2015年中考数学试卷
- 格式:doc
- 大小:633.50 KB
- 文档页数:13
2015年山东省济南市中考数学试卷一、选择题(共15小题,每小题3分,满分45分,每小题只有一个选项符合题意)1.(3分)(2015•济南)﹣6的绝对值是()A. 6B.﹣6C.±6 D.考点:绝对值.分析:根据绝对值的概念可得﹣6的绝对值是数轴表示﹣6的点与原点的距离.解答:解:﹣6的绝对值是6,故选:A.点评:此题主要考查了绝对值,关键是掌握绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值.2.(3分)(2015•济南)新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A. 0.109×105 B. 1.09×104 C. 1.09×103 D. 109×102考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将10900用科学记数法表示为:1.09×104.故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2015•济南)如图,OA⊥OB,∠1=35°,则∠2的度数是()A. 35°B. 45°C. 55°D. 70°考点:余角和补角;垂线.分析:根据两个角的和为90°,可得两角互余,可得答案.解答:解:∵OA⊥OB,∴∠AOB=90°,即∠2+∠1=90°,∴∠2=55°,故选:C.点评:此题考查了余角的知识,掌握互余两角之和等于90°是解答本题的关键.4.(3分)(2015•济南)下列运算不正确的是()A.a2•a=a3B.(a3)2=a6C.(2a2)2=4a4D.a2÷a2=a考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;积的乘方,先把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减;对各选项分析判断即可得解.解答:解:A、a2•a=a2+1=a3,故本选项错误;B、(a3)2=a3×2=a6,故本选项错误;C、(2a2)2=22•(a2)2=4a4,故本选项错误;D、应为a2÷a2=a2﹣2=a0=1,故本选项正确.故选D.点评:本题考查了同底数幂的乘法,积的乘方的性质,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.5.(3分)(2015•济南)如图,一个几何体是由两个小正方体和一个圆锥构成,其主视图是()A. B.C.D.考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:解:从正面看第一层两个小正方形,第二层右边一个三角形,故选:B.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意圆锥的主视图是三角形.6.(3分)(2015•济南)若代数式4x﹣5与的值相等,则x的值是()A. 1 B.C.D. 2考点:解一元一次方程.专题:计算题.分析:根据题意列出方程,求出方程的解即可得到x的值.解答:解:根据题意得:4x﹣5= ,去分母得:8x﹣10=2x﹣1,解得:x= ,故选B.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.7.(3分)(2015•济南)下列图标既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称的概念对各选项分析判断即可得解.解答:解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、既是轴对称图形又是中心对称图形,故本选项正确;D、既不是轴对称图形,也不是中心对称图形,故本选项错误.故选C.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.(3分)(2015•济南)济南某中学足球队的18名队员的年龄如表所示:这18名队员年龄的众数和中位数分别是()A. 13岁,14岁B. 14岁,14岁C. 14岁,13岁D. 14岁,15岁考点:众数;中位数.分析:首先找出这组数据中出现次数最多的数,则它就是这18名队员年龄的众数;然后根据这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,判断出这18名队员年龄的中位数是多少即可.解答:解:∵济南某中学足球队的18名队员中,14岁的最多,有6人,∴这18名队员年龄的众数是14岁;∵18÷2=9,第9名和第10名的成绩是中间两个数,∵这组数据的中间两个数分别是14岁、14岁,∴这18名队员年龄的中位数是:(14+14)÷2=28÷2=14(岁)综上,可得这18名队员年龄的众数是14岁,中位数是14岁.故选:B.点评:(1)此题主要考查了众数的含义和求法,要熟练掌握,解答此题的关键是要明确:①一组数据中出现次数最多的数据叫做众数.②求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.(2)此题还考查了中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据按照从小到大(或从大到小)的顺序排列,①如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.②如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.(3分)(2015•济南)如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,在向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为()A.(4,3)B.(2,4)C.(3,1)D.(2,5)考点:坐标与图形变化-平移.分析:根据平移规律横坐标,右移加,左移减;纵坐标,上移加,下移减进行计算即可.解答:解:由坐标系可得A(﹣2,6),将△ABC先向右平移4个单位长度,在向下平移1个单位长度,点A的对应点A1的坐标为(﹣2+4,6﹣1),即(2,5),故选:D.点评:此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握点的坐标的变化规律.10.(3分)(2015•济南)化简﹣的结果是()考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式= = =m+3.故选A.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.11.(3分)(2015•济南)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<1考点:一次函数与一元一次不等式.分析:观察函数图象得到当x>1时,函数y=x+b的图象都在y=kx+4的图象上方,所以关于x的不等式x+b>kx+4的解集为x>1.解答:解:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选:C.点评:本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.12.(3分)(2015•济南)将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A. 10cm B.13cm C. 14cm D.16cm考点:一元二次方程的应用.专题:几何图形问题.分析:设正方形铁皮的边长应是x厘米,则做成没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据长方体的体积计算公式列方程解答即可.解答:解:正方形铁皮的边长应是x厘米,则没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据题意列方程得,(x﹣3×2)(x﹣3×2)×3=300,解得x1=16,x2=﹣4(不合题意,舍去);答:正方形铁皮的边长应是16厘米.故选:D.点评:此题主要考查长方体的体积计算公式:长方体的体积=长×宽×高,以及平面图形折成立体图形后各部分之间的关系.13.(3分)(2015•济南)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、CD于M、N两点.若AM=2,则线段ON的长为()A.B.C. 1 D.考点:相似三角形的判定与性质;角平分线的性质;正方形的性质.专题:计算题.分析:===2+=+1=2+AM×,==2+=(+2AC=+2=2+,∴=,即点评:本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.14.(3分)(2015•济南)在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是()A.(0,0)B.(0,2)C.(2,﹣4)D.(﹣4,2)考点:规律型:点的坐标.分析:设P1(x,y),再根据中点的坐标特点求出x、y的值,找出规律即可得出结论.解答:解:设P1(x,y),∵点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,∴=1,=﹣1,解得x=2,y=﹣4,∴P1(2,﹣4).同理可得,P1(2,﹣4),P2(﹣4,2),P3(4,0),P4(﹣2,﹣2),P5(0,0),P6(0,2),P7(2,﹣4),…,…,∴每6个数循环一次.∵=335…5,∴点P2015的坐标是(0,0).故选A.点评:本题考查的是点的坐标,根据题意找出规律是解答此题的关键.15.(3分)(2015•济南)如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x 轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣2<m<B.﹣3<m<﹣C.﹣3<m<﹣2 D.﹣3<m<﹣考点:抛物线与x轴的交点;二次函数图象与几何变换.分析:首先求出点A和点B的坐标,然后求出C2解析式,分别求出直线y=x+m与抛物线C2相切时m的值以及直线y=x+m过点B时m的值,结合图形即可得到答案.解答:解:令y=﹣2x2+8x﹣6=0,即x2﹣4x+3=0,解得x=1或3,则点A(1,0),B(3,0),由于将C1向右平移2个长度单位得C2,则C2解析式为y=﹣2(x﹣4)2+2(3≤x≤5),当y=x+m1与C2相切时,令y=x+m1=y=﹣2(x﹣4)2+2,即2x2﹣15x+30+m1=0,△=﹣8m1﹣15=0,解得m1=﹣,当y=x+m2过点B时,即0=3+m2,m2=﹣3,当﹣3<m<﹣时直线y=x+m与C1、C2共有3个不同的交点,故选D.点评:本题主要考查抛物线与x轴交点以及二次函数图象与几何变换的知识,解答本题的关键是正确地画出图形,利用数形结合进行解题,此题有一定的难度.二、填空题(共6小题,每小题3分,满分18分)16.(3分)(2015•济南)分解因式:xy+x=x(y+1).考点:因式分解-提公因式法.分析:直接提取公因式x,进而分解因式得出即可.解答:解:xy+x=x(y+1).故答案为:x(y+1).点评:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.17.(3分)(2015•济南)计算:+(﹣3)0=3.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用算术平方根定义计算,第二项利用零指数幂法则计算即可得到结果.解答:解:原式=2+1=3.故答案为:3.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(3分)(2015•济南)如图,P A是⊙O的切线,A是切点,P A=4,OP=5,则⊙O的周长为6π(结果保留π).考点:切线的性质;勾股定理.分析:连接OA,根据切线的性质求出∠OAP=90°,根据勾股定理求出OA即可.解答:解:连接OA,∵P A是⊙O的切线,A是切点,∴∠OAP=90°,在Rt△OAP中,∠OAP=90°,P A=4,OP=5,由勾股定理得:OA=3,则⊙O的周长为2π×3=6π,故答案为:6π.点评:本题考查了切线的性质,勾股定理的应用,解此题的关键是能正确作出辅助线,并求出∠OAP=90°,注意:圆的切线垂直于过切点的半径.19.(3分)(2015•济南)小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖的除颜色外完全相同,它最终停留在黑色方砖上的概率是.考点:几何概率.分析:根据几何概率的求法:最终停留在黑色的方砖上的概率就是黑色区域的面积与总面积的比值.解答:解:观察这个图可知:黑色区域(4块)的面积占总面积(9块)的,则它最终停留在黑色方砖上的概率是;故答案为:.点评:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.20.(3分)(2015•济南)如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数y= (x<0)的图象上,则k=﹣4 .考点:反比例函数图象上点的坐标特征;等边三角形的性质.分析:过点B作BD⊥x轴于点D,因为△AOB是等边三角形,点A的坐标为(﹣4,0)所∠AOB=60°,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式;解答:解:过点B作BD⊥x轴于点D,∵△AOB是等边三角形,点A的坐标为(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD= OB=2,BD=OB•sin60°=4×=2 ,∴B(﹣2,2 ),∴k=﹣2×2 =﹣4 ;故答案为﹣4 .点评:本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中.21.(3分)(2015•济南)如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD 于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距离是2;③tan∠DCF=;④△ABF的面积为.其中一定成立的是①②③(把所有正确结论的序号都填在横线上).考点:四边形综合题.分析:利用SAS证明△ABF与△CBF全等,得出①正确,根据含30°角的直角三角形的性质得出点E到AB的距离是2,得出②正确,同时得出;△ABF的面积为得出④错误,得出tan∠DCF= ,得出③正确.解答:解:∵菱形ABCD,∴AB=BC=6,∵∠DAB=60°,∴AB=AD=DB,∠ABD=∠DBC=60°,在△ABF与△CBF中,∴△ABF≌△CBF(SAS),∴①正确;过点E作EG⊥AB,过点F作MH⊥CD,MH⊥AB,如图:∵CE=2,BC=6,∠ABC=120°,∴BE=6﹣2=4,∵EG⊥AB,∴EG= 2,∴点E到AB的距离是2,故②正确;∵BE=4,EC=2,∴S△BFE:S△FEC=4:2=2:1,∴S△ABF:S△FBE=3:2,∴△ABF的面积为= ,故④错误;∵∵,∴=,∵,∴FM=,∴DM=,∴CM=DC﹣DM=6﹣,∴tan∠DCF=,故③正确;故答案为:①②③点评:此题考查了四边形综合题,关键是根据菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质分析.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.三、解答题(共7小题,满分57分)22.(7分)(2015•济南)(1)化简:(x+2)2+x(x+3)(2)解不等式组:.考点:整式的混合运算;解一元一次不等式组.分析:(1)利用完全平方公式以及单项式乘以多项式运算法则化简求出即可;(2)分别解不等式,进而得出其解集即可.解答:解:(1)(x+2)2+x(x+3)=x2+4x+4+x2+3x=2x2+7x+4;(2)解①得:x≥2,解②得:x≥﹣1,故不等式组的解为:x≥2.点评:此题主要考查了整式的混合运算以及解一元一次不等式组,正确掌握运算法则得出不等式组的解集是解题关键.23.(7分)(2015•济南)(1)如图,在矩形ABCD中,BF=CE,求证:AE=DF;(2)如图,在圆内接四边形ABCD中,O为圆心,∠BOD=160°,求∠BCD的度数.考点:矩形的性质;全等三角形的判定与性质;圆周角定理;圆内接四边形的性质.分析:(1)根据矩形的性质得出AB=CD,∠B=∠C=90°,求出BE=CF,根据SAS推出△ABE≌△DCF即可;(2)根据圆周角定理求出∠BAD,根据圆内接四边形性质得出∠BCD+∠BAD=180°,即可求出答案.解答:(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠B=∠C=90°,∵BF=CE,∴BE=CF,在△ABE和△DCF中∴△ABE≌△DCF,∴AE=DF;(2)解:∵∠BOD=160°,∴∠BAD= ∠BOD=80°,∵A、B、C、D四点共圆,∴∠BCD+∠BAD=180°,∴∠BCD=100°.点评:本题考查了全等三角形的性质和判定,矩形的性质,圆周角定理,圆内接四边形性质的应用,解(1)小题的关键是求出△ABE≌△DCF,解(2)小题的关键是求出∠BAD的度数和得出∠BCD+∠BAD=180°.24.(8分)(2015•济南)济南与北京两地相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.考点:分式方程的应用.分析:首先设普通快车的速度为xkm/时,则高铁列车的平均行驶速度是3xkm/时,根据题意可得等量关系:乘坐普通快车所用时间﹣乘坐高铁列车所用时间=4h,根据等量关系列出方程,再解即可.解答:解:设普通快车的速度为xkm/时,由题意得:﹣=4,解得:x=80,经检验:x=80是原分式方程的解,3x=3×80=240,答:高铁列车的平均行驶速度是240km/时.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意分式方程不能忘记检验.25.(8分)(2015•济南)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:(1)计算m=40;(2)在扇形统计图中,“其他”类所占的百分比为15%;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.考点:列表法与树状图法;频数(率)分布表;扇形统计图.分析:(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.解答:解:(1)∵喜欢散文的有10人,频率为0.25,∴m=10÷0.25=40;(2)在扇形统计图中,“其他”类所占的百分比为×100%=15%,故答案为:15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.26.(9分)(2015•济南)如图1,点A(8,1)、B(n,8)都在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴于C,过点B作BD⊥y轴于D.(1)求m的值和直线AB的函数关系式;(2)动点P从O点出发,以每秒2个单位长度的速度沿折线OD﹣DB向B点运动,同时动点Q从O点出发,以每秒1个单位长度的速度沿折线OC向C点运动,当动点P运动到D时,点Q也停止运动,设运动的时间为t秒.①设△OPQ的面积为S,写出S与t的函数关系式;②如图2,当的P在线段OD上运动时,如果作△OPQ关于直线PQ的对称图形△O′PQ,是否存在某时刻t,使得点Q′恰好落在反比例函数的图象上?若存在,求Q′的坐标和t的值;若不存在,请说明理由.考点:反比例函数综合题.分析:(1)由于点A(8,1)、B(n,8)都在反比例函数y=的图象上,根据反比例函数的意义求出m,n,再由待定系数法求出直线AB的解析式;(2)①由题意知:OP=2t,OQ=t,由三角形的面积公式可求出解析式;②通过三角形相似,用t的代数式表示出O′的坐标,根据反比例函数的意义可求出t值.解答:解:(1)∵点A(8,1)、B(n,8)都在反比例函数y=的图象上,∴m=8×1=8,∴y= ,∴8=,即n=1,设AB的解析式为y=kx+b,=的图象上,,即解得:.=t∴=,∴,=t=±,==27.(9分)(2015•济南)如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M 为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD=,其他条件不变,求线段AM的长.考点:=,=a =,=.28.(9分)(2015•济南)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y 轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.,当的坐标代入抛物线的解析式得:.m×﹣=,.。
2015年安徽省初中毕业学业考试数学(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.在-4,2,-1,3这四个数中,比-2小的数是( )A.-4B.2C.-1D.32.计算×的结果是( )A. B.4 C. D.23.移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A.1.62×104B.162×106C.1.62×108D.0.162×1094.下列几何体中,俯视图是矩形的是( )A B C D5.与1+最接近的整数是( )A.4B.3C.2D.16.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的年平均增长率为x,则下列方程正确的是( )A.1.4(1+x)=4.5B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5D.1.4(1+x)+1.4(1+x)2=4.57.某校九年级(1)班全体学生2015年初中毕业体育学业考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误..的是( )A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分8.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有( )A.∠ADE=20°B.∠ADE=30°C.∠ADE=∠ADCD.∠ADE=∠ADC9.如图,矩形ABCD中,AB=8,BC=4,点E在AB上,点F在CD上,点G,H在对角线AC上,若四边形EGFH是菱形,则AE的长是( )A.2B.3C.5D.610.如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c的图象可能为( )二、填空题(本大题共4小题,每小题5分,满分20分)11.-64的立方根是.12.如图,点A,B,C在☉O上,☉O的半径为9,的长为2π ,则∠ACB的大小是.13.按一定规律排列的一列数:21,22,23,25,28,213,…,若x,y,z表示这列数中的连续三个数,猜测x,y,z满足的关系式是.14.已知实数a,b,c满足a+b=ab=c,有下列结论:①若c≠0,则+=1;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a,b,c中只有两个数相等,则a+b+c=8.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)+)·,其中a=-.15.先化简,再求值:(-16.解不等式:>1--.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1(点A,B,C的对应点分别为点A1,B1,C1);(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2(点A,C的对应点分别为点A2,C2),并以它为一边作一个格点三角形A2B2C2,使A2B2=C2B2.。
2015年厦门市初中毕业及高中阶段各类学校招生考试数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,27小题,试卷共4页,另有答题卡. 2.答案一律写在答题卡上,否则不能得分. 3.可直接用2B 铅笔画图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1. 反比例函数y =1x 的图象是A . 线段B .直线C .抛物线D .双曲线2. 一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有 A.1种 B. 2种 C. 3种 D .6种3. 已知一个单项式的系数是2,次数是3,则这个单项式可以是 A. -2xy 2 B. 3x 2 C. 2xy 3 D. 2x 34. 如图1,△ABC 是锐角三角形,过点C 作CD ⊥AB ,垂足为D ,则点C 到直线AB 的距离是 A. 线段CA 的长 B.线段CD 的长 C. 线段AD 的长 D.线段AB 的长 5. 2—3可以表示为A .22÷25B .25÷22C .22×25D .(-2)×(-2)×(-2)6.如图2,在△ABC 中,∠C =90°,点D ,E 分别在边AC ,AB 上, 若∠B =∠ADE ,则下列结论正确的是 A .∠A 和∠B 互为补角 B . ∠B 和∠ADE 互为补角 C .∠A 和∠ADE 互为余角 D .∠AED 和∠DEB 互为余角图27. 某商店举办促销活动,促销的方法是将原价x 元的衣服以(45x -10) 元出售,则下列说法中,能正确表达该商店促销方法的是A. 原价减去10元后再打8折B. 原价打8折后再减去10元C. 原价减去10元后再打2折D. 原价打2折后再减去10元8. 已知sin6°=a ,sin36°=b ,则sin 2 6°=A. a 2B. 2aC. b 2 D . b9.如图3,某个函数的图象由线段AB 和BC 组成,其中点 A (0,43),B (1,12),C (2,53),则此函数的最小值是A .0B .12C .1D .53 图310.如图4,在△ABC 中,AB =AC ,D 是边BC 的中点,一个圆过点A ,交边AB 于点E ,且与BC 相切于点D ,则该圆的圆心是A .线段AE 的中垂线与线段AC 的中垂线的交点B .线段AB 的中垂线与线段AC 的中垂线的交点 C .线段AE 的中垂线与线段BC 的中垂线的交点D .线段AB 的中垂线与线段BC 的中垂线的交点图4二、填空题(本大题有6小题,每小题4分,共24分)11.不透明的袋子里装有1个红球、1个白球,这些球除颜色外无其他差别.从袋子中随机摸出一个球,则摸出红球的概率是 . 12.方程x 2+x =0的解是 .13.已知A ,B ,C 三地位置如图5所示,∠C =90°,A ,C 两地的距离是4 km ,B ,C 两地的距离是3 km ,则A ,B 两地的距离是 km ;若A 地在 C 地的正东方向,则B地在C 地的 方向.14.如图6,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是边AD 的中点, 图5若AC =10,DC =25,则BO = ,∠EBD 的大小约为 度 分.(参考数据:tan26°34′≈12)15.已知(39+813)×(40+913)=a +b ,若a 是整数,1<b <2,则a = . 图616.已知一组数据1,2,3,…,n (从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n 个数是n ).设这组数据的各数之和是s ,中位数是k ,则s = (用只含有k 的代数式表示).三、解答题(本大题有11小题,共86分)17.(本题满分7分)计算:1-2+2×(-3)2 . 18.(本题满分7分)在平面直角坐标系中,已知点A (-3,1),B (-2,0),C (0,1),请在图7中画出△ABC ,并画出与△ABC关于原点O 对称的图形. 图7 19.(本题满分7分)计算:xx +1+x +2x +1.20.(本题满分7分)如图8,在△ABC 中,点D ,E 分别在边AB ,AC 上,若DE ∥BC , AD =3 ,AB =5,求DEBC 的值.图821.(本题满分7分)解不等式组⎩⎨⎧2x >2,x +2≤6+3x .22.(本题满分7分)某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表所示.若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?23.(本题满分7分)如图9,在△ABC 中,AB =AC ,点E ,F 分别是边AB ,AC 的中点,点D 在边BC 上. 若DE =DF ,AD =2,BC =6,求四边形AEDF 的周长.图924.(本题满分7分)已知实数a ,b 满足a -b =1,a 2-ab +2>0,当1≤x ≤2时,函数y =ax (a ≠0)的最大值与最小值之差是1,求a 的值.25.(本题满分7分)如图10,在平面直角坐标系中,点A (2,n ),B (m ,n )(m >2),D (p ,q )(q <n ),点B ,D 在直线y =12x +1上.四边形ABCD 的对角线AC ,BD 相交于点E ,且AB ∥CD , CD =4,BE =DE ,△AEB 的面积是2.求证:四边形ABCD 是矩形.图1026.(本题满分11分)已知点A(-2,n)在抛物线y=x2+bx+c上.(1)若b=1,c=3,求n的值;(2)若此抛物线经过点B(4,n),且二次函数y=x2+bx+c的最小值是-4,请画出点P(x-1,x2+bx+c)的纵坐标随横坐标变化的图象,并说明理由.27.(本题满分12分)已知四边形ABCD内接于⊙O,∠ADC=90°,∠DCB<90°,对角线AC平分∠DCB,延长DA,CB相交于点E.(1)如图11,EB=AD,求证:△ABE是等腰直角三角形;(2)如图12,连接OE,过点E作直线EF,使得∠OEF=30°.当∠ACE≥30°时,判断直线EF与⊙O的位置关系,并说明理由.图112015年厦门市初中毕业及高中阶段各类学校招生考试数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11. 12 12. 0,-1 13. 5;正北14. 5,18,26 15. 1611 16. 2k 2-k三、解答题(本大题共9小题,共86分)17.(本题满分7分)解: 1-2+2×(-3)2=-1+2×9=17. ……………………………7分 18.(本题满分7解: ……………………………7分19.(本题满分7分) 解:xx +1+x +2x +1=2x +2x +1……………………………5分 =2 ……………………………7分 20.(本题满分7分)解:∵ DE ∥BC ,∴ △ADE ∽△ABC . ……………………………4分 ∴ DE BC =ADAB . ……………………………6分 ∵ AD AB =35,∴ DE BC =35. ……………………………7分 21.(本题满分7分)解:解不等式2x >2,得x >1. ……………………………3分 解不等式x +2≤6+3x ,得x ≥-2. ……………………………6分不等式组⎩⎨⎧2x >2,x +2≤6+3x的解集是x >1. ……………………………7分22.(本题满分7分)解:由题意得,甲应聘者的加权平均数是6×87+4×906+4=88.2. ……………………………3分乙应聘者的加权平均数是6×91+4×826+4=87.4. ……………………………6分∵88.2>87.4,∴甲应聘者被录取. ……………………………7分23.(本题满分7分)解:∵AB =AC ,E ,F 分别是边AB ,AC 的中点,∴AE =AF =12AB . ……………………………1分又∵DE =DF ,AD =AD ,∴△AED ≌△AFD . ……………………………2分 ∴∠EAD =∠FAD .∴AD ⊥BC , ……………………………3分 且D 是BC 的中点.在Rt △ABD 中,∵E 是斜边AB 的中点,∴DE =AE . ……………………………6分 同理,DF =AF .∴四边形AEDF 的周长是2AB . ∵BC =6,∴BD =3.又AD =2, ∴AB =13.∴四边形AEDF 的周长是213. ……………………………7分 24.(本题满分7分)解1:由a -b =1,a 2-ab +2>0得,a >-2. ……………………………2分∵a ≠0,(1)当-2<a <0时, ……………………………3分 在1≤x ≤2范围内y 随x 的增大而增大, ∴ a2-a =1.∴ a =-2 ……………………………4分 不合题意,舍去.(2)当a >0时, ……………………………5分 在1≤x ≤2范围内y 随x 的增大而减小, ∴ a -a2=1.∴ a =2. ……………………………6分 综上所述a =2. ……………………………7分解2:(1)当a <0时, ……………………………1分 在1≤x ≤2范围内y 随x 的增大而增大,∴a2-a=1.∴a=-2. ……………………………2分∴b=-3.而a2-ab+2=0,不合题意,∴a≠-2. ……………………………3分(2)当a>0时,……………………………4分在1≤x≤2范围内y随x的增大而减小,∴a-a2=1.∴a=2. ……………………………5分∴b=1. 而a2-ab+2=4>0,符合题意,∴a=2. ……………………………6分综上所述,a=2. ……………………………7分25.(本题满分7分)解1:∵AB∥CD,∴∠EAB=∠ECD,∠EBA=∠EDC.∵BE=DE,∴△AEB≌△CED. ……………………………1分∴AB=CD=4.∵AB∥CD,∴四边形ABCD是平行四边形. ……………………………2分A(2,n),B(m,n)(m>2),∴AB∥x轴,且CD∥x轴.∵m>2,∴m=6. ……………………………3分∴n=12×6+1=4.∴B(6,4).∵△AEB的面积是2,∴△AEB的高是1. ……………………………4分∴平行四边形ABCD的高是2.∵q<n,∴q=2.∴p=2,……………………………5分即D(2,2).∵点A(2,n),∴DA∥y轴. ……………………………6分∴AD⊥CD,即∠ADC=90°.∴四边形ABCD是矩形. ……………………………7分解2:∵AB∥CD,∴∠EAB=∠ECD,∠EBA=∠EDC.∵BE=DE,∴△AEB≌△CED. ……………………………1分∴AB=CD=4.∵AB∥CD,∵A (2,n ),B (m ,n )(m >2), ∴ AB ∥x 轴,且CD ∥x 轴.∵ m >2,∴m =6. ……………………………3分 ∴n =12×6+1=4.∴ B (6,4).过点E 作EF ⊥AB ,垂足为F , ∵△AEB 的面积是2,∴EF =1. ……………………………4分 ∵ q <n ,∴点E 的纵坐标是3. ∴点E 的横坐标是4.∴点F 的横坐标是4. ……………………………5分 ∴点F 是线段AB 的中点. ∴直线EF 是线段AB 的中垂线.∴EA =EB . ……………………………6分 ∵四边形ABCD 是平行四边形, ∴AE =EC ,BE =ED .∴AC =BD .∴四边形ABCD 是矩形. ……………………………7分 26.(本题满分11分)(1)解:∵ b =1,c =3,∴ y =x 2+x +3. ……………………………2分 ∵点A (-2,n )在抛物线y =x 2+x +3上,∴n =4-2+3 ……………………………3分 =5. ……………………………4分 (2)解:∵点A (-2,n ),B (4,n )在抛物线y =x 2+bx +c 上,∴⎩⎨⎧4-2b +c =n ,16+4b +c =n .∴b =-2. ∴顶点的横坐标是-b2=1.即顶点为(1,-4). ∴-4=1-2+c .∴c =-3. ……………………………7分 ∴P (x -1,x 2-2x -3).∵将点(x ,x 2-2x -3)向左平移一个单位得点P (x -1,x 2-2x -3), ∴将点(x ,x 2-2x -3)的纵坐标随横坐标变化的函数的图象向左平移 一个单位后可得点P (x -1,x 2-2x -3)的纵坐标随横坐标变化的函 数的图象. ……………………………8分 设p =x -1,q =x 2-2x -3,则q =p 2-4.画出抛物线q =p 2-4的图象. ……………………………11分27.(本题满分12分)(1)证明:∵四边形ABCD 内接于⊙O ,∠ADC =90°, ∴∠ABC =90°.∴∠ABE =90°. ……………………………1分 ∵AC 平分∠DCB ,∴∠ACB =∠ACD . ……………………………2分∴AB =AD . ……………………………3分 ∵EB =AD ,∴EB =AB . ……………………………4分∴△ABE 是等腰直角三角形. ……………………………5分(2)直线EF 与⊙O 相离.证明:过O 作OG ⊥EF ,垂足为G .在Rt △OEG 中, ∵∠OEG =30°,∴OE =2OG . ……………………………6分∵∠ADC =90°,∴AC 是直径. 设∠ACE =α,AC =2r .由(1)得∠DCE =2α,又∠ADC =90°, ∴∠AEC =90°-2α. ∵α≥30°,∴(90°-2α)-α≤0. ……………………………8分 ∴∠AEC ≤∠ACE .∴AC ≤AE . ……………………………9分 在△AEO 中,∠EAO =90°+α, ∴∠EAO >∠AOE .∴EO >AE . ……………………………10分 ∴EO -AE >0.由AC ≤AE 得AE -AC ≥0. ∴EO -AC =EO +AE -AE -AC=(EO -AE )+(AE -AC )>0. ∴EO >AC . 即2OG ≥2r .∴OG >r . ……………………………11分 ∴直线EF 与⊙O 相离. ……………………………12分。
海南省2015年初中毕业生学业考试数学科试题(考试时间:100分钟满分:120分)一、选择题(每小题3分,共42分)1.(2015•海南)﹣2015的倒数是()A.﹣B.C.﹣2015 D.20152.(2015•海南)下列运算中,正确的是()A.a2+a4=a6 B.a6÷a3=a2 C.(﹣a4)2=a6 D.a2•a4=a63.(2015•海南)已知x=1,y=2,则代数式x﹣y的值为()A.1 B.﹣1 C.2 D.﹣34.(2015•海南)有一组数据:1,4,﹣3,3,4,这组数据的中位数为() A.﹣3 B.1 C.3 D.45.(2015•海南)如图是由5个完全相同的小正方体组成的几何体.则这个几何体的主视图是()A.B.C.D.6.(2015•海南)据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9。
42×10n,则n的值是()A.4 B.5 C. 6 D.77.(2015•海南)如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠A=∠D8.(2015•海南)方程=的解为()A.x=2 B.x=6 C.x=﹣6 D.无解9.(2015•海南)某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(1﹣10%)(1+15%)x万元B.(1﹣10%+15%)x万元C.(x﹣10%)(x+15%)万元D.(1+10%﹣15%)x万元10.(2015•海南)点A(﹣1,1)是反比例函数y=的图象上一点,则m的值为() A.﹣1 B.﹣2 C.0 D. 111.(2015•海南)某校幵展“文明小卫士”活动,从学生会“督查部"的3名学生(2男1女)中随机选两名进行督导,恰好选中两名男学生的概率是()A.B.C.D.12.(2015•海南)甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点13.(2015•海南)如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对14.(2015•海南)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45° B.30° C.75° D.60°二、填空题(每小题4分,共16分)15.(2015•海南)分解因式:x2﹣9=.16.(2015•海南)点(﹣1,y1)、(2,y2〕是直线y=2x+1上的两点,则y1y2(填“>”或“=”或“<”)17.(2015•海南)如图,在平面直角坐标系中,将点P(﹣4,2)绕原点顺时针旋转90°,则其对应点Q的坐标为.18.(2015•海南)如图,矩形ABCD中,AB=3,BC=4,则图中五个小矩形的周长之和为.三、解答题(本题共6小题,共62分)19.(2015•海南)(1)计算:(﹣1)3﹣﹣12×2﹣2;(2)解不等式组:.20.(2015•海南)小明想从“天猫”某网店购买计算器,经査询,某品牌A号计算器的单价比B型号计算器的单价多10元,5台A型号的计算器与7台B型号的计算器的价钱相同,问A、B两种型号计算器的单价分别是多少?21.(2015•海南)为了治理大气污染,我国中部某市抽取了该市2014年中120天的空气质量指数,绘制了如下不完整的统计图表:空气质量指数统计表级别指数天数百分比优0﹣50 24 m良51﹣100 a 40%轻度污染101﹣150 18 15%中度污染151﹣200 15 12。
2015年湖南省永州市中考数学试卷(满分130分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)永州市1.(2015湖南省永州市,1,3分)在数轴上表示数-1和2014的两点分别为A和B,则A、B两点间的距离为( )A.2013 B.2014 C.2015 D.2016【答案】C【解析】解:2014-(-1)=2015,故答案选C.2.(2015湖南省永州市,2,3分)下列算正确的是( )A. a2•a3=a6B.(-a+b)(a+b)=b2-a2C. (a3)4=a7D. a3+a5=a8【答案】B【解析】解:(-a+b)(a+b)=(b-a)( b+a)=b2-a2.故答案选B.3.(2015湖南省永州市,3,3分)某中学九年级舞蹈兴趣小组8名学生的身高分别为(单位:cm):168,165,168,166, 170,170,176, 170,则下列说法错误的是( )A.这组数据的众数是170B.这组数据的中位数是169C.这组数据的平均数是169D.若从这8名学生中任选1名学生参加校文艺会演,则这名学生的身高不低于170的概率为1 2【答案】C【解析】解:(168+165+168+166+170+170+176+170)÷8=169.125≠169. 故答案选C.4.(2015湖南省永州市,4,3分)永州市般牌县的刚明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期问举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花在文化节开幕式当天,从甲晨8∶00开始每小时进入阳明山景区的游客人数约为1000人.同时每小时走出景区的游客人数约为600人.已知阳明山景隧游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱利和的时间约为( )A .10∶00 B.12∶00 C.13∶00 D. 16∶00【答案】C【解析】解:2000÷(1000-600)=5(小时),8∶00+5=13∶00,故答案选C.5.(2015湖南省永州市,5,3分)一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.11 B.12 C.13 D. 14【答案】B【解析】解:观察分析其三视图可知∶A处有4个碟子、B处有3个碟子、C处有5个碟子,则这张桌子上碟子的总数为4+3+5=12. 故答案选B.CBA6.(2015湖南省永州市,6,3分)如下图,P是⊙O外一点,P A,PB分别交⊙O于C,D两点,已知AB和CD所对的圆心角分别为90°和50°,则∠P=()A. 45°B. 40°C. 25°D.20°DCOAPB(第6题图)【答案】D【解析】解:∵AB和CD所对的圆心角分别为90°和50°,∴∠ADB=12×90°=45°,∠CAD=12×50°=25°,∴∠P=∠ADB―∠CAD=45°-25°=20°. 故答案选D.7.(2015湖南省永州市,7,3分)若不等式组11xx m<⎧⎨>-⎩恰有两个整数解,则m的取值范围是()A .-1≤m <0B .-1<m ≤0C .-1≤m ≤0D .-1<m <0 【答案】C【解析】解:不等式组11x x m <⎧⎨>-⎩的解集应为:m -1<x <1,则这个不等式组的两个整数解应为-1,0.那么-2≤m -1<-1,∴-1≤m <0. 故答案选C.8. (2015湖南省永州市,8,3分)如下图,下列条件不能..判定△ADB ∽△ABC 的是( ) A .∠ABD =∠ACB B.∠ADB =∠ABC C.AB 2=AD •AC D .AD ABAB BC=ACBD(第8题图)【答案】D【解析】解:在△ADB 和△ABC 中,∠A 是它们的公共角,那么当AD ABAB AC=时,才能使△ADB ∽△ABC ,不是AD ABAB BC=. 故答案选D.9.(2015湖南省永州市,9,3分)如下图,在四边形ABCD 中,AB =CD ,BA 和CD 的延长线交于点E ,若点P 使得S △P AB =S △PCD ,则满足此条件的点P ( ) A .有且只有1个 B .有且只有2个C .组成∠E 的角平分线D .组成∠E 的角平分线所在的直线(E 点除外)ACDE(第9题图)【答案】D【解析】解:因为AB =CD ,所以要使S △P AB =S △PC D 成立,那么点P 到AB ,CD 的距离应相等,当点P 在组成∠E 的角平分线所在的直线(E 点除外)上时,点P 到AB ,CD 的距离相等,故答案选D.10.(2015湖南省永州市,10,3分)定义[x ]为不超过x 的最大整数,如[3.6]=3, [0.6]=0, [-3.6]=-4.对于任意实数x ,下列式子中错误的是( ) A.[x ]=x (x 为整数) B.0≤x -[x ] <1C.[x +y ]≤[x ]+[y ]D.[n +x ]=n +[x ](n 为整数) 【答案】C【解析】解:我们不妨取x =-3.5,y =-3.2,那么[x +y ]=[-3.5-3.2]=[-6.7]=-7,[x ]+[y ]=[-3.5]+[-3.2]=-4+(-4)=-8,此时[x +y ]>[x ]+[y ]. 故答案选C.二、填空题(本大题共8小题,每小题3分,满分24分.)11.(2015湖南省永州市,11,3分)国家森林城市的创建极人地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量.截至2014年,全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市”称号.永州市也正在积极创建“国家森林城市”,据统计近两年全市投入“创森”资金约为365000000元.365000000用科学记数法表示为________.【答案】3.65×108.【解析】解:365 000 000=3.65×100 000 000=3.65×108.12.(2015湖南省永州市,12,3分)如下图,∠1=∠2,∠A =60°,则∠ADC =_ _度.21ABD(第12题图)【答案】120【解析】解:∵∠1=∠2,∴AB ∥CD .∴∠A +∠ADC =180°.∵∠A =60°,∴∠ADC =120°.13. (2015湖南省永州市,13,3分)已知一次函数y =kx +b 的图象经过两点A (0,1),B (2,0),则当x ____时,y ≤0. 【答案】x ≥2【解析】解:将点A (0,1),B (2,0)分别代入y =kx +b 可得b =1,k =―12.∴y =―12x +1.若y ≤0,则―12x +1≤0,解得x ≥2.14. (2015湖南省永州市,14,3分)已知点A (-1,y 1),B (1,y 2), C (2, y 3)都在反比例函数y=kx(k >0)的图象上,则___<____<__ (填y 1,y 2, y 3). 【答案】y 1<y 3<y 2 【解析】解:由已知可得:y 1=1k k =--, y 2=1k k =, y 3=2k .∵k >0,∴-k <2k<k .即y 1<y 3<y 2.15. (2015湖南省永州市,15,3分)如下图,在△ABC 中,己知∠1=∠2,BE =CD ,AB=5,AE =2,则CE =__ __12FA BCE D(第15题图)【答案】CE =3.【解析】解:∵∠1=∠2,∠A =∠A ,BE =CD ,∴△ABE ≌△ACD .∴AD =AE =2,AB =AC=5.∴CE =AC -AE =5-2=3.16. (2015湖南省永州市,16,3分)如下图,在平面直角坐标系中,点A 的坐标(-2,0),△ABO 是直角三角形,∠AOB =60°,现将Rt △ABO 绕原点O 按顺时针方向旋转到Rt △A ′B ′O 的位置,则此时边OB 扫过的面积为________.xy B'BA'AO(第16题图)【答案】14π.【解析】解:在Rt △ABO 中,∵∠AOB =60°,∴∠BAO =30°,∠A ′OB =30°.∴OB =12OA =1. 由旋转可知:OB =OB ′=1,∠A ′OB ′=∠AOB =60°.∴∠BOB ′=∠A ′OB ′+∠A ′OB =90°.∴边OB 扫过的面积为=214⨯⨯π1=14π.17.(2015湖南省永州市,17,3分)在等腰△ABC 中,AB =AC ,则有BC 边上的中线、高线和∠BAC 的平分线重合于AD (如图一).若将等腰△ABC 的顶点A 向右平行移动后,得到△A 'BC (如图二).那么,此时BC 边上的中线、BC 边上的高线和∠BA ′C 的平分线应依次分别是________,________,________ (填A ′D 、A ′F 、A ′E )图二图一E D CDC BA BA'(第17题图)【答案】A ′D 、A ′F 、A ′E【解析】解:本题通过画图,即可得出结论.18.(2015湖南省永州市,18,3分)设a n 为正整数n 4的末位数,如a 1=1,a 2=6,a 3=1,a 4=6. 则a 1+a 2+a 3+…+a 2013+a 2014+a 2015= . 【答案】6652【解析】解:a n 为正整数n 4的末位数,则a 1=1,a 2=6,a 3=1,a 4=6, a 5=5,a 6=6,a 7=1,a 8=6, a 9=1,a 10=0;a 11=1,a 12=6,a 13=1,a 14=6,a 15=5,…可以看出:是按照1,6,1,6,5,6,1,6,1,0的顺序依次循环出现,1+6+1+6+5+6+1+6+1+0=33.∴a 1+a 2+a 3+…+a 2013+a 2014+a 2015=201×33+(1+6+1+6+5)=6652.三、解答题(本大题共9小题,满分76分,解答应写出文字说明、证明过程或演算步骤) 19. (2015湖南省永州市,19,6分)计算:cos3012+-212⎛⎫⎪⎝⎭【答案】4【解析】解:cos30°-124+-212⎛⎫⎪⎝⎭2323=33-+422=4.20. (2015湖南省永州市,20,6分)先化简,再求值:222()2m n m n m mn n +--+,其中2mn=.【答案】5 【解析】解:222()2m nm n m mn n+--+ =22()()m nm n m n +--=2m nm n+-. ∵2mn=,∴m =2n . ∴原式=452n nn n+=-.21.(2015湖南省永州市,21,8分)中央电视台举办的“中国汉字听写大会”节日受到中学生的广泛关注,某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出了如下所示的两幅统计图.在条形图中,从左往右依次为A 类(非常喜欢),B 类(较喜欢),C 类(一般),D 类(不喜欢)已知A 类和B 类所占人数的比是5:9,请结台两幅统计图,回答下列问题:(第21题图)(1)写出本次抽样调查的样本容量; (2)请补全两幅统计图;(3)若该校有2000名学生,请你估计对观看“中国汉字写会”节日不喜欢的学生人数. 【答案】(1) 100; (2)条形图中,D 类有25名;扇形统计图中,B 类所占百分比为36%,D 类 所占百分比为25%; (3) 500名.【解析】解:(1)本次抽样调查的样本容量为:20÷20%=100. (2)补全两幅统计图如下:25%36%(第21题图)(3) 2000×25%=500(名).答:对观看“中国汉字写会”节日不喜欢的学生有500名.22.(2015湖南省永州市,22,8分)已知关于x 的一元二次方程x 2+x +m 2—2m =0有一个实根为一1,求m 的值及方程的另一个实根. 【答案】m 的值为0或2,方程的另一个实根为0.【解析】解:把x =-1代入方程,得 1-1+m 2—2m =0.解得m 1=0,m 2=2.设方程的另一个根为x 2,则由一元二次方程根与系数的关系可得 -1+x 2=-1.∴x 2=0.23. (2015湖南省永州市,23,8分)如图,在四边形ABCD 中,∠A =∠BCD =90°,BC=DC ,延长AD 到E 点,使DE =AB . (1)求证:∠ABC =∠EDC ; (2)求证:△ABC ≌△EDC .AEB CD(第23题图)【答案】(1)证明略;(2) 证明略.【解析】(1)证明:在四边形ABCD 中,∵∠A =∠BCD =90°,∴∠B +∠ADC =180°.又∵∠ADC +∠EDC =180°,∴∠ABC =∠EDC . (2) 证明:连接AC .AEB CD(第23题图)∵⎩⎪⎨⎪⎧BC =DC∠ABC =∠EDC AB =DE,∴△ABC ≌△EDC .24.(2015湖南省永州市,24,10分)如图,有两条公路OM ,ON 相交成30°角,沿公路OM 方向离O 点80米处有一所学校A ,当重型运输卡车P 沿道路ON 方向行驶时,在以P 为圆心、50米长为半径的圆形区域内部会受到卡车噪声的影响,且卡车P 与学校A 的距离越近噪声影响越大,若已知重型运输卡车P 沿道路ON 方向行驶的速度为18千米/时.(1)求对学校A 的噪声影响最大时,卡车P 与学校A 的距离;(2)求卡车P 沿道路ON 方向行驶一次给学校A 带来噪影响的时间.30°OMNP(第24题图)【答案】(1)40米;(2)15分钟. 【解析】解:(1)过点A 作AB ⊥ON 于点B .∵∠O =30°,∴AB =12OA =40(米). 答:对学校A 的噪声影响最大时,卡车P 与学校A 的距离为40米; 30°E F B ONP(第24题图)(2)以点A 为圆心、50米为半径作⊙A ,交ON 于E ,F 两点,分别连接AE ,AF ,则AE =AF =50米.∴BE =BF 22504030-=(米).∴EF =60米.18千米/时=300米/分.60÷300=15(分).答:卡车P 沿道路ON 方向行驶一次给学校A 带来噪影响的时间为15分钟.25. (2015湖南省永州市,25,10分)如图,已知△ABC 内接于⊙O ,且AB =AC ,直径AD交BC 于点E ,F 是OE 上的一点,使CF ∥BD . (1)求证:BE =CE ;(2)试判断四边形BFCD 的形状,并说明理由; (3)若BC =8,AD =10,求CD 的长.EO DABCF(第25题图)【答案】(1) 证明略;(2)四边形BFCD 是菱形; 5【解析】解:(1)∵AD 是⊙O 的直径,∴∠ABD =∠ACD =90°. ∵AB =AC ,AD =AD ,∴Rt △ABD ≌Rt △ACD .∴BD =CD .∵AB =AC , BD =CD ,∴点A ,D 都在线段BC 的垂直平分线上.∴AD 垂直平分BE .∴BE =CE ,AD ⊥BC .(2) 四边形BFCD 是菱形. 理由:∵AD 垂直平分BE . ∴BF =CF . ∵CF ∥BD ,∴∠DBE =∠FCE ,∠BDE =∠CFE . 又∵BE =CE ,∴△BDE ≌△CFE . ∴BD =CF .∵BD =CD , BF =CF , BD =CF , ∴BD =CD =CF =BF . ∴四边形BFCD 是菱形.(3)∵BC =8,∴BE =CE =4.∵CE 2=AE •DE ,AE =AD -DE =10-DE , ∴42=(10-DE )•DE . 解得DE =2或8.但DE =8不合题意,应舍去. ∴CD 22CE DE +2242+5.26. (2015湖南省永州市,26,10分)已知抛物线y =ax 2+bx 十c 的项点为(1,0),与y轴的交点坐标为(0,14),R (1,1)是抛物线对称轴l 上的一点. (1)求抛物线y =ax 2+bx 十c 的解析式; (2)若P 是抛物线上的一个动点(如图一),求证:点P 到R 的距离与点P 到直线 y =-1的距离恒相等;(3)设直线PR与抛物线的另一个交点为Q,,F为线段PQ的中点,过点P,E,Q分别作直线y=-1的垂线,垂足分别为M,F,N(如图二).求证:PF⊥QF.(第26题图一) (第26题图二)【答案】(1) y=14(x-1)2;(2)证明略;(3) 证明略;.【解析】解:(1) ∵抛物线y=ax2+bx十c的项点为(1,0),∴可设其解析式为y=a(x-1)2.把(0,14)代入上式,得14= a(0-1)2. 解得a=14.∴抛物线的解析式为y=14(x-1)2.(2)设点P的坐标为(x,14(x-1)2),则PM=14(x-1)2+1,PR=(x-1)2+[14(x-1)2―1]2=14(x-1)2+1,∴PM=PR.(3) (2)中已证PM=PR..与(2)中同理可得:QN=QR.∴PM+QN=PR+QR=PQ.∵QN∥EF∥PM,且QE=PE,∴NF=MF.∴EF=12(QN+PM).∴EF=12PQ. 又∵QE=PE,∴△PQF是直角三角形,且∠PFQ=90°.∴PF⊥QF.27.(2015湖南省永州市,27,10分)问题探究:(一)新知学习:圆内接四边形的判定定理:如果四边形的对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E,F,G,H都在同一个圆上).(二)问题解决:已知⊙O的半径为2,AB,CD是⊙O的直径,P是BC上任意一点,过点P分别作AB,CD的垂线,垂足分别为N,M.(1)若直径AB⊥CD,对于BC上任意一点P(与B,C不重合)(如图一),证明:四边形PMON内接于圆,并求此圆直径的长;(2)若直径AB⊥CD,在点P(与B,C不重合)从B运动到C的过程中,证明:MN的长为定值,并求其定值;(3)若直径AB与CD相交成120°角.①当点P运动到BC的中点P1时(如图二),求MN的长;②在点P(与B,C不重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.(第27题图一) (第27题图二) (第27题图三)【答案】(1)证明略,此圆直径的长为2;(2) 证明略,其定值为2;(3)①MN3②证明略;(4) 当直径AB与CD相交成90°角时,MN的长取最大值,其最大值为2.【解析】解:(1)连接OP,则OP=2.∵PM⊥CD,PN⊥AB,∴∠PMO=∠PNO=90°.∴∠PMO+∠PNO=180°.∴四边形PMON内接于圆.∵AB⊥CD,∴∠MON=90°.又∵∠PMO=∠PNO=90°,∴四边形PMON是矩形.∴OP是四边形PMON内接圆的直径.∴四边形PMON内接圆的直径为2.(2) 在(1)中已证四边形PMON是矩形.∴MN=OP.∵OP=2(是定值),∴MN的长也为定值,其定值为2;(3)①连接OP1.则OP1=2.∵P1是BC的中点,∴∠COP1=∠BOP1=12∠BOC=60°.∴∠OP1M=∠OP1N=30°.∴OM=ON=12OP1=1.∴P1M=P1N3∵∠P1MO=∠P1NO=90°,∴点O,M,P1,N都在以OP1为直径的同一个圆上.∵∠MON+∠MP1N=180°,∠MON=120°,∴∠MP1N=60°.∵P1M=P1N3∴△MP1N是等边三角形.∴MN=P1M=P1N3②连接OP,则OP=2.取OP的中点O′,并分别连接O′M,O′N.∵∠PMO=∠PNO=90°,∴点O,M,P,N都在以OP为直径的⊙O′上.∴O′M=O′N=12OP=1.∵∠MON+∠MPN=180°,∠MON=120°,∴∠MPN=60°.∴∠MO′N=2∠MPN=120°.∴∠O′MN=∠O′NM=30°.过点O ′作O ′E ⊥MN 于点E .则O ′E =12O ′M =12,∴ME =123∴MN =2 ME 3E O 'NM O DACP(第27题图三)(4)如图四,连接OP ,则OP =2.取OP 的中点O ′,并分别连接O ′M ,O ′N .∵∠PMO =∠PNO =90°,∴点O ,M ,P ,N 都在以OP 为直径的⊙O ′上.∴O ′M =O ′N =12OP =1. ∴MN ≤O ′M +O ′N =2且当点M ,O ′,N 在同一条直线上时,等号成立. 此时∠MO ′N =180°,则∠MPN =12∠MO ′N =90°. ∵点O ,M ,P ,N 四点共圆,∴∠MON =180°-∠MPN =180°-90°=90°. ∴当直径AB 与CD 相交成90°角时,MN 的长取最大值,其最大值为2. O 'NM DOACP(第27题图四)。
成都市二〇一五年高中阶段教育学校统一招生考试数学A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上) 1.3-的倒数是 (A )31-(B )31(C )3- (D )32.如图所示的三棱柱的主视图是(A ) (B ) (C ) (D )3.今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相。
新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将新建的4个航站楼的总面积约为126万平方米,用科学计数法表示126万为 (A )410126⨯ (B )51026.1⨯ (C )61026.1⨯ (D )71026.1⨯4.下列计算正确的是(A )4222a a a =+ (B )632a a a =⋅ (C )422)(a a =- (D )1)1(22+=+a a 5.如图,在ABC ∆中,BC DE //,6=AD ,3=DB ,4=AE , 则EC 的长为 (A )1 (B )2 (C )3 (D )4 6.一次函数12+=x y 的图像不经过(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 7.实数a 、b 在数轴上对应的点的位置如图所示,计算b a -的结果为(A )b a + (B )b a - (C )a b - (D )b a -- 8.关于x 的一元二次方程0122=-+x kx 有两个不相等实数根,则k 的取值范围是 (A )1->k (B )1-≥k (C )0≠k (D )1->k 且0≠k9.将抛物线2x y =向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为A 、3)2(2-+=x yB 、3)2(2++=x yC 、3)2(2+-=x yD 、3)2(2--=x y 10.如图,正六边形ABCDEF 内接于圆O ,半径为4, 则这个正六边形的边心距OM 和弧BC 的长分别为(A )2、3π(B )32、π (C )3、23π (D )32、43π第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.因式分解:=-92x __________.12.如图,直线n m //,ABC ∆为等腰直角三角形,︒=∠90BAC ,则=∠1________度.m n1B AC13.为响应 “书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中阅读时间的中位数是_______小时.CMEOFB14.如图,在平行四边形ABCD 中,13=AB ,4=AD ,将平行四边形ABCD 沿AE 翻折后,点B 恰好与点C 重合,则折痕AE 的长为__________. 三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15.(本小题满分12分,每小题6分)(1)计算:20)3(45cos 4)2015(8-+︒---π(2)解方程组:⎩⎨⎧-=-=+12352y x y x16. (本小题满分6分) 化简:21)412(2+-÷-++a a a a a17.(本小题满分8分)如图,登山缆车从点A 出发,途经点B 后到达终点C.其中AB 段与BC 段的运行路程均为200m ,且AB 段的运行路线与水平面的夹角为30°,BC 段的运行路线与水平面的夹角为42°,求缆车从点A 运行到点C 的垂直上升的距离.(参考数据:sin42°≈0.67 ,cos42°≈0.74 , tan42°≈0.90)200m200m30°42°BDA18. (本小题满分8分)国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛活动,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)求获得一等奖的学生人数;(2)在本次知识竞赛活动中,A ,B ,C ,D 四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛.请使用画树状图或列表的方法求恰好选到A ,B 两所学校的概率.一等奖三等奖优胜奖 40%二等奖 20%19. (本小题满分10分)如图,一次函数4y x =-+的图象与反比例ky x=(k 为常数,且0k ≠)的图象交于()1,A a ,B 两点. (1)求反比例函数的表达式及点B 的坐标;(2)在x 轴上找一点P ,使PA PB +的值最小,求满足条件的点P 的坐标及PAB ∆的面积.xyABO20.(本小题满分10分)如图,在Rt ABC ∆中,90ABC ∠=︒,AC 的垂直平分线分别与AC ,BC 及AB 的延长线相交于点D ,E ,F ,且BF BC =.O 是BEF∆的外接圆,EBF ∠的平分线交EF 于点G ,交O 于点H ,连接BD ,FH .(1)求证:ABC EBF ∆≅∆;(2)试判断BD 与O 的位置关系,并说明理由; (3)若1AB =,求HG HB ⋅的值.GHOEDAFCBB 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上) 21.比较大小:512-________58.(填"">,""<,或""=) 22.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a ,则关于x 的不等式组()431122x x x x a ≥+⎧⎪⎨--<⎪⎩有解的概率为_________.23.已知菱形A 1B 1C 1D 1的边长为2,∠A 1B 1C 1=60°,对角线A 1C 1,B 1D 1相交于点O .以点O 为坐标原点,分别以OA 1,OB 1所在直线为x 轴、y 轴,建立如图所示的直角坐标系.以B 1D 1为对角线作菱形B 1C 2D 1A 2∽菱形A 1B 1C 1D 1,再以A 2C 2为对角线作菱形A 2B 2C 2D 2∽菱形B 1C 2D 1A 2,再以B 2B 2为对角线作菱形B 2C 3D 2A 3∽菱形A 2B 2C 2D 2,…,按此规律继续作下去,在x 轴的正半轴上得到点A 1,A 2,A 3,…,A n ,则点A n 的坐标为____________.24.如图,在半径为5的O 中,弦8AB =,P 是弦AB 所对的优弧上的动点,连接AP ,过点A 作AP 的垂线交射线PB 于点C ,当PAB ∆是等腰三角形时,线段BC 的长为 .KHGOCCOCOBAPBAPBAP图(1) 图(2) 图(3)25.如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是 .(写出所有正确说法的序号)①方程220x x --=是倍根方程;②若(2)()0x mx n -+=是倍根方程,则22450m mn n ++=;③若点()p q ,在反比例函数2y x=的图像上,则关于x 的方程230px x q ++=是倍根方程; ④若方程20ax bx c ++=是倍根方程,且相异两点(1)M t s +,,N(4)t s -,都在抛物线2y ax bx c =++上,则方程20ax bx c ++=的一个根为54.二、解答题(本大题共3个小题,共30分,解答过程写在大题卡上) 26、(本小题满分8分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元够进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元。
长春市2015年中考数学试卷(含答案)长春市2015年中考数学试题一、选择题(本大题共8小题,每小题3分,共24分) 1.的绝对值是()(A)3 (B)(C)(D)2.在长春市“暖房子工程”实施过程中,某工程队做了面积为632000的外墙保暖,632000这个数用科学记数法表示为()(A)(B)(C)(D) 3.计算的结果是()(A)(B)(C)(D)4.图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的视图说法正确的是()(A)主视图相同(B)俯视图相同(C)左视图相同(D)主视图、俯视图、左视图都相同 5.方程的根的情况是()(A)有两个相等的实数根(B)只有一个实数根(C)没有实数根(D)有两个不相等的实数根第4题第5题第6题第7题6.如图,在中,过点作若则的大小为()(A)(B)(C)( D) 7.如图,四边形内接于,若四边形是平行四边形,则的大小为()(A)(B)(C)(D) 8.如图,在平面直角坐标系中,点在直线上.连结将线段绕点顺时针旋转,点的对应点恰好落在直线上,则的值为()(A)(B)(C)(D)二、填空题(本大题共6小题,每小题3分,共18分) 9.比较大小:.(填“>”,“<”或“=”) 10.不等式的解集为. 11.如图,为的切线,为切点,是与的交点,若则的长为 (结果保留 ) .第11题第12题第13题第14题 12.如图,在平面直角坐标系中,点在函数的图象上,过点分别作轴、轴的垂线,垂足分别为,取线段的中点,连结并延长交轴于点,则的面积为. 13.如图,点在正方形的边上,若的面积为则线段的长为. 14.如图,在平面直角坐标系中,点在抛物线上运动,过点作轴于点,以为对角线作矩形连结则对角线的最小值为.三、解答题(本大题共10小题,共78分) 15.先化简,再求值:其中.16.在一个不透明的袋子里装有3张卡片,卡片上面分别标有字母,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并摇匀,再从盒子中随机抽出一张卡片记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.17.为了美化环境,某地政府计划对辖区内60km2的土地进行绿化,为了尽快完成任务,实际平均每月的绿化面积是原计划的1.5倍,结果提前2个月完成任务,求原计划平均每月的绿化面积.18.如图,是外角的平分线,交于点交于点,交于点交于点,求证:四边形是菱形.19.如图,海上两岛分别位于岛的正东和正北方向,一艘船从岛出发,以18海里/时的速度向正北方向航行2小时到达岛,此时测得岛在岛的南偏东,求两岛之间的距离.(结果精确到0.1海里)【参考数据:】20.在“世界家庭日”前夕,某校团委随机抽取了名本校学生,对“世界家庭日”当天所喜欢的家庭活动方式进行问卷调查,问卷中的家庭活动方式包括: A.在家里聚餐; B.去影院看电影; C.到公园游玩; D.进行其他活动.每位学生在问卷调查时都按要求只选择了其中一种喜欢的活动方式,该校团委收回全部调查问卷后,将收集到的数据整理并绘制成如下的统计图.根据统计图提供的信息,解答下列问题:(1)求的值;(2)四种方式中最受学生喜欢的方式为(用A、B、C、D作答);选择该种方式的学生人数占被调查的学生人数的百分比为;(3)根据统计结果,估计该校1800名学生中喜欢C方式的学生比喜欢B方式的学生多的人数.21.甲、乙两台机器共同加工一批零件,在加工过程中两台机器均改变了一次工作效率,从工作开始到加工完这批零件两台机器恰好同时工作6小时,甲、乙两台机器各自加工的零件的个数(个)与加工时间(时)之间的函数图象分别为折线与折线,如图所示.(1)求甲机器改变工作效率前每小时加工零件的个数;(2)求乙机器改变工作效率后与之间的函数关系式;(3)求这批零件的总个数.22.在矩形中,已知,在边上取点,使,连结,过点作,与边或其延长线交于点 . 猜想:如图①,当点在边上时,线段与的大小关系为 . 探究:如图②,当点在边的延长线上时,与边交于点.判断线段与的大小关系,并加以证明.应用:如图②,若利用探究得到的结论,求线段的长.图① 图②23.如图,在等边中,于点,点在边上运动,过点作与边交于点,连结,以为邻边作□ ,设□ 与重叠部分图形的面积为,线段的长为(1)求线段的长(用含的代数式表示);(2)当四边形为菱形时,求的值;(3)求与之间的函数关系式;(4)设点关于直线的对称点为点,当线段的垂直平分线与直线相交时,设其交点为,当点与点位于直线同侧(不包括点在直线上)时,直接写出的取值范围. 24.如图,在平面直角坐标系中,抛物线与轴交于两点,与轴交于点,且点的坐标为点在这条抛物线上,且不与两点重合,过点作轴的垂线与射线交于点,以为边作使点在点的下方,且设线段的长度为,点的横坐标为.(1)求这条抛物线所对应的函数表达式;(2)求与之间的函数关系式;(3)当的边被轴平分时,求的值;(4)以为边作等腰直角三角形,当时,直接写出点落在的边上时的值.。
黑龙江省哈尔滨市2015年初中升学考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】只有符号不同的两数互为相反数,12-的相反数是12,故选A.【考点】相反数 2.【答案】B【解析】2510)(a a =,246 a a a =,23a b 与23ab 不能合并,2()24a a =,故选B.【考点】整式的运算 3.【答案】D【解析】A ,B 只是轴对称图形,C 只是中心对称图形,D 既是轴对称图形又是中心对称图形,故选D. 【考点】轴对称图形和中心对称图形 4.【答案】C【解析】反比例函数2y x=的图象分布在第一、三象限且在每一象限内y 随x 的增大而减小,∵12->-,∴12y y <,选C.【考点】反比例函数的图象与性质 5.【答案】A【解析】主视图是从正面看几何体得到的视图,该几何体的主视图是两层,底层是三个并排的正方形,上层是位于右边的一个正方形,故选C. 【考点】几何体的三视图 6.【答案】D【解析】∵=30︒α,∴30=︒∠B ,∵ 1 200 m AC =,sin AC B AB=,∴ 1 2002 400sin sin30===︒A AB B (m )故选D.【考点】解直角三角形7.【答案】C【解析】∵四边形ABCD 是平行四边形,∴AD BC ∥,CD AB ∥,∴EA EG BE EF =,EG AGGH GD=, FH CF CF EH BC AD ==,而AB BCAE CE≠,故选C. 【考点】平行四边形的性质及平行线分线段成比例的定理 8.【答案】A【解析】∵扩大后的正方形绿地边长为 m x ,∴长方形的短边增加的长为(6) m x -,∵面积增加21 600 m , 可列方程(6)1600x x -=,故选A.【考点】列一元二次方程解决面积问题的实际应用 9.【答案】C【解析】由旋转性质可知AC AC '=,∴45'=︒∠ACC ,∵32''=︒∠CCB ,∴453213''=︒-︒=︒∠AC B ,∴901377''=︒-︒=︒∠AB C ,∴77'=︒∠ACC,故选C. 【考点】图形的旋转及直角三角形的性质 10.【答案】D【解析】由图可知图象分三段,第一段为步行,第二段为乘坐公交车,第三段为跑步,设第二段解析式为s kt b =+,∵7分钟时与家的距离是1 200米,且图象过(12,3 200),∴7 1 20012 3 200k b k b +=⎧⎨+=⎩,,解得4001 600k b =⎧⎨=-⎩,,∴400 1 600s t =-,当400s =时,5t =,∴小明从家出发5分钟时乘上公交车;公交车行驶3 200400 2 800-=(米),用时1275-=(分钟),公交车的速400米/分钟;∵小明从上公交车到他到达学校共用10分钟,∴跑步用时3分钟,跑步的距离为3 500 3 200=300-(米);∴跑步的速度为100米/分钟;小明跑步用时3分钟到达学校,而下车时还有4分钟上课,∴小明上课没有迟到,故选D. 【考点】一次函数图像的实际运用第Ⅱ卷二、填空题11.【答案】81.2310⨯【解析】8123 000 000=1.2310⨯. 【考点】科学记数法表示较大的数12.【答案】2x ≠【解析】函数12xy x -=-有意义,则20x -≠,即2x ≠.【考点】函数自变量的取值范围13.3===. 【考点】二次根式的运算 14.【答案】(3)(3)a a b a b +-【解析】32229(9(3)(3))a ab a a b a a b a b =+---=. 【考点】分解因式 15.【答案】40【解析】设扇形的圆心角是︒n ,∴2π 3360n ∴40n =.【考点】扇形的面积公式的应用 16.【答案】12x -<≤【解析】解不等式10x +>,得1x >-,解不等式213x -≤,得2x ≤,∴不等式组的解集为12x -<≤. 【考点】解不等式组 17.【答案】69【解析】设国画作品有x 幅,则油画作品有(27)x +幅,根据题意得27100x x ++=,解得31x =,则2769x +=(幅).【考点】一元一次方程的实际应用18.【答案】16【解析】从甲、乙、丙、丁4名三好学生中随机抽取2名学生的情况有甲和乙,甲和丙,甲和丁,乙和丙,乙和丁,丙和丁,共六种,其中甲和乙占一种,∴抽取的2名同学是甲和乙的概率为16.【考点】概率的计算 19.【答案】5.5或0.5【解析】当点F 在AD 的延长线上时,∵4AB =,5BC =,四边形ABCD 是矩形,四边形BCFE 是菱形,∴5BC CF EP BE ====,∴ 3AE =,∵线段EF 的中点是M ,∴ 2.5EM =,∴ 5.5AE =;当点F 在线段AD 上时,同理可得3AE =, 2.5EM =,∴0.5AM =,故AM 的长为5.5或0.5. 【考点】矩形和菱形的性质20.【答案】【解析】作DAP BAD =∠∠,则 CAP C =∠∠,过点D 作DE AB ⊥于点E ,DO AP ⊥于点O ,PF AC ⊥于点F ,∵4tan 7BAD =∠,AD =,∴4OD OE ==,7AO AE ==,设CP AP x ==,则13DP CD CP x =-=-,7OP x =-,∴222+OP OD OP =,即213(13)163x -=+,过点P 作PH AC ∥交OD 于点H ,过点H 作HM DP ⊥于点M ,则OH HM =,∵OPD PHD PHO S S S =+△△△,即111 222OP OD PD HM OP OH =+,设OH OD b ==,则15113154=232323b b ⨯⨯⨯⨯+⨯⨯,解得109b =,∴109OH =,1029tan 533OH OPH OP ===∠,∴2tan 3PF C CF ==∠,设CF a=,则23PF a =,∵263CP =,∴a =2AC CF ==【考点】三角函数、勾股定理,角的平分线 三、解答题 21.【解析】解:原式122=[]()3x x y x x y x--÷--233()2x xx x y x x y-=---, ∵2x =+1422y =⨯=, ∴原式=.【考点】特殊角的三角函数值及分式的化简求值 22.【答案】(Ⅰ)如图1.正确画图.(Ⅱ)如图2,正方形ABCD 正确,分割正确. 【考点】作直角等腰三角形,正方形和图形的分割 23.【答案】(Ⅰ)105020=%(名). 答:本次抽样调查共抽取了50名学生. (Ⅱ)501020416=﹣﹣﹣(名).答:测试结果为C 等级的学生有16名; 正确画图.(Ⅲ)4700=5650⨯(名). 答:估计该中学八年级学生中体能测试结果为D 等级的学生有56名. 【考点】统计图的应用及样本估计总体24.【答案】(Ⅰ)证明:如图1,∵四边形ABCD 为平行四边形,∴AD BC ∥,∴EAO FCO =∠∠. ∵OA OC =,AOE COF =∠∠, ∴OAE OCF △≌△,∴OE OF =, 同理OG OH =,∴四边形EGFH 是平行四边形;(Ⅱ)如图2,□GBCH ,□ABFE ,□EFCD ,□EGFH (答对一个给1分). 【考点】平行四边形的性质和判定25.【答案】(Ⅰ)设购买一个A 品牌足球x 元,则购买一个B 品牌足球(30)x +元, 根据题意得2 500 2 000230x x =⨯+, 解得50x =,经检验50x =是原方程的解, 30 80.x +=答:购买一个A 品牌足球需50元,购买一个B 品牌足球需80元. (Ⅱ)设本次购进a 个B 品牌足球,则购进A 品牌足球(50)a -个,解得1319a ≤,∵a 取正整数, ∴a 最大值为31.答:此次华昌中学最多可购买31个B 品牌足球. 【考点】分式方程和一元一次不等式的实际应用26.【答案】(Ⅰ)证明:如图1,∵四边形ABCD 内接于O , ∴180+=︒∠∠D ABC ,∵180+=︒∠∠ABC EBC , ∴D EBC =∠∠.∵GF AD ⊥,AE DG ⊥,∴90+=︒∠∠A ABF ,90+=︒∠∠A D , ∴ABE D =∠∠,∵ABF GBE =∠∠,∴GBE EBC =∠∠, 即BE 平分GBC ∠.(Ⅱ)由证明:如图2,连接BCB ∠, ∵AB CD ⊥,BF AD ⊥,∴90+=︒∠∠D BAD ,90+=︒∠∠ABG BAD , ∴D ABG =∠∠。
2015年湖南省郴州市中考数学试卷(满分130分,考试时间120分钟)一、选择题(共8小题,每小题3分,满分24分。
) 1.(2015湖北郴州,1,3)2的相反数是 A. 21-B.21 C.﹣2 D. 2【答案】C2. (2015湖北郴州,2,3)计算(-3)2的结果是 A.﹣6 B. C.﹣9 D. 9 【答案】D3. (2015湖北郴州,3,3)下列计算正确的是 A. 43x x x =+B. 532x x x =⋅C. ()532x x =D. 339x x x =÷【答案】B4. (2015湖北郴州,4,3)下列四个几何体中,它们的主视图、左视图、俯视图都是正方形的是【答案】A5. (2015湖北郴州,5,3)下列图案是轴对称图形的是A B C D 【答案】A6. (2015湖北郴州,6,3)某同学在一次期末测试中,七科的成绩分别是92,100,96,93,96,98,95,则这位同学成绩的中位数和众数分别是A.93,96B.96,96C.96,100D.93,100 【答案】B7. (2015湖北郴州,7,3)如图为一次函数y =kx +b (k ≠0)的图象,则下列正确的是 A.k >0,b >0 B. k >0,b <0 C. k <0,b >0 D. k <0,b <0【答案】C8. (2015湖北郴州,8,3)在矩形ABCD 中,AB =3,将△ABD 沿对角线BD 对折,得到△EBD ,DE 与BC 交于点F ,∠ADB =30°,则EF = A.3B. 32C.3D. 33【答案】A二、填空题(共8小题,每小题3分,满分24分.)9. (2015湖北郴州, 9,3)2015年5月在郴州举行的第三届中国(湖南)国际矿物宝石博览会中,成交额高达32亿元,3200000000用科学记数法表示为____________. 【答案】3.2×10910. (2015湖北郴州, 10,3)已知圆锥的底面半径是1cm ,母线长为3cm ,则该圆锥的侧面积为____________cm 2. 【答案】3π11. (2015湖北郴州, 11,3)分解因式:2a 2-2=______. 【答案】2(a +1)( a -1)12. (2015湖北郴州, 12,3)函数21-=x y 中自变量x 的取值范围是____________. 【答案】x ≠2 13. (2015湖北郴州, 13,3)如图,已知直线m ∥n ,∠1=100°,则∠2的度数为____________.【答案】80°14. (2015湖北郴州, 14,3)如图,已知AB 是⊙O 上,若∠CAB =40°,则∠ABC 的度数为____________.【答案】50°15. (2015湖北郴州, 15,3)在m 2□6m □9的“□”中任意填上“+”或“﹣”号,所得的代数式为完全平方式的概率为____________. 【答案】2116. (2015湖北郴州, 16,3)请观察下列等式的规律:⎪⎭⎫ ⎝⎛-=⨯31121311,⎪⎭⎫ ⎝⎛-=⨯513121531, ⎪⎭⎫ ⎝⎛-=⨯715121751,⎪⎭⎫⎝⎛-=⨯917121971,则=⨯++⨯+⨯+⨯101991751531311 ____________.【答案】10150三、解答题(17~19每题6分,20~23每题8分,24~25每题10分,26题12分,共82分)17.(2015湖北郴州, 17,6)︒--+-⎪⎭⎫ ⎝⎛-60sin 2320152101.【答案】原式=1232312=⨯-+-18. (2015湖北郴州, 18,6)解不等式组:()211231x x -≤-⎧⎪⎨+>⎪⎩①②,并把它的解集在数轴上表示出来.【答案】由①得,21≤x ,由②得,1->x ,所以不等式组的解集是-1<x <2119. (2015湖北郴州, 19,6)如图,点A (1,2)是正比例函数y 1= kx (k ≠0)与反比例函数2my x(m >0)的一个交点. (1)求正比例函数及反比例函数的表达式;(2)根据图象直接回答:在第一象限内,当x 取何值时,y 1 < y 2?【答案】(1)把点A(1,2)代入正比例函数y1= kx,得k=2 所以正比函数的表达式为y= 2x把点A(1,2)代入2myx,得m=2所以反比例函数的表达式为2 yx(2)0<x<120.(2015湖北郴州,20,8)郴州是某中学校团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共3000本.为了了解各类书籍的分布情况,从中随机抽取了部分书籍分四类进行统计:A.艺术类;B.文学类;C.科普类;D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.(1)这次统计共抽取了______本书籍,扇形统计图中的m=______,∠α的度数是______ (2)请将条形统计图补充完整;(3)估计全校师生共捐赠了多少本文学类书籍.【答案】解:(1)∵A组的本数为40,占20%∴总人数为40÷20%=200(本)∵C组的本数为80∴m=80÷200×100=40∵D组的本数为20∴∠α=20÷200×360°=36°(2)B组的本数=200-40-80-20=60(本)(3)3000×60200=900(本) 答:估计全校师生共捐赠了300本文学类书籍.21. (2015湖北郴州, 21,8)自2014年12月启动“绿茵行动,青春聚力”郴州共青林植树活动以来,某单位筹集7000元购买了桂花树和樱花树共30棵,其中购买桂花树花费3000元.已知桂花树比樱花树的单价高50%,求樱花树的单价及棵数. 【答案】解:设樱花树的单价为x 元,根据题意,得 ()30007000300030150%x x -+=+解得 x=200经检验x=200是所列分式方程的根且符合题意则7000300020200-=(棵)答:樱花树的单价是200元,棵数为20棵.22. (2015湖北郴州, 22,8)如图,要测量A 点到河岸BC 的距离,在B 点测得A 点在B 点的北偏东30°方向上,在C 点测得A 点在C 点的北偏西45°方向上,又测得BC =150m .求A 点到河岸BC 的距离.(结果保留整数)(参考数据:2≈1.41,3≈1.73)【答案】解:如图,过点A 做AD ⊥BC 于点D ,则AD 的长为点A 到河岸BC 的距离. 由题意知∠BAD =30°,∠CAD =45°, ∴在Rt △ADC 中,CD =AD ,在Rt △ABD 中,BD =ADtan 30°,∵BD+CD=150∴AD+AD tan30°=150即311503AD⎛⎫+=⎪⎪⎝⎭解得450450953 1.7333AD=≈≈++(m)答:A点到河岸BC的距离是95 m.23.(2015湖北郴州,23,8)如图,AC是□ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.【答案】(1)证明:∵在□ABCD中,AD∥BC,∴∠EAO=∠FCO.∵点O是AC的中点,∴AO=CO.又∵∠EOA=∠FOC,∴△AOE≌△COF.(2)当EF⊥AC时,四边形AFCE是菱形.理由如下:由(1)知△AOE≌△COF∴OE=OF又∵AO=CO∴四边形AFCE是平行四边形.∴当EF⊥AC时,四边形AFCE是菱形.24.(2015湖北郴州,24,10)阅读下面的材料:如果函数y= f(x)满足:对于自变量x的取值范围内的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;(2) 若x 1<x 2,都有f (x 1)< f (x 2),则称f (x )是减函数; 例题:证明函数()xx f 2=(x >0)是减函数.证明:假设x 1<x 2,且x 1>0,x 2>0, f (x 1)﹣f (x 2)=()211221122122222x x x x x x x x x x -=-=- ∵x 1<x 2,且x 1>0,x 2>0,∴x 2-x 1>0,且x 1x 2>0, ∴()21122x x x x ->0,即f (x 1)> f (x 2) ∴函数()xx f 2=(x >0)是减函数.根据以上材料,解答下面的问题: (1)函数()21x x f =(x >0),()11112==f ,()412122==f . 计算:()=3f _______,()=4f _______,猜想()21x x f =(x >0)是_______函数(填“增”或“减”)(2)请仿照材料中的例题证明你的猜想. 【答案】(1)()913132==f ,()1614142==f .(2)证明:假设x 1<x 2,且x 1>0,x 2>0,f (x 1)﹣ f (x 2)= ()()2221121222212122222111x x x x x x x x x x x x -+=-=- ∵x 1<x 2,且x 1>0,x 2>0,∴x 2-x 1>0,且x 1x 2>0, ∴()()22211212x x x x x x -+>0,即f (x 1)> f (x 2)∴函数()21xx f =(x >0)是减函数.25. (2015湖北郴州, 25,10)如图,已知抛物线经过点A (4,0),B (0,4),C (6,6). (1)求抛物线的表达式;(2)证明:四边形AOBC 的两条对角线互相垂直;(3)在四边形AOBC 的内部能否截出面积最大的□DEFG ?(顶点D,E,F,G 分别在线段AO ,OB,BC,CA 上,且不与四边形AOBC 的顶点重合)若能,求出□DEFG 的最大面积,并求出此时点D 的坐标;若不能请说明理由.【答案】(1)解:设抛物线的表达式为y=ax2+bx+c(a≠0)由已知条件,得416403666ca b ca b c=⎧⎪++=⎨⎪++=⎩解得231134abc⎧=⎪⎪⎨=-⎪⎪=⎩(2)证明:设直线OC的表达式为y=kx(k≠0)把点C(6,6)代入上式,得6=6k,解得k=1,∵直线OC的表达式为y=x∴OC平分∠AOB又∵OA=OB=4∴OC⊥AB即四边形AOBC的两条对角线互相垂直.(3)能设点D的坐标为(m,0),如图,过点D作DE∥AB,交OB于点E,过点E作EF∥OC,交BC于点F,过点F作FG∥AB,交AC于点G,连接DG,则四边形DEFG是平行四边形.又OC⊥AB则□DEFG是矩形.设矩形DEFG的面积为S.易得:DE=2m,OC=26∵EF ∥OC ∴OB BEOC EF =即4426m EF -= 解得EF ()m -=422∴()()()1223434223222+--=--=-⋅=⋅=m m m m m EF DE S ∴当m=2时,□DEFG 的面积最大,且最大面积为12,此时点D 的坐标为(2,0)26. (2015湖北郴州, 26,12)如图,在四边形ABCD 中,DC ∥AB ,DA ⊥AB ,AD =4cm ,DC =5cm ,AB =8cm .如果点P 由B 点出发沿BC 方向向点C 匀速运动,同时点Q 由A 点出发沿AB 方向向点B 匀速运动,它们的速度均为1cm /s .当P 点到达C 点时,两点同时停止运动.连接PQ ,设运动时间为ts .解答下列问题: (1)当t 为何值时,P ,Q 两点同时停止运动?(2)设△PQB 的面积为S ,当t 为何值时,S 取得最大值,并求出最大值; (3)当△PQB 为等腰三角形时,求t 的值.【答案】解:(1)如图,作CE ⊥AB 于点E ,∵CD ∥AB ,DA ⊥AB ∴四边形AECD 是矩形;∴AE =CD =5,CE =AD =4∴BE =AB -AE =8-5=3 在Rt △CBE 中,5432222=+=+=CE BE BC ∴t =15=5s 即P 、Q 两点同时停止运动.(2)如图,作PF ⊥AB 于点F ,根据题意,得AQ =t ,BQ =8-t ,BP =t . ∵△BPF ∽△BCE ∴BC BP CE PF =即54t PF = ∴54t PF = ∴t PF 54=S △PQB =PF BQ ⋅21=()()532452548212+--=⋅-t t t当t =4时,△PQB 的面积最大,且S max =532(3)i.若BP =BQ ,则t =8-t ,∴t =4s ;ii.若QP =QB ,则53821=-t t,t =1148 s全面有效 学习载体 iii.若PQ =PB ,则()53821=-t t ,t =1140 s 综合以上,当t 等于4s ,1148 s ,1140 s 时,△PQB 为等腰三角形.。
2015年黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.(3分)实数﹣的相反数是()C.2D.﹣2A.B.﹣2.(3分)(2015•哈尔滨)下列运算正确的是()A.(a2)5=a7B.a2•a4=a6C.3a2b﹣3ab2=0 D.()2=3.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)(2015•哈尔滨)点A(﹣1,y1),B(﹣2,y2)在反比例函数y=的图象上,则y1,y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定5.(3分)(2015•哈尔滨)如图所示的几何体是由五个小正方体组合而成的,它的主视图是()A.B.C.D.6.(3分)(2015•哈尔滨)如图,某飞机在空中A处探测到它的正下方地平面上目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的仰角α=30°,则飞机A与指挥台B 的距离为()A.1200m B.1200m C.1200m D.2400m7.(3分)(2015•哈尔滨)如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是()A.=B.=C.=D.=8.(3分)(2015•哈尔滨)今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1600m2.设扩大后的正方形绿地边长为x m,下面所列方程正确的是()A.x(x﹣60)=1600 B.x(x+60)=1600 C.60(x+60)=1600 D.60(x﹣60)=16009.(3分)(2015•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32°B.64°C.77°D.87°10.(3分)(2015•哈尔滨)小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计),一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s(单位:米)与他所用时间t(单位:分钟)之间的函数关系如图所示,已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:①小明从家出发5分钟时乘上公交车②公交车的速度为400米/分钟③小明下公交车后跑向学校的速度为100米/分钟④小明上课没有迟到其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共计30分)11.(3分)(2015•哈尔滨)将123000000用科学记数法表示为.12.(3分)(2015•哈尔滨)在函数y=中,自变量x的取值范围是.13.(3分)(2015•哈尔滨)计算﹣3=.14.(3分)(2015•哈尔滨)把多项式9a3﹣ab2因式分解的结果是.15.(3分)(2015•哈尔滨)一个扇形的半径为3cm,面积为π cm2,则此扇形的圆心角为度.16.(3分)(2015•哈尔滨)不等式组的解集为.17.(3分)(2015•哈尔滨)美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅,则展出的油画作品有幅.18.(3分)(2015•哈尔滨)从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.19.(3分)(2015•哈尔滨)在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为点M,则线段AM的长为.20.(3分)(2015•哈尔滨)如图,点D在△ABC的边BC上,∠C+∠BAD=∠DAC,tan∠BAD=,AD=,CD=13,则线段AC的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)(2015•哈尔滨)先化简,再求代数式:(﹣)÷的值,其中x=2+tan60°,y=4sin30°.22.(7分)(2015•哈尔滨)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).23.(8分)(2015•哈尔滨)某中学为了了解八年级学生体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,请根据两幅统计图中的信息,回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?24.(8分)(2015•哈尔滨)如图1,▱ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.(1)求证:四边形EGFH是平行四边形;(2)如图2,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外).25.(10分)(2015•哈尔滨)华昌中学开学初在金利源商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元?(2)华昌中学响应习总书记“足球进校园”的号召,决定两次购进A、B两种品牌足球共50个,恰逢金利源商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3260元,那么华昌中学此次最多可购买多少个B品牌足球?26.(10分)(2015•哈尔滨)AB,CD是⊙O的两条弦,直线AB,CD互相垂直,垂足为点E,连接AD,过点B作BF⊥AD,垂足为点F,直线BF交直线CD于点G.(1)如图1,当点E在⊙O外时,连接BC,求证:BE平分∠GBC;(2)如图2,当点E在⊙O内时,连接AC,AG,求证:AC=AG;(3)如图3,在(2)条件下,连接BO并延长交AD于点H,若BH平分∠ABF,AG=4,tan∠D=,求线段AH的长.27.(10分)(2015•哈尔滨)如图,在平面直角坐标系中,点O为坐标原点,直线y=kx+1(k≠0)与x轴交于点A,与y轴交于点C,过点C的抛物线y=ax2﹣(6a﹣2)x+b(a≠0)与直线AC交于另一点B,点B坐标为(4,3).(1)求a的值;(2)点P是射线CB上的一个动点,过点P作PQ⊥x轴,垂足为点Q,在x轴上点Q的右侧取点M,使MQ=,在QP的延长线上取点N,连接PM,AN,已知tan∠NAQ﹣tan∠MPQ=,求线段PN的长;(3)在(2)的条件下,过点C作CD⊥AB,使点D在直线AB下方,且CD=AC,连接PD,NC,当以PN,PD,NC的长为三边长构成的三角形面积是时,在y轴左侧的抛物线上是否存在点E,连接NE,PE,使得△ENP与以PN,PD,NC的长为三边长的三角形全等?若存在,求出E点坐标;若不存在,请说明理由.2015年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3分)考点:相反数.分析:根据只有符号不同的两数叫做互为相反数解答.解答:解:实数﹣的相反数是,故选A点评:本题考查了实数的性质,熟记相反数的定义是解题的关键.2.(3分)考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据幂的乘方、同底数幂的乘法和同类项合并计算即可.解答:解:A、(a2)5=a10,错误;B、a2•a4=a6,正确;C、3a2b与3ab2不能合并,错误;D、()2=,错误;故选B.点评:此题考查幂的乘方、同底数幂的乘法和同类项合并,关键是根据法则进行计算.3.(3分)考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.点评:本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)考点:反比例函数图象上点的坐标特征.分析:先根据反比例函数的解析式判断出反比例函数的图象所在的象限及其增减性,再根据A、B两点的横坐标判断出两点所在的象限,进而可得出结论.解答:解:∵反比例函数y=中,k=2>0,∴此函数图象的两个分支分别位于一、三象限,且在每一象限内y随x的增大而减小,∵﹣1<0,﹣2<0,∴点A(﹣1,y1)、B(﹣2,y2)均位于第三象限,∵﹣1>﹣2,∴y1<y2.故选C.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.(3分)考点:简单组合体的三视图.分析:从正面看得到从左往右3列正方形的个数依次为1,1,2,依此判断即可.解答:解:从正面看得到从左往右3列正方形的个数依次为1,1,2,故选A点评:此题考查三视图,关键是根据三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.6.(3分)考点:解直角三角形的应用-仰角俯角问题.分析:首先根据图示,可得∠ABC=∠α=30°,然后在Rt△ABC中,用AC的长度除以sin30°,求出飞机A与指挥台B的距离为多少即可.解答:解:∵∠ABC=∠α=30°,∴AB==,即飞机A与指挥台B的距离为2400m.故选:D.点评:此题主要考查了解直角三角形的应用﹣仰角俯角问题,要熟练掌握,解答此题的关键是要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.7.(3分)考点:相似三角形的判定与性质;平行四边形的性质.分析:根据相似三角形的判定和性质进行判断即可.解答:解:∵四边形ABCD是平行四边形,∴AD∥BF,BE∥DC,AD=BC,∴,,,故选C.点评:此题考查相似三角形的判定和性质,关键是根据相似三角形的判定和性质来分析判断.8.(3分)考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:设扩大后的正方形绿地边长为xm,根据“扩大后的绿地面积比原来增加1600m2”建立方程即可.解答:解:设扩大后的正方形绿地边长为xm,根据题意得x2﹣60x=1600,即x(x﹣60)=1600.故选A.点评:本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.9.(3分)考点:旋转的性质.分析:旋转中心为点A,C、C′为对应点,可知AC=AC′,又因为∠CAC′=90°,根据三角形外角的性质求出∠C′B′A的度数,进而求出∠B的度数.解答:解:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.点评:本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应线段相等.也考查了等腰直角三角形的性质.10.(3分)考点:一次函数的应用.分析:根据图象可以确定他家与学校的距离,公交车时间是多少,他步行的时间和公交车的速度和小明从家出发到学校所用的时间.解答:解:①小明从家出发乘上公交车的时间为7﹣(1200﹣400)÷400=5分钟,①正确;②公交车的速度为(3200﹣1200)÷(12﹣7)=400米/分钟,②正确;③小明下公交车后跑向学校的速度为(3500﹣3200)÷3=100米/分钟,③正确;④上公交车的时间为12﹣5=7分钟,跑步的时间为10﹣7=3分钟,因为3<4,小明上课没有迟到,④正确;故选:D.点评:本题考查利用函数的图象解决实际问题,正确理解函数图象横、纵坐标表示的意义是解题的关键,注意,在解答时,单位要统一.二、填空题(每小题3分,共计30分)11.(3分)考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将123000000用科学记数法表示为:1.23×108.故答案为:1.23×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)考点:函数自变量的取值范围.分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不为0.解答:解:要使分式有意义,即:x﹣2≠0,解得:x≠2.故答案为:x≠2.点评:本题主要考查函数自变量的取值范围,考查的知识点为:分式有意义,分母不为0.13.(3分)考点:二次根式的加减法.专题:计算题.分析:原式各项化为最简二次根式,合并即可得到结果.解答:解:原式=2﹣3×=2﹣=.故答案为:.点评:此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.14.(3分)考点:提公因式法与公式法的综合运用.专题:计算题.分析:原式提取a,再利用平方差公式分解即可.解答:解:原式=a(9a2﹣b2)=a(3a+b)(3a﹣b),故答案为:a(3a+b)(3a﹣b)点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.(3分)考点:扇形面积的计算.分析:设扇形的圆心角是n°,根据扇形的面积公式即可得到一个关于n的方程,解方程即可求解.解答:解:设扇形的圆心角是n°,根据题意可知:S==π,解得n=40°,故答案为40.点评:本题考查了扇形的面积公式,正确理解公式S=是解题的关键,此题难度不大.16.(3分)考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>﹣1,由②得x≤2,故此不等式组的解集为:﹣1<x≤2.故答案为:﹣1<x≤2.点评:本题解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.17.(3分)考点:二元一次方程组的应用.分析:设展出的油画作品的数量是x幅,展出的国画作品是y幅,则根据“展出的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅”列出方程组并解答.解答:解:设展出的油画作品的数量是x幅,展出的国画作品是y幅,依题意得,解得,故答案是:69.点评:本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.18.(3分)考点:列表法与树状图法.分析:根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.解答:解:画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19.(3分)考点:矩形的性质;菱形的性质.专题:分类讨论.分析:两种情况:①由矩形的性质得出CD=AB=4,BC=AD=5,∠ADB=∠CDF=90°,由菱形的性质得出CF=EF=BE=BC=5,由勾股定理求出DF,得出MF,即可求出AM;②同①得出AE=3,求出ME,即可得出AM的长.解答:解:分两种情况:①如图1所示:∵四边形ABCD是矩形,∴CD=AB=4,BC=AD=5,∠ADB=∠CDF=90°,∵四边形BCFE为菱形,∴CF=EF=BE=BC=5,∴DF===3,∴AF=AD+DF=8,∵M是EF的中点,∴MF=EF=2.5,∴AM=AF﹣DF=8﹣2.5=5.5;②如图2所示:同①得:AE=3,∵M是EF的中点,∴ME=2.5,∴AM=AE﹣ME=0.5;综上所述:线段AM的长为:5.5,或0.5;故答案为:5.5,或0.5.点评:本题考查了矩形的性质、菱形的性质、勾股定理;熟练掌握矩形和菱形的性质,并能进行推理计算是解决问题的关键.20.(3分)考点:勾股定理;角平分线的性质;等腰三角形的判定与性质;解直角三角形.分析:作∠DAE=∠BAD交BC于E,作AF⊥BC交BC于F,作AG⊥BC交BC于G.根据三角函数设DF=4x,则AF=7x,在Rt△ADF中,根据勾股定理得到DF=4,AF=7,设EF=y,则CE=7+y,则DE=6﹣y,在Rt△DEF中,根据勾股定理得到DE=,AE=,设DG=z,则EG=﹣z,则()2﹣z2=()2﹣(﹣z)2,依此可得CG=12,在Rt△ADG中,据勾股定理得到AG=8,在Rt△ACG中,据勾股定理得到AC=4.解答:解:作∠DAE=∠BAD交BC于E,作DF⊥AE交AE于F,作AG⊥BC交BC于G.∵∠C+∠BAD=∠DAC,∴∠CAE=∠ACB,∴AE=EC,∵tan∠BAD=,∴设DF=4x,则AF=7x,在Rt△ADF中,AD2=DF2+AF2,即()2=(4x)2+(7x)2,解得x1=﹣1(不合题意舍去),x2=1,∴DF=4,AF=7,设EF=y,则CE=7+y,则DE=6﹣y,在Rt△DEF中,DE2=DF2+EF2,即(6﹣y)2=42+y2,解得y=,∴DE=6﹣y=,AE=,∴设DG=z,则EG=﹣z,则()2﹣z2=()2﹣(﹣z)2,解得z=1,∴CG=12,在Rt△ADG中,AG==8,在Rt△ACG中,AC==4.故答案为:4.点评:考查了勾股定理,等腰三角形的判定与性质,解直角三角形,解题的关键是根据勾股定理得到AG和CG的长.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)考点:分式的化简求值;特殊角的三角函数值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x与y的值代入计算即可求出值.解答:解:原式=•=,当x=2+,y=4×=2时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(7分)考点:作图—应用与设计作图.分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.解答:解:(1)如图1所示;(2)如图2、3所示;点评:本题考查的是作图﹣应用与设计作图,熟知勾股定理是解答此题的关键.23.(8分)考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用A等级的人数÷A等级的百分比,即可解答;(2)用总人数﹣A等级的人数﹣B等级的人数﹣D等级的人数,即可得到C等级的学生数;(3)根据用样本估计总体,即可解答.解答:解:(1)10÷20%=50(名).答:本次抽样调查共抽取了50名学生;(2)50﹣10﹣20﹣4=16(名).答:测试结果为C等级的学生有16名;如图所示:(3)700×=56(名).答:估计该中学八年级学生中体能测试结果为D等级的学生有56名.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8分)考点:平行四边形的判定与性质;全等三角形的判定与性质.分析:(1)由四边形ABCD是平行四边形,得到AD∥BC,根据平行四边形的性质得到∠EAO=∠FCO,证出△OAE≌△OCF,得到OE=OF,同理OG=OH,根据对角线互相平分的四边形是平行四边形得到结论;(2)根据两组对边分别平行的四边形是平行四边形即可得到结论.解答:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,在△OAE与△OCF中,∴△OAE≌△OCF,∴OE=OF,同理OG=OH,∴四边形EGFH是平行四边形;(2)解:与四边形AGHD面积相等的所有平行四边形有▱GBCH,▱ABFE,▱EFCD,▱EGFH;∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∵EF∥AB,GH∥BC,∴四边形GBCH,ABFE,EFCD,EGFH为平行四边形,∵EF过点O,GH过点O,∵OE=OF,OG=OH,∴▱GBCH,▱ABFE,▱EFCD,▱EGFH,▱ACHD它们面积=▱ABCDA的面积,∴与四边形AGHD面积相等的所有平行四边形有▱GBCH,▱ABFE,▱EFCD,▱EGFH.点评:本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.25.(10分)考点:分式方程的应用;一元一次不等式的应用.分析:(1)设一个A品牌的足球需x元,则一个B品牌的足球需x+30元,根据购买A品牌足球数量是购买B品牌足球数量的2倍列出方程解答即可;(2)设此次可购买a个B品牌足球,则购进A牌足球(50﹣a)个,根据购买A、B 两种品牌足球的总费用不超过3260元,列出不等式解决问题.解答:解:(1)设一个A品牌的足球需x元,则一个B品牌的足球需x+30元,由题意得=×2解得:x=50经检验x=50是原方程的解,x+30=80答:一个A品牌的足球需50元,则一个B品牌的足球需80元.(2)设此次可购买a个B品牌足球,则购进A牌足球(50﹣a)个,由题意得50×(1+8%)(50﹣a)+80×0.9a≤3260解得a≤31∵a是整数,∴a最大等于31,答:华昌中学此次最多可购买31个B品牌足球.点评:此题考查二元一次方程组与分式方程的应用,找出题目蕴含的等量关系与不等关系是解决问题的关键.26.(10分)考点:圆的综合题.分析:(1)利用圆内接四边形的性质得出∠D=∠EBC,进而利用互余的关系得出∠GBE=∠EBC,进而求出即可;(2)首先得出∠D=∠ABG,进而利用全等三角形的判定与性质得出△BCE≌△BGE (ASA),则CE=EG,再利用等腰三角形的性质求出即可;(3)首先求出CO的长,再求出tan∠ABH===,利用OP2+PB2=OB2,得出a的值进而求出答案.解答:(1)证明:如图1,∵四边形ABCD内接于⊙O,∴∠D+∠ABC=180°,∵∠ABC+∠EBC=180°,∴∠D=∠EBC,∵GF⊥AD,AE⊥DG,∴∠A+∠ABF=90°,∠A+∠D=90°,∴∠ABE=∠D,∵∠ABF=∠GBE,∴∠GBE=∠EBC,即BE平分∠GBC;(2)证明:如图2,连接CB,∵AB⊥CD,BF⊥AD,∴∠D+∠BAD=90°,∠ABG+∠BAD=90°,∴∠D=∠ABG,∵∠D=∠ABC,∴∠ABC=∠ABG,∵AB⊥CD,∴∠CEB=∠GEB=90°,在△BCE和△BGE中,∴△BCE≌△BGE(ASA),∴CE=EG,∵AE⊥CG,∴AC=AG;(3)解:如图3,连接CO并延长交⊙O于M,连接AM,∵CM是⊙O的直径,∴∠MAC=90°,∵∠M=∠D,tanD=,∴tanM=,∴=,∵AG=4,AC=AG,∴AC=4,AM=3,∴MC==5,∴CO=,过点H作HN⊥AB,垂足为点N,∵tanD=,AE⊥DE,∴tan∠BAD=,∴=,设NH=3a,则AN=4a,∴AH==5a,∵HB平分∠ABF,NH⊥AB,HF⊥BF,∴HF=NH=3a,∴AF=8a,cos∠BAF===,∴AB==10a,∴NB=6a,∴tan∠ABH===,过点O作OP⊥AB垂足为点P,∴PB=AB=5a,tan∠ABH==,∴OP=a,∵OB=OC=,OP2+PB2=OB2,∴25a2+a2=,∴解得:a=,∴AH=5a=.点评:此题主要考查了圆的综合以及勾股定理和锐角三角函数关系等、全等三角形的判定与性质知识,正确作出辅助线得出tan∠ABH==是解题关键.27.(10分)考点:二次函数综合题;全等三角形的判定与性质;勾股定理;平行四边形的判定与性质;锐角三角函数的定义.专题:综合题.分析:(1)易得点C的坐标为(0,1),然后把点B、点C的坐标代入抛物线的解析式,即可解决问题;(2)把B(4,3)代入y=kx+1中,即可得到k的值,从而可求出点A的坐标,就可求出tan∠CAO=(即tan∠PAQ=),设PQ=m,则QA=2m,根据条件tan∠NAQ﹣tan∠MPQ=,即可求出PN的值;(3)由条件CD⊥AB,CD=AC,想到构造全等三角形,过点D作DF⊥CO于点F,易证△ACO≌△CDF,从而可以求出FD、CF、OF.作PH∥CN,交y轴于点H,连接DH,易证四边形CHPN是平行四边形,从而可得CN=HP,CH=PN,通过计算可得DH=PN,从而可得△PHD是以PN、PD、NC的长为三边长的三角形,则有S△PHD=.延长FD、PQ交于点G,易得∠G=90°.由点P在y=x+1上,可设P(t,t+1),根据S四边形HFGP=S△HFD+S△PHD+S△PDG,可求出t的值,从而得到点P、N的坐标及tan∠DPG的值,从而可得tan∠DPG=tan∠HDF,则有∠DPG=∠HDF,进而可证到∠HDP=90°.若△ENP与△PDH全等,已知PN=DH,可分以下两种情况(①∠ENP=∠PDH=90°,EN=PD,②∠NPE=∠HDP=90°,BE=PD)进行讨论,即可解决问题.解答:解:(1)当x=0时,由y=kx+1得y=1,则C(0,1).∵抛物线y=ax2﹣(6a﹣2)x+b(a≠0)经过C(0,1),B(4,3),∴,解得:,∴a=;(2)把B(4,3)代入y=kx+1中,得3=4k+1,解得:k=,∴直线AB的解析式为y=x+1.由y=0得0=x+1,解得:x=﹣2,∴A(﹣2,0),OA=2,∵C(0,1),∴OC=1,∴tan∠CAO==.∵PQ⊥x轴,∴tan∠PAQ==,设PQ=m,则QA=2m,∵tan∠NAQ﹣tan∠MPQ=,∴=,∵MQ=,∴﹣=,∴PN=;(3)在y轴左侧抛物线上存在E,使得△ENP与以PN,PD,NC的长为三边长的三角形全等.过点D作DF⊥CO于点F,如图2,∵DF⊥CF,CD⊥AB,∴∠CDF+∠DCF=90°,∠DCF+∠ACO=90°,∴∠CDF=∠ACO,∵CO⊥x轴,DF⊥CO,∴∠AOC=∠CFD=90°,在△ACO和△CDF中,,∴△ACO≌△CDF(AAS),∴CF=AO=2,DF=CO=1,∴OF=CF﹣CO=1,作PH∥CN,交y轴于点H,连接DH,∵CH∥PN,∴四边形CHPN是平行四边形,∴CN=HP,CH=PN=,∴HF=CF﹣CH=,DH==,∴DH=PN.∴△PHD是以PN,PD,NC的长为三边长的三角形,∴S△PHD=.延长FD、PQ交于点G,∵PQ∥y轴,∴∠G=180°﹣∠CFD=90°,∴S四边形HFGP=S△HFD+S△PHD+S△PDG,∴(HF+PG)FG=HF•FD++DG•PG.∵点P在y=x+1上,∴可设P(t,t+1),∴(+t+1+1)•t=××1++(t﹣1)•(t+1+1),∴t=4,P(4,3),∴N(4,),tan∠DPG==.∵tan∠HDF==,∴∠DPG=∠HDF.∵∠DPG+∠PDG=90°,∴∠HDF+∠PDG=90°,∴∠HDP=90°.∵PN=DH,若△ENP与△PDH全等,则有两种情况:①当∠ENP=∠PDH=90°,EN=PD时,∵PD==5,∴EN=5,∴E(﹣1,).由(1)得:抛物线y=x2﹣x+1.当x=﹣1时,y=,所以点E在此抛物线上.②当∠NPE=∠HDP=90°,BE=PD时,则有E(﹣1,3),此时点E不在抛物线上,∴存在点E,满足题中条件,点E的坐标为(﹣1,).点评:本题主要考查了运用待定系数法求直线及二次函数的解析式、全等三角形的判定与性质、平行四边形的判定与性质、三角函数的定义、抛物线上点的坐标特征、勾股定理等知识,通过平移CN,将PN、PD、NC归结到△PHD中,是解决本题的关键.在解决问题的过程中,用到了分类讨论、平移变换、割补法、运算推理等重要的数学思想方法,应学会使用.第21页(共21页)。
2015年中考数学试题及答案word一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2.5B. πC. 0.33333...D. √4答案:B2. 一个矩形的长是宽的两倍,若宽为x,则其面积为?A. 2x^2B. x^2C. 4x^2D. x答案:A3. 一个数的相反数是-5,这个数是?A. 5B. -5C. 0D. 10答案:A4. 下列哪个方程的解是x=2?A. 2x + 3 = 7B. 3x - 2 = 4C. 4x - 5 = 3D. 5x + 6 = 16答案:A5. 一个等腰三角形的两边长分别为3和5,其周长是多少?A. 11B. 13C. 16D. 14答案:B6. 一个圆的半径为3,其面积是多少?A. 9πB. 18πC. 27πD. 36π答案:C7. 函数y=2x+3中,当x=1时,y的值是多少?A. 5B. 6C. 7D. 8答案:A8. 下列哪个选项表示的是正比例关系?A. y = 2xB. y = x^2C. y = 1/xD. y = √x答案:A9. 一个数的立方根等于它本身,这个数是?A. 0B. 1C. -1D. 所有选项答案:D10. 一个数的平方等于9,这个数是?A. 3B. -3C. ±3D. 9答案:C二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可能是______。
答案:±512. 一个数的平方是25,这个数可能是______。
答案:±513. 一个数的倒数是2,这个数是______。
答案:1/214. 一个数的立方是8,这个数是______。
答案:215. 一个数除以2余1,除以3余2,除以4余3,这个数最小是______。
答案:5716. 一个等差数列的首项是3,公差是2,第5项是______。
答案:1117. 一个等比数列的首项是2,公比是3,第3项是______。
答案:1818. 一个直角三角形的两个直角边长分别是3和4,斜边长是______。
宁波市2015年初中毕业生学业考试数 学 试 题满分150分,考试时间120分钟,不得使用计算器一、选择题(每小题4分,共48分) 1. 31-的绝对值是 A. 31 B. 3 C. 31- D. -32. 下列计算正确的是A. 532)(a a = B. 22=-a a C. a a 4)2(2= D. 43a a a =⋅3. 2015年中国高端装备制造业收入将超过6万亿元,其中6万亿元用科学计数法可表示为A. 0.6×1013元 B. 60×1011元 C. 6×1012元 D. 6×1013元4. 在端午节道来之前,学校食堂推荐了A ,B ,C 三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购。
下面的统计量中,最值得关注的是 A. 方差 B. 平均数 C. 中位数 D. 众数 5. 如图是由五个相同的小立方块搭成的几何体,则它的俯视图是6. 如图,直线a ∥b ,直线c 分别与a ,b 相交,∠1=50°,则∠2的度数为A. 150°B. 130°C. 100°D. 50°7. 如图,□ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件,使△ABE ≌△CDF ,则添加的条件不能为A. BE=DFB. BF=DEC. AE=CFD. ∠1=∠28. 如图,⊙O 为△ABC 的外接圆,∠A=72°,则∠BCO 的度数为9. 如图,用一个半径为30cm ,面积为π300cm 2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r 为A. 5cmB. 10cmC. 20cmD. π5cm10. 如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第1次操作,折痕DE 到BC 的距离记为1h ;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为2h ;按上述方法不断操作下去,经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为2015h ,若,则2015h 的值为 A.201521 B.201421 C. 2015211-D. 2014212-11. 二次函数)0(4)4(2≠--=a x a y 的图象在2<x <3这一段位于x 轴的下方,在6<x <7这一段位于x 轴的上方,则a 的值为A. 1B. -1C. 2D. -212. 如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形。
2015年福建省泉州市中考数学试卷一、选择题(共7小题,每小题3分,满分21分)1.(3分)(2015•泉州)﹣7的倒数是()A.7 B.﹣7 C.D.﹣2.(3分)(2015•泉州)计算:(ab2)3=()A.3ab2B.ab6C.a3b6 D.a3b23.(3分)(2015•泉州)把不等式x+2≤0的解集在数轴上表示出来,则正确的是()A.B.C.D.4.(3分)(2015•泉州)甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如表则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁5.(3分)(2015•泉州)如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A.2 B.3 C.5 D.76.(3分)(2015•泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.17.(3分)(2015•泉州)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.二、填空题(共10小题,每小题4分,满分40分)8.(4分)(2015•泉州)比较大小:4(填“>”或“<”)9.(4分)(2015•泉州)因式分解:x2﹣49=.10.(4分)(2015•泉州)声音在空气中每小时约传播1200千米,将1200用科学记数法表示为.11.(4分)(2015•泉州)如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD=°.12.(4分)(2015•泉州)方程x2=2的解是.13.(4分)(2015•泉州)计算:+=.14.(4分)(2015•泉州)如图,AB和⊙O切于点B,AB=5,OB=3,则tanA=.15.(4分)(2015•泉州)方程组的解是.16.(4分)(2015•泉州)如图,在⊙O的内接四边形ABCD中,点E在DC的延长线上.若∠A=50°,则∠BCE=.17.(4分)(2015•泉州)在以O为圆心3cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则该菱形的边长等于cm;弦AC所对的弧长等于cm.三、解答题(共9小题,满分89分)18.(9分)(2015•泉州)计算:|﹣4|+(2﹣π)0﹣8×4﹣1+÷.19.(9分)(2015•泉州)先化简,再求值:(x﹣2)(x+2)+x2(x﹣1),其中x=﹣1.20.(9分)(2015•泉州)如图,在矩形ABCD中.点O在边AB上,∠AOC=∠BOD.求证:AO=OB.21.(9分)(2015•泉州)为弘扬“东亚文化”,某单位开展了“东亚文化之都”演讲比赛,在安排1位女选手和3位男选手的出场顺序时,采用随机抽签方式.(1)请直接写出第一位出场是女选手的概率;(2)请你用画树状图或列表的方法表示第一、二位出场选手的所有等可能结果,并求出他们都是男选手的概率.22.(9分)(2015•泉州)清明期间,某校师生组成200个小组参加“保护环境,美化家园”植树活动.综合实际情况,校方要求每小组植树量为2至5棵,活动结束后,校方随机抽查了其中50个小组,根据他们的植树量绘制出如图所示的两幅不完整统计图.请根据图中提供的信息,解答下面的问题:(1)请把条形统计图补充完整,并算出扇形统计图中,植树量为“5棵树”的圆心角是°.(2)请你帮学校估算此次活动共种多少棵树.23.(9分)(2015•泉州)如图,在平面直角坐标系中,点A(,1)、B(2,0)、O(0,0),反比例函数y=图象经过点A.(1)求k的值;(2)将△AOB绕点O逆时针旋转60°,得到△COD,其中点A与点C对应,试判断点D是否在该反比例函数的图象上?24.(9分)(2015•泉州)某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x米(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?25.(13分)(2015•泉州)(1)如图1是某个多面体的表面展开图.①请你写出这个多面体的名称,并指出图中哪三个字母表示多面体的同一点;②如果沿BC、GH将展开图剪成三块,恰好拼成一个矩形,那么△BMC应满足什么条件?(不必说理)(2)如果将一个三棱柱的表面展开图剪成四块,恰好拼成一个三角形,如图2,那么该三棱柱的侧面积与表面积的比值是多少?为什么?(注:以上剪拼中所有接缝均忽略不计)26.(13分)(2015•泉州)阅读理解抛物线y=x2上任意一点到点(0,1)的距离与到直线y=﹣1的距离相等,你可以利用这一性质解决问题.问题解决如图,在平面直角坐标系中,直线y=kx+1与y轴交于C点,与函数y=x2的图象交于A,B两点,分别过A,B两点作直线y=﹣1的垂线,交于E,F两点.(1)写出点C的坐标,并说明∠ECF=90°;(2)在△PEF中,M为EF中点,P为动点.①求证:PE2+PF2=2(PM2+EM2);②已知PE=PF=3,以EF为一条对角线作平行四边形CEDF,若1<PD<2,试求CP的取值范围.2015年福建省泉州市中考数学试卷参考答案与试题解析一、选择题(共7小题,每小题3分,满分21分)1.(3分)(2015•泉州)﹣7的倒数是()A.7 B.﹣7 C.D.﹣【考点】倒数.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣7的倒数是﹣,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)(2015•泉州)计算:(ab2)3=()A.3ab2B.ab6C.a3b6 D.a3b2【考点】幂的乘方与积的乘方.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,幂的乘方,底数不变指数相乘解答.【解答】解:(ab2)3,=a3(b2)3,=a3b6故选C.【点评】主要考查积的乘方的性质,熟练掌握运算性质是解题的关键,要注意符号的运算.3.(3分)(2015•泉州)把不等式x+2≤0的解集在数轴上表示出来,则正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先解的不等式,然后在数轴上表示出来.【解答】解:解不等式x+2≤0,得x≤﹣2.表示在数轴上为:.故选:D.【点评】本题考查了解一元一次不等式、在数轴上表示不等式的解集.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.(3分)(2015•泉州)甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如表则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布越稳定进行比较即可.【解答】解:∵0.019<0.020<0.021<0.022,∴乙的方差最小,∴这四人中乙发挥最稳定,故选:B.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.(3分)(2015•泉州)如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A.2 B.3 C.5 D.7【考点】平移的性质.【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离=BE=5﹣3=2,进而可得答案.【解答】解:根据平移的性质,易得平移的距离=BE=5﹣3=2,故选A.【点评】本题考查平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,本题关键要找到平移的对应点.6.(3分)(2015•泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.1【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边列出不等式即可.【解答】解:根据三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5,故选:B.【点评】本题考查的是三角形的三边关系,掌握三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.7.(3分)(2015•泉州)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【专题】压轴题.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【解答】解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴x=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选:C.【点评】此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.二、填空题(共10小题,每小题4分,满分40分)8.(4分)(2015•泉州)比较大小:4>(填“>”或“<”)【考点】实数大小比较;二次根式的性质与化简.【专题】推理填空题.【分析】根据二次根式的性质求出=4,比较和的值即可.【解答】解:4=,>,∴4>,故答案为:>.【点评】本题考查了二次根式的性质和实数的大小比较等知识点,关键是知道4=,题目较好,难度也不大.9.(4分)(2015•泉州)因式分解:x2﹣49=(x+7)(x﹣7).【考点】因式分解-运用公式法.【分析】利用平方差公式直接进行分解即可.【解答】解:x2﹣49=(x﹣7)(x+7),故答案为:(x﹣7)(x+7).【点评】此题主要考查了平方差公式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).10.(4分)(2015•泉州)声音在空气中每小时约传播1200千米,将1200用科学记数法表示为 1.2×103.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1200=1.2×103,故答案为:1.2×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(4分)(2015•泉州)如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD=30°°.【考点】等边三角形的性质.【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD的度数.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC,AD⊥BC,∴∠BAD=∠BAC=30°,故答案为:30°.【点评】本题考查的是等边三角形的性质,掌握等边三角形的三个内角都是60°和等腰三角形的三线合一是解题的关键.12.(4分)(2015•泉州)方程x2=2的解是±.【考点】解一元二次方程-直接开平方法.【分析】利用直接开平方法求解即可.【解答】解:x2=2,x=±.故答案为±.【点评】本题考查了解一元二次方程﹣直接开平方法,注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b 同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.13.(4分)(2015•泉州)计算:+=2.【考点】分式的加减法.【专题】计算题.【分析】原式利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:原式===2,故答案为:2【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.(4分)(2015•泉州)如图,AB和⊙O切于点B,AB=5,OB=3,则tanA=.【考点】切线的性质.【分析】由于直线AB与⊙O相切于点B,则∠OBA=90°,AB=5,OB=3,根据三角函数定义即可求出tanA.【解答】解:∵直线AB与⊙O相切于点B,则∠OBA=90°.∵AB=5,OB=3,∴tanA==.故答案为:.【点评】本题主要考查了利用切线的性质和锐角三角函数的概念解直角三角形的问题.15.(4分)(2015•泉州)方程组的解是.【考点】解二元一次方程组.【专题】计算题.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=3,即x=1,把x=1代入①得:y=﹣3,则方程组的解为,故答案为:【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.16.(4分)(2015•泉州)如图,在⊙O的内接四边形ABCD中,点E在DC的延长线上.若∠A=50°,则∠BCE=50°.【考点】圆内接四边形的性质.【专题】计算题.【分析】根据圆内接四边形的任意一个外角等于它的内对角求解.【解答】解:∵四边形ABCD内接于⊙O,∴∠BCE=∠A=50°.故答案为50°.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补;圆内接四边形的任意一个外角等于它的内对角.17.(4分)(2015•泉州)在以O为圆心3cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则该菱形的边长等于3cm;弦AC所对的弧长等于2π或4πcm.【考点】菱形的性质;等边三角形的判定与性质;弧长的计算.【专题】压轴题;分类讨论.【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出∠AOC,根据弧长公式的计算计算即可.【解答】解:连接OB和AC交于点D,∵四边形OABC为菱形,∴OA=AB=BC=OC,∵⊙O半径为3cm,∴OA=OC=3cm,∵OA=OB,∴△OAB为等边三角形,∴∠AOB=60°,∴∠AOC=120°,∴==2π,∴优弧==4π,故答案为3,2π或4π.【点评】本题考查了弧长的计算,菱形的性质,等边三角形的判定和性质,解题关键是熟练掌握弧长公式l=,有一定的难度.三、解答题(共9小题,满分89分)18.(9分)(2015•泉州)计算:|﹣4|+(2﹣π)0﹣8×4﹣1+÷.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用二次根式的除法法则变形,计算即可得到结果.【解答】解:原式=4+1﹣2+3=6.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.19.(9分)(2015•泉州)先化简,再求值:(x﹣2)(x+2)+x2(x﹣1),其中x=﹣1.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2﹣4+x3﹣x2=x3﹣4,当x=﹣1时,原式=﹣5.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.(9分)(2015•泉州)如图,在矩形ABCD中.点O在边AB上,∠AOC=∠BOD.求证:AO=OB.【考点】矩形的性质;全等三角形的判定与性质.【专题】证明题.【分析】首先根据矩形的性质得到∠A=∠B=90°,AD=BC,利用角角之间的数量关系得到∠AOD=∠BOC,利用AAS证明△AOD≌△BOC,即可得到AO=OB.【解答】解:∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC,∵∠AOC=∠BOD,∴∠AOC﹣∠DOC=∠BOD﹣∠DOC,∴∠AOD=∠BOC,在△AOD和△BOC中,,∴△AOD≌△BOC,∴AO=OB.【点评】本题主要考查了矩形的性质的知识,解答本题的关键是证明△AOD≌△BOC,此题难度不大.21.(9分)(2015•泉州)为弘扬“东亚文化”,某单位开展了“东亚文化之都”演讲比赛,在安排1位女选手和3位男选手的出场顺序时,采用随机抽签方式.(1)请直接写出第一位出场是女选手的概率;(2)请你用画树状图或列表的方法表示第一、二位出场选手的所有等可能结果,并求出他们都是男选手的概率.【考点】列表法与树状图法.【专题】计算题.【分析】(1)根据4位选手中女选手只有1位,求出第一位出场是女选手的概率即可;(2)列表得出所有等可能的情况数,找出第一、二位出场都为男选手的情况数,即可求出所求的概率.【解答】解:(1)P(第一位出场是女选手)=;(2)列表得:所有等可能的情况有12种,其中第一、二位出场都是男选手的情况有6种,则P(第一、二位出场都是男选手)==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22.(9分)(2015•泉州)清明期间,某校师生组成200个小组参加“保护环境,美化家园”植树活动.综合实际情况,校方要求每小组植树量为2至5棵,活动结束后,校方随机抽查了其中50个小组,根据他们的植树量绘制出如图所示的两幅不完整统计图.请根据图中提供的信息,解答下面的问题:(1)请把条形统计图补充完整,并算出扇形统计图中,植树量为“5棵树”的圆心角是72°.(2)请你帮学校估算此次活动共种多少棵树.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)利用360°乘以对应的比例即可求解;(2)先求出抽查的50个组植树的平均数,然后乘以200即可求解.【解答】解:(1)植树量为“5棵树”的圆心角是:360°×=72°,故答案是:72;(2)每个小组的植树棵树:(2×8+3×15+4×17+5×10)=(棵),则此次活动植树的总棵树是:×200=716(棵).答:此次活动约植树716棵.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(9分)(2015•泉州)如图,在平面直角坐标系中,点A(,1)、B(2,0)、O(0,0),反比例函数y=图象经过点A.(1)求k的值;(2)将△AOB绕点O逆时针旋转60°,得到△COD,其中点A与点C对应,试判断点D是否在该反比例函数的图象上?【考点】反比例函数图象上点的坐标特征;坐标与图形变化-旋转.【分析】(1)根据函数y=的图象过点A(,1),直接求出k的值;(2)过点D作DE⊥x轴于点E,根据旋转的性质求出OD=OB=2,∠BOD=60°,利用解三角形求出OE和OD的长,进而得到点D的坐标,即可作出判断点D是否在该反比例函数的图象上.【解答】解:(1)∵函数y=的图象过点A(,1),∴k=xy=×1=;(2)∵B(2,0),∴OB=2,∵△AOB绕点O逆时针旋转60°得到△COD,∴OD=OB=2,∠BOD=60°,如图,过点D作DE⊥x轴于点E,DE=OE•sin60°=2×=,OE=OD•cos60°=2×=1,∴D(1,),由(1)可知y=,∴当x=1时,y==,∴D(1,)在反比例函数y=的图象上.【点评】本题主要考查了反比例函数图象上点的坐标特征以及图形的旋转的知识,解答本题的关键掌握旋后的两个图形对应边相等,对应角相等,此题难度不大.24.(9分)(2015•泉州)某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x米(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?【考点】二次函数的应用.【分析】(1)设AB=x米,根据等式x+x+BC=69+3,可以求出BC的表达式;(2)得出面积关系式,根据所求关系式进行判断即可.【解答】解:(1)设AB=x米,可得BC=69+3﹣2x=72﹣2x;(2)小英说法正确;矩形面积S=x(72﹣2x)=﹣2(x﹣18)2+648,∵72﹣2x>0,∴x<36,∴0<x<36,∴当x=18时,S取最大值,此时x≠72﹣2x,∴面积最大的不是正方形.【点评】本题主要考查二次函数的应用,借助二次函数解决实际问题.其中在确定自变量取值范围时要结合题目中的图形和长>宽的原则,找到关于x的不等式.25.(13分)(2015•泉州)(1)如图1是某个多面体的表面展开图.①请你写出这个多面体的名称,并指出图中哪三个字母表示多面体的同一点;②如果沿BC、GH将展开图剪成三块,恰好拼成一个矩形,那么△BMC应满足什么条件?(不必说理)(2)如果将一个三棱柱的表面展开图剪成四块,恰好拼成一个三角形,如图2,那么该三棱柱的侧面积与表面积的比值是多少?为什么?(注:以上剪拼中所有接缝均忽略不计)【考点】几何变换综合题.【专题】压轴题.【分析】(1)①根据这个多面体的表面展开图,可得这个多面体是直三棱柱,点A、M、D三个字母表示多面体的同一点,据此解答即可.②根据图示,要使沿BC、GH将展开图剪成三块,恰好拼成一个矩形,则△BMC应满足两个条件:△BMC中的三个内角有一个是直角;△BMC中的一条直角边和DH的长度相等,据此解答即可.(2)首先判断出矩形ACKL、BIJC、AGHB为棱柱的三个侧面,且四边形DGAL、EIBH、FKCJ须拼成与底面△ABC全等的另一个底面的三角形,AC=LK,且AC=DL+FK,,同理,可得,据此判断出△ABC∽△DEF,即可判断出S△DEF=4S△ABC;然后求出该三棱柱的侧面积与表面积的比值是多少即可.【解答】解:(1)①根据这个多面体的表面展开图,可得这个多面体是直三棱柱,点A、M、D三个字母表示多面体的同一点.②△BMC应满足的条件是:a、∠BMC=90°,且BM=DH,或CM=DH;b、∠MBC=90°,且BM=DH,或BC=DH;c、∠BCM=90°,且BC=DH,或CM=DH;(2)如图2,连接AB、BC、CA,,∵△DEF是由一个三棱柱表面展开图剪拼而成,∴矩形ACKL、BIJC、AGHB为棱柱的三个侧面,且四边形DGAL、EIBH、FKCJ须拼成与底面△ABC全等的另一个底面的三角形,∴AC=LK,且AC=DL+FK,∴,同理,可得,∴△ABC∽△DEF,∴,即S△DEF=4S△ABC,∴,即该三棱柱的侧面积与表面积的比值是.【点评】(1)此题主要考查了几何变换综合题,考查了分析推理能力,考查了空间想象能力,考查了数形结合方法的应用,要熟练掌握.(2)此题还考查了相似三角形的判定和性质的应用,要熟练掌握.(3)此题还考查了直三棱柱的表面展开图的特征和应用,要熟练掌握.26.(13分)(2015•泉州)阅读理解抛物线y=x2上任意一点到点(0,1)的距离与到直线y=﹣1的距离相等,你可以利用这一性质解决问题.问题解决如图,在平面直角坐标系中,直线y=kx+1与y轴交于C点,与函数y=x2的图象交于A,B两点,分别过A,B两点作直线y=﹣1的垂线,交于E,F两点.(1)写出点C的坐标,并说明∠ECF=90°;(2)在△PEF中,M为EF中点,P为动点.①求证:PE2+PF2=2(PM2+EM2);②已知PE=PF=3,以EF为一条对角线作平行四边形CEDF,若1<PD<2,试求CP的取值范围.【考点】二次函数综合题;勾股定理;矩形的判定与性质.【专题】综合题;压轴题;阅读型.【分析】(1)如图1,只需令x=0,即可得到点C的坐标.根据题意可得AC=AE,从而有∠AEC=∠ACE.易证AE∥CO,从而有∠AEC=∠OCE,即可得到∠ACE=∠OCE,同理可得∠OCF=∠BCF,然后利用平角的定义即可证到∠ECF=90°;(2))①过点P作PH⊥EF于H,分点H在线段EF上(如图2①)和点H在线段EF的延长线(或反向延长线)上(如图2②)两种情况讨论,然后只需运用勾股定理及平方差公式即可证到PE2+PF2﹣2PM2=2EM2,即PE2+PF2=2(PM2+EM2);②连接CD,PM,如图3.易证▱CEDF是矩形,从而得到M是CD的中点,且MC=EM,然后根据①中的结论,可得:在△PEF中,有PE2+PF2=2(PM2+EM2),在△PCD中,有PC2+PD2=2(PM2+CM2).由MC=EM可得PC2+PD2=PE2+PF2.根据PE=PF=3可求得PC2+PD2=18.根据1<PD<2可得1<PD2<4,即1<18﹣PC2<4,从而可求出PC的取值范围.【解答】解:(1)当x=0时,y=k•0+1=1,则点C的坐标为(0,1).根据题意可得:AC=AE,∴∠AEC=∠ACE.∵AE⊥EF,CO⊥EF,∴AE∥CO,∴∠AEC=∠OCE,∴∠ACE=∠OCE.同理可得:∠OCF=∠BCF.∵∠ACE+∠OCE+∠OCF+∠BCF=180°,∴2∠OCE+2∠OCF=180°,∴∠OCE+∠OCF=90°,即∠ECF=90°;(2)①过点P作PH⊥EF于H,Ⅰ.若点H在线段EF上,如图2①.∵M为EF中点,∴EM=FM=EF.根据勾股定理可得:PE2+PF2﹣2PM2=PH2+EH2+PH2+HF2﹣2PM2=2PH2+EH2+HF2﹣2(PH2+MH2)=EH2﹣MH2+HF2﹣MH2=(EH+MH)(EH﹣MH)+(HF+MH)(HF﹣MH)=EM(EH+MH)+MF(HF﹣MH)=EM(EH+MH)+EM(HF﹣MH)=EM(EH+MH+HF﹣MH)=EM•EF=2EM2,∴PE2+PF2=2(PM2+EM2);Ⅱ.若点H在线段EF的延长线(或反向延长线)上,如图2②.同理可得:PE2+PF2=2(PM2+EM2).综上所述:当点H在直线EF上时,都有PE2+PF2=2(PM2+EM2);②连接CD、PM,如图3.∵∠ECF=90°,∴▱CEDF是矩形,∵M是EF的中点,∴M是CD的中点,且MC=EM.由①中的结论可得:在△PEF中,有PE2+PF2=2(PM2+EM2),在△PCD中,有PC2+PD2=2(PM2+CM2).∵MC=EM,∴PC2+PD2=PE2+PF2.∵PE=PF=3,∴PC2+PD2=18.∵1<PD<2,∴1<PD2<4,∴1<18﹣PC2<4,∴14<PC2<17.∵PC>0,∴<PC<.【点评】本题主要考查了二次函数的性质、等腰三角形的性质、平行线的性质、平角的定义,矩形的判定与性质、勾股定理、解不等式、平方差公式等知识,还考查了阅读理解能力、运用已有经验解决问题的能力,第(2)小题中,运用勾股定理是解决第①小题的关键,运用①中的结论是解决第②小题的关键.参与本试卷答题和审题的老师有:2300680618;fangcao;dbz1018;1286697702;1987483819;妮子;zjx111;sd2011;HJJ;sks;HLing;gsls;张其铎;733599;zhjh;放飞梦想;1160374(排名不分先后)菁优网2015年12月17日祝福语祝你考试成功!。
2015年福建省福州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分:每小题只有一个正确选项)1.a的相反数是()A.|a| B.C.﹣a D.2.下列图形,由∠1=∠2能得到AB∥CD的是()A.B.C.D.3.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.计算3.8×107﹣3.7×107,结果用科学记数法表示为()A.0.1×107B.0.1×106C.1×107D.1×1065.下列选项,显示部分在总体中所占百分比的统计图是()A.扇形图B.条形图C.折线图D.直方图6.计算a•a﹣1的结果为()A.﹣1 B.0 C.1 D.﹣a7.如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()A.A点B.B点C.C点D.D点8.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()A.80°B.90°C.100°D.105°9.若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值不可能是()A.0 B.2.5 C.3 D.510.已知一个函数的图像经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数C.反比例函数D.二次函数二、填空题(共6小题,每题4分,满分24分)11.分解因式a2﹣9的结果是.12.计算(x﹣1)(x+2)的结果是.13.一个反比例函数的图像过点A(﹣2,﹣3),则这个反比例函数的解析式是.14.一组数据:2015,2015,2015,2015,2015,2015的方差是.15.一个工件,外部是圆柱体,内部凹槽是正方体,如图,其中,正方体一个面的四个顶点都在圆柱底面的圆周上,若圆柱底面的周长为2π cm,则正方体的体积为cm3.16.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是.三、解答题(共10小题,满分96分)17.(7分)计算:(﹣1)2015+sin 30°+(2﹣)(2+).18.(7分)化简:﹣.19.(8分)如图,∠1=∠2,∠3=∠4,求证:AC=AD.20.(8分)已知关于x的方程x2+(2m﹣1)x+4=0有两个相等的实数根,求m的值.21.(9分)有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛.问:篮球、排球队分别有多少支?22.(9分)一个不透明袋子中有1个红球、1个绿球和n个白球,这些球除颜色外无其他差别.(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?(在答题卡相应位置填“相同”或“不相同”);(2)从袋中随机摸出一个球,记录其颜色,然后放回,大量重复该实验,发现摸到绿球的频率稳定于0.25,则n的值是;(3)在一个摸球游戏中,所有可能出现的结果如下:根据树状图呈现的结果,求两次摸出的球颜色不同的概率.23.(10分)如图,在Rt△ABC中,∠C=90°,AC=,tan B=,半径为2的⊙C,分别交AC,BC于点D,E,得到.(1)求证:AB为⊙C的切线.(2)求图中阴影部分的面积.24.(12分)定义:长宽比为:1(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图①.操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G 处,折痕为BH.操作2:将AD沿过点G的直线折叠,使点A、点D分别落在边AB,CD上,折痕为EF.则四边形BCEF为矩形.证明:设正方形ABCD的边长为1,则BD==.由折叠性质可知BG=BC=1,∠AFE=∠BFE=90°,则四边形BCEF为矩形.∴∠A=∠BFE.∴EF∥AD.∴=,即=.∴BF=.∴BC:BF=1:=:1.∴四边形BCEF为矩形.阅读以上内容,回答下列问题:(1)在图①中,所有与CH相等的线段是,tan∠HBC的值是;(2)已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图②,求证:四边形BCMN是矩形;(3)将图②中的矩形BCMN沿用(2)中的方式操作3次后,得到一个“矩形”,则n 的值是.25.(13分)如图①,在锐角三角形ABC中,D,E分别为AB,BC的中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)求证:DM=DA.(2)点G在BE上,且∠BDG=∠C,如图②,求证:△DEG∽△ECF.(3)在图②中,(2)的基础上,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.26.(13分)如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.(1)这条抛物线的对称轴是,直线PQ与x轴所夹锐角的度数是;(2)若两个三角形的面积满足S△POQ=S△PAQ,求m的值;(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.2015年福建省福州市中考数学试卷参考答案与试题解析一、1.C 解析:a的相反数是﹣a.故选C.点评:本题考查了相反数的意义,只有符号不同的两个数互为相反数,0的相反数是0.一个数的相反数就是在这个数前面添上一个“﹣”.2.B 解析:如图.∵∠1=∠2(已知),∴AB∥CD(内错角相等,两直线平行).故选B.3.A 解析:不等式组的解集是﹣1≤x<2,∴不等式组的解集在数轴上表示为.故选A.点评:(1)此题主要考查了解一元一次不等式组的方法,解答此题的关键是要明确:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.(2)此题还考查了用数轴表示不等式的解集的方法,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是“小于向左,大于向右”.4.D 解析:3.8×107﹣3.7×107=(3.8﹣3.7)×107=0.1×107=1×106.故选D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.注意灵活运用运算定律简便计算.5.A 解析:在进行数据描述时,要显示部分在总体中所占的百分比,应采用扇形统计图.故选A.点评:本题考查统计图的选择,解决本题的关键是要明确:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频率分布直方图,清楚显示在各个不同区间内取值,各组频率分布情况,易于显示各组之间频率的差别.6.C 解析:a•a﹣1=a0=1.故选C.7.B 解析:当以点B为原点时,A(﹣1,﹣1),C(1,﹣1),则点A和点C关于y轴对称,符合条件.故选B.点评:本题考查的是关于x轴、y轴对称的点的坐标和坐标确定位置,掌握平面直角坐标系内点的坐标的确定方法和对称的性质是解题的关键.8.B 解析:如图.AB是以点C为圆心,BC长为半径的圆的直径.因为直径对的圆周角是90°,所以∠AMB=90°,所以测量∠AMB的度数,结果为90°.故选B.点评:(1)此题主要考查了作图——基本作图的方法,要熟练掌握,注意结合基本的几何图形的性质.(2)此题还考查了圆周角的知识,解答此题的关键是要明确:直径对的圆周角是90°.9.C 解析:(1)将这组数据按从小到大的顺序排列为1,2,3,4,x,处于中间位置的数是3,∴中位数是3,平均数为(1+2+3+4+x)÷5,∴3=(1+2+3+4+x)÷5,解得x=5;符合排列顺序;(2)将这组数据按从小到大的顺序排列为1,2,3,x,4,中位数是3,此时平均数是(1+2+3+4+x)÷5=3,解得x=5,不符合排列顺序;(3)将这组数据按从小到大的顺序排列为1,x,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,不符合排列顺序;(4)将这组数据按从小到大的顺序排列为x,1,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,符合排列顺序;(5)将这组数据按从小到大的顺序排列为1,2,x,3,4,中位数x,平均数(1+2+3+4+x)÷5=x,解得x=2.5,符合排列顺序.∴x 的值为0,2.5或5.故选C.点评:本题考查了确定一组数据的中位数,涉及分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,再根据奇数和偶数个来确定中位数.若数据有奇数个,则正中间的数字即为所求;若是偶数个,则找中间两位数的平均数.10.D 解析:设一次函数的解析式为y=kx+b.由题意,得,解得.∵k>0,∴y随x的增大而增大,∴A,B错误;设反比例函数的解析式为y=.由题意,得k=﹣4,k<0,∴在每个象限,y随x的增大而增大,∴C错误;当抛物线开口向上,x>1时,y随x的增大而减小.故选D.点评:本题考查的是正比例函数、一次函数、反比例函数和二次函数的性质,掌握各个函数的增减性是解题的关键.二、11.(a+3)(a﹣3)解析:a2﹣9=(a+3)(a﹣3).12.x2+x﹣2 解析:(x﹣1)(x+2)=x2+2x﹣x﹣2=x2+x﹣2.点评:本题主要考查多项式乘多项式的法则.注意不要漏项、漏字母,有同类项的合并同类项.13.y=解析:设这个反比例函数的解析式为y=,∴=﹣3,解得k=6,∴这个反比例函数的解析式是y=.点评:本题考查了待定系数法求反比例函数的解析式,灵活运用待定系数法是解题的关键,本题把点的坐标代入函数表达式进行计算即可求解.14.0 解析:由于方差是反映一组数据的波动大小的,而这一组数据没有波动,故它的方差为0.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.2解析:该几何体的俯视图如图.∵圆柱的底面周长为2πcm,∴OA=OB=1cm.∵∠AOB=90°,∴AB=OA=,∴该正方体的体积为()3=2.点评:本题考查了圆柱的计算,解题的关键是确定底面圆的半径,这是确定正方体的棱长的关键,难度不大.16.1+解析:如图,连接AM.由题意,得CA=CM,∠ACM=60°,∴△ACM为等边三角形,∴AM=CM,∠MAC=∠MCA=∠AMC=60°.∵∠ABC=90°,AB=BC=,∴AC=2=CM=2.∵AB=BC,CM=AM,∴BM垂直平分AC,∴BO=AC=1,OM=CM•sin60°=,∴BM=BO+OM=1+.点评:本题考查了图形的变换——旋转、等腰直角三角形的性质、等边三角形的判定和性质、线段的垂直平分线的性质,准确把握旋转的性质是解题的关键.三、17.解:原式=﹣1++4﹣3=.点评:该题主要考查了二次根式的混合运算、特殊角的三角函数值等知识点及其应用问题;牢固掌握特殊角的三角函数值、灵活运用二次根式的混合运算法则是正确进行代数运算的基础和关键.18.解:﹣===1.点评:考查了同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减;完全平方公式,合并同类项.19.证明:∵∠3=∠4,∴∠ABC=∠ABD.在△ABC和△ABD中,,∴△ABC≌△ABD(ASA),∴AC=AD.点评:本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.20.解:∵x2+(2m﹣1)x+4=0有两个相等的实数根,∴△=(2m﹣1)2﹣4×4=0,解得m=﹣或m=.点评:本题考查的是一元二次方程根的判别式,根据题意得出关于m的方程是解答此题的关键.21.解:设篮球队有x支,排球队有y支.由题意,得,解得.答:篮球队有28支,排球队有20支.22.解:(1)相同.当n=1时,红球和白球的个数一样,所以被摸到的可能性相同.(2)2.∵摸到绿球的频率稳定于0.25,∴,∴n=2.(3)由树状图可知,共有12种结果,其中两次摸出的球颜色不同的有10种,∴其概率为.点评:此题考查的是用列表法或画树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;画树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点:概率=所求情况数与总情况数之比.23.(1)证明:过点C作CH⊥AB于点H,如图.在Rt△ABC中,∵tan B==,∴BC=2AC=2,∴AB===5.∵CH•AB=AC•BC,∴CH==2.∵⊙C的半径为2,∴CH为⊙C的半径.而CH⊥AB,∴AB为⊙C的切线.(2)解:S阴影部分=S△ACB﹣S扇形CDE=×2×5﹣=5﹣π.点评:本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径.也考查了勾股定理和扇形面积的计算.24.解:(1)GH,DG .由折叠可得:DG=HG,GH=CH,∴DG=GH=CH.设HC=x,则DG=GH=x.∵∠DGH=90°,∴DH=x,∴DC=DH+CH=x+x=1,解得x=.∴tan∠HBC===.(2)∵BC=1,EC=BF=,∴BE==.由折叠可得BP=BC=1,∠FNM=∠BNM=90°,∠EMN=∠CMN=90°.∵四边形BCEF是矩形,∴∠F=∠FEC=∠C=∠FBC=90°,∴四边形BCMN是矩形,∠BNM=∠F=90°.∴MN∥EF,∴=,即BP•BF=BE•BN,∴1×=BN,∴BN=,∴BC:BN=1:=:1,∴四边形BCMN是的矩形.(3)6.同理可得:将矩形沿用(2)中的方式操作1次后,得到一个“矩形”,将矩形沿用(2)中的方式操作1次后,得到一个“矩形”,将矩形沿用(2)中的方式操作1次后,得到一个“矩形”,所以将图②中的矩形BCMN沿用(2)中的方式操作3次后,得到一个“矩形”.点评:本题主要考查了轴对称的性质、正方形的性质、矩形的判定与性质、平行线分线段成比例、勾股定理等知识,考查了阅读理解能力、操作能力、归纳探究能力、推理能力,运用已有经验解决问题的能力.25.(1)证明:如图1.∵DM∥EF,∴∠AMD=∠AFE.∵∠AFE=∠A,∴∠AMD=∠A,∴DM=DA.(2)证明:如图2.∵D,E分别是AB,BC的中点,∴DE∥AC,∴∠BDE=∠A,∠DEG=∠C.∵∠AFE=∠A,∴∠BDE=∠AFE,∴∠BDG+∠GDE=∠C+∠FEC.∵∠BDG=∠C,∴∠GDE=∠FEC,∴△DEG∽△ECF.(3)解:如图3.∵∠BDG=∠C=∠DEB,∠B=∠B,∴△BDG∽△BED,∴.∴BD2=BG•BE.∵∠AFE=∠A,∠CFH=∠B,∴∠C=180°﹣∠A﹣∠B=180°﹣∠AFE﹣∠CFH=∠EFH.又∵∠FEH=∠CEF,∴△EFH∽△ECF,∴,∴EF2=EH•EC.∵DE∥AC,DM∥EF,∴四边形DEFM是平行四边形,∴EF=DM=DA=BD,∴BG•BE=EH•EC.∵BE=EC,∴EH=BG=1.点评:本题主要考查了等腰三角形的性质与判定、三角形中位线的性质、平行线的性质、平行四边形的判定与性质以及三角形相似的判定与性质,第3小题是难点,运用两对三角形相似得到比例中项问题,发现等线段是解决问题的关键.26.解:(方法一)(1)2 45°.∵y=x2﹣4x=(x﹣2)2﹣4,∴抛物线的对称轴是x=2.∵直线y=x+m,∴直线与坐标轴的交点坐标为(﹣m,0),(0,m).∴交点到原点的距离相等,∴直线与坐标轴围成的三角形是等腰直角三角形,∴直线PQ与x轴所夹锐角的度数是45°.(2)如图.设直线PQ交x轴于点B,分别过O点,A点作PQ的垂线,垂足分别是E、F,显然当点B 在OA的延长线时,S△POQ=S△PAQ不成立.①当点B落在线段OA上时,如图①,==.由△OBE∽△ABF,得==,∴AB=3OB,∴OB=OA.由y=x2﹣4x得点A(4,0),∴OB=1.∴B(1,0),∴1+m=0,∴m=﹣1.②当点B落在线段AO的延长线上时,如图②,同理可得OB=OA=2,∴B(﹣2,0),∴﹣2+m=0,∴m=2.综上,当m=﹣1或2时,S△POQ=S△PAQ.(3)①过点C作CH∥x轴交直线PQ于点H,如图③,可得△CHQ是等腰三角形.∵∠CDQ=45°+45°=90°,∴AD⊥PH,∴DQ=DH,∴PD+DQ=PH.过P点作PM⊥CH于点M,则△PMH是等腰直角三角形,∴PH=PM,∴当PM最大时,PH最大.∴当点P在抛物线顶点处时,PM最大,此时PM=6,∴PH的最大值为6.即PD+DQ的最大值为6.②由①可知:PD+DQ≤6,设PD=a,则DQ﹣a,∴PD•DQ≤a(6﹣a)=﹣a2+6a=﹣(a﹣3)2+18,∵当点P在抛物线的顶点时,a=3,∴PD•DQ≤18.∴PD•DQ的最大值为18.(方法二)(1)略.(2)过点A作x轴的垂线,与直线PQ交于点D,设直线PQ与y轴交于点C,∴C(0,m),D(4,4+m).∵S△POQ=(Q x﹣P x)(Q Y﹣C Y),S△PAQ=(Q x﹣P x)(D Y﹣A Y).∵,∴,∴m1=2,m2=﹣1.(3)①设P(t,t2﹣4t)(0<t<4).∵K PQ=1,∴l PQ:y=x+t2﹣5t.∵C(2,2),A(4,0),∴l AC:y=﹣x+4,∴D X=,D Y=,∴Q(2,t2﹣5t+2).∵PQ⊥AC,垂足为点D,∴点Q关于直线AC的对称点Q′(﹣t2+5t+2,2),欲使PD+DQ取得最大值,只需PQ′有最大值,PQ′==,显然当t=2时,PQ′的最大值为6,即PD+DQ的最大值为6.②∴(PD﹣DQ)2≥0,∴(PD+DQ)2≥4•PD•DQ,∴PD•DQ≤==18,∴PD•DQ的最大值为18.点评:本题是二次函数的综合题,考查了抛物线的性质、直线的性质、三角形相似的判定和性质,难度较大.。
2015年贵州省贵阳市中考数学试卷一、选择题(以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分)1.(3分)计算:﹣3+4的结果等于()A.7 B.﹣7 C.1 D.﹣12.(3分)如图,∠1的内错角是()A.∠2 B.∠3 C.∠4 D.∠53.(3分)今年5月份在贵阳召开了国际大数据产业博览会,据统计,到5月28日为止,来观展的人数已突破64000人次,64000这个数用科学记数法可表示为6.4×10n,则n的值是()A.3 B.4 C.5 D.64.(3分)如图,一个空心圆柱体,其左视图正确的是()A.B.C.D.5.(3分)小红根据去年4~10月本班同学去孔学堂听中国传统文化讲座的人数,绘制了如图所示的折线统计图,图中统计数据的众数是()A.46 B.42 C.32 D.276.(3分)如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.: C.4:9 D.8:277.(3分)王大伯为了估计他家鱼塘里有多少条鱼,从鱼塘里捞出150条鱼,将它们作上标记,然后放回鱼塘.经过一段时间后,再从中随机捕捞300条鱼,其中有标记的鱼有30条,请估计鱼塘里鱼的数量大约有()A.1500条B.1600条C.1700条D.3000条8.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE9.(3分)一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x (分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0 B.1 C.2 D.310.(3分)已知二次函数y=﹣x2+2x+3,当x≥2时,y的取值范围是()A.y≥3 B.y≤3 C.y>3 D.y<3二、填空题(每小题4分,共20分)11.(4分)方程组的解为.12.(4分)如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,则⊙O的面积等于.13.(4分)分式化简的结果为.14.(4分)“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是.15.(4分)小明把半径为1的光盘、直尺和三角尺形状的纸片按如图所示放置于桌面上,此时,光盘与AB,CD分别相切于点N,M.现从如图所示的位置开始,将光盘在直尺边上沿着CD向右滚动到再次与AB相切时,光盘的圆心经过的距离是.三、解答题16.(8分)先化简,再求值:(x+1)(x﹣1)+x2(1﹣x)+x3,其中x=2.17.(10分)近年来,随着创建“生态文明城市”活动的开展,我市的社会知名度越来越高,吸引了很多外地游客,某旅行社对5月份本社接待外地游客来我市各景点旅游的人数作了一次抽样调查,并将调查结果绘制成如下两幅不完整的统计图表:游客人数统计表(1)此次共调查人,并补全条形统计图;(2)由上表提供的数据可以制成扇形统计图,求“南江大峡谷”所对的圆心角的度数;(3)该旅行社预计7月份接待来我市的游客有2500人,根据以上信息,请你估计去黔灵山公园的游客大约有多少人?18.(10分)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD,CE∥AB.(1)证明:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求菱形ADCE的高.(计算结果保留根号)19.(10分)在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.20.(10分)小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)(1)求小华此时与地面的垂直距离CD的值;(2)小华的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB 的高度.21.(8分)某校为了增强学生对中华优秀传统文化的理解,决定购买一批相关的书籍.据了解,经典著作的单价比传说故事的单价多8元,用12000元购买经典著作与用8000元购买传说故事的本数相同,这两类书籍的单价各是多少元?22.(10分)如图,一次函数y=x+m的图象与反比例函数y=的图象相交于A(2,1),B两点.(1)求出反比例函数与一次函数的表达式;(2)请直接写出B点的坐标,并指出使反比例函数值大于一次函数值的x的取值范围.23.(10分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)24.(12分)如图,经过点C(0,﹣4)的抛物线y=ax2+bx+c(a≠0)与x轴相交于A(﹣2,0),B两点.(1)a0,b2﹣4ac0(填“>”或“<”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.25.(12分)如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3.(1)求MP的值;(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF 的周长最小?(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG的周长最小时,求最小周长值.(计算结果保留根号)2015年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题(以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分)1.(3分)计算:﹣3+4的结果等于()A.7 B.﹣7 C.1 D.﹣1【分析】利用绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,进而求出即可.【解答】解:﹣3+4=1.故选:C.【点评】此题主要考查了有理数的加法,正确掌握运算法则是解题关键.2.(3分)如图,∠1的内错角是()A.∠2 B.∠3 C.∠4 D.∠5【分析】根据内错角的定义找出即可.【解答】解:根据内错角的定义,∠1的内错角是∠5.故选:D.【点评】本题考查了“三线八角”问题,确定三线八角的关键是从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.3.(3分)今年5月份在贵阳召开了国际大数据产业博览会,据统计,到5月28日为止,来观展的人数已突破64000人次,64000这个数用科学记数法可表示为6.4×10n,则n的值是()A.3 B.4 C.5 D.6【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将64000用科学记数法表示为6.4×104.故n=4.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)如图,一个空心圆柱体,其左视图正确的是()A.B.C.D.【分析】空心圆柱体的左视图是矩形,且有两条竖着的虚线;依此即可求解.【解答】解:一个空心圆柱体,其左视图为.故选:B.【点评】本题考查简单组合体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.5.(3分)小红根据去年4~10月本班同学去孔学堂听中国传统文化讲座的人数,绘制了如图所示的折线统计图,图中统计数据的众数是()A.46 B.42 C.32 D.27【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中32是出现次数最多的,故众数是32.故选:C.【点评】本题为统计题,考查众数的意义,解题的关键是通过仔细的观察找到出现次数最多的数.6.(3分)如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.: C.4:9 D.8:27【分析】根据相似三角形的面积的比等于相似比的平方,据此即可求解.【解答】解:两个相似三角形面积的比是(2:3)2=4:9.故选:C.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.7.(3分)王大伯为了估计他家鱼塘里有多少条鱼,从鱼塘里捞出150条鱼,将它们作上标记,然后放回鱼塘.经过一段时间后,再从中随机捕捞300条鱼,其中有标记的鱼有30条,请估计鱼塘里鱼的数量大约有()A.1500条B.1600条C.1700条D.3000条【分析】300条鱼里有30条作标记的,则作标记的所占的比例是30÷300=10%,即所占比例为10%.而有标记的共有150条,据此比例即可解答.【解答】解:150÷(30÷300)=1500(条),故选:A.【点评】本题考查的是通过样本去估计总体,得出作标记的所占的比例是解答此题的关键.8.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故选:B.【点评】此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.9.(3分)一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x (分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0 B.1 C.2 D.3【分析】根据l1是从原点出发可得不打电话缴费为0元,因此是无月租费的收费方式;l2是从(0,20)出发可得不打电话缴费为20元,因此是有月租费的收费方式;两函数图象交点为(400,40),说明打电话400分钟时,两种收费相同,超过500分钟后,当x取定一个值时,l1所对应的函数值总比l2所对应的函数值大,因此当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.【解答】解:①l1描述的是无月租费的收费方式,说法正确;②l2描述的是有月租费的收费方式,说法正确;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱,说法正确.故选:D.【点评】此题主要考查了函数图象,关键是正确从图象中获取信息.10.(3分)已知二次函数y=﹣x2+2x+3,当x≥2时,y的取值范围是()A.y≥3 B.y≤3 C.y>3 D.y<3【分析】先求出x=2时y的值,再求顶点坐标,根据函数的增减性得出即可.【解答】解:当x=2时,y=﹣4+4+3=3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴当x>1时,y随x的增大而减小,∴当x≥2时,y的取值范围是y≤3,故选:B.【点评】本题考查了二次函数的性质的应用,能理解二次函数的性质是解此题的关键,数形结合思想的应用.二、填空题(每小题4分,共20分)11.(4分)方程组的解为.【分析】用代入法即可解答,把②y=2,代入①即可求出x的值;【解答】解:解,把②代入①得x+2=12,∴x=10,∴.故答案为:.【点评】本题考查了解二元一次方程组,有加减法和代入法两种,根据y的系数互为相反数确定选用加减法解二元一次方程组是解题的关键.12.(4分)如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,则⊙O的面积等于2π.【分析】根据正方形的面积公式求得半径,然后根据圆的面积公式求解.【解答】解:正方形的边长AB=2,则半径是2×=,则面积是()2π=2π.故答案是:2π.【点评】本题考查了正多边形的计算,根据正方形的面积求得半径是关键.13.(4分)分式化简的结果为.【分析】将分母提出a,然后约分即可.【解答】解:==.故答案为:.【点评】本题考查了约分的知识,约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.14.(4分)“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是.【分析】首先确定小正方形的面积在大正方形中占的比例,根据这个比例即可求出针扎到小正方形(阴影)区域的概率.【解答】解:直角三角形的两条直角边的长分别是2和1,则小正方形的边长为1,根据勾股定理得大正方形的边长为,=,针扎到小正方形(阴影)区域的概率是.【点评】本题将概率的求解设置于“赵爽弦图”的游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.易错点是得到两个正方形的边长.15.(4分)小明把半径为1的光盘、直尺和三角尺形状的纸片按如图所示放置于桌面上,此时,光盘与AB,CD分别相切于点N,M.现从如图所示的位置开始,将光盘在直尺边上沿着CD向右滚动到再次与AB相切时,光盘的圆心经过的距离是.【分析】根据切线的性质得到OH=PH,根据锐角三角函数求出PH的长,得到答案.【解答】解:如图,当圆心O移动到点P的位置时,光盘在直尺边上沿着CD向右滚动到再次与AB相切,切点为Q,∵ON⊥AB,PQ⊥AB,∴ON∥PQ,∵ON=PQ,∴OH=PH,在Rt△PHQ中,∠P=∠A=30°,PQ=1,∴PH=,则OP=,故答案为:.【点评】本题考查的是直线与圆相切的知识,掌握圆的切线垂直于过切点的半径是解题的关键.三、解答题16.(8分)先化简,再求值:(x+1)(x﹣1)+x2(1﹣x)+x3,其中x=2.【分析】根据乘法公式和单项式乘以多项式法则先化简,再代入求值即可.【解答】解:原式=x2﹣1+x2﹣x3+x3=2x2﹣1;当x=2时,原式=2×22﹣1=7.【点评】本题考查了整式的混合运算和求值的应用,主要考查学生的计算和化简能力.17.(10分)近年来,随着创建“生态文明城市”活动的开展,我市的社会知名度越来越高,吸引了很多外地游客,某旅行社对5月份本社接待外地游客来我市各景点旅游的人数作了一次抽样调查,并将调查结果绘制成如下两幅不完整的统计图表:游客人数统计表(1)此次共调查400人,并补全条形统计图;(2)由上表提供的数据可以制成扇形统计图,求“南江大峡谷”所对的圆心角的度数;(3)该旅行社预计7月份接待来我市的游客有2500人,根据以上信息,请你估计去黔灵山公园的游客大约有多少人?【分析】(1)调查的总人数=;(2)“南江大峡谷”所对的圆心角=“南江大峡谷”所占的百分比×360°;(3)首选去黔灵山公园观光的人数=29%×2500.【解答】解:(1)84÷21%=400(人)400×25%=100(人),补全条形统计图(如图);故答案是:400;(2)360°×21%=75.6°;(3)2500×=725(人),答:去黔灵山公园的人数大约为725人.【点评】本题考查了条形统计图,用样本估计总体以及频数(率)分别表.读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.18.(10分)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD,CE∥AB.(1)证明:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求菱形ADCE的高.(计算结果保留根号)【分析】(1)先证明四边形ADCE是平行四边形,再证出一组邻边相等,即可得出结论;(2)过点D作DF⊥CE,垂足为点F;先证明△BCD是等边三角形,得出∠BDC=∠BCD=60°,CD=BC=6,再由平行线的性质得出∠DCE=∠BDC=60°,在Rt△CDF中,由三角函数求出DF即可.【解答】(1)证明:∵AE∥CD,CE∥AB,∴四边形ADCE是平行四边形,又∵∠ACB=90°,D是AB的中点,∴CD=AB=BD=AD,∴平行四边形ADCE是菱形;(2)解:过点D作DF⊥CE,垂足为点F,如图所示:DF即为菱形ADCE的高,∵∠B=60°,CD=BD,∴△BCD是等边三角形,∴∠BDC=∠BCD=60°,CD=BC=6,∵CE∥AB,∴∠DCE=∠BDC=60°,又∵CD=BC=6,∴在Rt△CDF中,DF=CDsin60°=6×=3.【点评】本题考查了平行四边形的判定、菱形的判定、等边三角形的判定与性质、平行线的性质、三角函数;熟练掌握直角三角形的性质,并能进行推理论证与计算是解决问题的关键.19.(10分)在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.【分析】(1)由题意可得共有小丽、小敏、小洁三位同学,恰好选中小英同学的只有一种情况,则可利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中小敏、小洁两位同学的情况,再利用概率公式求解即可求得答案.【解答】解:(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,共有3种情况,而选中小丽的情况只有一种,所以P(恰好选中小丽)=;(2)列表如下:所有可能出现的情况有12种,其中恰好选中小敏、小洁两位同学组合的情况有两种,所以P(小敏,小洁)==.【点评】此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比20.(10分)小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)(1)求小华此时与地面的垂直距离CD的值;(2)小华的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB 的高度.【分析】(1)利用在Rt△BCD中,∠CBD=15°,BD=20,得出CD=BD•sin15°求得答案即可;(2)由图可知:AB=AF+DE+CD,利用直角三角形的性质和锐角三角函数的意义求得AF得出答案即可.【解答】解:(1)在Rt△BCD中,∠CBD=15°,BD=20,∴CD=BD•sin15°,∴CD≈5.2(m).答:小华与地面的垂直距离CD的值是5.2m;(2)在Rt△AFE中,∵∠AEF=45°,∴AF=EF=BC,由(1)知,BC=BD•cos15°≈19.3(m),∴AB=AF+DE+CD=19.3+1.6+5.2=26.1(m).答:楼房AB的高度是26.1m.【点评】本题考查了解直角三角形的应用,题目中涉及到了仰俯角和坡度角的问题,解题的关键是构造直角三角形.21.(8分)某校为了增强学生对中华优秀传统文化的理解,决定购买一批相关的书籍.据了解,经典著作的单价比传说故事的单价多8元,用12000元购买经典著作与用8000元购买传说故事的本数相同,这两类书籍的单价各是多少元?【分析】设传说故事的单价为x元,则经典著作的单价为(x+8)元,根据条件用12000元购买经典著作与用8000元购买传说故事的本数相同,列分式方程即可.【解答】解:设传说故事的单价为x元,则经典著作的单价为(x+8)元.由题意,得,解得x=16,经检验x=16是原方程的解,x+8=24,答:传说故事的单价为16元,经典著作的单价为24元.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意分式方程不要忘记检验.22.(10分)如图,一次函数y=x+m的图象与反比例函数y=的图象相交于A(2,1),B两点.(1)求出反比例函数与一次函数的表达式;(2)请直接写出B点的坐标,并指出使反比例函数值大于一次函数值的x的取值范围.【分析】(1)先将点A(2,1)代入y=求得k的值,再将点A(2,1)代入反比例函数的解析式求得n,最后将A、B两点的坐标代入y=x+m,求得m即可.(2)当反比例函数的值大于一次例函数的值时,即一次函数的图象在反比例函数的图象下方时,x的取值范围.【解答】解:(1)将A(2,1)代入y=中,得k=2×1=2,∴反比例函数的表达式为y=,将A(2,1)代入y=x+m中,得2+m=1,∴m=﹣1,∴一次函数的表达式为y=x﹣1;(2)B(﹣1,﹣2);当x<﹣1或0<x<2时,反比例函数的值大于一次函数的值.【点评】本题考查了反比例函数与一次函数的交点问题,是一道综合题目,解题过程中注意数形结合的应用,是中档题,难度不大.23.(10分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【分析】(1)解直角三角形求出OB,求出AB,根据圆周角定理求出∠ACB,解直角三角求出AC即可;(2)求出△ACF和△AOF全等,得出阴影部分的面积=△AOD的面积,求出三角形的面积即可.【解答】解:(1)∵OF⊥AB,∴∠BOF=90°,∵∠B=30°,FO=2,∴OB=OF•yan60°=2=6,AB=2OB=12,又∵AB为⊙O的直径,∴∠ACB=90°,∴AC=AB=6;(2)∵由(1)可知,AB=12,∴AO=6,即AC=AO ,在Rt △ACF 和Rt △AOF 中,∴Rt △ACF ≌Rt △AOF ,∴∠FAO=∠FAC=30°,∵OA=OD ,∴∠OAD=∠D=30°∴∠DOB=∠OAD +∠D=60°,过点D 作DG ⊥AB 于点G ,∵OD=6,∴DG=3,∴S △ACF +S △OFD =S △AOD =×6×3=9, 即阴影部分的面积是9.【点评】本题考查了三角形的面积,全等三角形的性质和判定,圆周角定理,解直角三角形的应用,能求出△AOD 的面积=阴影部分的面积是解此题的关键.24.(12分)如图,经过点C (0,﹣4)的抛物线y=ax 2+bx +c (a ≠0)与x 轴相交于A (﹣2,0),B 两点.(1)a > 0,b 2﹣4ac > 0(填“>”或“<”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC ,E 是抛物线上一动点,过点E 作AC 的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.【分析】(1)根据抛物线开口向上,且与x轴有两个交点,即可做出判断;(2)由抛物线的对称轴及A的坐标,确定出B的坐标,将A,B,C三点坐标代入求出a,b,c的值,即可确定出抛物线解析式;(3)存在,理由为:假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示;假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,可得AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x 轴于点G,分别求出E坐标即可.【解答】解:(1)a>0,b2﹣4ac>0;(2)∵直线x=2是对称轴,A(﹣2,0),∴B(6,0),∵点C(0,﹣4),将A,B,C的坐标分别代入y=ax2+bx+c,解得:a=,b=﹣,c=﹣4,∴抛物线的函数表达式为y=x2﹣x﹣4;(3)存在,理由为:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示,则四边形ACEF即为满足条件的平行四边形,∵抛物线y=x2﹣x﹣4关于直线x=2对称,∴由抛物线的对称性可知,E点的横坐标为4,又∵OC=4,∴E的纵坐标为﹣4,∴存在点E(4,﹣4);(ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,∴AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,∵AC∥E′F′,∴∠CAO=∠E′F′G,又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO≌△E′F′G,∴E′G=CO=4,∴点E′的纵坐标是4,∴4=x2﹣x﹣4,解得:x1=2+2,x2=2﹣2,∴点E′的坐标为(2+2,4),同理可得点E″的坐标为(2﹣2,4).【点评】此题属于二次函数综合题,涉及的知识有:待定系数法确定抛物线解析式,坐标与图形性质,平行四边形的性质,以及二次函数的图象与性质,熟练掌握二次函数的图象与性质是解本题的关键.25.(12分)如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3.(1)求MP的值;(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF 的周长最小?(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG的周长最小时,求最小周长值.(计算结果保留根号)【分析】(1)根据折叠的性质和矩形性质以得PD=PH=3,CD=MH=4,∠H=∠D=90°,然后利用勾股定理可计算出MP=5;(2)如图1,作点M关于AB的对称点M′,连接M′E交AB于点F,利用两点之间线段最短可得点F即为所求,过点E作EN⊥AD,垂足为N,则AM=AD﹣MP ﹣PD=4,所以AM=AM′=4,再证明ME=MP=5,接着利用勾股定理计算出MN=3,所以NM′=11,然后证明△AFM′∽△NEM′,则可利用相似比计算出AF;(3)如图2,由(2)知点M′是点M关于AB的对称点,在EN上截取ER=2,连接M′R交AB于点G,再过点E作EQ∥RG,交AB于点Q,易得QE=GR,而GM=GM′,于是MG+QE=M′R,利用两点之间线段最短可得此时MG+EQ最小,于是四边形MEQG的周长最小,在Rt△M′RN中,利用勾股定理计算出M′R=5,易得四边形MEQG的最小周长值是7+5.【解答】解:(1)∵四边形ABCD为矩形,∴CD=AB=4,∠D=90°,∵矩形ABCD折叠,使点C落在AD边上的点M处,折痕为PE,∴PD=PH=3,CD=MH=4,∠H=∠D=90°,∴MP==5;。
中考数学试卷一.选择题(本大题共8小题,每小题3分,满分24分。
在每小题给出的四个选项中,只有一个是符合题目要求的,请将正确选项填在括号内。
)1.(2013宜宾)下列各数中,最小的数是()A.2 B.﹣3 C.﹣D.0考点:有理数大小比较.分析:根据正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,进行比较即可.解答:解:∵﹣3<﹣<0<2,∴最小的数是﹣3;故选B.点评:此题考查了有理数的大小比较,要熟练掌握任意两个有理数比较大小的方法:正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小.2.(2013宜宾)据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为()A.3.3×108B.3.3×109C.3.3×107D.0.33×1010考点:科学记数法—表示较大的数.专题:计算题.分析:找出所求数字的位数,减去1得到10的指数,表示成科学记数法即可.解答:解:330000000用科学记数法表示为3.3×108.故选A.点评:此题考查了科学记数法﹣表示较大的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(2013宜宾)下列水平放置的四个几何体中,主视图与其它三个不相同的是()A. B. C.D.考点:简单几何体的三视图.分析:分别找到四个几何体从正面看所得到的图形比较即可.解答:解:A.主视图为长方形;B.主视图为长方形;C.主视图为长方形;D.主视图为三角形.则主视图与其它三个不相同的是D.故选D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(2013宜宾)要判断小强同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩的()A.方差 B.众数 C.平均数D.中位数考点:方差;统计量的选择.分析:根据方差的意义作出判断即可.解答:解:要判断小强同学的数学考试成绩是否稳定,只需要知道他最近几次数学考试成绩的方差即可.故选A.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.(2013宜宾)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k=1 D.k≥0考点:根的判别式.分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.解答:解:∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,a=1,b=2,c=k,∴△=b2﹣4ac=22﹣4×1×k>0,∴k<1,故选:A.点评:此题主要考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.(2013宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等考点:矩形的性质;菱形的性质.分析:根据矩形与菱形的性质对各选项分析判断后利用排除法求解.解答:解:A.矩形与菱形的两组对边都分别平行,故本选项错误;B.矩形的对角线相等,菱形的对角线不相等,故本选项正确;C.矩形与菱形的对角线都互相平分,故本选项错误;D.矩形与菱形的两组对角都分别相等,故本选项错误.故选B.点评:本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.7.(2013宜宾)某棵果树前x年的总产量y与x之间的关系如图所示,从目前记录的结果看,前x年的年平均产量最高,则x的值为()A.3 B.5 C.7 D.9考点:算术平均数.分析:由已知中图象表示某棵果树前x年的总产量y与n之间的关系,可分析出平均产量的几何意义为原点与该点边线的斜率,结合图象可得答案.解答:解:若果树前x年的总产量y与n在图中对应P(x,y)点则前x年的年平均产量即为直线OP的斜率,由图易得当x=7时,直线OP的斜率最大,即前7年的年平均产量最高,x=7.故选C.点评:本题以函数的图象与图象变化为载体考查了斜率的几何意义,其中正确分析出平均产量的几何意义是解答本题的关键.8.(2013宜宾)对于实数a、b,定义一种运算“⊗”为:a⊗b=a2+ab﹣2,有下列命题:①1⊗3=2;②方程x⊗1=0的根为:x1=﹣2,x2=1;③不等式组的解集为:﹣1<x<4;④点(,)在函数y=x⊗(﹣1)的图象上.其中正确的是()A.①②③④B.①③C.①②③D.③④考点:二次函数图象上点的坐标特征;有理数的混合运算;解一元二次方程-因式分解法;解一元一次不等式组;命题与定理.专题:新定义.分析:根据新定义得到1⊗3=12+1×3﹣2=2,则可对①进行判断;根据新定义由x⊗1=0得到x2+x﹣2=0,然后解方程可对②进行判断;根据新定义得,解得﹣1<x<4,可对③进行判断;根据新定义得y=x⊗(﹣1)=x2﹣x﹣2,然后把x=代入计算得到对应的函数值,则可对④进行判断.解答:解:1⊗3=12+1×3﹣2=2,所以①正确;∵x⊗1=0,∴x2+x﹣2=0,∴x1=﹣2,x2=1,所以②正确;∵(﹣2)⊗x﹣4=4﹣2x﹣2﹣4=﹣2x﹣2,1⊗x﹣3=1+x﹣2﹣3=x﹣4,∴,解得﹣1<x<4,所以③正确;∵y=x⊗(﹣1)=x2﹣x﹣2,∴当x=时,y=﹣﹣2=﹣,所以④错误.故选C.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足二次函数的解析式.也考查了阅读理解能力、解一元二次方程以及解一元一次不等式组.二.填空题(本大题共8小题,每小题3分,满分24分。
初中毕业学业水平考试试卷
数 学
注意事项:
1、答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、
准考证号、考室和座位号;
2、必须在答题卡上答题,在草稿纸、试题卷上答题无效;
3、答题时,请考生注意各大题题号后面的答题提示;
4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;
5、答题卡上不得使用涂改液、涂改胶和贴纸;
6、本学科试卷共26个小题,考试时量120分钟,满分120分。
一、选择题(在下列各题的四个选项中,只有一项是符合题意的。
请在答题卡中填涂符
合题意的选项。
本题共10个小题,每小题3分,共30分)
1.|2|-等于
A .2
B .2-
C .21
D .21-
2.下列长度的三条线段,能组成三角形的是 A .1、1、2 B .3、4、5
C .1、4、6
D .2、3、7
3.下列计算正确的是
A .331-=-
B .632a a a =⋅
C .1)1(22+=+x x
D .22223=-
4.如图,在平面直角坐标系中,点P (-1,2)向右平移3个单位长度后的坐标是
A .(2,2)
B .(-4,2)
C .(-1,5)
D .(-1,-1)
5.一个多边形的内角和是900︒,则这个多边形的边数为
A .6
B .7
C .8
D .9
(第4题)。