB=4,∴OA=OB=OE′=2,∵BC=6,∴OC===2,则CE′=OC﹣OE′=2﹣2,故答案为:2﹣2.9.解:∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,AC=AB=2,∵∠P AB=∠ACP,∴∠P AC+∠ACP=60°,∴∠APC=120°,∴点P的运动轨迹是,当O、P、B共线时,PB长度最小,设OB交AC于D,如图所示:此时P A=PC,OB⊥AC,则AD=CD=AC=1,∠P AC=∠ACP=30°,∠ABD=∠ABC=30°,∴PD=AD•tan30°=AD=,BD=AD=,∴PB=BD﹣PD=﹣=.故答案为:.10.解:如图,∵∠BAD=∠CAE=90°,∴∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴∠ADC=∠ABE,∴∠PDB+∠PBD=90°,∴∠DPB=90°,∴点P在以BC为直径的圆上,∵外心为O,∠BAC=60°,∴∠BOC=120°,又BC=10,∴OH=,所以OP的最小值是5﹣.11.解:∵∠CHB=90°,BC是定值,∴H点是在以BC为直径的半圆上运动(不包括B点和C点),连接HO,则HO=BC=3.∵OA===3,当A、H、O三点共线时,AH最短,此时AH=AO﹣HO=3﹣3.故答案为3﹣3.12.解:如图,连接IP、IO、IA,∵I是△OPH的内心,∴∠IOP=∠IOA,∠IPO=∠IPH,∴∠PIO=180°﹣∠IPO﹣∠IOP,∵PH⊥OA,即∠PHO=90°,∴∠PIO=180°﹣(∠HOP+∠OPH)=180°﹣(180°﹣90°)=135°,∵在△POI和△AOI中,,∴△POI≌△AOI(SAS),∴∠AIO=∠PIO=135°,所以点I在以OA为弦,且所对的圆周角为135°的一段劣弧上;过点A、I、O三点作圆O′,如上图,连接O′O,O′A,在优弧OA取点P',连接P'A、P'O,∵∠AIO=135°,∴∠AP'O=180°﹣135°=45°,∵OA=4,∴O′O=OA=2,∴的长为:=π.,所以内心I所经过的路径长为π.故答案为π.13.解:设正方形的中心为O,可证EF经过O点.连接OB,取OB中点M,连接MA,MG,则MA,MG为定长,过点M作MH⊥AB于H.则MH=BH=1,AH=3,由勾股定理可得MA=,MG=OB=,∵AG≥AM﹣MG=﹣,当A,M,G三点共线时,AG最小=﹣,故答案为:﹣.14.解:∵∠ACB=120°,∠APB=60°,∴A、P、B、C四点共圆,∴当PB是圆的直径时最长,∴∠ABP=30°.过点C作AB的垂线交PB于点O,则点O即为圆心,∵∠ACB=120°且AC=BC=4,∴∠BCO=60°,∠ACB=30°,∴∠OBC=60°,∴△OBC是等边三角形,∴OC=BC=4,∴PB=2OC=8.故答案为:8.15.解:如图,取AC的中点N,连接MN,BN.∵∠ABC=90°,AB=4,BC=3,∴AC==5,∵AN=NC,∴BN=AC=,∵AN=NC,DM=MC,∴MN=AD=1,∴BM≤BN+NM,∴BM≤1+,∴BM≤,∴BM的最大值为.16.解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠P AB=∠PBC∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC﹣OP=5﹣3=2.∴PC最小值为2.故答案为2.17.解:∵CE⊥AD,∴∠AEC=90°,∴点E在以AC为直径的圆上,取AC的中点O,以AC为直径作⊙O,当O、E、B共线时,BE的长最小,Rt△OCB中,OC=OE=6,BC=5,∴OB==,∴BE=OB﹣OE=﹣6,则BE的最小值为:﹣6,故答案为:﹣6.18.解:连接CE,取BC的中点F,作直径为BC的⊙F,连接EF,AF,∵BC=4,∴CF=2,∵∠ACB=90°,AC=10,∴AF=,∵CD是⊙O的直径,∴∠CED=∠CEB=90°,∴E点在⊙F上,∵在D的运动过程中,AE≥AF﹣EF,且A、E、F三点共线时等号成立,∴当A、E、F三点共线时,AE取最小值为AF﹣EF=2﹣2.故答案为:2﹣2.19.解:如图,连接BE,∵点E是△ODC的内心,∴∠EOC=∠COD,∠ECO=∠OCD,∴∠EOC+∠ECO=(∠COD+∠DCO),∵DC⊥OB,∴∠CDO=90°,∴∠COD+∠DCO=90°,∴∠EOC+∠ECO=(∠COD+∠DCO)=45°,∴∠OEC=180°﹣45°=135°,∵OE平分∠COD,∴∠COE=∠BOE,∵OB=OC,OE=OE,∴△COE≌△BOE(SAS),∴∠CEO=∠OEB=135°,∴当点C从点B运动到点A时,内心E所经过的路径长为图中的长度,设△BOE的外接圆为⊙M,在优弧BNO上任取一点N,连接BN,ON,则∠N=45°,∴∠M=90°,∴BM=OM=OB=2∴的长==π,故答案为:π.20.解:连接AC,BD交于O,∵过点E、F的直线将正方形ABCD的面积分为相等的两部分,∴EF过点O,∵AG⊥EF,∴∠AGO=90°,∴点G在以AO为直径的半圆弧上,设AO的中点为M,连接DM交半圆弧于G,则此时,DG最小,∵四边形ABCD是正方形,AB=4,∴AC=8,AC⊥BD,∴AO=OD=AC=4,∴AM=OM=AO=2,∴DM==2,∴DG=2﹣2.故答案为:2﹣2.。
部编人教版九年级数学下册中考热点微专题汇编(含解答)目录一、反比例函数的图象与性质二、反比例函数与方程(组)和不等式(组)三、反比例函数与面积问题四、反比例函数与数形结合思想五、反比例函数与一元二次方程根的判别式六、反比例函数与图象变换七、反比例函数与特殊三角形八、相似形中比例式的证明技巧九、圆中的相似问题十、抛物线中的相似问题十一、三角函数与几何结合十二、三角函数在生活中的应用题十三、三视图与几何体实物转换识别、计算部编人教版九年级数学下册中考热点微专题一反比例函数的图象与性质重点强化一与一次函数或二次函数综合进行图象分布1.(2019•广西贺州•3分)已知ab<0,一次函数y=ax﹣b与反比例函数y=在同一直角坐标系中的图象可能()A.B.C.D.2.(2019•山东省德州市•4分)若函数y=与y=ax2+bx+c的图象如图所示,则函数y=kx+b的大致图象为()A.B.C.D.重点强化二 k=xy 的运用3.(2019▪黑龙江哈尔滨▪3分)点(﹣1,4)在反比例函数y =的图象上,则下列各点在此函数图象上的是( ) A .(4,﹣1) B .(﹣,1) C .(﹣4,﹣1) D .(,2)重点强化三 增减性的运用→ 比较坐标大小4.(2019•广西北部湾经济区•3分)若点(-1,y 1),(2,y 2),(3,y 3)在反比例函数y =(k <0)的图象上,则y 1,y 2,y 3的大小关系是( ) A. 132y y y 〉〉 B 321y y y 〉〉. C.123y y y 〉〉 D. 231y y y 〉〉重点强化四 确定k 的范围或值5..(2019•海南•3分)如果反比例函数y =(a 是常数)的图象在第一、三象限,那么a 的取值范围是( ) A .a <0 B .a >0 C .a <2 D .a >2参考答案1.解:若反比例函数y=经过第一、三象限,则a>0.所以b<0.则一次函数y=ax﹣b的图象应该经过第一、二、三象限;若反比例函数y=经过第二、四象限,则a<0.所以b>0.则一次函数y =ax﹣b的图象应该经过第二、三、四象限.故选项A正确;故选:A.2.解:根据反比例函数的图象位于二、四象限知k<0,根据二次函数的图象确知a>0,b<0,∴函数y=kx+b的大致图象经过二、三、四象限,故选:C.3.解:将点(﹣1,4)代入y=,∴k=﹣4,∴y=,∴点(4,﹣1)在函数图象上,故选:A.4.解:∵k<0,∴在每个象限内,y随x值的增大而增大,∴当x=-1时,y1>0,∵2<3,∴y2<y3<y1故选:C.k<0,y随x值的增大而增大,(-1,y1)在第二象限,(2,y2),(3,y3)在第四象限,即可解题;5.解:∵反比例函数y=(a是常数)的图象在第一、三象限,∴a﹣2>0,∴a>2.故选:D.部编人教版九年级数学下册中考热点微专题二反比例函数与方程(组)和不等式(组)重点强化一反比例函数与方程(组)的结合1.(2019•贵阳•10分)如图,已知一次函数y=﹣2x+8的图象与坐标轴交于A,B两点,并与反比例函数y=的图象相切于点C.(1)切点C的坐标是(2,4);(2)若点M为线段BC的中点,将一次函数y=﹣2x+8的图象向左平移m(m >0)个单位后,点C和点M平移后的对应点同时落在另一个反比例函数y=的图象上时,求k的值.重点强化二反比例函数与不等式(组)的结合2.(2019•湖南衡阳•3分)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx+b>的解集是()A.x<﹣1 B.﹣1<x<0C.x<﹣1或0<x<2 D.﹣1<x<0或x>2重点强化二反比例函数与方程和不等式综合题3.(2019•铜仁•12分)如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=﹣的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB的面积;(3)写出不等式kx+b>﹣的解集.参考答案1.解:(1)∵一次函数y=﹣2x+8的图象与反比例函数y=的图象相切于点C ∴﹣2x+8=∴x=2,∴点C坐标为(2,4)故答案为:(2,4);(2)∵一次函数y=﹣2x+8的图象与坐标轴交于A,B两点,∴点B(4,0)∵点M为线段BC的中点,∴点M(3,2)∴点C和点M平移后的对应点坐标分别为(2﹣m,4),(3﹣m,2)∴k=4(2﹣m)=2(3﹣m)∴m=1∴k=42.解:由函数图象可知,当一次函数y1=kx+b(k≠0)的图象在反比例函数y2=(m为常数且m≠0)的图象上方时,x的取值范围是:x<﹣1或0<x<2,∴不等式kx+b>的解集是x<﹣1或0<x<2故选:C.3.解:(1)∵一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=﹣的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3,∴3=﹣,解得:x=﹣4,y=﹣=﹣4,故B(﹣4,3),A(3,﹣4),把A,B点代入y=kx+b得:,解得:,故直线解析式为:y=﹣x﹣1;(2)y=﹣x﹣1,当y=0时,x=﹣1,故C点坐标为:(﹣1,0),则△AOB的面积为:×1×3+×1×4=;(3)不等式kx+b>﹣的解集为:x<﹣4或0<x<3.部编人教版九年级数学下册中考热点微专题三反比例函数与面积问题【方法技巧】利用21=∆S |k|解题,并能将矩形、四边形进行转化,注意k 符号。
1分最新九年级数学必考要点分类汇编精华版图表信息专题一、题型特点图象信息题是指由图形、图象(表)及易懂的文字说明来提供问题情景的一类问题,它是近几年所展示的一种新的题型。
这类问题题型多样,取材广泛,形式灵活,突出对考生收集、整理和加工信息能力的考查.是近几年中考的热点.解图象信息题的关键是“识图”和“用图”.解这类题的一般步骤是:(1)观察图象,获取有效信息;(2)对已获信息进行加工、整理,理清各变量之间的关系;(3)选择适当的数学工具,通过建模解决问题. 二、典型例题例1:2010年5月1日,举世瞩目的世界博览会在上海隆重开园,开幕式前,某旅行社组织甲、乙两个公司的部门主管赴上海观摩开幕式的盛况,其中预订的一类门票,二类门票的数量和所花费用如下表:根据上表给出的信息,分别求出一类门票和二类门票的单价.例2:因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援下图是两水库的蓄水量y (万米3)与时间x (天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题: (1)甲水库每天的放水量是多少万立方米?(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米? (3)求直线AD 的解析式.例3:一辆经营长途运输的货车在高速公路的A 处加满油后,以每小时80千米的速度匀速行驶,前往与A 处相距636千米的B 地,下表记录的是货车一次加满油后油箱内余油量y (升)与行驶时间x (时)之间的关系:(1)请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示y 与x 之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值范围) (2)按照(1)中的变化规律,货车从A 处出发行驶4.2小时到达C 处,求此时油箱内余油多少升? (3)在(2)的前提下,C 处前方18千米的D 处有一加油站,根据实际经验此货车在行驶中油箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D 处至少加多少升油,才能使货车到达B 地.(货车在D 处加油过程中的时间和路程忽略不计)例4:邮递员小王从县城出发,骑自行车到A 村投递,途中遇到县城中学的学生李明从A 村步行返校.小王在A 村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离s (千米)和小王从县城出发后所用的时间t (分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求: (1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案. (2)小王从县城出发到返回县城所用的时间. (3)李明从A 村到县城共用多长时间?随堂演练:1.某人从某处出发,匀速地前进一段时间后,由于有急事,接着更快地、匀速地沿原路返回原处,这一情境中,速度V与时间t的函数图象(不考虑图象端点情况)大致为( )2..在一次自行车越野赛中,甲乙两名选手行驶的路程y(千米)随时间x(分)变化的图象(全程)如图,根据图象判定下列结论不正确...的是( )A.甲先到达终点B.前30分钟,甲在乙的前面C.第48分钟时,两人第一次相遇D.这次比赛的全程是28千米3.某移动通讯公司提供了A、B两种方案的通讯费用y(元)与通话时间x(分)之间的关系,如图所示,则以下说法错误..的是()A.若通话时间少于120分,则A方案比B方案便宜20元B.若通话时间超过200分,则B方案比A方案便宜C.若通讯费用为了60元,则方案比A方案的通话时间多D.若两种方案通讯费用相差10元,则通话时间是145分或185分4.某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B地,乙车从B地直达A地,图是甲、乙两车间的距离y(千米)与乙车出发x(时)的函数的部分图像(1)A、B两地的距离是千米,甲车出发小时到达C地;(2)求乙车出发2小时后直至到达A地的过程中,y与x的函数关系式及x的取值范围,并在图中补全函数图像;(3)乙车出发多长时间,两车相距150千米5.某企业在生产甲、乙两种节能产品时需用A、B两种原料,生产每吨节能产品所需原料的数量如下表所示:销售甲、乙两种产品的利润m(万元)与销售量n(吨)之间的函数关系如图所示.已知该企业生产了甲种产品x吨和乙种产品y吨,共用去A原料200吨.(1)写出x与y满足的关系式;(2)为保证生产的这批甲种、乙种产品售后的总利润不少于220万元,那么至少要用B原料多少吨?6.国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足如图①所示的一次函数关系.随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益Z(元)会相应降低且Z与x之间也大致满足如图②所示的一次函数关系.(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元?(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y和每台家电的收益Z与政府补贴款额x之间的函数关系式;(3)要使该商场销售彩电的总收益w政府应将每台补贴款额x定为多少?并求出总收益w的最大值.(第2题图)乙甲))2。
专题一作图专题1.如图所示,小明利用一块平面镜使此时的太阳光水平射入隧道内。
请你通过作图画出平面镜并标出反射角的角度。
答案:如图所示解析:根据光的反射定律,反射角等于入射角,作反射光线和入射光线夹角的角平分线就是法线的位置;由图知,反射光线和入射光线的夹角为180°-60°=120°,则反射角等于入射角等于60°。
2.图中的A'B'是物体AB经过平面镜M后所成的像,请在图中画出该物体。
答案:如图所示3.如图所示,点光源S置于平面镜前,请画出点光源S的成像光路图。
答案:如图所示解析:从点光源S向镜面任意发出两条入射光线,入射点分别是O1、O2;根据光的反射定律,画出这两条入射光线的反射光线;将这两条反射光线反向延长,相交于点S',点S'即为点光源S在平面镜中所成的像。
4.如图所示,在平静的湖边上方有一盏路灯,潜水员在水下E处看到了路灯的像,图中A、B两点,其中一点是路灯的发光点,另一点是路灯的像点。
请你区分发光点、像点,在图中画出水下E处的潜水员看到路灯的光路图。
答案:如图所示解析:根据光从空气中斜射入水中时,折射角小于入射角,可知A为路灯的发光点,B为像点,连接EB与界面的交点即为入射点,光路图如图所示。
5.如图所示,平面镜垂直于凸透镜主光轴且在凸透镜左侧焦点上,请完成光路图。
答案:如图所示6.如图所示,请在图中画出力F的力臂l及物体所受重力的示意图。
答案:如图所示7.如图所示,某人在A处提起物体,请在图中画出最省力的绳子绕法。
答案:如图所示解析:从动滑轮上挂钩开始,依次绕过定滑轮和动滑轮,绳端回到人的手中,提升物体绳子条数为3,是最省力的绕法。
8.根据下面左侧电路实物图,在下面右侧方框内画出对应的电路图。
答案:如图所示9.设计一个病床呼叫电路。
要求:开关S1控制指示灯L1和电铃,开关S2控制指示灯L2和电铃。
请在图中连线,形成符合要求的完整电路图。
新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考冲刺:图表信息型问题—知识讲解(基础)【中考展望】图表信息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景非常广阔.用好题中提供的信息,有利于提高学生分析、解决简单实际问题的能力,同时也是培养现代公民素质的一条重要途径.【方法点拨】1.图象信息题题型特点:这类题是中考试卷中出现频率较高的题型之一,它是通过图象呈现问题中两个变量之间的数量关系,主要考查学生对函数思想和数形结合思想的掌握程度.解题策略:解答这类问题,在弄清题意的基础上,弄清两坐标轴所代表的含义,并对图象的形状、位置、发展变化趋势等捕捉提炼有效信息,解决相关问题.2.图表信息题图表信息题是指通过图表的形式提供信息,这些信息一般以数据形式居多,其主要考查学生对图表数据的分析、比较、判断和结论的归纳能力,要求学生有较强的定量分析和定性概括能力.【典型例题】类型一、图象信息题1.容积率t是指在房地产开发中建筑面积与用地面积之比,即MtS建筑面积用地面积,为充用地面积分利用土地资源,更好地解决人们的住房需求,并适当的控制建筑物的高度,一般容积率t不小于1且不大于8.一房地产开发商在开发某小区时,结合往年开发经验知,建筑面积M(m2)与容积率t的关系可近似地用如图(1)中的线段l来表示;1 m2建筑面积上的资金投入Q(万元)与容积率t的关系可近似地用如图(2)中的一段抛物线c来表示.(1)试求图(1)中线段l 的函数关系式,并求出开发该小区的用地面积; (2)求出图(2)中抛物线段c 的函数关系式. 【思路点拨】(1)因为图象过点(2,28000)和(6,80000),所以易求l 的表达式,注意t 的取值范围,当t=1时,S 用地面积=M 建筑面积;(2)根据图象经过点(1,0.18)和(4,0.09)且(4,0.09)为顶点可求c 的函数关系式. 【答案与解析】解:(1)设M =kt+b ,由图象上两点的坐标(2,28000)、(6,80000),可求得是k =13000,b =2000.所以线段l 的函数关系式为: M =13000t+2000(1≤t ≤8).由M t S =建筑面积用地面积知,当t =1时,S M =用地面积建筑面积.把t =1代入M =13000t+2000中,可得 M =15000.即开发该小区的用地面积是15 000 m 2.(2)根据图象特征可设抛物线段c 的函数关系式为Q =a(t-4)2+0.09,把点(1,0.18)的坐标代入,可求得1100a =. 所以219(4)100100Q t =-+2121(18)100254t t t =-+≤≤.【总结升华】图象信息题一般需要先由图象提供的条件确定出相应的函数关系式,然后再运用函数的性质解决问题,因而可以有效考查对函数思想和数形结合思想方法的掌握和应用情况.举一反三:【变式】甲、乙两人骑自行车前往A 地,他们距A 地的路程s(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个). (3)在什么时间段内乙比甲离A 地更近? 【答案】 解:(1)50202.5v ==甲(km/h), 60302v ==乙(km/h).(2)5020s t =-甲或6030s t =-乙(答对一个即可); (3)1<t <2.5.2.(2016•长春模拟)甲、乙两名自行车运动员在同一条直线公路上进行骑自行车训练,他们同时同地同向出发,乙在行驶过程中改变了一次速度,甲、乙两人各自在公路上训练时行驶路程y (千米)与行驶时间x (时)(0≤x ≤4)之间的函数图象如图所示. (1)求甲行驶的速度.(2)求直线AB 所对应的函数表达式. (3)直接写出甲、乙相距5千米时x 的值.【思路点拨】(1)由速度=路程÷时间,可得出甲行驶的速度;(2)设直线AB 所对应的函数表达式为y=kx+b ,将A 、B 点的坐标代入解析式可得出关于k 、b 的二元一次方程组,解出方程组即可得出结论;(3)找出各段线段所对应的函数表达式,根据图象做差可得出关于x 的一元一次方程,解方程即可得出结论. 【答案与解析】解:(1)120÷3=40(千米/时).∴甲行驶的速度为40千米/时.(2)设直线AB 所对应的函数表达式为y=kx+b ,把A (1,50)、B (3,120)代入,得,解得:.故直线AB 所对应的函数表达式为y=35x+15(1≤x ≤4). (3)设直线OA 所对应的函数表达式为y=k 1x ,把A (1,50)代入,得50=k 1,故直线OA 所对应的函数表达式为y=50x (0≤x ≤1),设直线OB所对应的函数表达式为y=k2x,把B(3,120)代入,得120=3k2,解得:k2=40.故直线OB所对应的函数表达式为y=40x(0≤x≤4).当0≤x≤4时,令50x﹣40x=5,解得x=0.5;当1<x≤3时,令35x+15﹣40x=5,解得x=2;当3<x≤4时,令40x﹣(35x+15)=5,解得x=4.综上可知:甲、乙相距5千米时x的值为0.5,2和4.故还需要0.2小时时间才能再次与小李相遇.【总结升华】本题考查了一次函数的应用、待定系数法求函数解析式以及解一元一次方程.举一反三:【变式】(讷河市校级期末)甲、乙两同学骑自行车从A地沿同一条路到B地,已知如图,甲做匀速运动,乙比甲先出发,他们离出发地距离s(km)和骑车行驶时间t(h)之间的函数关系如图,给出下列说法:(1)他们都骑车行驶了20km;(2)乙在途中停留了0.5h;(3)甲、乙两人同时到达目的地;(4)相遇后,甲的速度小于乙的速度.根据图象信息,以上说法错误的有()A.1个B.2个C.3个D.4个【答案】B;【解析】解:甲乙都是骑自行车从A地沿同一路线到离A地20千米的B地,所以(1)正确;乙出发0.5小时后停留了0.5小时,所以(2)正确;乙出发2.5小时到达目的地,而甲比乙早到0.5小时,所以(3)不正确;图象相交后甲的图象都在乙的上方,说明甲的速度比乙的要大,所以(4)不正确.故以上说法错误的有(3)、(4)2个.故选:B.类型二、图表信息题3.某市为了进一步改善居民的生活环境,园林处决定增加公园A和公园B的绿化面积.已知公园A、B分别有如图(1)(2)所示的阴影部分需铺设草坪,在甲、乙两地分别有同种草皮1608 m2和1200 m2出售,且售价一样.若园林处向甲、乙两地购买草皮,其路程和运费单价见下表:(注:运费单价指将每平方米草皮运送1千米所需的人民币)(1)分别求出公园A 、B 需铺设草坪的面积;(结果精确到1m 2)(2)请设计出总运费最省的草皮运送方案,并说明理由.【思路点拨】(1)公园A 草坪的面积=大矩形的面积-两条小道的面积+两条小道重叠部分的面积.公园B 草坪的面积=大矩形的面积-两个扇形的面积-扇形所夹的两个三角形的面积.(2)本题可根据总运费=公园A 向甲,乙两地购买草坪所需的费用+公园B 向甲乙两地购买草坪所需的费用,如果设总运费为y 元,公园A 向甲地购买草皮xm 2,那么根据上面的等量关系可得出y 与x 的关系式,然后根据甲乙两地出售的草坪的面积和公园A ,B 所需的草坪面积得出x 的取值范围,再根据函数的性质得出花钱最少的方案. 【答案与解析】解:(1)公园A 需铺设草坪的面积为S 1=62×32-62×2-32×2+2×2=1800(m 2).设图(4)中圆的半径为R ,易知,圆心到距形长边的距离为252,所以25cos302R =°,R =.公园B 需铺设草坪的面积为2221201256525221008(m )36022S π=⨯-⨯⨯-⨯≈. (2)设总运费为y 元,公园A 向甲地购买草皮x m 2,向乙地购买草皮(1800-x)m 2. 由于园林处需要购买的草皮面积总数为1800+1008=2808(m 2),甲、乙两地出售的草皮面积总数为:1608+1200=2808(m 2),所以,公园B向甲地购买草皮(1608-x)m2,向乙地购买草皮1200-(1800-x)=(x-600)m2.则01608,018001200,xx≤≤⎧⎨≤-≤⎩求得600≤x≤1608.由题意,得y=30×0.25x+22×0.3×(1800-x)+32×0.25×(1608-x)+30×0.3×(x-600)=1.9x+19344.因为k=1.9>0,所以y随x的增大而增大,所以,当x=600时,y=最小值1.9×600+19344=20484(元).即公园A在甲地购买600 m2,在乙地购买1800-600=1200(m2);公园B在甲地购买1608-600=1008(m2),运送草皮的总运费最省.【总结升华】本题是一个图表信息类的实际应用题,将代数知识、几何知识巧妙地融为一体,通过解答,可以有效考查圆的有关计算、一元一次不等组、一次函数等知识的综合运用,难度不大但涉及知识点丰富、技巧性强,是不可多得的一道好题.举一反三:【图表信息型问题例1】【变式】今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A、B两水库各调出14万吨水支援甲、乙两地抗旱.从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米.⑴设从A水库调往甲地的水量为x万吨,完成下表:⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)【答案】⑴(从左至右,从上至下)14-x ;15-x ;x-1 .⑵ y=50x+(14-x)30+60(15-x)+(x-1)45=5x+1275解不等式1≤x≤14所以x=1时y取得最小值y=5+1275=1280∴调运方案为A往甲调1吨,往乙调13吨;B往甲调14吨,不往乙调.4.某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制了如图所示的统计图.根据图中信息解答下列问题:(1)哪一种品牌粽子的销售量最大?(2)补全图中的条形统计图.(3)写出A品牌粽子在图(2)中所对应的圆心角的度数.(4)根据上述统计信息,明年端午节期间该商场对A、B、C三种品牌的粽子如何进货?请你提一条合理化的建议.【思路点拨】(1)从扇形统计图中得出C品牌的销售量最大,为50%;(2)总销售量=1200÷50%=2400个,B品牌的销售量=2400-1200-400=800个,补全图形即可;(3)A品牌粽子在图中所对应的圆心角的度数=360°×(400÷2400)=60°;(4)由于C品牌的销售量最大,所以建议多进C种.【答案与解析】解:(1)从扇形统计图中得出C品牌的销售量最大,为50%;(2)总销售量=1200÷50%=2400个,B品牌的销售量=2400-1200-400=800个,(3)A品牌粽子在图中所对应的圆心角的度数=360°×(400÷2400)=60°;(4)建议:多进一些C品牌的粽子.【总结升华】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.类型三、信息综合题5.如图,A ,B ,C ,D 为圆O 的四等分点,动点P 从圆心O 出发,沿O-C-D-O 路线作匀速运动,设运动时间为x (s ),∠APB=y (°),右图函数图象表示y 与x 之间函数关系,则点M 的横坐标应为( )A.2B.2π C. 12π+ D. 无法确定 【思路点拨】通过图象得到函数是随自变量的增大,知道函数值是增大还是减小. 【答案与解析】解:根据题意,可知点P 从圆心O 出发,运动到点C 时,∠APB 的度数由90°减小到45°,C 点的横坐标为1,CD 弧的长度为12π. 点M 是∠APB 由稳定在45°,保持不变到增大的转折点; 另点O 的运动有周期性;结合图象,可得答案为C . 故选C 【总结升华】正确理解函数图象横纵坐标表示的意义,理解问题的过程.。
九年级上册数学专题复习(九个专题)专题一 解一元二次方程1、直接开方解法方程(1)2(6)30x -+= (2) 21(3)22x -=2、用配方法解方程(1)2210x x +-= (2) 2430x x -+=3、用公式法解方程(1)03722=+-x x (2) 210x x --=4、用因式分解法解方程(1)3(2)24x x x -=- (2)22(24)(5)x x -=+5、用十字相乘法解方程(1)2900x x --= (2)22100x x +-=专题二 化简求值1、先化简,再求值:x2+y2-2xy x -y÷(x y -yx ),其中x =2+1,y =2-1.2、先化简:先化简:12164--÷⎪⎭⎫ ⎝⎛---x x x x x ,再任选一个你喜欢的数x 代入求值.专题三 根与系数的关系1、已知关于x 的一元二次方程24280x x k --+=有两个实数根1x ,2x . (1)求k 的取值范围;(2)若33121224x x x x +=,求k 的值.2、已知关于x 的一元二次方程26250x x a -++=有两个不相等的实数根1x ,2x . (1)求a 的取值范围;(2)若221212x x x x +-≤30,且a 为整数,求a 的值.3、已知关于x 的方程0)1()12(2=-+--m m x m x ,(1)求证:不论m 为何值,方程总有两个不相等的实数根;(2)若方程的两实数根分别为1x ,2x ,且满足11)(21221-⋅=-x x x x ,求实数m 的值.专题四 统计与概率1、现有A 、B 、C 三个不透明的盒子,A 盒中装有红球、黄球、蓝球各1个,B 盒中装有红球、黄球各1个,C 盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A 、B 、C 三个盒子中任意摸出一个球.(1)从A 盒中摸出红球的概率为_________;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.2、现有A 、B 两个不透明袋子,分别装有3个除颜色外完全相同的小球.其中,A 袋装有2个白球,1个红球;B 袋装有2个红球,1个白球.(1)将A 袋摇匀,然后从A 袋中随机取出一个小球,求摸出小球是白色的概率; (2)小华和小林商定了一个游戏规则:从摇匀后的A ,B 两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜.请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平.3、2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.专题五圆知识点一:证切线,求半径1、如图所示,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为 .2、如图所示,AB 是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是 .3、如图所示,AB为半圆O的直径,C为半圆O上一点,AD与过点C的切线垂直,垂足为D,AD交半圆O于点E.(1)求证:AC平分∠DAB;(2)若AE=2DE,试判断以O,A,E,C为顶点的四边形的形状,并说明理由.4、如图所示,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且∠CDE=12∠BAC.(1)求证:DE是⊙O的切线;(2)若AB=3BD,CE=2,求⊙O的半径.5、如图所示,AB是⊙O的直径,OC⊥AB,弦CD与OB交于点F,过圆心O作OG∥BD,交过点A所作⊙O的切线于点G,连结GD并延长与AB的延长线交于点E.(1)求证:GD是⊙O的切线;(2)若OF:OB=1:3,⊙O的半径为3,求AG的长.知识点二求不规则图形的阴影面积1、如图所示,AC是半圆O的一条弦,以弦AC为折线将弧AC折叠后过圆心O,⊙O的半径为2,则圆中阴影部分的面积为.EDBOAC2、如图所示,在Rt △ABC 中,∠ABC =90°,AB =23,BC =2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D,则图中阴影部分的面积为___________.3、如图所示,∠AOB =90°,∠B =30°,以点O 为圆心,OA 为半径作弧交AB 于点A,点C,交OB 于点D,若OA =3,则阴影部分的面积为________.4、如图所示,AB 为⊙O 的直径,AC 平分∠BAE 交⊙O 于点C ,AE ⊥EC 于点E .(1)试判断CE 与⊙O 的位置关系,并说明理由;(2)若D 为AC 的中点,⊙O 的半径为2,求图中阴影部分的面积.专题六 二次函数实际应用1、一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg ,销售单价不低于120元/kg .且不高于180元/kg ,经销一段时间后得到如下数据:销售单价x (元/kg ) 120 130 ... 180 每天销量y (kg ) 100 95 (70)设y 与x 的关系是我们所学过的某一种函数关系.(1)直接写出y 与x 的函数关系式,并指出自变量x 的取值范围; (2)当销售单价为多少时,销售利润最大?最大利润是多少?2、传统的端午节即将来临,我县某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y 只,y 与x 满足如下关系:⎩⎨⎧≤≤+≤≤=)()(20680206034x x x x y ,请解答以下问题:(1)李明第几天生产的粽子数量为280只?(2)如图所示,设第x 天生产的每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画,求p 与x 之间的函数关系式;(3)若李明第x 天创造的利润为w 元,求w 与x 之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)3、如图所示,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有两道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,求围成的最大面积.专题七反比例函数的相关计算1、如图4,一次函数y=-x+3的图像与反比例函数y=kx(k≠0)在第一象限的图像交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为6,求点P的坐标.2、已知反比例函数y=5mx(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;(2)若其图象与一次函数y=-x+1图象的一个交点的纵坐标是3,求m的值.3、如图所示,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数kyx(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,则k值为()A.4B.3C.2D.1专题八 三角形全等与旋转的综合应用1、如图1所示,已知△ABC ≌△EBD ,∠ACB =∠EDB =90°,点D 在AB 上,连接CD 并延长交AE 于点F .(1)猜想:线段AF 与EF 的数量关系为______;(2)探究:若将图1所示的△EBD 绕点B 顺时针方向旋转,当∠CBE 小于180°时,得到图2所示,连接CD 并延长交AE 于点F ,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;(3)拓展:图1中所示,过点E 作EG ⊥CB ,垂足为点G .当∠ABC 的大小发生变化,其它条件不变时,若∠EBG =∠BAE ,BC =6,直接写出AB 的长.F EDC BAFDEBC A(图1) (图2)专题九 二次函数的综合应用1、已知抛物线22y ax ax c =-+过点A (-1,0)和C (0,3),与x 轴交于另一点B ,顶点为D . (1)求抛物线的解析式,并写出D 点的坐标;(2)如图1所示,E 为线段BC 上方的抛物线上一点,EF ⊥BC ,垂足为F ,EM ⊥x 轴,垂足为M ,交BC 于点G .当BG=CF 时,求△EFG 的面积;(3)如图2所示,AC 与BD 的延长线交于点H ,在x 轴上方的抛物线上是否存在点P ,使∠OPB =∠AHB ?若存在,求出点P 的坐标;若不存在,请说明理由.xyCH D BA O yx M D CG FBA O E(图1) (图2)2.(满分3+4+5=12分)如图所示,抛物线y=ax 2+bx-3与轴交于A ,B 两点(A 点在B 点左侧),A(-1,0),B(3,0),直线L 与抛物线交于,两点,其中点的横坐标为. (1)求抛物线的函数解析式; (2)是线段AC 上的一个动点,过点作y 轴的平行线交抛物线于点,求线段PE 长度的最大值;(3)点是抛物线上的动点,在x 轴上是否存在点,使,,,这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点坐标;如果不存在,请说明理由.。
专题一 图表信息
专题提升演练
1.如图,根据程序计算函数值,若输入的x值为,则输出的函数值为( )
A. B. C. D.
2.如图,AB为半圆的直径,点P为AB上一动点,动点P从点A出发,沿AB匀速运动到点B,运动时间为t,分别以AP和PB为直径作半圆,则图中阴影部分的面积S与时间t之间的函数图象大致为( )
3.如图是小明设计的用手电筒来测量某古城墙高度的示意图.在点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=1.2 m, BP=1.8 m,PD=12 m,则该古城墙的高度是( )
B.8 m
C.18 m
D.24 m
4.某种蓄电池的电压为定值,使用此电源时,电流I(单位:A)与可变电阻R(单位:Ω)之间的函数关系如图,当用电器的电流为10 A时,用电器的可变电阻阻值为 Ω.
.6
5.为鼓励居民节约用电,某省试行阶梯电价收费制,具体执行方案如下:
档次每户每月用电数/度执行电价/(元/度)
第一档小于等于2000.55
第二档大于200小于4000.6
第三档大于等于4000.85
例如:一户居民七月用电420度,则需缴电费420×0.85=357(元).
某户居民五月、六月共用电500度,缴电费290.5元.已知该用户六月用电量大于五月,且五月、六月的用电量均小于400度.问该户居民五月、六月各用电多少度?
500度,所以每个月用电量不可能都在第一档.
假设该用户五月、六月每月用电均超过200度,
此时的电费共计:500×0.6=300(元),
而300>290.5,不符合题意.
又因为六月用电量大于五月,所以五月用电量在第一档,六月用电量在第二档.
设五月用电x度,六月用电y度,
根据题意,得
故该户居民五月、六月各用电190度、310度.
6.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图
①和图②.请根据相关信息,解答下列问题:
图①
图②
(1)图①中a的值为 ;
.
(2)∵
=1.61,
∴这组数据的平均数是1.61.
∵在这组数据中,1.65出现了6次,出现的次数最多,
∴这组数据的众数为1.65.
∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.60,又=1.60,
∴这组数据的中位数为1.60.
7.实验数据显示,一般成人喝半斤低度白酒后,1.5时内其血液中酒精含量y(单位:毫克/百毫升)与时间x(单位:时)的关系可近似地用二次函数y=-200x2+400x刻画;1.5时后(包括1.5时)的y与x可近似地
用反比例函数y=(k>0)刻画(如图).
(1)根据上述数学模型计算:
①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?
②当x=5时,y=45,求k的值.
(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.
①当x=-=-=1时,y取得最大值,此时y=200.
所以喝酒后1时血液中的酒精含量达到最大值,最大值为200毫克/百毫升.
②把x=5,y=45代入反比例函数y=,解得k=225.
(2)把y=20代入反比例函数y=,解得x=11.25.
喝完酒经过11.25时为第二天早上7:15.
所以第二天早上7:15以后才可以驾车,7:00不能驾车去上班.。