2017-2018学年北京市东城区九年级一模数学试卷(WORD版含答案)
- 格式:doc
- 大小:701.50 KB
- 文档页数:15
PNMFEDCBA北京市东城区2016—2017学年第二学期统一练习(一)初三数学2017.5学校班级姓名考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.数据显示:2016年我国就业增长超出预期. 全年城镇新增就业1 314万人,高校毕业生就业创业人数再创新高. 将数据1 314用科学记数法表示应为A.31.31410⨯B.41.31410⨯C.213.1410⨯D.40.131410⨯2.实数a,bA.a b<B.a C.D.3.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是A.12B.13C.14D.164.某健步走运动的爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是A.1.2,1.3 B.1.3,1.3C.1.4,1.35 D.1.4,1.35. 如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于A.15°B.25°C.30°D.45°6.下列哪个几何体,它的主视图、左视图、俯视图都相同A B C D7.我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化. 如图2,窗框的一部分所展示的图形是一个轴对称图形,其对称轴有A.1条B.2条C.3条D.4条DC B A8. 如图,点A ,B 的坐标为(2,0),(0,1),若将线段AB 平移至A 1B 1,则a +b 的值为 A .2 B .3 C .4 D .59. 某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了...5.5万元.这批电话手表至少有A .103块B .104块C .105块D . 106块10. 图1是某娱乐节目中一个游戏环节的录制现场,场地由等边△ADE 和正方形ABCD 组成,正方形ABCD两条对角线交于点O ,在AD 的中点P 处放置了一台主摄像机.游戏参与者行进的时间为x ,与主摄像机的距离为y ,若游戏参与者匀速行进,且表示y 与x 的函数关系式大致如图2所示,则游戏参与者的行进路线可能是图1 图2A. A O DB. E A CC. A E DD. E A B 二、填空题(本题共18分,每小题3分)11.分解因式:22ab ab a -+= .12.请你写出一个二次函数,其图象满足条件:○1开口向上;○2与y 轴的交点坐标为(0,1). 此二次函数的解析式可以是 .13. 若关于x 的一元二次方程x 2+2(k ﹣1)x +k 2﹣1=0有两个不相等的实数根,则k 的取值范围是 .14. 一个多边形的内角和是外角和的2倍,则这个多边形的边数为 .15. 北京市2012-2016年常住人口增量统计如图所示.根据统计图中提供的信息,预估2017年北京市常住人口增量约为 万人次,你的预估理由是 .16.下面是“以已知线段为直径作圆”的尺规作图过程.AD请回答:该作图的依据是.三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分)17.0112sin 60π)()2-︒+-. 18. 解不等式122123x x ++->,并写出它的正整数解. 19.先化简,再求值: 224122x x x x x -+⎛⎫-÷- ⎪++⎝⎭,其中22410x x +-=. 20.如图,在△ABC 中,∠B =55°,∠C =30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,求∠BAD 的度数.21.如图,在平面直角坐标系xOy 中,直线()0y kx b k =+≠与双曲线6y x=相交于点A (m ,3),B (-6,n ),与x 轴交于点C .(1)求直线()0y kx b k =+≠的解析式; (2)若点P 在x 轴上,且32ACP BOC S S =△△,求点P 的坐 标(直接写出结果).22.列方程或方程组解应用题:在某场CBA 比赛中,某位运动员的技术统计如下表所示:技术 上场时间(分钟) 出手投篮(次) 投中 (次) 罚球得分(分) 篮板 (个) 助攻(次) 个人总得分(分) 数据 38 27 11 6 3 4 33注:(1)表中出手投篮次数和投中次数均不包括罚球;(2)总得分=两分球得分+三分球得分+罚球得分.根据以上信息,求本场比赛中该运动员投中两分球和三分球各几个.23.如图,四边形ABCD 为平行四边形,∠BAD 的角平分线AF 交CD 于点E ,交BC 的延长线于点F . (1)求证:BF =CD ;(2)连接BE ,若BE ⊥AF ,∠BF A =60°,BE =,求平行四边形ABCD 的周长.F E CBA图1DCBA24.阅读下列材料:“共享单车”是指企业与政府合作,在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享的一种服务,是共享经济的一种新形态.共享单车的出现让更多的用户有了更好的代步选择.自行车也代替了一部分公共交通甚至打车的出行.Quest Mobile 监测的M 型与O 型单车从2016年10月——2017年1月的月度用户使用情况如下表所示:根据以上材料解答下列问题:(1)仔细阅读上表,将O 型单车总用户数用折线图表示出来,并在图中标明相应数据; (2)根据图表所提提供的数据,选择你所感兴趣的方面,写出一条你发现的结论.25. 如图,四边形ABCD 内接于⊙O ,对角线AC 为⊙O 的直径,过点C 作AC 的垂线交AD 的延长线于点E ,点F 为CE 的中点,连接DB , DF .(1)求证:DF 是⊙O 的切线;(2)若DB 平分∠ADC ,AB =a ,AD ∶DE =4∶1,写出求DE 长的思路.26. 在课外活动中,我们要研究一种凹四边形——燕尾四边形的性质.定义1:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形(如图1).DCBADCBA DCBA(1)根据凹四边形的定义,下列四边形是凹四边形的是(填写序号) ;○1 ○2 ○3 定义2:两组邻边分别相等的凹四边形叫做燕尾四边形(如图2).特别地,有三边相等的凹四边形不属于燕尾四边形.小洁根据学习平行四边形、菱形、矩形、正方形的经验,对燕尾四边形的性质进行了探究. 下面是小洁的探究过程,请补充完整:(2)通过观察、测量、折叠等操作活动,写出两条对燕尾四边形性质的猜想,并选取其中的一条猜想加以证明;(3)如图2,在燕尾四边形ABCD 中,AB =AD =6,BC =DC =4,∠BCD =120°,求燕尾四边形ABCD 的面积(直接写出结果).27.二次函数2(2)2(2)5y m x m x m =+-+-+,其中20m +>. (1)求该二次函数的对称轴方程; (2)过动点C (0, n )作直线l ⊥y 轴.① 当直线l 与抛物线只有一个公共点时, 求n 与m 的函数关 系;② 若抛物线与x 轴有两个交点,将抛物线在x 轴下方的部分沿x 轴翻折,l 与新图象的其余部分保持不变,得到一个新的图象. 当n =7时,直线的图象恰好有三个公共点,求此时m 的值;(3)若对于每一个给定的x 的值,它所对应的函数值都不小于1,求m 的取值范围.28. 在等腰△ABC 中,(1)如图1,若△ABC 为等边三角形,D 为线段BC 中点,线段AD 关于直线AB 的对称线段为线段AE ,连接DE ,则∠BDE 的度数为___________;(2)若△ABC 为等边三角形,点D 为线段BC 上一动点(不与B ,C 重合),连接AD 并将 线段AD 绕点D 逆时针旋转60°得到线段DE ,连接BE . ①根据题意在图2中补全图形;②小玉通过观察、验证,提出猜测:在点D 运动的过程中,恒有CD =BE .经过与同学们的充分讨论,形成了几种证明的思路:思路1:要证明CD =BE ,只需要连接AE ,并证明△ADC ≌△AEB ;思路2:要证明CD =BE ,只需要过点D 作DF ∥AB ,交AC 于F ,证明△ADF ≌△DEB ; 思路3:要证明CD =BE ,只需要延长CB 至点G ,使得BG =CD ,证明△ADC ≌△DEG ; ……请参考以上思路,帮助小玉证明CD =BE .(只需要用一种方法证明即可)(3)小玉的发现启发了小明:如图3,若AB =AC =kBC ,AD =kDE ,且∠ADE =∠C ,此时小明发现BE ,BD ,AC 三者之间满足一定的的数量关系,这个数量关系是______________________.(直接给出结论无须证明)图1图2图329.设平面内一点到等边三角形中心的距离为d ,等边三角形的内切圆半径为r ,外接圆半径为R .对于一个点与等边三角形,给出如下定义:满足r ≤d ≤R 的点叫做等边三角形的中心关联点. 在平面直角坐标系xOy 中,等边△ABC 的三个顶点的坐标分别为A (0,2),B (﹣3,﹣1),C (3,﹣1). (1)已知点D (2,2),E (3,1),F (21-,﹣1). 在D ,E ,F 中,是等边△ABC 的中心关联点的是 ; (2)如图1,过点A 作直线交x 轴正半轴于M ,使∠AMO =30°.①若线段AM 上存在等边△ABC 的中心关联点P (m ,n ),求m 的取值范围;②将直线AM 向下平移得到直线y =kx +b ,当b 满足什么条件时,直线y =kx +b 上总存在...等边△ABC 的中心关联点;(直接写出答案,不需过程) (3)如图2,点Q 为直线y =﹣1上一动点,⊙Q 的半径为21. 当Q 从点(﹣4,﹣1)出发,以每秒1个单位的速度向右移动,运动时间为t 秒.是否存在某一时刻t ,使得⊙Q 上所有点都是等边△ABC 的中心关联点?如果存在,请直接写出所有符合题意的t 的值;如果不存在,请说明理由.图1 图2北京市东城区2016-2017学年第二学期统一练习(一) 初三数学参考答案及评分标准 2017.5三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分) 170112sin 60π)()2-︒+-解:原式=12-- …………4分 1. …………5分 18. 解: 去分母得:3(x +1)>2(2x +2)﹣6, …………1分去括号得:3x +3>4x +4﹣6, …………2分 移项得:3x ﹣4x >4﹣6﹣3, …………3分 合并同类项得:﹣x >﹣5, 系数化为1得:x <5. …………4分故不等式的正整数解有1,2,3,4这4个. …………5分 19. 解: 224122x x x x x -+⎛⎫-÷- ⎪++⎝⎭ =22422x x x x x x -++⋅--+ =242x x x x ++-+ =4(2)x x +. …………3分∵ 22410x x +-=. ∴ 2122x x +=. …………4分 原式=8. …………5分F ECBAD20. 解:由题意可得:MN 是AC 的垂直平分线.则AD =DC .故∠C =∠DAC .…………2分 ∵ ∠C =30°, ∴ ∠DAC =30°. …………3分 ∵ ∠B =55°, ∴ ∠BAC =95°. …………4分 ∴ ∠BAD =∠BAC ﹣∠CAD =65°. …………5分 21.解:(1)由题意可求:m =2,n =-1.将(2,3),B (-6,-1)带入y kx b =+,得32,16.k b k b =+⎧⎨-=-+⎩解得 1,22.k b ⎧=⎪⎨⎪=⎩∴ 直线的解析式为122y x =+. …………3分 (2)(-2,0)或(-6,0). …………5分22.解:设本场比赛中该运动员投中两分球x 个,三分球y 个. …………1分依题意有23633,11.x y x y ++=⎧⎨+=⎩. …………3分 解得6,5.x y =⎧⎨=⎩…………4分 答:设本场比赛中该运动员投中两分球6个,三分球5个. …………5分 23. 解:(1)证明:∵ 四边形ABCD 为平行四边形,∴ AB =CD ,∠F AD =∠AFB. 又∵ AF 平分∠BAD , ∴ ∠F AD =∠F AB . ∴ ∠AFB =∠FAB . ∴ AB =BF.∴ BF =CD . …………3分(2)解:由题意可证△ABF 为等边三角形,点E 是AF 的中点.在Rt △BEF 中,∠BFA =60°,BE= 可求EF =2,BF =4.∴ 平行四边形ABCD 的周长为12. …………5分24. 解:(1)…………4分(2)答案不唯一. …………5分25. 解:(1)证明:连接OD .∵ OD =CD ,∴ ∠ODC =∠OCD . ∵ AC 为⊙O 的直径, ∴ ∠ADC =∠EDC=90°. ∵ 点F 为CE 的中点, ∴ DF =CF .∴ ∠FDC =∠FCD . ∴ ∠FDO =∠FCO . 又∵ AC ⊥CE ,∴ ∠FDO =∠FCO =90°. ∴ DF 是⊙O 的切线. …………2分(2)○1由DB 平分∠ADC ,AC 为⊙O 的直径,证明△ABC 是等腰直角三角形; ○2 由AB =a ,求出AC; ○3 由∠ACE=∠ADC =90°,∠CAE 是公共角,证明△ACD ∽△AEC ,得到2AC AD AE =⋅; ○4设DE 为x ,由AD ∶DE =4∶1,求出DE =. …………5分 26.解:(1)○2. …………1分 (2)它是一个轴对称图形;两组邻边分别相等;一组对角相等;一条对角线所在的直线垂直平分另一条对角线等等. …………3分已知:如图,在凹四边形ABCD 中,AB =AD ,BC =DC. 求证:∠B =∠D. 证明:连接AC .∵AB=AD,CB=CD,AC=AC , ∴△ABC ≌△ADC.∴∠B =∠D. …………4分(3)燕尾四边形ABCD的面积为. …………5分27.解:EDCBA,60. ..AD DE ADE ADE ABC EAB DAC AB AC AE AD EAB DAC CD BE =∠=︒∴∴∠=∠==∴∴=,△为等边三角形.△为等边三角形,,,△≌△EE(1)对称轴方程:2(2)12(2)m x m -+=-=+. …………1分(2)①∵直线l 与抛物线只有一个公共点,∴23n m =-+. …………3分② 依题可知:当237m -+=-时,直线l 与新的图象恰好有三个公共点.∴5m =. …………5分(3)抛物线2(2)2(2)5y m x m x m =+-+-+的顶点坐标是(1,23)m -+.依题可得 20,23 1.m m +>⎧⎨-+≥⎩解得2,1.m m >-⎧⎨≤⎩ ∴ m 的取值范围是21m -<≤. …………7分28.解:(1)30°; …………1分 (2)思路1:如图,连接AE .…………5分 思路2:过点D 作DF ∥AB ,交AC 于F .…………5分思路3:延长CB 至G ,使BG =CD.=60.,=60..===60,.,..ABC AC BC BAC DF AB DFC CDF AF BD ADE ACB ABC DAF EDB AD DE ADF DEB DF BE CD ∴=∠︒∴∠︒∴∴=∠∠∠︒∴∠=∠=∴∴==△为等边三角形,,∥△为等边三角形.又△≌△=60.,.===60,.,ABC AC BC BAC CD BG DG AC ADE ACB ABC DAF EDB AD DE ∴=∠︒=∴=∠∠∠︒∴∠=∠=△为等边三角形,,又…………5分(3)k (BE +BD )=AC . …………7分29.解:(1)E ,F ; …………2分(2)①解:依题意A (0,2),M (32,0).可求得直线AM 的解析式为233+-=x y . 经验证E 在直线AM 上.因为OE =OA =2,∠MAO =60°,所以△OAE 为等边三角形,所以AE 边上的高长为3.当点P 在AE 上时,3≤OP ≤2.所以当点P 在AE 上时,点P 都是等边△ABC 的中心关联点.所以0≤m ≤3; …………4分 ②﹣334≤b ≤2; …………6分 (3)t =25425-4+或 …………8分。
1东城区2017-2018学年度第一学期期末教学统一检测初三数学学校 班级 姓名 考号考生须知1•本试卷共8页,共三道大题,28道小题,满分100分•考试时间120分钟. 2 •在试卷和答题卡上准确填写学校名称、姓名和准考证号 3 •试题答案一律填涂或书写在答题卡上,在试卷上作答无效 4 •在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答 •5•考试结束,将本试卷、答题卡和草稿纸一并交回、选择题(本题共16分,每小题2分) 下面各题均有四个选项,其中只有一个是符合题意的2. 边长为2的正方形内接于-M ,则二M 的半径是A . 1B . 2C . 一2D . 2 “ 22 _ 23. 若要得到函数 y = x ,1+2的图象,只需将函数 y =x 的图象A . 先向右平移 1个单位长度,再向上平移 2个单位长度B . 先向左平移 1个单位长度,再向上平移 2个单位长度C . 先向左平移 1个单位长度,再向下平移 2个单位长度D.先向右平移 1个单位长度,再向下平移2个单位长度4.点 A , B x 2,y 2都在反比例函数y =-的图象上,若 xx 1< x 2v 0,则A .y 2> %>°B .y > y 2>0C . y 2V %<0D . y < y 2<05. A , B 是上的两点,OA=1 , AB 的长是1 n ,则/ AOB 的度数是3A . 30B . 60°C . 90°D . 1202A .①③B .①④ C.②③D .②④6 .△ DEF 和厶ABC 是位似图形,点 O 是位似中心,点 D , E , F 分别是OA,OB,OC 的中点,若△ DEF 的面积是2,则厶ABC 的面积是 A . 2 B . 4 C . 6D . 827.已知函数y =-x bx c ,其中b >0, c v 0,此函数的图象可以是&小张承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它 的成活率如移植棵数(n )成活数(m )成活率(m/n ) 移植棵数(n ) 成活数(m ) 成活率(m/n )50470.940 15001335 0.890 2702350.870350032030.915 4003690.923 70006335 0.905 7506620.88314000126280.902下面有四个推断:① 当移植的树数是1 500时,表格记录成活数是 1 335,所以这种树苗成活的概率是0.890;② 随着移植棵数的增加,树苗成活的频率总在 0.900附近摆动,显示出一定的稳定性, 可以估计树苗成活的概率是 0.900;③ 若小张移植10 000棵这种树苗,则可能成活9 000棵;④ 若小张移植20 000棵这种树苗,则一定成活 18 000棵. 其中合理的是1 E 1/L、填空题(本题共16分,每小题2分)19 .在Rt △ ABC 中,/ C=90 ° COS A = —, AB=6,贝U AC 的长是3210.若抛物线y=x 2x c与x轴没有交点,写出一个满足条件的c的值:13.某校九年级的4位同学借助三根木棍和皮尺测量校园内旗杆的高度•为了方便操作和观察,他们用三根木棍围成直角三角形并放在高1m的桌子上,且使旗杆的顶端和直角三角形的斜边在同一直线上(如图)•经测量,木棍围成的直角三角形的两直角边AB,OA的长分别为0.7m,0.3m,观测点O到旗杆的距离OE为6 m,则旗杆MN的高度为 _____________ 11.如图,在平面直角坐标系xOy中,若点B与点A关于点O中心对称,则点B的坐标为11题图12题图12.如图,AB是、O的弦,C是AB的中点,连接OC并延长交、O于点D.若CD=1,AB=4,则、O的半径是_______________ .第13题图314.、O是四边形ABCD的外接圆,AC平分/ BAD,则正确结论的序号是.①AB=AD; ②BC=CD; ③ AB 二AD ;④/ BCA= / DCA;⑤ BC 二CD15.已知函数y =x2-2x-3,当-1< X W a时,函数的最小值是-4,则实数a的取值范围是16•如图,在平面直角坐标系xOy中,已知A 8,0 ,C 0,6 ,矩形OABC的对角线交于点P,点M在经过k点P的函数y x>0的图象上运动,k的值X为 _____ , OM长的最小值为_______________ .三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27,每小题7分,第28题8分)417 •计算:2cos30 ^2sin 45 °+3tan 60°+ 1-J2 .18. 已知等腰厶ABC内接于点0, AB=AC,Z BOC=100 °求厶ABC的顶角和底角的度519. 如图,在四边形ABCD中,AD // BC, AB丄BC,点E在AB上,/ DEC =90 °(1) 求证:△ ADE BEC.(2) 若AD=1 , BC=3, AE=2,求AB 的长.20. 在△ ABC 中,/ B=135 ° AB = 2^2 , BC=1.(1)求厶ABC的面积;(2 )求AC的长.21•北京2018新中考方案规定,考试科目为语文、数学、外语、历史、地理、思想品德、物理、生化(生物和化学)、体育九门课程.语文、数学、外语、体育为必考科目•历史、地理、思想品德、物理、生化(生物和化学)五科为选考科目,考生可以从中选择三个科目参加考试,其中物理、生化须至少选择一门.(1)写出所有选考方案(只写选考科目);(2 )从(1)的结果中随机选择一种方案,求该方案同时包含物理和历史的概率6722. 如图,在Rt △ ABC 中,/ A=90° Z C=30。
北京市东城区2017-2018年中考⼀模(5⽉)数学试卷(WORD版,含答案)北京市东城区2018年中考⼀模(5⽉)数学试卷⼀、选择题(本题共16分,每⼩题2分)下⾯各题均有四个选项,其中只有⼀个..是符合题意的1.如图,若数轴上的点A ,B 分别与实数-1,1对应,⽤圆规在数轴上画点C ,则与点C 对应的实数是A . 2B . 3C . 4D . 52. 当函数()212y x =--的函数值y 随着x 的增⼤⽽减⼩时,x 的取值范围是 A .x >0 B .x <1 C .1x > D .x 为任意实数3.若实数a ,b 满⾜a b >,则与实数a ,b 对应的点在数轴上的位置可以是4.如图,O 是等边△ABC 的外接圆,其半径为3. 图中阴影部分的⾯积是 A .π B .3π2C .2πD .3π1题 4题5.点A (4,3)经过某种图形变化后得到点B (-3,4),这种图形变化可以是 A .关于x 轴对称 B .关于y 轴对称C .绕原点逆时针旋转90°D .绕原点顺时针旋转90°6.甲、⼄两位同学做中国结,已知甲每⼩时⽐⼄少做6个,甲做30个所⽤的时间与⼄做45个所⽤的时间相同,求甲每⼩时做中国结的个数. 如果设甲每⼩时做x 个,那么可列⽅程为 A .30456x x =+ B .30456x x =- C .30456x x =- D .30456x x=+ 7.第24届冬奥会将于2022年在北京和张家⼝举⾏.冬奥会的项⽬有滑雪(如跳台滑雪、⾼⼭滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有5张形状、⼤⼩、质地均相同的卡⽚,正⾯分别印有跳台滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的项⽬图案,背⾯完全相同.现将这5张卡⽚洗匀后正⾯向下放在桌⼦上,从中随机抽取⼀张,抽出的卡⽚正⾯恰好是滑雪图案的概率是12139.若根式x的取值范围是__________________.10.分解因式:24m n n-= ________________.11.若多边形的内⾓和为其外⾓和的3倍,则该多边形的边数为________________.12. 化简代数式11+122xx x+÷--,正确的结果为________________.13.含30°⾓的直⾓三⾓板与直线l 1,l 2的位置关系如图所⽰,已知l 1//l 2,∠1=60°. 以下三个结论中正确的是_____________(只填序号). ①2AC BC =; ②BCD △为正三⾓形; ③AD BD =14. 将直线y =x 的图象沿y 轴向上平移2个单位长度后,所得直线的函数表达式为____________,这两条直线间的距离为____________.15. 举重⽐赛的总成绩是选⼿的挺举与抓举两项成绩之和,若其中⼀项三次挑战失败,则该项成绩为0. 甲、⼄是同⼀重量级别的举重选⼿,他们近三年六次重要⽐赛的成绩如下(单位:公⽄):如果你是教练,要选派⼀名选⼿参加国际⽐赛,那么你会选派____________(填“甲”或“⼄”),理由是______________________________________. 16.已知正⽅形ABCD .求作:正⽅形ABCD 的外接圆. 作法:如图,(1)分别连接AC ,BD ,交于点O ;(2) 以点O 为圆⼼,OA 长为半径作O .O 即为所求作的圆.请回答:该作图的依据是_____________________________________.三、解答题(本题共68分,第17-24题,每⼩题5分,第25题6分,第26-27,每⼩题7分,第28题8分)17.计算:()212sin 60-π-2++1-3-??? ???18.解不等式组4+6,23x x x x ??+>≥,并写出它的所有整数解.19. 如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D . BF 平分∠ABC 交AD 于点E ,交AC于点F . 求证:AE =AF .20. 已知关于x 的⼀元⼆次⽅程()2320x m x m -+++=.(1) 求证:⽆论实数m 取何值,⽅程总有两个实数根; (2) 若⽅程有⼀个根的平⽅等于4,求m 的值.21.如图,已知四边形ABCD 是平⾏四边形,延长BA ⾄点E ,使AE = AB ,连接DE ,AC . (1)求证:四边形ACDE 为平⾏四边形;(2)连接CE 交AD 于点O . 若AC=AB =3,1cos 3B =,求线段CE 的长.22. 已知函数()30y x x=>的图象与⼀次函数()20y ax a =-≠的图象交于点A ()3,n . (1)求实数a 的值;(2) 设⼀次函数()20y ax a =-≠的图象与y 轴交于点B .若点C 在y 轴上,且=2ABC AOB S S △△,求点C 的坐标.23.如图,AB 为O 的直径,点C ,D 在O 上,且点C 是BD 的中点.过点C 作 AD 的垂线EF 交直线AD 于点E . (1)求证:EF 是O 的切线;(2)连接BC . 若AB =5,BC =3,求线段AE 的长.24.随着⾼铁的建设,春运期间动车组发送旅客量越来越⼤.相关部门为了进⼀步了解春运期间动车组发送旅客量的变化情况,针对2014年⾄2018年春运期间铁路发送旅客量情况进⾏了调查,具体过程如下. (I )收集、整理数据请将表格补充完整:(II )描述数据为了更直观地显⽰春运期间动车组发送旅客量占⽐的变化趋势,需要⽤___________(填“折线图”或“扇形图”)进⾏描述;(III )分析数据、做出推测预计2019年春运期间动车组发送旅客量占⽐约为___________,你的预估理由是_________________________________________ .25. 如图,在等腰△ABC 中,AB =AC ,点D ,E 分别为BC ,AB 的中点,连接AD .在线段AD 上任取⼀点P ,连接PB ,PE .若BC =4,AD =6,设PD =x (当点P 与点D 重合时,x 的值为0),PB +PE =y .⼩明根据学习函数的经验,对函数y 随⾃变量x 的变换⽽变化的规律进⾏了探究. 下⾯是⼩明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x 与y 的⼏组值,如下表:(说明:补全表格时,相关数值保留⼀位⼩数). (参考数据:1.414≈1.732≈2.236≈)(2) 建⽴平⾯直⾓坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)函数y 的最⼩值为______________(保留⼀位⼩数),此时点P 在图1中的位置为________________________.26.在平⾯直⾓坐标系xOy 中,抛物线()02342≠-+-=a a ax axy 与x 轴交于A,B两点(点A在点B左侧).(1)当抛物线过原点时,求实数a的值;(2)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(⽤含a的代数式表⽰);(3)当AB≤4时,求实数a的取值范围.27. 已知△ABC 中,AD 是的平分线,且AD =AB ,过点C 作AD 的垂线,交 AD 的延长线于点H .(1)如图1,若①直接写出B ∠和ACB ∠的度数;②若AB =2,求AC 和AH 的长;(2)如图2,⽤等式表⽰线段AH 与AB +AC 之间的数量关系,并证明.BAC ∠60BAC ∠=?28.给出如下定义:对于⊙O的弦MN和⊙O外⼀点P(M,O,N三点不共线,且P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的⽰意图.在平⾯直⾓坐标系xOy中,⊙O的半径为1.(1)如图2,22M,22N-.在A(1,0),B(1,1),)C三点中, 是线段MN关于点O的关联点的是;(2)如图3,M(0,1),N12-??,点D是线段MN关于点O的关联点.①∠MDN的⼤⼩为°;②在第⼀象限内有⼀点E),m,点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;③点F在直线2y x=+上,当∠MFN≥∠MDN时,求点F的横坐标Fx的取值范围.东城区2017-2018学年度第⼀次模拟检测初三数学试题参考答案及评分标准 2018.5⼆、填空题(本题共16分,每⼩题2分)9.1x ≥ 10. ()()22n m m +- 11. 8 12. 2x 13. ②③14. 2y x =+ 15. 答案不唯⼀,理由须⽀撑推断结论 16. 正⽅形的对⾓线相等且互相平分,圆的定义三、解答题(本题共68分,17-24题,每题5分,第25题6分,26-27题,每⼩题7分,第28题8分)=217.解:原式分分18. 解:4+6,23x x x x ??+①②>≥,由①得,-x >2,------------------1分由②得,1x ≤, ------------------2分∴不等式组的解集为-1x 2<≤.所有整数解为-1, 0, 1. ---------------------5分19.证明:∵∠BAC =90°,∴∠FBA +∠AFB =90°. -------------------1分∵AD ⊥BC ,∴∠DBE +∠DEB =90°.---------------- 2分∵BE 平分∠ABC ,∴∠DBE =∠FBA . -------------------3分∴∠AFB =∠DEB . -------------------4分∵∠DEB =∠FEA ,∴∠AFB =∠FEA .∴AE =AF . -------------------5分20. (1)证明:()()2=+3-42m m ?+()2=+1m∵()2+10m ≥,∴⽆论实数m 取何值,⽅程总有两个实根. -------------------2分(2)解:由求根公式,得()()1,231=2 m m x +±+,∴1=1x ,2=+2x m . ∵⽅程有⼀个根的平⽅等于4,∴()2+24m =.解得=-4m ,或=0m . -------------------5分 21.(1) 证明:∵平⾏四边形ABCD ,∴=AB DC ,AB DC ∥.∵AB =AE ,∴=AE DC ,AE DC ∥.∴四边形ACDE 为平⾏四边形. -------------------2分 (2) ∵=AB AC ,∴=AE AC .∴平⾏四边形ACDE 为菱形. ∴AD ⊥CE . ∵AD BC ∥,∴BC ⊥CE.在Rt △EBC 中,BE =6, 1cos 3BC B BE ==, ∴=2BC .根据勾股定理,求得BC 分22.解:(1)∵点()3,A n 在函数()30y x x=>的图象上,∴=1n ,点()3,1A .∵直线()20y ax a =-≠过点()3,1A ,∴ 321a -= .解得 1a =. ----------------------2分 (2)易求得()0,2B -.如图,12AOB A S OB x =?△,1=2ABC A S BC x ?△∵=2ABC AOB S S △△,∴=24BC OB =.∴()10,2C ,或()20,6C -. ----------------------5分23. (1)证明:连接OC.∵CD CB=∴∠1=∠3.∵OA OC=,∴∠1=∠2.∴∠3=∠2.∴AE OC∥.∵AE EF⊥,∴OC EF⊥.∵OC是O的半径,∴EF是O的切线. ----------------------2分(2)∵AB为O的直径,∴∠ACB=90°.根据勾股定理,由AB=5,BC=3,可求得AC=4. ∵AE EF⊥,∴∠AEC=90°.∴△AEC∽△ACB.∴AE AC AC AB=.∴4 45 AE=.∴165AE=. ----------------------5分24. 解:(I):56.8%;----------------------1分(II)折线图;----------------------3分(III)答案不唯⼀,预估的理由须⽀撑预估的数据,参考数据61%左右.--------5分25.解:(1)4.5 . --------------------2分(2)--------------------4分(3) 4.2,点P是AD与CE的交点. --------------------6分26.解:(1) ∵点()0,0O在抛物线上,∴320a-=,23a=.--------------------2分(2)①对称轴为直线2x=;②顶点的纵坐标为2a--.--------------------4分(3) (i)当0 a>时,依题意,-20 320. aa--<,≥解得2.3 a≥(ii)当0a<时,依题意,-20 320. aa-->,≤解得a<-2.综上,2a-<,或23a≥. --------------------7分27. (1)①75B∠=?,45ACB∠=?;--------------------2分②作DE⊥AC交AC于点E.Rt△ADE中,由30DAC∠=?,AD=2可得DE=1,AE=. Rt△CDE中,由45ACD∠=?,DE=1,可得EC=1.∴AC1.Rt△ACH中,由30DAC∠=?,可得AH=;--------------4分(2)线段AH与AB+AC之间的数量关系:2AH=AB+AC证明:延长AB和CH交于点F,取BF中点G,连接GH.易证△ACH ≌△AFH.∴AC AF=,HC HF=.∴GH BC∥.∵AB AD =,∴ ABD ADB ∠=∠. ∴ AGH AHG ∠=∠ . ∴ AG AH =.∴()2222AB AC AB AF AB BF AB BG AG AH +=+=+=+==. --------------7分 28. 解:(1)C ; --------------2分(2)① 60°;②△MNE 是等边三⾓形,点E 的坐标为);--------------5分③直线2y =+交 y 轴于点K (0,2),交x 轴于点()T 0.∴2OK =,OT =. ∴60OKT ∠=?.作OG ⊥KT 于点G ,连接MG .∵()M 0,1,∴OM =1.∴M 为OK 中点 . ∴ MG =MK =OM =1.∴∠MGO =∠MOG =30°,OG ∴3.2G ,∵120MON ∠=?, ∴ 90GON ∠=?.⼜OG 1ON =,∴30OGN ∠=?. ∴60MGN ∠=?.∴G 是线段MN 关于点O 的关联点.经验证,点)E在直线2y =+上. 结合图象可知,当点F 在线段GE 上时,符合题意. ∵G F E x x x ≤≤,∴F x 分.。
2017年北京市东城区中考数学一模试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)数据显示:2016年我国就业增长超出预期.全年城镇新增就业1 314万人,高校毕业生就业创业人数再创新高.将数据1 314用科学记数法表示应为()A.1.314×103B.1.314×104C.13.14×102D.0.1314×1042.(3分)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|<|b| B.a>﹣b C.b>a D.a>﹣23.(3分)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.4.(3分)某健步走运动的爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3 B.1.3,1.3 C.1.4,1.35 D.1.4,1.35.(3分)如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于()A.15°B.25°C.30°D.45°6.(3分)下列哪个几何体,它的主视图、左视图、俯视图都相同()A.B.C.D.7.(3分)我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条8.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.59.(3分)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块10.(3分)图1是某娱乐节目中一个游戏环节的录制现场,场地由等边△ADE和正方形ABCD组成,正方形ABCD两条对角线交于点O,在AD的中点P处放置了一台主摄像机.游戏参与者行进的时间为x,与主摄像机的距离为y,若游戏参与者匀速行进,且表示y与x的函数关系式大致如图2所示,则游戏参与者的行进路线可能是()A.A→O→D B.E→A→C C.A→E→D D.E→A→B二、填空题(本题共18分,每小题3分)11.(3分)分解因式:ab2﹣2ab+a=.12.(3分)请你写出一个二次函数,其图象满足条件:①开口向上;②与y轴的交点坐标为(0,1).此二次函数的解析式可以是.13.(3分)若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根,则k的取值范围是.14.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.15.(3分)北京市2012﹣2016年常住人口增量统计如图所示.根据统计图中提供的信息,预估2017年北京市常住人口增量约为万人次,你的预估理由是.16.(3分)下面是“以已知线段为直径作圆”的尺规作图过程.已知:如图1,线段AB.求作:以AB为直径的⊙O.作法:如图2,(1)分别以A,B为圆心,大于AB的长为半径作弧,两弧相交于点C,D;(2)作直线CD交AB于点O;(3)以O为圆心,OA长为半径作圆.则⊙O即为所求作的.请回答:该作图的依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.(5分)计算:﹣2sin60°+(﹣π)0﹣()﹣1.18.(5分)解不等式>﹣1,并写出它的正整数解.19.(5分)先化简,再求值:(1﹣)÷﹣,其中2x2+4x﹣1=0.20.(5分)如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,求∠BAD的度数.21.(5分)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=相交于点A(m,3),B(﹣6,n),与x轴交于点C.(1)求直线y=kx+b(k≠0)的解析式;(2)若点P在x轴上,且S△ACP =S△BOC,求点P的坐标(直接写出结果).22.(5分)列方程或方程组解应用题:在某场CBA比赛中,某位运动员的技术统计如表所示:技术上场时间(分钟)出手投篮(次)投中(次)罚球得分(分)篮板(个)助攻(次)个人总得分(分)数据38 27 11 6 3 4 33注:(1)表中出手投篮次数和投中次数均不包括罚球;(2)总得分=两分球得分+三分球得分+罚球得分.根据以上信息,求本场比赛中该运动员投中两分球和三分球各几个.23.(5分)如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.(1)求证:BF=CD;(2)连接BE,若BE⊥AF,∠BFA=60°,BE=2,求平行四边形ABCD的周长.24.(5分)阅读下列材料:“共享单车”是指企业与政府合作,在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享的一种服务,是共享经济的一种新形态.共享单车的出现让更多的用户有了更好的代步选择.自行车也代替了一部分公共交通甚至打车的出行.Quest Mobile监测的M型与O型单车从2016年10月﹣﹣2017年1月的月度用户使用情况如表所示:根据以上材料解答下列问题:(1)仔细阅读上表,将O型单车总用户数用折线图表示出来,并在图中标明相应数据;(2)根据图表所提提供的数据,选择你所感兴趣的方面,写出一条你发现的结论.25.(5分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DF.(1)求证:DF是⊙O的切线;(2)若DB平分∠ADC,AB=a,AD:DE=4:1,写出求DE长的思路.26.(5分)在课外活动中,我们要研究一种凹四边形﹣﹣燕尾四边形的性质.定义1:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形(如图1).(1)根据凹四边形的定义,下列四边形是凹四边形的是(填写序号);定义2:两组邻边分别相等的凹四边形叫做燕尾四边形(如图2).特别地,有三边相等的凹四边形不属于燕尾四边形.小洁根据学习平行四边形、菱形、矩形、正方形的经验,对燕尾四边形的性质进行了探究.下面是小洁的探究过程,请补充完整:(2)通过观察、测量、折叠等操作活动,写出两条对燕尾四边形性质的猜想,并选取其中的一条猜想加以证明;(3)如图2,在燕尾四边形ABCD中,AB=AD=6,BC=DC=4,∠BCD=120°,求燕尾四边形ABCD 的面积(直接写出结果).27.(7分)二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.(1)求该二次函数的对称轴方程;(2)过动点C(0,n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时,求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.28.(7分)在等腰△ABC中,(1)如图1,若△ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线段为线段AE,连接DE,则∠BDE的度数为;(2)若△ABC为等边三角形,点D为线段BC上一动点(不与B,C重合),连接AD并将线段AD绕点D逆时针旋转60°得到线段DE,连接BE.①根据题意在图2中补全图形;②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE.经过与同学们的充分讨论,形成了几种证明的思路:思路1:要证明CD=BE,只需要连接AE,并证明△ADC≌△AEB;思路2:要证明CD=BE,只需要过点D作DF∥AB,交AC于F,证明△ADF≌△DEB;思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明△ADC≌△DEG;…请参考以上思路,帮助小玉证明CD=BE.(只需要用一种方法证明即可)(3)小玉的发现启发了小明:如图3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此时小明发现BE,BD,AC三者之间满足一定的数量关系,这个数量关系是.(直接给出结论无须证明)29.(8分)设平面内一点到等边三角形中心的距离为d,等边三角形的内切圆半径为r,外接圆半径为R.对于一个点与等边三角形,给出如下定义:满足r≤d≤R的点叫做等边三角形的中心关联点.在平面直角坐标系xOy中,等边△ABC的三个顶点的坐标分别为A(0,2),B(﹣,﹣1),C (,﹣1).(1)已知点D(2,2),E(,1),F(﹣,﹣1).在D,E,F中,是等边△ABC的中心关联点的是;(2)如图1,过点A作直线交x轴正半轴于M,使∠AMO=30°.①若线段AM上存在等边△ABC的中心关联点P(m,n),求m的取值范围;②将直线AM向下平移得到直线y=kx+b,当b满足什么条件时,直线y=kx+b上总存在等边△ABC 的中心关联点;(直接写出答案,不需过程)(3)如图2,点Q为直线y=﹣1上一动点,⊙Q的半径为.当Q从点(﹣4,﹣1)出发,以每秒1个单位的速度向右移动,运动时间为t秒.是否存在某一时刻t,使得⊙Q上所有点都是等边△ABC的中心关联点?如果存在,请直接写出所有符合题意的t的值;如果不存在,请说明理由.2017年北京市东城区中考数学一模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)数据显示:2016年我国就业增长超出预期.全年城镇新增就业1 314万人,高校毕业生就业创业人数再创新高.将数据1 314用科学记数法表示应为()A.1.314×103B.1.314×104C.13.14×102D.0.1314×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数据1 314用科学记数法表示应为1.314×103,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|<|b| B.a>﹣b C.b>a D.a>﹣2【分析】根据数轴上点的位置,利用相反数,绝对值的性质判断即可.【解答】解:根据数轴上点的位置得:﹣3<a<﹣2,1<b<2,∴|a|>|b|,a<﹣b,b>a,a<﹣2,故选:C.【点评】此题考查了实数与数轴,弄清实数a,b在数轴上的对应点的位置是解本题的关键.3.(3分)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,∴共有2+6+4=12只,∴将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是=,故选:B.【点评】本题考查概率的求法与运用.一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.(3分)某健步走运动的爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3 B.1.3,1.3 C.1.4,1.35 D.1.4,1.3【分析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数据,据此判断即可.【解答】解:∵这组数据中1.4出现的次数最多,∴在每天所走的步数这组数据中,众数是1.4;每天所走的步数的中位数是:(1.3+1.3)÷2=1.3∴在每天所走的步数这组数据中,众数和中位数分别是1.4、1.3.故选:D.【点评】此题主要考查了众数、中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.5.(3分)如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于()A.15°B.25°C.30°D.45°【分析】根据平行线的性质得到∠DNM=∠BME=75°,由等腰直角三角形的性质得到∠PND=45°,即可得到结论.【解答】解:∵AB∥CD,∴∠DNM=∠BME=75°,∵∠PND=45°,∴∠PNM=∠DNM﹣∠DNP=30°,故选:C.【点评】本题考查了平行线的性质,等腰直角三角形的性质,熟练掌握平行线的性质是解题的关键.6.(3分)下列哪个几何体,它的主视图、左视图、俯视图都相同()A.B.C.D.【分析】根据几何体的三视图,可得答案.【解答】解:A主视图、左视图都是矩形,俯视图是三角形,故A不符合题意;B、主视图、左视图、俯视图都是圆,故B符合题意;C、主视图、左视图是三角形,俯视图是圆,故C不符合题意;D、主视图俯视图都是矩形,左视图是正方形,故D不符合题意;故选:B.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.7.(3分)我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:如图所示:其对称轴有2条.故选:B.【点评】此题主要考查了轴对称图形的定义,正确把握定义是解题关键.8.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9.(3分)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块【分析】根据题意设出未知数,列出相应的不等式,从而可以解答本题.【解答】解:设这批手表有x块,550×60+(x﹣60)×500>55000解得,x>104∴这批电话手表至少有105块,故选:C.【点评】本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.10.(3分)图1是某娱乐节目中一个游戏环节的录制现场,场地由等边△ADE和正方形ABCD组成,正方形ABCD两条对角线交于点O,在AD的中点P处放置了一台主摄像机.游戏参与者行进的时间为x,与主摄像机的距离为y,若游戏参与者匀速行进,且表示y与x的函数关系式大致如图2所示,则游戏参与者的行进路线可能是()A.A→O→D B.E→A→C C.A→E→D D.E→A→B【分析】根据各个选项中的路线进行分析,看哪条路线符号图2的函数图象即可解答本题.【解答】解:由题意可得,当经过的路线是A→O→D时,从A→O,y随x的增大先减小后增大且图象对称,从O→D,y随x 的增大先减小后增大且函数图象对称,故选项A符号要求;当经过的路线是E→A→C时,从E→A,y随x的增大先减小后增大,但后来增大的最大值小于刚开始的值,故选项B不符号要求;当经过的路线是A→E→D时,从A→E,y随x的增大先减小后增大,但后来增大的最大值大于于刚开始的值,故选项C不符号要求;当经过的路线是E→A→B时,从E→A,y随x的增大先减小后增大,但后来增大的最大值小于刚开始的值,故选项D不符号要求;故选:A.【点评】本题考查动点问题的函数图象,解答本题的关键是明确题意,明确各个选项中路线对应的函数图象,利用数形结合的思想解答.二、填空题(本题共18分,每小题3分)11.(3分)分解因式:ab2﹣2ab+a=a(b﹣1)2.【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【解答】解:ab2﹣2ab+a,=a(b2﹣2b+1),=a(b﹣1)2.【点评】考查提公因式法分解因式和利用完全平方公式分解因式,难点在于提取公因式后利用完全平方公式进行二次因式分解.12.(3分)请你写出一个二次函数,其图象满足条件:①开口向上;②与y轴的交点坐标为(0,1).此二次函数的解析式可以是y=x2+1 .【分析】二次函数的解析式是y=ax2+bx+c(a、b、c为常数,a≠0),根据开口向上得出a为正数,根据与y轴的交点坐标为(0,1)得出c=1,写出一个符合的二次函数即可.【解答】解:答案不唯一,如:y=x2+1,故答案为:y=x2+1.【点评】本题考查了二次函数的性质,能熟记二次函数的性质内容是解此题的关键.13.(3分)若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根,则k的取值范围是k<1 .【分析】根据判别式的意义得到△=4(k﹣1)2﹣4(k2﹣1)>0,然后解不等式即可.【解答】解:根据题意得△=4(k﹣1)2﹣4(k2﹣1)>0,解得k<1.故答案为k<1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为 6 .【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形的边数为6.故答案为:6.【点评】本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.15.(3分)北京市2012﹣2016年常住人口增量统计如图所示.根据统计图中提供的信息,预估2017年北京市常住人口增量约为0~2.4 万人次,你的预估理由是北京每年人口平均增长的人数呈减小的趋势.【分析】根据北京市2012﹣2016年常住人口增量条形统计图,判断北京每年人口平均增长的人数的变化趋势,据此得出结论.【解答】解:根据北京市2012﹣2016年常住人口增量条形统计图,可得北京每年人口平均增长的人数呈减小的趋势,故2017年北京市常住人口增量约为0~2.4万人次,故答案为:0~2.4,北京每年人口平均增长的人数呈减小的趋势.(答案不唯一)【点评】本题主要考查了用样本估计总体以及条形统计图的应用,解题时注意:从条形图可以很容易看出数据的大小,便于比较.16.(3分)下面是“以已知线段为直径作圆”的尺规作图过程.已知:如图1,线段AB.求作:以AB为直径的⊙O.作法:如图2,(1)分别以A,B为圆心,大于AB的长为半径作弧,两弧相交于点C,D;(2)作直线CD交AB于点O;(3)以O为圆心,OA长为半径作圆.则⊙O即为所求作的.请回答:该作图的依据是垂直平分线的判定和圆的定义.【分析】利用基本作图可判定CD垂直平分AB,即点O为AB的中点,然后可作出以已知线段AB 为直径的圆.【解答】解:由作法得CD垂直平分AB,即点O为AB的中点,所以⊙O即为所求作.故答案为垂直平分线的判定和圆的定义.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.(5分)计算:﹣2sin60°+(﹣π)0﹣()﹣1.【分析】首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式﹣2sin60°+(﹣π)0﹣()﹣1的值是多少即可.【解答】解:﹣2sin60°+(﹣π)0﹣()﹣1==【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(5分)解不等式>﹣1,并写出它的正整数解.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:去分母得:3(x+1)>2(2x+2)﹣6,去括号得:3x+3>4x+4﹣6,移项得:3x﹣4x>4﹣6﹣3,合并同类项得:﹣x>﹣5,系数化为1得:x<5.故不等式的正整数解有1,2,3,4这4个.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.19.(5分)先化简,再求值:(1﹣)÷﹣,其中2x2+4x﹣1=0.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,再利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=•﹣=﹣=,∵2x2+4x﹣1=0.∴x2+2x=x(x+2)=,则原式=8.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(5分)如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,求∠BAD的度数.【分析】先根据线段垂直平分线的性质得出∠C=∠DAC,再由三角形内角和定理求出∠BAC的度数,根据∠BAD=∠BAC﹣∠CAD即可得出结论.【解答】解:∵由题意可得:MN是AC的垂直平分线.∴AD=DC.∴∠C=∠DAC.∵∠C=30°,∴∠DAC=30°.∵∠B=55°,∴∠BAC=95°.∴∠BAD=∠BAC﹣∠CAD=65°.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.21.(5分)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=相交于点A(m,3),B(﹣6,n),与x轴交于点C.(1)求直线y=kx+b(k≠0)的解析式;(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标(直接写出结果).【分析】(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ACP=S△BOC,即可得出|x+4|=2,解之即可得出结论.【解答】解:(1)∵点A(m,3),B(﹣6,n)在双曲线y=上,∴m=2,n=﹣1,∴A(2,3),B(﹣6,﹣1).将(2,3),B(﹣6,﹣1)代入y=kx+b,得:,解得.∴直线的解析式为y=x+2.(2)当y=x+2=0时,x=﹣4,∴点C(﹣4,0).设点P的坐标为(x,0),∵S△ACP=S△BOC,A(2,3),B(﹣6,﹣1),∴×3|x﹣(﹣4)|=××|0﹣(﹣4)|×|﹣1|,即|x+4|=2,解得:x1=﹣6,x2=﹣2.∴点P的坐标为(﹣6,0)或(﹣2,0).【点评】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB的解析式;(2)根据三角形的面积公式以及S△ACP=S△BOC,找出|x+4|=2.22.(5分)列方程或方程组解应用题:在某场CBA比赛中,某位运动员的技术统计如表所示:技术上场时间(分钟)出手投篮(次)投中(次)罚球得分(分)篮板(个)助攻(次)个人总得分(分)数据38 27 11 6 3 4 33注:(1)表中出手投篮次数和投中次数均不包括罚球;(2)总得分=两分球得分+三分球得分+罚球得分.根据以上信息,求本场比赛中该运动员投中两分球和三分球各几个.【分析】设本场比赛中该运动员投中两分球x个,三分球y个,根据投中次数结合总分,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设本场比赛中该运动员投中两分球x个,三分球y个,根据题意得:,解得:.答:设本场比赛中该运动员投中两分球6个,三分球5个.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.23.(5分)如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.(1)求证:BF=CD;(2)连接BE,若BE⊥AF,∠BFA=60°,BE=2,求平行四边形ABCD的周长.【分析】(1)根据平行四边形的性质得出AB=CD,AD∥BC,求出∠FAD=∠AFB,根据角平分线定义得出∠FAD=∠FAB,求出∠AFB=∠FAB,即可得出答案;(2)求出△ABF为等边三角形,根据等边三角形的性质得出AF=BF=AB,∠ABF=60°,在Rt △BEF中,∠BFA=60°,BE =,解直角三角形求出EF=2,BF=4,AB=BF=4,BC=AD=2,即可得出答案.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,AD∥BC,∴∠FAD=∠AFB,又∵AF平分∠BAD,∴∠FAD=∠FAB.∴∠AFB=∠FAB.∴AB=BF,∴BF=CD;(2)解:∵由(1)知:AB=BF,又∵∠BFA=60°,∴△ABF为等边三角形,∴AF=BF=AB,∠ABF=60°,∵BE⊥AF,∴点E是AF的中点.∵在Rt△BEF中,∠BFA=60°,BE=,∴EF=2,BF=4,∴AB=BF=4,∵四边形BACD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠DCF=∠ABC=60°=∠F,∴CE=EF,∴△ECF是等边三角形,∴CE=EF=CF=2,∴BC=4﹣2=2,∴平行四边形ABCD的周长为2+2+4+4=12.【点评】本题考查了平行四边形的性质和判定,平行线的性质,解直角三角形,等边三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键.24.(5分)阅读下列材料:“共享单车”是指企业与政府合作,在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享的一种服务,是共享经济的一种新形态.共享单车的出现让更多的用户有了更好的代步选择.自行车也代替了一部分公共交通甚至打车的出行.。
PNMFEDCBA北京市东城区2016—2017学年第二学期统一练习(一)初三数学2017.5学校班级姓名考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.数据显示:2016年我国就业增长超出预期. 全年城镇新增就业1 314万人,高校毕业生就业创业人数再创新高. 将数据1 314用科学记数法表示应为A.31.31410⨯B.41.31410⨯C.213.1410⨯D.40.131410⨯2.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是A.a b<B.a b>-C.b a>D.2a>-3.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是A.12B.13C.14D.164.某健步走运动的爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是A.1.2,1.3 B.1.3,1.3C.1.4,1.35 D.1.4,1.35. 如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于A.15°B.25°C.30°D.45°6.下列哪个几何体,它的主视图、左视图、俯视图都相同A B C D7.我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化. 如图2,窗框的一部分所展示的图形是一个轴对称图形,其对称轴有PO E DC B A A .1条 B .2条 C .3条D .4条8. 如图,点A ,B 的坐标为(2,0),(0,1),若将线段AB 平移至A 1B 1,则a +b 的值为 A .2 B .3 C .4 D .59. 某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了...5.5万元.这批电话手表至少有A .103块B .104块C .105块D . 106块10. 图1是某娱乐节目中一个游戏环节的录制现场,场地由等边△ADE 和正方形ABCD 组成,正方形ABCD两条对角线交于点O ,在AD 的中点P 处放置了一台主摄像机.游戏参与者行进的时间为x ,与主摄像机的距离为y ,若游戏参与者匀速行进,且表示y 与x 的函数关系式大致如图2所示,则游戏参与者的行进路线可能是图1 图2A. A O DB. E A CC. A E DD. E A B二、填空题(本题共18分,每小题3分)11.分解因式:22ab ab a -+= .12.请你写出一个二次函数,其图象满足条件:○1开口向上;○2与y 轴的交点坐标为(0,1). 此二次函数的解析式可以是 .13. 若关于x 的一元二次方程x 2+2(k ﹣1)x +k 2﹣1=0有两个不相等的实数根,则k 的取值范围是 .14. 一个多边形的内角和是外角和的2倍,则这个多边形的边数为 .15. 北京市2012-2016年常住人口增量统计如图所示.根据统计图中提供的信息,预估2017年北京市常住人口增量约为 万人次,你的预估理由是 .16.下面是“以已知线段为直径作圆”的尺规作图过程. 请回答:该作图的依据是 .三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:011122sin 60(2π)()2--︒+--. 18. 解不等式122123x x ++->,并写出它的正整数解. 19.先化简,再求值: 224122x x x x x -+⎛⎫-÷- ⎪++⎝⎭,其中22410x x +-=. 20.如图,在△ABC 中,∠B =55°,∠C =30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,求∠BAD 的度数.21.如图,在平面直角坐标系xOy 中,直线()0y kx b k =+≠与双曲线6y x=相交于点A (m ,3),B (-6,n ),与x 轴交于点C .(1)求直线()0y kx b k =+≠的解析式; (2)若点P 在x 轴上,且32ACP BOC S S =△△,求点P 的坐 标(直接写出结果).22.列方程或方程组解应用题:在某场CBA 比赛中,某位运动员的技术统计如下表所示:技术 上场时间(分钟) 出手投篮(次) 投中 (次) 罚球得分(分) 篮板 (个) 助攻(次) 个人总得分(分) 数据 38 27 11 6 3 4 33已知:线段AB.求作:以AB 为直径的⊙O . BA作法:如图,(1) 分别以A ,B 为圆心,大于21AB 的长为半径 作弧,两弧相交于点C ,D ;(2)作直线CD 交AB 于点O ;(3)以O 为圆心,OA 长为半径作圆. 则⊙O 即为所求作的.F E OCBADFECBAD注:(1)表中出手投篮次数和投中次数均不包括罚球;(2)总得分=两分球得分+三分球得分+罚球得分.根据以上信息,求本场比赛中该运动员投中两分球和三分球各几个.23.如图,四边形ABCD 为平行四边形,∠BAD 的角平分线AF 交CD 于点E ,交BC 的延长线于点F . (1)求证:BF =CD ;(2)连接BE ,若BE ⊥AF ,∠BF A =60°,BE =23,求平行四边形ABCD 的周长.24.阅读下列材料:“共享单车”是指企业与政府合作,在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享的一种服务,是共享经济的一种新形态.共享单车的出现让更多的用户有了更好的代步选择.自行车也代替了一部分公共交通甚至打车的出行.Quest Mobile 监测的M 型与O 型单车从2016年10月——2017年1月的月度用户使用情况如下表所示:根据以上材料解答下列问题:(1)仔细阅读上表,将O 型单车总用户数用折线图表示出来,并在图中标明相应数据; (2)根据图表所提提供的数据,选择你所感兴趣的方面,写出一条你发现的结论.25. 如图,四边形ABCD 内接于⊙O ,对角线AC 为⊙O 的直径,过点C 作AC 的垂线交AD 的延长线于点E ,点F 为CE 的中点,连接DB ,DF .(1)求证:DF 是⊙O 的切线;(2)若DB 平分∠ADC ,AB =a ,AD ∶DE =4∶1,写出求DE 长的思路.26. 在课外活动中,我们要研究一种凹四边形——燕尾四边形的性质.DCBADCBA DCBA图1DCB A定义1:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形(如图1).(1)根据凹四边形的定义,下列四边形是凹四边形的是(填写序号) ;○1 ○2 ○3 定义2:两组邻边分别相等的凹四边形叫做燕尾四边形(如图2).特别地,有三边相等的凹四边形不属于燕尾四边形.小洁根据学习平行四边形、菱形、矩形、正方形的经验,对燕尾四边形的性质进行了探究. 下面是小洁的探究过程,请补充完整:(2)通过观察、测量、折叠等操作活动,写出两条对燕尾四边形性质的猜想,并选取其中的一条猜想加以证明;(3)如图2,在燕尾四边形ABCD 中,AB =AD =6,BC =DC =4,∠BCD =120°,求燕尾四边形ABCD 的面积(直接写出结果).27.二次函数2(2)2(2)5y m x m x m =+-+-+,其中20m +>. (1)求该二次函数的对称轴方程; (2)过动点C (0,n )作直线l ⊥y 轴.① 当直线l 与抛物线只有一个公共点时, 求n 与m 的函数关 系;② 若抛物线与x 轴有两个交点,将抛物线在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象. 当n =7时,直线l 与新的图象恰好有三个公共点,求此时m 的值;(3)若对于每一个给定的x 的值,它所对应的函数值都不小于1,求m 的取值范围. 28. 在等腰△ABC 中,(1)如图1,若△ABC 为等边三角形,D 为线段BC 中点,线段AD 关于直线AB 的对称线段为线段AE ,连接DE ,则∠BDE 的度数为___________;(2)若△ABC 为等边三角形,点D 为线段BC 上一动点(不与B ,C 重合),连接AD 并将 线段AD 绕点D逆时针旋转60°得到线段DE ,连接BE . ①根据题意在图2中补全图形;②小玉通过观察、验证,提出猜测:在点D 运动的过程中,恒有CD =BE .经过与同学们的充分讨论,形成了几种证明的思路:思路1:要证明CD =BE ,只需要连接AE ,并证明△ADC ≌△AEB ;思路2:要证明CD =BE ,只需要过点D 作DF ∥AB ,交AC 于F ,证明△ADF ≌△DEB ; 思路3:要证明CD =BE ,只需要延长CB 至点G ,使得BG =CD ,证明△ADC ≌△DEG ; ……请参考以上思路,帮助小玉证明CD =BE .(只需要用一种方法证明即可)(3)小玉的发现启发了小明:如图3,若AB =AC =kBC ,AD =kDE ,且∠ADE =∠C ,此时小明发现BE ,BD ,AC 三者之间满足一定的的数量关系,这个数量关系是______________________.(直接给出结论无须证明)图1图2图329.设平面内一点到等边三角形中心的距离为d ,等边三角形的内切圆半径为r ,外接圆半径为R .对于一个点与等边三角形,给出如下定义:满足r ≤d ≤R 的点叫做等边三角形的中心关联点. 在平面直角坐标系xOy 中,等边△ABC 的三个顶点的坐标分别为A (0,2),B (﹣3,﹣1),C (3,﹣1). (1)已知点D (2,2),E (3,1),F (21-,﹣1). 在D ,E ,F 中,是等边△ABC 的中心关联点的是 ; (2)如图1,过点A 作直线交x 轴正半轴于M ,使∠AMO =30°.①若线段AM 上存在等边△ABC 的中心关联点P (m ,n ),求m 的取值范围;②将直线AM 向下平移得到直线y =kx +b ,当b 满足什么条件时,直线y =kx +b 上总存在...等边△ABC 的中心关联点;(直接写出答案,不需过程)(3)如图2,点Q 为直线y =﹣1上一动点,⊙Q 的半径为21. 当Q 从点(﹣4,﹣1)出发,以每秒1个单位的速度向右移动,运动时间为t 秒.是否存在某一时刻t ,使得⊙Q 上所有点都是等边△ABC 的中心关联点?如果存在,请直接写出所有符合题意的t 的值;如果不存在,请说明理由.图1图2北京市东城区2016-2017学年第二学期统一练习(一) 初三数学参考答案及评分标准 2017.5一、选择题(本题共30分,每小题3分) 题号 123456 7 8 9 10 答案A CB D CB BACA二、填空题(本题共18分,每小题3分) 题号1112 1314 1516答案2(-1)a b答案不唯一如:21y x =+1k <6答案不唯一,合理就行垂直平分线的判定;垂直平分线的定义和圆的定义三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.计算:011122sin 60(2π)()2--︒+--解:原式=23312-+- …………4分 =31-. …………5分 18. 解: 去分母得:3(x +1)>2(2x +2)﹣6, …………1分去括号得:3x +3>4x +4﹣6,…………2分 移项得:3x ﹣4x >4﹣6﹣3, …………3分 合并同类项得:﹣x >﹣5, 系数化为1得:x <5. …………4分 故不等式的正整数解有1,2,3,4这4个. …………5分19. 解: 224122x x x x x -+⎛⎫-÷- ⎪++⎝⎭EAD=22422x x x x x x -++⋅--+ =242x x x x ++-+ =4(2)x x +. …………3分∵ 22410x x +-=. ∴ 2122x x +=. …………4分 原式=8. …………5分20. 解:由题意可得:MN 是AC 的垂直平分线.则AD =DC .故∠C =∠DAC .…………2分 ∵ ∠C =30°, ∴ ∠DAC =30°. …………3分 ∵ ∠B =55°, ∴ ∠BAC =95°. …………4分∴ ∠BAD =∠BAC ﹣∠CAD =65°. …………5分21.解:(1)由题意可求:m =2,n =-1.将(2,3),B (-6,-1)带入y kx b =+,得32,16.k b k b =+⎧⎨-=-+⎩ 解得 1,22.k b ⎧=⎪⎨⎪=⎩∴ 直线的解析式为122y x =+. …………3分 (2)(-2,0)或(-6,0). …………5分22.解:设本场比赛中该运动员投中两分球x 个,三分球y 个. …………1分依题意有23633,11.x y x y ++=⎧⎨+=⎩. …………3分 解得6,5.x y =⎧⎨=⎩…………4分 答:设本场比赛中该运动员投中两分球6个,三分球5个. …………5分 23. 解:(1)证明:∵ 四边形ABCD 为平行四边形,∴ AB =CD ,∠F AD =∠AFB.又∵ AF 平分∠BAD , ∴ ∠F AD =∠F AB . ∴ ∠AFB =∠FAB . ∴ AB =BF.∴ BF =CD . …………3分(2)解:由题意可证△ABF 为等边三角形,点E 是AF 的中点.在Rt △BEF 中,∠BFA =60°,BE =23, 可求EF =2,BF =4.∴ 平行四边形ABCD 的周长为12. …………5分24. 解:(1)…………4分(2)答案不唯一. …………5分25. 解:(1)证明:连接OD . ∵ OD =CD ,∴ ∠ODC =∠OCD .∵ AC 为⊙O 的直径, ∴ ∠ADC =∠EDC=90°. ∵ 点F 为CE 的中点, ∴ DF =CF .∴ ∠FDC =∠FCD . ∴ ∠FDO =∠FCO . 又∵ AC ⊥CE ,∴ ∠FDO =∠FCO =90°.∴ DF 是⊙O 的切线. …………2分(2)○1由DB 平分∠ADC ,AC 为⊙O 的直径,证明△ABC 是等腰直角三角形; ○2 由AB =a ,求出AC 的长度为2a ; ○3 由∠ACE=∠ADC =90°,∠CAE 是公共角,证明△ACD ∽△AEC ,得到2AC AD AE =⋅; ○4设DE 为x ,由AD ∶DE =4∶1,求出1010DE a =. …………5分,60. ..AD DE ADE ADE ABC EAB DAC AB AC AE AD EAB DAC CD BE =∠=︒∴∴∠=∠==∴∴=,△为等边三角形.△为等边三角形,,,△≌△EAB CD A26.解:(1)○2. …………1分 (2)它是一个轴对称图形;两组邻边分别相等;一组对角相等;一条对角线所在的直线垂直平分另一条对角线等等. …………3分已知:如图,在凹四边形ABCD 中,AB =AD ,BC =DC. 求证:∠B =∠D. 证明:连接AC .∵AB=AD,CB=CD,AC=AC , ∴△ABC ≌△ADC.∴∠B =∠D. …………4分(3)燕尾四边形ABCD 的面积为12243-. …………5分 27.解:(1)对称轴方程:2(2)12(2)m x m -+=-=+. …………1分(2)①∵直线l 与抛物线只有一个公共点,∴23n m =-+. …………3分② 依题可知:当237m -+=-时,直线l 与新的图象恰好有三个公共点. ∴5m =. …………5分(3)抛物线2(2)2(2)5y m x m x m =+-+-+的顶点坐标是(1,23)m -+.依题可得 20,23 1.m m +>⎧⎨-+≥⎩解得2,1.m m >-⎧⎨≤⎩ ∴ m 的取值范围是21m -<≤. …………7分28.解:(1)30°; …………1分 (2)思路1:如图,连接AE .…………5分思路2:过点D 作DF ∥AB ,交AC 于F .EDCBAG E A B C D…………5分思路3:延长CB 至G ,使BG =CD.…………5分(3)k (BE +BD )=AC . …………7分29.解:(1)E ,F ; …………2分(2)①解:依题意A (0,2),M (32,0).可求得直线AM 的解析式为233+-=x y . 经验证E 在直线AM 上.因为OE =OA =2,∠MAO =60°,所以△OAE 为等边三角形,所以AE 边上的高长为3.当点P 在AE 上时,3≤OP ≤2. 所以当点P 在AE 上时,点P 都是等边△ABC 的中心关联点.所以0≤m ≤3; …………4分=60.,=60..===60,.,..ABC AC BC BAC DF AB DFC CDF AF BD ADE ACB ABC DAF EDB AD DE ADF DEB DF BE CD ∴=∠︒∴∠︒∴∴=∠∠∠︒∴∠=∠=∴∴==△为等边三角形,,∥△为等边三角形.又△≌△=60.,.===60,.,.,==60..ABC AC BC BAC CD BG DG AC ADE ACB ABC DAF EDB AD DE ADC DEG CD EG BG C G BGE BE BG CD ∴=∠︒=∴=∠∠∠︒∴∠=∠=∴∴==∠∠︒∴∴==△为等边三角形,,又△≌△△为等边三角形.②﹣334≤b ≤2; …………6分 (3)t =25425-4 或 …………8分。
东城区2017—2018学年度第一学期期末教学目标检测初二数学 2018.1一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的 1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司。
将0.056用科学记数法表示为 A. -15.610⨯ B. -25.610⨯ C.-35.610⨯ D .-10.5610⨯ 2.江永女书诞生于宋朝,是世界上唯一一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而神奇的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,其中基本是轴对称图形的是3.下列式子为最简二次根式的是2()+a b 12a2124.若分式23x x -+的值为0,则x 的值等于 A .0 B .2 C .3D .-35.下列运算正确的是A. 532b b b ÷=B.527()b b =C. 248b b b = D .2-22aa b a ab =+()6.如图,在△ABC 中,∠B =∠C =60,点D 为AB 边的中点,DE ⊥BC 于E , 若BE=1,则AC 的长为A .2B .4 D .7.如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线。
此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE. 则说明这两个三角形全等的依据是 A. SAS B. ASA C. AAS D. SSS8.如图,根据计算长方形ABCD 的面积,可以说明下列哪个等式成立A. 2222)(b ab a b a ++=+ B. 2222)(b ab a b a +-=-C. 22))((b a b a b a -=-+ D. 2()a a b a ab +=+9.如图,已知等腰三角形ABC AB AC =,,若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定..正确的是A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE10.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为( )A .140°B .100°C .50°D . 40°二、填空题:(本题共16分,每小题2分)111x -x 的取值范围是 .12.在平面直角坐标系xOy 中,点P (2,1)关于y 轴对称的点的坐标是 .13.如图,点B ,F ,C ,E 在一条直线上,已知BF =CE ,AC //DF ,请你添加一个适当的条件 使得△ABC ≌△DEF .14.等腰三角形一边等于5,另一边等于8,则其周长是 .15.如图,D 在BC 边上,△ABC ≌△ADE ,∠EAC =40°,则∠B 的度数为_______.16.如图,在△ABC 中,∠ACB =90°,AD 平分∠ABC ,BC =10cm ,BD :DC =3:2,则点D 到AB 的距离为_________ cm .17.如果实数,a b 满足226,8,a b ab a b +==+=那么 ;18.阅读下面材料:在数学课上,老师提出如下问题:小俊的作法如下:老师说:“小俊的作法正确.”请回答:小俊的作图依据是_________________________.三、解答题(本题共9个小题,共54分,解答应写出文字说明,证明过程或演算步骤)19.(5分)计算:101326()(21)2--++-20.(5分)因式分解:(1)24x - (2) 2244ax axy ay -+21.(5分)如图,点E ,F 在线段AB 上,且AD =BC ,∠A =∠B ,AE =BF .求证:DF =CE .22.(5分)已知2+2x x =,求()()()()22311x x x x x +-+++-的值23.(5分)解分式方程:11+2-22-xx x+=. 如图, ①分别以点A 和点B 为圆心,大于12AB的长为半径作弧,两弧相交于点C ;②再分别以点A 和点B 为圆心,大于12AB 的长为半径(不同于①中的半径)作弧,两弧相交于点D ,使点D 与点C 在直线 AB 的同侧; ③作直线CD . 所以直线CD 就是所求作的垂直平分线. 尺规作图:作一条线段的垂直平分线. 已知:线段AB .24.(5分)先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中2x =.25.(6分)列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?26.(6分)如图,在△ABC 中,AB =AC ,AD ⊥于点D ,AM 是△ABC 的外角∠CAE 的平分线. (1)求证:AM ∥BC ;(2)若DN 平分∠ADC 交AM 于点N ,判断△ADN 的形状并说明理由.27.(6分)定义:任意两个数,a b ,按规则c ab a b =++扩充得到一个新数c ,称所得的新数c 为“如意数”.(1) 若2,1,a b ==直接写出,a b 的“如意数”c ;(2) 如果4,a m b m =-=-,求,a b 的“如意数”c ,并证明“如意数” 0c ≤(3)已知2=1(0)a x x -≠,且,a b 的“如意数”3231,c x x =+-,则b = (用含x 的式子表示)28. (6分)如图,在等边三角形ABC 的外侧作直线AP ,点C 关于直线AP 的对称点为点D ,连接AD ,BD ,其中BD 交直线AP 于点E. (1)依题意补全图形;(2)若∠PAC =20°,求∠AEB 的度数;(3)连结CE ,写出AE , BE , CE 之间的数量关系,并证明你的结论.东城区2017——2018学年度第一学期期末教学目标检测初二数学评分标准及参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共16分,每小题2分)10119.326212=3+23+2-145())--+-分分 220.14=2)(2)2x x x --+()(分22222244=(44)1(2)3ax axy ay a x xy y a x y -+-+=-()分分21. 如图,点E ,F 在AB 上,AD =BC ,∠A =∠B ,AE =BF .求证:△ADF ≌△BCE .证明:∵点E ,F 在线段AB 上,AE =BF ., ∴AE +E F =BF +EF , 即:AF =BE .………1分 在△ADF 与△BCE 中,,,,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩………3分 ∴△ADF ≌△BCE (SAS ) ………4分∴ DF=CE (全等三角形对应边相等)………5分2222222.=4431342=55x x x x x x x x x ++--+-=+++=解:原式分当时,原式分23.解方程:11+2-22-xx x+=解:方程两边同乘(x -2), 得1+2(x -2)=-1-x 2分 解得:2.33x =L L 分220.323x x 4x 5=-?=L L L L 检验:当时,分所以,原分式方程的解为分24. 先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中2x =-. ()()()()333223333233142x x x x x x x x x x x -+-=÷++-+=⋅++-=+解:原式分分分当32x =-时,原式33223===-+…5分 25.解:设2002年地铁每小时客运量x 万人,则2017年地铁每小时客运量4x 万人……1分由题意得240240-304x x= ……………3分 解得x =6 …………… 4分经检验x =6是分式方程的解 ……………5分4x 24=……………6分答:2017年每小时客运量24万人26.(1)∵AB =AC ,AD ⊥BC ,∴∠BAD =∠CAD =12BAC ∠.…………… 1分 ∵AM 平分∠EAC ,∴∠EAM =∠MAC=12EAC ∠.…………… 2分 ∴∠MAD =∠MAC +∠DAC =1122EAC BAC ∠+∠=1180902⨯︒=︒。
东城区2017-2018学年度第一次模拟检测初三数学试题参考答案及评分标准 2018.5题号 1 2 3 4 5 6 7 8 答案BBDDCABC二、填空题(本题共16分,每小题 2分)9. 1x ≥ 10. ()()22n m m +- 11. 8 12. 2x 13. ②③14. 2y x =+,2 15. 答案不唯一 ,理由须 支撑推断结论 16. 正方形的对角线相等且互相平分,圆的定义三、解答题(本题共68分,17-24题,每题5分,第25题6分,26-27题,每小题7分,第28题8分)3=2-1+9+3-1----------4=23+7------------------------517.解:原式分分18. 解:4+6,23x x x x ⎧⎪⎨+⎪⎩①②>≥,由①得,-x >2,------------------1分由②得,1x ≤, ------------------2分 ∴不等式组的解集为-1x 2<≤.所有整数解为-1, 0, 1. ---------------------5分19.证明: ∵∠BAC =90°,∴∠FBA +∠AFB =90°. -------------------1分 ∵AD ⊥BC ,∴∠DBE +∠DEB =90°.---------------- 2分 ∵BE 平分∠ABC ,∴∠DBE =∠FBA . -------------------3分∴∠AFB =∠DEB . -------------------4分 ∵∠DEB =∠FEA , ∴∠AFB =∠FEA .∴AE =AF . -------------------5分20. (1)证明:()()2=+3-42m m ∆+()2=+1m ∵()2+10m ≥,∴无论实数m 取何值,方程总有两个实根. -------------------2分 (2)解:由求根公式,得()()1,231=2m m x +±+,∴1=1x ,2=+2x m . ∵方程有一个根的平方等于4, ∴()2+24m =.解得=-4m ,或=0m . -------------------5分 21.(1) 证明:∵平行四边形ABCD , ∴=AB DC ,AB DC ∥. ∵AB =AE ,∴=AE DC ,AE DC ∥.∴四边形ACDE 为平行四边形. -------------------2分 (2) ∵=AB AC , ∴=AE AC .∴平行四边形ACDE 为菱形. ∴AD ⊥CE . ∵AD BC ∥, ∴BC ⊥CE.在Rt △EBC 中,BE =6, 1cos 3BC B BE ==, ∴=2BC .根据勾股定理,求得=42BC 分 22.解:(1)∵点()3,A n 在函数()30y x x=>的图象上, ∴=1n ,点()3,1A .∵直线()20y ax a =-≠过点()3,1A , ∴ 321a -= .解得 1a =. ----------------------2分 (2)易求得()0,2B -.如图,12AOB A S OB x =⋅△,1=2ABC A S BC x ⋅△∵=2ABC AOB S S △△,∴=24BC OB =.∴()10,2C ,或()20,6C -. ----------------------5分 23. (1)证明:连接OC .∵»»CDCB = ∴∠1=∠3. ∵OA OC =, ∴∠1=∠2. ∴∠3=∠2. ∴AE OC ∥. ∵AE EF ⊥, ∴OC EF ⊥.∵ OC 是O e 的半径,∴EF 是O e 的切线. ----------------------2分 (2)∵AB 为O e 的直径, ∴∠ACB =90°.根据勾股定理,由AB =5,BC =3,可求得AC =4. ∵AE EF ⊥ , ∴∠AEC =90°. ∴△AEC ∽△ACB . ∴AE ACAC AB =. ∴445AE =. ∴165AE =. ----------------------5分 24. 解:(I):56.8%;----------------------1分(II)折线图; ----------------------3分(III)答案不唯一,预估的理由须支撑预估的数据,参考数据61%左右.--------5分25.解:(1)4.5 . --------------------2分(2)--------------------4分(3) 4.2,点P 是AD 与CE 的交点. --------------------6分26.解:(1) ∵点()0,0O 在抛物线上,∴320a -=,23a =.--------------------2分(2)①对称轴为直线2x =;②顶点的纵坐标为 2a --.--------------------4分 (3) (i )当0a >时,依题意,-20320.a a -⎧⎨-⎩<,≥解得2.3a ≥(ii )当0a <时, 依题意,-20320.a a -⎧⎨-⎩>,≤解得a <-2.综上,2a -<,或23a ≥. --------------------7分27. (1)①75B ∠=︒,45ACB ∠=︒;--------------------2分②作DE ⊥AC 交AC 于点E .Rt △ADE 中,由30DAC ∠=︒,AD =2可得DE =1,AE 3=. Rt △CDE 中,由45ACD ∠=︒,DE=1,可得EC =1. ∴AC 31.Rt △ACH 中,由30DAC ∠=︒,可得AH 33+=; --------------4分(2)线段AH 与AB +AC 之间的数量关系:2AH =AB +AC证明: 延长AB 和CH 交于点F ,取BF 中点G ,连接GH .易证△ACH ≌△AFH .∴AC AF =,HC HF =. ∴GH BC ∥. ∵AB AD =,∴ ABD ADB ∠=∠. ∴ AGH AHG ∠=∠ . ∴ AG AH =.∴()2222AB AC AB AF AB BF AB BG AG AH +=+=+=+==. --------------7分 28. 解:(1)C ; --------------2分 (2)① 60°;② △MNE 是等边三角形,点E 的坐标为()31,;--------------5分③ 直线32y x =+交 y 轴于点K (0,2),交x 轴于点()23T ,0. ∴2OK =,23OT =∴60OKT ∠=︒.作OG ⊥KT 于点G ,连接MG . ∵()M 0,1, ∴OM =1.∴M 为OK 中点 . ∴ MG =MK =OM =1.∴∠MGO =∠MOG =30°,OG 3∴33.2G ⎫⎪⎪⎝⎭, ∵120MON ∠=︒,∴ 90GON ∠=︒.又OG =1ON =,∴30OGN ∠=︒. ∴60MGN ∠=︒.∴G 是线段MN 关于点O 的关联点.经验证,点)E在直线2y x =+上. 结合图象可知, 当点F 在线段GE 上时 ,符合题意.∵G F E x x x ≤≤,∴F x .--------------8分.。
北京市东城区2018--2018学年第二学期初三综合练习(一)数学试卷参考答案一、选择题(本题共32分,每小题4分)题 号1 2 3 45 6 7 8 答 案A C A CB DB B二、填空题(本题共16分,每小题4分)题 号9 10 1112答 案x ≠5b (a -1)2(1,0),(3,0)或 (0,3),(4,3)等938,0 1)332(-n ,0三、解答题:(本题共30分,每小题5分) 13.(本小题满分5分)解:084sin 45(3)4-︒+-π+-=22422⨯-+1+4 ………………………………………4分 =5. …………………………………… 5分14.(本小题满分5分) 解:由①得:x ≤2. --------1分 由②得:x-3>-4,x >-1. --------2分∴原不等式组的解集为 -1<x ≤2. --------3分 ∴原不等式组的整数解为 0,1,2. --------5分 15.(本小题满分5分)1)1213(22-÷-+-x x xx x x=x x x x x x x 1]12)1)(1(3[2-⨯--+---------2分 =213-+x x=12+-x x . --------3分 当13-=x 时,3133312-=-=+-x x .--------5分 16.(本小题满分5分)证明:∵AC 是∠DAE 的平分线, ∴∠1=∠2. -------1分 -121CD E231又∵AD ∥EC ,∴∠2=∠3. ------2分 ∴∠1=∠3.∴AE=CE. --------3分 在△ABE 和△CBE 中, AE=CE , ∠AEB=∠CEB , BE=BE ,∴△ABE ≌△CBE. --------4分 ∴AB=CB. ------5分17.(本小题满分5分)解:设小明家2月份用气x 立方米,则去年12月份用气(x +10) 立方米.-------1分 根据题意,得%251096109690⨯+=+-x x x . ----------------3分 解这个方程,得x =30. ---------------4分 经检验,x =30是所列方程的根.答:小明家2月份用气30立方米. -----------------5分 18.(本小题满分5分) 证明:(1)∵四边形ABCD 是平行四边形, ∴∠B=∠D. 又AE ⊥BC ,AF ⊥CD ,∴∠AEB=∠AFD.∴∠BAE=∠DAF.---------2分 (2)在Rt △ABE 中,sin ∠BAE=53,AE=4,可求 AB=5. ---------3分 又∵∠BAE=∠DAF , ∴ sin ∠DAF=sin ∠BAE=53. 在Rt △ADF 中,AF=524, sin ∠DAF =53,可求DF=518-------4分∵ CD=AB=5. ∴CF=5-518=57. …………………………………………5分 四、解答题(本题共20分,每小题5分)ABCDEF19.(本小题满分5分)解:(1)0.6;36;------------2分 (2)72°;补全图如下:60%比较了解20%非常了解基本了解不太了解2%18%------------4分(3)1500×0.6=900.答:学生中“比较了解”的人数约为900人 ------------5分 20.(本小题满分5分)(1)证明:在⊙O 中,OD ⊥AB ,CB ⊥AB ,∴AM =MB ,OD ∥BC . …………………1分 ∴AD =DC . ……………2分 (2)∵DE 为⊙O 切线, ∴OD ⊥DE ……………3分 ∴四边形MBED 为矩形.∴DE ∥AB. ……………4分 ∴MB=DE =2,M D=BE =EC =1. 连接OB.在R t △OBM 中,OB 2=OM 2+BM 2.解得 OB=25. …………………5分 21.(本小题满分5分)解:(1)∵点A (1,6),B (a ,3)在反比例函数y =xk 2的图象上, ∴ k 2=1×6=6. --------1分 ∴ a ×3=6,a =2. ∴B (2,3).由点A (1,6),B (2,3)也在直线y=k 1x+b 上, 得⎩⎨⎧=+=+,32,611b k b k解得k 1=-3.∴k 1=-3, k 2=6. -----------------2分 (2) 设点P 的坐标为(m,n ). 依题意,得21×3(m +2+m -2)=18,m =6. -----------------3分 ∴ C (6,3),E (6,0).C DxyOEPA BMOA BCDE∵ 点P 在反比例函数y =x6的图象上, ∴ n =1. ------------------4分 ∴PE :PC =1:2 . ------------------5分22.(本小题满分5分)解: (1)设AD =x ,由题意得,BG=x -2,CG=x-3. 在Rt △BCG 中,由勾股定理可得 222(2)(3)5x x -+-=. 解得 6x =. --------------2分(2)参考小萍的做法得到四边形AEGF ,∠EAF=60°,∠EGF=120°,∠AEG=∠AFG= 90°,AE=AF=AD=4. 连结EF ,可得 △AEF 为等边三角形. ∴ EF=4.∴ ∠FEG=∠EFG= 30°. ∴ EG=FG.在△EFG 中,可求,433EG =. ∴△EFG 的周长=BG+CG+BC=BG+CG+EB+FC=2EG=833. --------------5分五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分) 23.(本小题满分7分)解: 由方程(m -1)x 2-(2m -1)x +2+xm =0可得)1(22)1(4)12()12(2-⨯-⨯--±--=m m m m x=)1(2)32(12)1(2)32()12(2-+±-=--±-m m m m m m111-=m x ,.22=x ∵21,x x 均为正整数,m 也是整数, ∴m =2. ----------3分 (2)由(1)知x 2-3x +2+x2=0. ∴x 2-3x +2= -x2. 画出函数y = x 2-3x +2,y = -x2的图象,---------6分 由图象可知,两个函数图象的交点个数是1. ---------7分 Oxy GF ED CBA24. (本小题满分7分)(1)△EPF 为等边三角形. --------------1分 (2)设BP=x ,则CP =6-x.由题意可 △BEP 的面积为238x . △CFP 的面积为23(6)2x -. △ABC 的面积为93.设四边形AEPF 的面积为y. ∴ 93y =-238x 23(6)2x --=25363938x x -+-. 自变量x 的取值范围为3<x <6. --------------4分(3)可证△EBP ∽△PCF.∴BP BECF CP=. 设BP=x ,则 (6)8x x -=. 解得 124,2x x ==.∴ PE 的长为4或23. --------------7分25.(本小题满分8分)解:(1)依题意,可知 C(0,8),则B(4,0) 将A(-2,0),B(4,0)代入 y=ax 2+bx +8,⎩⎨⎧=++=+-.08416,0824b a b a 解得⎩⎨⎧=-=.2,1b a 228y x x ∴=-++配方得y2(1)9x =--+,顶点D (1,9). ---------3分 (2)假设满足条件的点P 存在,依题意设(2)P t ,,由(08)(19)C D ,,,求得直线CD 的解析式为8y x =+, 它与x 轴的夹角为45. 过点P 作PN ⊥y 轴于点N.依题意知,∠NPO=30°或∠NPO=60°. ∵PN=2,∴ON=332或23. FP 2M 2N 2P 1N 1M 1Hy C D1∴存在满足条件的点P ,P 的坐标为(2,332 )和(2,23).-----------6分 (3)由上求得(80)(412)E F -,,,.当抛物线向上平移时,可设解析式为228(0)y x x m m =-+++>. 当8x =-时,72y m =-+. 当4x =时,y m =.720m ∴-+≤或12m ≤.由题意可得m 的范围为072m ∴<≤.∴ 抛物线最多可向上平移72个单位. -----------8分。
北京市东城区2018—2019学年第二学期统一练习(一)初三数学 2019.5一、选择题(本题共16分,每小题2分) 第1-8题均有四个选项,符合题意的选项只有..一个 1.下列立体图形中,主视图是圆的为A .B .C .D .2. 2019年中国北京世界园艺博览会于4月29日在北京延庆举行,会期共162天.预计参观人数将不少于16000000人次.将16000000用科学计数法表示应为 A .16×106B . 1.6×107C .0.16×108D .1.6×1083. 已知实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是A .a >bB .|a |<|b |C .ab >0D .﹣a >b4.如图,将一张矩形纸片折叠,若∠1=80°,则∠2的度数是A .50°B .60°C .70°D .80° 5. 若一个多边形的每个内角均为120°,则该多边形是A .四边形B .五边形C .六边形D .七边形 6.如果2320a a +-=,那么代数式2231-3()93a a a a+∙-+的值为 A .1 B .12 C .13 D . 147.弹簧原长(不挂重物)15cm ,弹簧总长L (cm)与重物质量x (kg)的关系如下表所示:当重物质量为5kg A .22.5 B .25 C .27.5 D .308.改革开放40年以来,城乡居民生活水平持续快速提升.居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出.下图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比..是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比..是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误..的是 A .2017年第二季度环比有所提高 B .2017年第三季度环比有所提高 C .2018年第一季度同比有所提高 D .2018年第四季度同比有所提高 二、填空题(本题共16分,每小题2分)9x 的取值范围是 .10.有一个质地均匀的正方体,六个面上分别标有1~6这六个整数,投掷这个正方体一次,则出现向上一 面的数字是偶数的概率为 .11.能说明命题“若a >b ,则ac >bc ”是假命题的一个c 值是_______. 12.如图,AD 为△ABC 的外接圆⊙O 的直径,若∠BAD =50°,则∠ACB =________°.13.《九章算术》中记载:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大小器各容几何?”其大意是:今有大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛.问大容器、小容器的容量各是多少?设大容器容量为x 斛,小容器容量为y 斛,根据题意,可列方程组为____________.(斛:古量器名,容量单位)14.已知:在□ABCD 中,点E 在DA 的延长线上,13AE AD =,连接CE 交BD 于点F ,则EFFC的值是________.ED上.(1):=________;(2)点P为BD的中点,过点P作直线l∥BC,分别过点B作BM⊥l于点M,过点C作CN⊥l于点N,则矩形BCNM的面积为________.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.下面是小明设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图,直线BC及直线BC外一点P.求作:直线PE,使得PE∥BC.作法:如图,①在直线BC上取一点A,连接P A;②作∠P AC的平分线AD;③以点P为圆心,P A长为半径画弧,交射线AD于点E;④作直线PE.所以直线PE就是所求作的直线.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AD平分∠P AC,∴∠P AD=∠CAD.∵P A=PE,∴∠P AD=________.∴∠PEA=________.∴PE∥BC.(____________________________________________________)(填推理的依据)1802sin 60+-22019︒-19.解不等式组:()+2124132x x x x -≥-⎧⎪⎨+>⎪⎩20.已知关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根. (1)求a 的取值范围;(2)当a 为符合条件的最大整数时,求此时方程的解.21.如图,在△ABC 中,CD 平分∠ACB ,CD 的垂直平分线分别交AC ,DC ,BC 于点E ,F ,G ,连接DE ,DG .(1)求证:四边形DGCE 是菱形;(2)若∠ACB =30°,∠B =45°,ED =6,求BG 的长.22.在平面直角坐标系xOy 中,直线(0)y kx k =≠与双曲线y =8(0)x x> 交于点A (2,n )(1)求n 及k 的值;(2)点B 是y 轴正半轴上一点,且△OAB 是等腰三角形,请直接写出所有..符合条件的点B 坐标.23.如图,AB与⊙O相切于点A,P为OB上一点,且BP=BA,连接AP并延长交⊙O于点C,连接OC.(1)求证:OC⊥OB;(2)若⊙O的半径为4,AB=3,求AP的长.24.某年级共有400名学生.为了解该年级学生上学的交通方式,从中随机抽取100名学生进行问卷调查,并对调查数据进行整理、描述和分析.下面给出了部分信息.a.不同交通方式学生人数分布统计图如下:b.采用公共交通方式单程所花费时间(分钟)的频数分布直方图如下(数据分成6组:10≤x<20,20≤x<30,30≤x<40,40≤x<50,50≤x<60,60≤x≤70):C.采用公共交通方式单程所花费时间在30≤x<40这一组的是:30 30 31 31 32 33 33 34 35 35 36 37 38 39根据以上信息,完成下列问题:(1) 补全频数分布直方图;(2) 采用公共交通方式单程所花费时间的中位数为_______分;(3) 请你估计全年级乘坐公共交通上学有_______人.其中单程不少于60分钟的有_______人.25. 如图,点E 在弦AB 所对的优弧上,且BE 为半圆,C 是BE 上一动点,连接CA ,CB ,已知AB =4cm ,设B ,C 两点间的距离为cm ,点C 到弦AB 所在直线的距离为1y cm ,A ,C 两点间的距离为2y cm .小明根据学习函数的经验,分别对函数1y ,2y ,随自变量的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整: (1)按照下表中自变量的值进行取点、画图、测量,分别得到了1y ,2y 与的几组对应值;/cm /cm(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,),(x ,)并画出函数,的图象;(3)结合函数图象,解决问题:①连结BE ,则BE 的长约为 cm .②当以A ,B ,C 为顶点组成的三角形是直角三角形时,BC 的长度约为 cm .26.在平面直角坐标系xOy 中,抛物线2691(0)y mx mx m m =-++≠. (1)求抛物线的顶点坐标;(2)若抛物线与x 轴的两个交点分别为A 和B (点A 在点B 的左侧),且AB =4,求m 的值;(3)已知四个点C (2,2),D (2,0),E (5,-2),F (5,6),若抛物线与线段CD 和线段EF 都没有公共点,请直接写出m 的取值范围.27.如图,在正方形ABCD 中,E 是边BC 上一动点(不与点B ,C 重合),连接DE ,点C 关于直线DE 的对称点为C ʹ,连接ACʹ并延长交直线DE 于点P ,F 是AC ′中点,连接DF . (1)求∠FDP 的度数;(2)连接BP ,请用等式表示AP ,BP ,DP 三条线段之间的数量关系,并证明. (3)连接ACACC ′的面积最大值.P28.在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.(1)已知点A的坐标为(-3,1),①在点E(0,3),F(3,-3),G(2,-5)中,为点A的“等距点”的是________;②若点B在直线y=x+6上,且A,B两点为“等距点”,则点B的坐标为________;(2)直线l:y=kx-3(k>0)与x轴交于点C,与y轴交于点D,①若(-1,),(4,),是直线l上的两点,且与为“等距点”,求k的值;②当k=1时,半径为r的⊙O上存在一点M,线段CD上存在一点N,使得M,N两点为“等距点”,直接写出r的取值范围.。
2017年北京市东城区中考数学一模试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)数据显示:2016年我国就业增长超出预期.全年城镇新增就业1 314万人,高校毕业生就业创业人数再创新高.将数据1 314用科学记数法表示应为()A.1.314×103B.1.314×104C.13.14×102D.0.1314×104 2.(3分)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|<|b|B.a>﹣b C.b>a D.a>﹣2 3.(3分)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.4.(3分)某健步走运动的爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3B.1.3,1.3C.1.4,1.35D.1.4,1.3 5.(3分)如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM 等于()A.15°B.25°C.30°D.45°6.(3分)下列哪个几何体,它的主视图、左视图、俯视图都相同()A.B.C.D.7.(3分)我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条8.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3C.4D.59.(3分)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块10.(3分)图1是某娱乐节目中一个游戏环节的录制现场,场地由等边△ADE 和正方形ABCD组成,正方形ABCD两条对角线交于点O,在AD的中点P 处放置了一台主摄像机.游戏参与者行进的时间为x,与主摄像机的距离为y,若游戏参与者匀速行进,且表示y与x的函数关系式大致如图2所示,则游戏参与者的行进路线可能是()A.A→O→D B.E→A→C C.A→E→D D.E→A→B二、填空题(本题共18分,每小题3分)11.(3分)分解因式:ab2﹣2ab+a=.12.(3分)请你写出一个二次函数,其图象满足条件:①开口向上;②与y轴的交点坐标为(0,1).此二次函数的解析式可以是.13.(3分)若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根,则k的取值范围是.14.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.15.(3分)北京市2012﹣2016年常住人口增量统计如图所示.根据统计图中提供的信息,预估2017年北京市常住人口增量约为万人次,你的预估理由是.16.(3分)下面是“以已知线段为直径作圆”的尺规作图过程.已知:如图1,线段AB.求作:以AB为直径的⊙O.作法:如图2,(1)分别以A,B为圆心,大于AB的长为半径作弧,两弧相交于点C,D;(2)作直线CD交AB于点O;(3)以O为圆心,OA长为半径作圆.则⊙O即为所求作的.请回答:该作图的依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.(5分)计算:﹣2sin60°+(﹣π)0﹣()﹣1.18.(5分)解不等式>﹣1,并写出它的正整数解.19.(5分)先化简,再求值:(1﹣)÷﹣,其中2x2+4x﹣1=0.20.(5分)如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC 于点D,连接AD,求∠BAD的度数.21.(5分)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y =相交于点A(m,3),B(﹣6,n),与x轴交于点C.(1)求直线y=kx+b(k≠0)的解析式;(2)若点P在x轴上,且S△ACP =S△BOC,求点P的坐标(直接写出结果).22.(5分)列方程或方程组解应用题:在某场CBA比赛中,某位运动员的技术统计如表所示:注:(1)表中出手投篮次数和投中次数均不包括罚球;(2)总得分=两分球得分+三分球得分+罚球得分.根据以上信息,求本场比赛中该运动员投中两分球和三分球各几个.23.(5分)如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD 于点E,交BC的延长线于点F.(1)求证:BF=CD;(2)连接BE,若BE⊥AF,∠BF A=60°,BE=2,求平行四边形ABCD的周长.24.(5分)阅读下列材料:“共享单车”是指企业与政府合作,在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享的一种服务,是共享经济的一种新形态.共享单车的出现让更多的用户有了更好的代步选择.自行车也代替了一部分公共交通甚至打车的出行.Quest Mobile监测的M型与O型单车从2016年10月﹣﹣2017年1月的月度用户使用情况如表所示:根据以上材料解答下列问题:(1)仔细阅读上表,将O型单车总用户数用折线图表示出来,并在图中标明相应数据;(2)根据图表所提提供的数据,选择你所感兴趣的方面,写出一条你发现的结论.25.(5分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DF.(1)求证:DF是⊙O的切线;(2)若DB平分∠ADC,AB=a,AD:DE=4:1,写出求DE长的思路.26.(5分)在课外活动中,我们要研究一种凹四边形﹣﹣燕尾四边形的性质.定义1:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形(如图1).(1)根据凹四边形的定义,下列四边形是凹四边形的是(填写序号);定义2:两组邻边分别相等的凹四边形叫做燕尾四边形(如图2).特别地,有三边相等的凹四边形不属于燕尾四边形.小洁根据学习平行四边形、菱形、矩形、正方形的经验,对燕尾四边形的性质进行了探究.下面是小洁的探究过程,请补充完整:(2)通过观察、测量、折叠等操作活动,写出两条对燕尾四边形性质的猜想,并选取其中的一条猜想加以证明;(3)如图2,在燕尾四边形ABCD中,AB=AD=6,BC=DC=4,∠BCD=120°,求燕尾四边形ABCD的面积(直接写出结果).27.(7分)二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.(1)求该二次函数的对称轴方程;(2)过动点C(0,n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时,求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.28.(7分)在等腰△ABC中,(1)如图1,若△ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线段为线段AE,连接DE,则∠BDE的度数为;(2)若△ABC为等边三角形,点D为线段BC上一动点(不与B,C重合),连接AD并将线段AD绕点D逆时针旋转60°得到线段DE,连接BE.①根据题意在图2中补全图形;②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE.经过与同学们的充分讨论,形成了几种证明的思路:思路1:要证明CD=BE,只需要连接AE,并证明△ADC≌△AEB;思路2:要证明CD=BE,只需要过点D作DF∥AB,交AC于F,证明△ADF ≌△DEB;思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明△ADC ≌△DEG;…请参考以上思路,帮助小玉证明CD=BE.(只需要用一种方法证明即可)(3)小玉的发现启发了小明:如图3,若AB=AC=kBC,AD=kDE,且∠ADE =∠C,此时小明发现BE,BD,AC三者之间满足一定的数量关系,这个数量关系是.(直接给出结论无须证明)29.(8分)设平面内一点到等边三角形中心的距离为d,等边三角形的内切圆半径为r,外接圆半径为R.对于一个点与等边三角形,给出如下定义:满足r ≤d≤R的点叫做等边三角形的中心关联点.在平面直角坐标系xOy中,等边△ABC的三个顶点的坐标分别为A(0,2),B (﹣,﹣1),C(,﹣1).(1)已知点D(2,2),E(,1),F(﹣,﹣1).在D,E,F中,是等边△ABC的中心关联点的是;(2)如图1,过点A作直线交x轴正半轴于M,使∠AMO=30°.①若线段AM上存在等边△ABC的中心关联点P(m,n),求m的取值范围;②将直线AM向下平移得到直线y=kx+b,当b满足什么条件时,直线y=kx+b上总存在等边△ABC的中心关联点;(直接写出答案,不需过程)(3)如图2,点Q为直线y=﹣1上一动点,⊙Q的半径为.当Q从点(﹣4,﹣1)出发,以每秒1个单位的速度向右移动,运动时间为t秒.是否存在某一时刻t,使得⊙Q上所有点都是等边△ABC的中心关联点?如果存在,请直接写出所有符合题意的t的值;如果不存在,请说明理由.2017年北京市东城区中考数学一模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)数据显示:2016年我国就业增长超出预期.全年城镇新增就业1 314万人,高校毕业生就业创业人数再创新高.将数据1 314用科学记数法表示应为()A.1.314×103B.1.314×104C.13.14×102D.0.1314×104【解答】解:将数据1 314用科学记数法表示应为1.314×103,故选:A.2.(3分)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|<|b|B.a>﹣b C.b>a D.a>﹣2【解答】解:根据数轴上点的位置得:﹣3<a<﹣2,1<b<2,∴|a|>|b|,a<﹣b,b>a,a<﹣2,故选:C.3.(3分)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.【解答】解:∵在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,∴共有2+6+4=12只,∴将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是=,故选:B.4.(3分)某健步走运动的爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3B.1.3,1.3C.1.4,1.35D.1.4,1.3【解答】解:∵这组数据中1.4出现的次数最多,∴在每天所走的步数这组数据中,众数是1.4;每天所走的步数的中位数是:(1.3+1.3)÷2=1.3∴在每天所走的步数这组数据中,众数和中位数分别是1.4、1.3.故选:D.5.(3分)如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM 等于()A.15°B.25°C.30°D.45°【解答】解:∵AB∥CD,∴∠DNM=∠BME=75°,∵∠PND=45°,∴∠PNM=∠DNM﹣∠DNP=30°,故选:C.6.(3分)下列哪个几何体,它的主视图、左视图、俯视图都相同()A.B.C.D.【解答】解:A主视图、左视图都是矩形,俯视图是三角形,故A不符合题意;B、主视图、左视图、俯视图都是圆,故B符合题意;C、主视图、左视图是三角形,俯视图是圆,故C不符合题意;D、主视图俯视图都是矩形,左视图是正方形,故D不符合题意;故选:B.7.(3分)我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条【解答】解:如图所示:其对称轴有2条.故选:B.8.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3C.4D.5【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.9.(3分)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块【解答】解:设这批手表有x块,550×60+(x﹣60)×500>55000解得,x>104∴这批电话手表至少有105块,故选:C.10.(3分)图1是某娱乐节目中一个游戏环节的录制现场,场地由等边△ADE 和正方形ABCD组成,正方形ABCD两条对角线交于点O,在AD的中点P 处放置了一台主摄像机.游戏参与者行进的时间为x,与主摄像机的距离为y,若游戏参与者匀速行进,且表示y与x的函数关系式大致如图2所示,则游戏参与者的行进路线可能是()A.A→O→D B.E→A→C C.A→E→D D.E→A→B【解答】解:由题意可得,当经过的路线是A→O→D时,从A→O,y随x的增大先减小后增大且图象对称,从O→D,y随x的增大先减小后增大且函数图象对称,故选项A符号要求;当经过的路线是E→A→C时,从E→A,y随x的增大先减小后增大,但后来增大的最大值小于刚开始的值,故选项B不符号要求;当经过的路线是A→E→D时,从A→E,y随x的增大先减小后增大,但后来增大的最大值大于于刚开始的值,故选项C不符号要求;当经过的路线是E→A→B时,从E→A,y随x的增大先减小后增大,但后来增大的最大值小于刚开始的值,故选项D不符号要求;故选:A.二、填空题(本题共18分,每小题3分)11.(3分)分解因式:ab2﹣2ab+a=a(b﹣1)2.【解答】解:ab2﹣2ab+a,=a(b2﹣2b+1),=a(b﹣1)2.12.(3分)请你写出一个二次函数,其图象满足条件:①开口向上;②与y轴的交点坐标为(0,1).此二次函数的解析式可以是y=x2+1.【解答】解:答案不唯一,如:y=x2+1,故答案为:y=x2+1.13.(3分)若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根,则k的取值范围是k<1.【解答】解:根据题意得△=4(k﹣1)2﹣4(k2﹣1)>0,解得k<1.故答案为k<1.14.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.15.(3分)北京市2012﹣2016年常住人口增量统计如图所示.根据统计图中提供的信息,预估2017年北京市常住人口增量约为0~2.4万人次,你的预估理由是北京每年人口平均增长的人数呈减小的趋势.【解答】解:根据北京市2012﹣2016年常住人口增量条形统计图,可得北京每年人口平均增长的人数呈减小的趋势,故2017年北京市常住人口增量约为0~2.4万人次,故答案为:0~2.4,北京每年人口平均增长的人数呈减小的趋势.(答案不唯一)16.(3分)下面是“以已知线段为直径作圆”的尺规作图过程.已知:如图1,线段AB.求作:以AB为直径的⊙O.作法:如图2,(1)分别以A,B为圆心,大于AB的长为半径作弧,两弧相交于点C,D;(2)作直线CD交AB于点O;(3)以O为圆心,OA长为半径作圆.则⊙O即为所求作的.请回答:该作图的依据是垂直平分线的判定和圆的定义.【解答】解:由作法得CD垂直平分AB,即点O为AB的中点,所以⊙O即为所求作.故答案为垂直平分线的判定和圆的定义.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.(5分)计算:﹣2sin60°+(﹣π)0﹣()﹣1.【解答】解:﹣2sin60°+(﹣π)0﹣()﹣1==18.(5分)解不等式>﹣1,并写出它的正整数解.【解答】解:去分母得:3(x+1)>2(2x+2)﹣6,去括号得:3x+3>4x+4﹣6,移项得:3x﹣4x>4﹣6﹣3,合并同类项得:﹣x>﹣5,系数化为1得:x<5.故不等式的正整数解有1,2,3,4这4个.19.(5分)先化简,再求值:(1﹣)÷﹣,其中2x2+4x﹣1=0.【解答】解:原式=•﹣=﹣=,∵2x2+4x﹣1=0.∴x2+2x=x(x+2)=,则原式=8.20.(5分)如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC 于点D,连接AD,求∠BAD的度数.【解答】解:∵由题意可得:MN是AC的垂直平分线.∴AD=DC.∴∠C=∠DAC.∵∠C=30°,∴∠DAC=30°.∵∠B=55°,∴∠BAC=95°.∴∠BAD=∠BAC﹣∠CAD=65°.21.(5分)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y =相交于点A(m,3),B(﹣6,n),与x轴交于点C.(1)求直线y=kx+b(k≠0)的解析式;(2)若点P在x轴上,且S△ACP =S△BOC,求点P的坐标(直接写出结果).【解答】解:(1)∵点A(m,3),B(﹣6,n)在双曲线y=上,∴m=2,n=﹣1,∴A(2,3),B(﹣6,﹣1).将(2,3),B(﹣6,﹣1)带入y=kx+b,得:,解得.∴直线的解析式为y =x+2.(2)当y =x+2=0时,x=﹣4,∴点C(﹣4,0).设点P的坐标为(x,0),∵S△ACP =S△BOC,A(2,3),B(﹣6,﹣1),∴×3|x﹣(﹣4)|=××|0﹣(﹣4)|×|﹣1|,即|x+4|=2,解得:x1=﹣6,x2=﹣2.∴点P的坐标为(﹣6,0)或(﹣2,0).22.(5分)列方程或方程组解应用题:在某场CBA比赛中,某位运动员的技术统计如表所示:注:(1)表中出手投篮次数和投中次数均不包括罚球;(2)总得分=两分球得分+三分球得分+罚球得分.根据以上信息,求本场比赛中该运动员投中两分球和三分球各几个.【解答】解:设本场比赛中该运动员投中两分球x个,三分球y个,根据题意得:,解得:.答:设本场比赛中该运动员投中两分球6个,三分球5个.23.(5分)如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD 于点E,交BC的延长线于点F.(1)求证:BF=CD;(2)连接BE,若BE⊥AF,∠BF A=60°,BE=2,求平行四边形ABCD的周长.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,AD∥BC,∴∠F AD=∠AFB,又∵AF平分∠BAD,∴∠F AD=∠F AB.∴∠AFB=∠F AB.∴AB=BF,∴BF=CD;(2)解:∵由(1)知:AB=BF,又∵∠BF A=60°,∴△ABF为等边三角形,∴AF=BF=AB,∠ABF=60°,∵BE⊥AF,∴点E是AF的中点.∵在Rt△BEF中,∠BF A=60°,BE=,∴EF=2,BF=4,∴AB=BF=4,∵四边形BACD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠DCF=∠ABC=60°=∠F,∴CE=EF,∴△ECF是等边三角形,∴CE=EF=CF=2,∴BC=4﹣2=2,∴平行四边形ABCD的周长为2+2+4+4=12.24.(5分)阅读下列材料:“共享单车”是指企业与政府合作,在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享的一种服务,是共享经济的一种新形态.共享单车的出现让更多的用户有了更好的代步选择.自行车也代替了一部分公共交通甚至打车的出行.Quest Mobile监测的M型与O型单车从2016年10月﹣﹣2017年1月的月度用户使用情况如表所示:根据以上材料解答下列问题:(1)仔细阅读上表,将O型单车总用户数用折线图表示出来,并在图中标明相应数据;(2)根据图表所提提供的数据,选择你所感兴趣的方面,写出一条你发现的结论.【解答】解:(1);(2)两种单车的独占率都不断降低.(答案不唯一).25.(5分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C 作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DF.(1)求证:DF是⊙O的切线;(2)若DB平分∠ADC,AB=a,AD:DE=4:1,写出求DE长的思路.【解答】解:(1)证明:连接OD.∵OD=CD,∴∠ODC=∠OCD.∵AC为⊙O的直径,∴∠ADC=∠EDC=90°.∵点F为CE的中点,∴DF=CF.∴∠FDC=∠FCD.∴∠FDO=∠FCO.又∵AC⊥CE,∴∠FDO=∠FCO=90°.∴DF是⊙O的切线;(2)①由DB平分∠ADC,AC为⊙O的直径,证明△ABC是等腰直角三角形;②由AB=a,求出AC的长度为;③由∠ACE=∠ADC=90°,∠CAE是公共角,证明△ACD∽△AEC,得到AC2=AD•AE;④设DE为x,由AD:DE=4:1,求出DE=a.解:∵DB平分∠ADC,∴∠ADB=∠CDB,∴∠BAC=∠BCA,∴AB=BC,∵AC为⊙O的直径,∴∠ABC=90°,∴△ABC是等腰直角三角形,∵AB=a,∴AC=a,∵∠ACE=∠ADC=90°,∠CAE是公共角,∴△ACD∽△AEC,∴AC:AE=AD:AC,∴AC2=AD•AE,设DE为x,∵AD:DE=4:1,∴AD=4x,∴(a)2=20x2,解得x=a.即DE=a.26.(5分)在课外活动中,我们要研究一种凹四边形﹣﹣燕尾四边形的性质.定义1:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形(如图1).(1)根据凹四边形的定义,下列四边形是凹四边形的是(填写序号)②;定义2:两组邻边分别相等的凹四边形叫做燕尾四边形(如图2).特别地,有三边相等的凹四边形不属于燕尾四边形.小洁根据学习平行四边形、菱形、矩形、正方形的经验,对燕尾四边形的性质进行了探究.下面是小洁的探究过程,请补充完整:(2)通过观察、测量、折叠等操作活动,写出两条对燕尾四边形性质的猜想,并选取其中的一条猜想加以证明;(3)如图2,在燕尾四边形ABCD中,AB=AD=6,BC=DC=4,∠BCD=120°,求燕尾四边形ABCD的面积(直接写出结果).【解答】解:(1)由凹四边形的定义得出,图②是凹四边形.故答案是②;(2)①一组对角相等;②它是一个轴对称图形;①已知:如图1,在凹四边形ABCD中,AB=AD,BC=DC.求证:∠B=∠D.证明:连接AC.在△ABC和△ADC中,,∴△ABC≌△ADC.∴∠B=∠D.②由①知,△ABC≌△ADC,∴AC所在的直线是燕尾四边形的对称轴;(3)如图2,连接AC,过点B作BE⊥AC交AC的延长线于E;由(2)知,燕尾四边形ABCD是轴对称图形,∴∠BCE=∠BCD=60°,∴∠CBE=30°,在Rt△BCE中,∠CBE=30°,BC=4,∴CE=BC=2,BE=CE=2,在Rt△ABE中,AB=6,BE=2,根据勾股定理得,AE==2,∴S△ABC =S△ABE﹣S△CBE=BE•AE﹣BE•CE=BE(AE﹣CE)=×2×(2﹣2)=6﹣2∴燕尾四边形ABCD的面积为2S△ABC=.27.(7分)二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.(1)求该二次函数的对称轴方程;(2)过动点C(0,n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时,求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.【解答】解:(1)∵y=(m+2)x2﹣2(m+2)x﹣m+5=(m+2)(x﹣1)2﹣2m+3,∴对称轴方程为x=1.(2)①如图,由题意知直线l的解析式为y=n,∵直线l与抛物线只有一个公共点,∴n=﹣2m+3.②依题可知:当﹣2m+3=﹣7时,直线l与新的图象恰好有三个公共点.∴m=5.(3)抛物线y=(m+2)x2﹣2(m+2)x﹣m+5的顶点坐标是(1,﹣2m+3).依题可得解得∴m的取值范围是﹣2<m≤1.28.(7分)在等腰△ABC中,(1)如图1,若△ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线段为线段AE,连接DE,则∠BDE的度数为30°;(2)若△ABC为等边三角形,点D为线段BC上一动点(不与B,C重合),连接AD并将线段AD绕点D逆时针旋转60°得到线段DE,连接BE.①根据题意在图2中补全图形;②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE.经过与同学们的充分讨论,形成了几种证明的思路:思路1:要证明CD=BE,只需要连接AE,并证明△ADC≌△AEB;思路2:要证明CD=BE,只需要过点D作DF∥AB,交AC于F,证明△ADF ≌△DEB;思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明△ADC ≌△DEG;…请参考以上思路,帮助小玉证明CD=BE.(只需要用一种方法证明即可)(3)小玉的发现启发了小明:如图3,若AB=AC=kBC,AD=kDE,且∠ADE =∠C,此时小明发现BE,BD,AC三者之间满足一定的数量关系,这个数量关系是k(BE+BD)=AC.(直接给出结论无须证明)【解答】解:(1)∵△ABC是等边三角形,D为线段BC中点,∴∠BAD=∠CAD=∠BAC=30°,∵线段AD关于直线AB的对称线段为线段AE,∴AB⊥DE,∴∠BDE=30°;故答案为:30°;(2)思路1:如图2(a),连接AE,∵AD=DE,∠ADE=60°,∴△ADE是等边三角形,∵△ABC是等边三角形,∴AE=AD,AB=AC,∠EAD=∠BAD=60°,∴∠EAB=∠CAD,在△AEB△与ADC中,,∴△AEB≌△ADC,∴CD=BE;思路2:过点D作DF∥AB,交AC于F,∵△ABC是等边三角形,∴AC=BC,∠BAC=60°,∵DF∥AB,∴∠DFC=60°,∴△CDF是等边三角形,∴∠ADE=∠ACB=∠ABC=60°,∴∠DAF=∠EDB,在△ADF与△DEB中,,∴△ADF≌△DEB,∴DF=BE=CD;思路3:如图2(c),延长CB至G,使BG=CD,∵△ABC是等边三角形,∴AC=BC,∠BAC=60°,∵CD=BG,∴DG=AC,∴∠ADE=∠ACB=∠ABC=60°,∴∠DAF=∠EDB,在△ADC与△DEG中,,∴△ADC≌△DEG,∴CD=EG=BG=60°,∴BE=BG=CD;(3)k(BE+BD)=AC,如图3,连接AE,∵AC=kBC,AD=kDE,且∠ADE=∠C,∴△ADE∽△ACB,∴∠AED=∠ABC,∠EAD=∠BAC,∴∠EAB=∠DAC,∵AB=AC,∴∠ABC=∠ACB,∴∠AED=∠ADE,∴AE=AD,在△AEB△与ADC中,,∴△AEB≌△ADC,∴CD=BE;∵BC=BD+CD,∴BC=BD+BE,∵AC=kBC,∴AC=k(BD+BE),故答案为:k(BE+BD)=AC.29.(8分)设平面内一点到等边三角形中心的距离为d,等边三角形的内切圆半径为r,外接圆半径为R.对于一个点与等边三角形,给出如下定义:满足r ≤d≤R的点叫做等边三角形的中心关联点.在平面直角坐标系xOy中,等边△ABC的三个顶点的坐标分别为A(0,2),B (﹣,﹣1),C(,﹣1).(1)已知点D(2,2),E(,1),F(﹣,﹣1).在D,E,F中,是等边△ABC的中心关联点的是E、F;(2)如图1,过点A作直线交x轴正半轴于M,使∠AMO=30°.①若线段AM上存在等边△ABC的中心关联点P(m,n),求m的取值范围;②将直线AM向下平移得到直线y=kx+b,当b满足什么条件时,直线y=kx+b上总存在等边△ABC的中心关联点;(直接写出答案,不需过程)(3)如图2,点Q为直线y=﹣1上一动点,⊙Q的半径为.当Q从点(﹣4,﹣1)出发,以每秒1个单位的速度向右移动,运动时间为t秒.是否存在某一时刻t,使得⊙Q上所有点都是等边△ABC的中心关联点?如果存在,请直接写出所有符合题意的t的值;如果不存在,请说明理由.【解答】解:(1)由题意R=2,r=1,点O是△ABC的中心,∵OD=2,OE=2,OF=,∴点E、F是△ABC的中心关联点故答案为E,F;(2)①解:如图1中,由题意A(0,2),M(,0).可求得直线AM的解析式为y=﹣x+2,经验证E在直线AM上.因为OE=OA=2,∠MAO=60°,所以△OAE为等边三角形,所以AE边上的高长为.当点P在AE上时,≤OP≤2.所以当点P在AE上时,点P都是等边△ABC的中心关联点.所以0≤m≤;②如图1﹣1中,设平移后的直线交y轴于G,作这条直线的垂线垂足为H.当OH=2时,在Rt△OHG中,∵OH=2,∠HOG=30°,∴cos30°=,∴OG=,∴满足条件的b的值为﹣≤b≤2;(3)存在.理由:如图2中,设Q(m,﹣1).由题意当OQ=时,⊙Q上所有点都是等边△ABC的中心关联点,=,解得m=,∴t=.。
东城区2017-2018学年度第一次模1拟检测2初三数学3学校______________班级______________姓名_____________考号4____________5考生须知1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共16分,每小题2分)6下面各题均有四个选项,其中只有一个..是符合题意的71.如图,若数轴上的点A,B分别与实数-1,1对应,用圆规在数轴8上画点C,则与点C对应的实数是912A. 2B. 310C. 4D. 511 12 13142. 当函数()212y x =--的函数值y 随着x 的增大而减小时,x 的取值15 范围是16A .x >0B .x <1C .1x >D .x 为任意实数173.若实数a ,b 满足a b >,则与实数a ,b 对应的点在数轴上的位置18 可以是192021224.如图,O 是等边△ABC 的外接圆,其半径为3. 图中阴影部分的23 面积是24A .π B .3π2C .2πD .3π 2526 2728 5.点A (4,3)经过某种图形变化后得到点B (-3,4),这种图形变293化可以是30A .关于x 轴对称B .关于y 轴对称31C .绕原点逆时针旋转90°D .绕原点顺时针旋转90°3233 6. 甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个34 所用的时间与乙 做45个所用的时间相同,求甲每小时做中国结35 的个数. 如果设甲每小时做x 个,那么可列方程为36A .30456x x =+ B .30456x x =- C .30456x x =- D .30456x x=+ 377.第24届冬奥会将于2022年在北京和张家口举行.冬奥会的项目有滑38 雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、39 花样滑冰等)、冰球、冰壶等.40如图,有5张形状、大小、质地均相同的卡片,正面分别印有跳台滑雪、41 速度滑冰、冰球、单板滑雪、冰壶五种不同的项目图案,背面完全相同.现42 将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片43 正面恰好是滑雪图案的概率是44454647A.15 B.25C.12D.35488.如图1是一座立交桥的示意图(道路宽度忽略不计), A为入口, F,49G为出口,其中直行道为AB,CG,EF,且AB=CG=EF ;弯道为50以点O为圆心的一段弧,且BC,CD,DE所对的圆心角均为90°.甲、51乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出. 其52间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示.结合题目信53息,下列说法错误..的是545556A. 甲车在立交桥上共行驶8sB. 从F口出比从G口出多行驶5740m58C. 甲车从F口出,乙车从G口出D. 立交桥总长为150m5960二、填空题(本题共16分,每小题2分)61459.1x -有意义,则实数x 的取值范围是__________________.6263 10.分解因式:24m n n -= ________________.6465 11.若多边形的内角和为其外角和的3倍,则该多边形的边数为66 ________________.6768 12. 化简代数式11+122xx x x ⎛⎫+÷ ⎪--⎝⎭,正确的结果为________________. 6970 13. 含30°角的直角三角板与直线l 1,l 2的位置71 关系如图所示,已知l 1//l 2,∠1=60°. 以下三个结论72 中正确的是_____________(只填序号).73 ①2AC BC =; ②BCD △为正三角形; ③AD BD =74 7576 14. 将直线y =x 的图象沿y 轴向上平移2个单位长度后,所得直线的77 函数表达式为 ____________,这两条直线间的距离为____________.7879 15. 举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中80 一项三次挑战失败,则该项成绩为0. 甲、乙是同一重量级别的举重选手,81他们近三年六次重要比赛的成绩如下(单位:公斤):82年份选手2015上半年2015下半年2016上半年2016下半年2017上半年2017下半年甲290(冠军)170(没获奖)292(季军)135(没获奖)298(冠军)300(冠军)乙285(亚军)287(亚军)293(亚军)292(亚军)294(亚军)296(亚军)83如果你是教练,要选派一名选手参加国际比赛,那么你会选派84____________(填“甲”或“乙”),理由是85______________________________________.8616.已知正方形ABCD.87求作:正方形ABCD的外接圆.88作法:如图,89(1)分别连接AC,BD,交于点O ;90(2) 以点O为圆心,OA长为半径作O.9167O 即为所求作的圆.92请回答:该作图的依据是_____________________________________.9394 三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第95 26-27,每小题7分,第28题8分)9617.计算:()212sin 60-π-2++1-33-⎛⎫︒ ⎪⎝⎭.9718. 解不等式组4+6,23x x x x ⎧⎪+⎨⎪⎩>≥, 并写出它的所有整数解. 9819. 如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D . BF 平分∠ABC 99 交AD 于点E ,交AC 于点F . 求证:AE =AF .100 101 102 103 104105 20. 已知关于x 的一元二次方程()2320x m x m -+++=.106(1) 求证:无论实数m 取何值,方程总有两个实数根; 107(2) 若方程有一个根的平方等于4,求m 的值.108810911021.如图,已知四边形ABCD 是平行四边形,延长BA 至点E ,使AE = AB ,111 连接DE ,AC .112(1)求证:四边形ACDE 为平行四边形;113(2)连接CE 交AD 于点O . 若AC=AB =3,1cos 3B =,求线段CE 的长.114115116 117 118 119 120 121 122 123124 22. 已知函数()30y x x=>的图象与一次函数()20y ax a =-≠的图象交于点125 A ()3,n .126(1)求实数a 的值;127(2) 设一次函数()20y ax a =-≠的图象与y 轴交于点B .若点C 在y 轴128 上,且=2ABC AOB S S △△,求点C 的坐标.12913023.如图,AB为O的直径,点C,D在O上,且点C是BD的中131点.过点C作AD的垂线EF交直线AD于点E.132(1)求证:EF是O的切线;133(2)连接BC. 若AB=5,BC=3,求线134段AE的长.13513613724.随着高铁的建设,春运期间动车组发送旅客量越来越大.相关部门为138了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018 139年春运期间铁路发送旅客量情况进行了调查,具体过程如下.140(I)收集、整理数据141请将表格补充完整:142143(II)描述数据144为了更直观地显示春运期间动车组发送旅客量占比的变化趋势,需145要用 ___________(填“折线图”或“扇形图”)进行描述;1469(III)分析数据、做出推测147预计2019年春运期间动车组发送旅客量占比约为___________,你148的预估理由是 _________________________________________ .14915025. 如图,在等腰△ABC中,AB=AC,点D,E分别为BC,AB的中点,连接151AD.在线段AD152上任取一点P,连接PB ,PE.若BC =4,AD=6,设PD=x(当点P与点D 153重合时,x的值为0),PB+PE=y.154小明根据学习函数的经验,对函数y随自变量x的变换而变化的规律进155行了探究.156下面是小明的探究过程,请补充完整:157(1)通过158取点、画图、159计算,得到了x160与y的几组值,161如下表:162(说明:补全表格时,相关数值保留一位小数).163(参考数据:2 1.414≈3 1.732≈5 2.236≈)164 x 0 1 23456 y 5.2 4.2 4.6 5.97.69.510(2) 建立平面直角坐标系,描出以补全后的表中各对对应值为坐标165的点,画出该函数的图象;166167168169170171172173174175176177178179180181182183(3)函数y的最小值为______________(保留一位小数),此时点P 184在图1中的位置为 ________________________.18518626.在平面直角坐标系xOy中,抛物线()02342≠-+-=aaaxaxy与x轴187交于A,B两点(点A在点B左侧).188(1)当抛物线过原点时,求实数a的值;189(2)①求抛物线的对称轴;190②求抛物线的顶点的纵坐标(用含a的代数式表示);1911112(3)当AB ≤4时,求实数a 的取值范围. 19219327. 已知△ABC 中,AD 是BAC ∠的平分线,且AD =AB , 过点C 作AD 的垂194线,交 AD195 的延长线于点H .196 (1)如图1,若60BAC ∠=︒197 ①直接写出B ∠和ACB ∠的度数;198 ②若AB =2,求AC 和AH 的长;199 (2)如图2,用等式表示线段AH 与AB +AC 之间的数量关系,并证明. 200201202203204205206207208209 21028.给出如下定义:对于⊙O 的弦MN 和⊙O 外一点P (M ,O ,N 三点211不共线,且P ,O 在直线MN 的异侧),当∠MPN +∠MON=180°时,则称点 P 212是线段MN 关于点O21313的关联点.图1是点P 为线段MN 关于点O 的关联点的示意图. 214 215在平面直角坐标系xOy 中,⊙O 的半径为1.216 (1)如图2, 22,22M ⎛ ⎝⎭,2222N ⎛- ⎝⎭.在A(1,0),B (1,1),)2,0C 217 三点中, 是线段MN 关于点O 的关联点的是 ; 218(2)如图3, M (0,1),N 3122⎛⎫- ⎪ ⎪⎝⎭,点D 是线段 MN 关于点O 的关联219点.220 ①∠MDN 的大小为 °;221 ②在第一象限内有一点E )3,m m ,点E 是线段MN 关于点O 的关联点, 222 判断△MNE 的形状,并直接写出点E 的坐标;223 ③点F 在直线323y x =-+上,当∠MFN ≥∠MDN 时,求点F 的横22414坐标F x 的取值范围.225226 227东城区2017-2018学年度第一次模拟检测228 初三数学试题参考答案及评分标准 2018.5229 一、选择题(本题共16分,每小题2分) 230231二、填空题(本题共16分,每小题 2分)232 9. 1x ≥ 10. ()()22n m m +- 11. 8 12. 2x 13. ②③ 23314. 2y x =+ 15. 答案不唯一 ,理由须 支撑推断结论 16. 234正方形的对角线相等且互相平分,圆的定义 235236三、解答题(本题共68分,17-24题,每题5分,第25题6分,26-27237题,每小题7分,第28题8分)238153=2-1+9+3-1----------42=23+7------------------------5⨯17.解:原式分分239 18. 解:4+6,23x x x x ⎧⎪⎨+⎪⎩①②>≥, 240 由①得,-x >2,------------------1分241 由②得,1x ≤, ------------------2分242 ∴不等式组的解集为-1x 2<≤.243 所有整数解为-1, 0, 1. ---------------------5分244245 24619.证明: ∵∠BAC =90°,247 ∴∠FBA +∠AFB =90°. -------------------1248 分249 ∵AD ⊥BC ,250 ∴∠DBE +∠DEB =90°.---------------- 2分251 ∵BE 平分∠ABC ,252 ∴∠DBE =∠FBA . -------------------3分 25316∴∠AFB =∠DEB . -------------------4分254 ∵∠DEB =∠FEA ,255 ∴∠AFB =∠FEA .256 ∴AE =AF . -------------------5分257258259 26020. (1)证明:()()2=+3-42m m ∆+()2=+1m261 ∵()2+10m ≥,262 ∴无论实数m 取何值,方程总有两个实根. -------------------2分 263(2)解:由求根公式,得()()1,231=2m m x +±+,264 ∴1=1x ,2=+2x m .265 ∵方程有一个根的平方等于4,266 ∴()2+24m =.267 解得=-4m ,或=0m . -------------------5分268 21.(1) 证明:∵平行四边形ABCD , 26917∴=AB DC ,AB DC ∥.270 ∵AB =AE ,271 ∴=AE DC ,AE DC ∥.272 ∴四边形ACDE 为平行四边形.273 -------------------2分274 (2) ∵=AB AC ,275 ∴=AE AC .276 ∴平行四边形ACDE 为菱形.277 ∴AD ⊥CE .278 ∵AD BC ∥,279 ∴BC ⊥CE.280 在Rt △EBC 中,BE =6, 1cos 3BC B BE ==, 281 ∴=2BC .282 根据勾股定理,求得=42BC 分283 22.解:(1)∵点()3,A n 在函数()30y x x =>的图象上, 28418∴=1n ,点()3,1A .285 ∵直线()20y ax a =-≠过点()3,1A ,286 ∴ 321a -= .287 解得 1a =. ----------------------2分288 (2)易求得()0,2B -.289 如图,12AOB A S OB x =⋅△,1=2ABC A S BC x ⋅△290 ∵=2ABC AOB S S △△,291 ∴=24BC OB =.292 ∴()10,2C ,或()20,6C -. ----------------------5分293 23. (1)证明:连接OC .294 ∵CD CB =295 ∴∠1=∠3.296 ∵OA OC =,297 ∴∠1=∠2.298 ∴∠3=∠2. 29919∴AE OC ∥.300 ∵AE EF ⊥,301 ∴OC EF ⊥.302 ∵ OC 是O 的半径,303 ∴EF 是O 的切线. ----------------------2分304 (2)∵AB 为O 的直径,305 ∴∠ACB =90°.306 根据勾股定理,由AB =5,BC =3,可求得AC =4.307 ∵AE EF ⊥ ,308 ∴∠AEC =90°.309 ∴△AEC ∽△ACB . 310 ∴AE AC AC AB=. 311 ∴445AE =. 312 ∴165AE =. ----------------------5分 313 24. 解:(I):56.8%;----------------------1分314(II)折线图; ----------------------3分315(III)答案不唯一,预估的理由须支撑预估的数据,参考数据61%左316右.--------5分31725.解:(1)4.5 . --------------------2分318(2)319320321322323324325326--------------327------4分328329(3) 4.2,点P是AD与CE的交点. --------------------6分330331202126.解:(1) ∵点()0,0O 在抛物线上,∴320a -=,33223a =.--------------------2分 333 (2)①对称轴为直线2x =;334 ②顶点的纵坐标为 2a --.--------------------4分335 (3) (i )当0a >时,336 依题意,-20320.a a -⎧⎨-⎩<,≥ 337 解得2.3a ≥338 (ii )当0a <时,339 依题意,-20320.a a -⎧⎨-⎩>,≤ 340 解得a <-2.341 综上,2a -<,或23a ≥. --------------------7分342343344345346 34727. (1)①75B ∠=︒,45ACB ∠=︒;34822 --------------------2分 349350②作DE ⊥AC 交AC 于点E .351 Rt △ADE 中,由30DAC ∠=︒,AD=2可得DE =1,AE 3=.352 Rt △CDE 中,由45ACD ∠=︒,DE=1,可得EC =1.353 ∴AC 31=+.354 Rt △ACH 中,由30DAC ∠=︒,可得AH 33+=; --------------4355 分356 357(2)线段AH 与AB +AC 之间的数量关系:2AH =AB +AC358 证明: 延长AB 和CH 交于点F ,取BF 中点G ,359 连接GH .360 易证△ACH ≌△AFH .361 ∴AC AF =,HC HF =.362 ∴GH BC ∥.363 ∵AB AD =,364 ∴ ABD ADB ∠=∠.36523 ∴ AGH AHG ∠=∠ .366 ∴ AG AH =.367 ∴()2222AB AC AB AF AB BF AB BG AG AH +=+=+=+==. 368--------------7分369 28. 解:(1)C ; --------------2370 分371 (2)① 60°;372 ② △MNE 是等边三角形,点E 的坐标为)31,;--------------5分 373 ③ 直线32y =+交 y 轴于点K (0,2),交x 轴于点()23T ,0. 374 ∴2OK =,23OT =375 ∴60OKT ∠=︒.376 作OG ⊥KT 于点G ,连接MG .377 ∵()M 0,1,378 ∴OM =1.379 ∴M 为OK 中点 .380 ∴ MG =MK =OM =1.38124 ∴∠MGO =∠MOG =30°,OG382 ∴3.2G ⎫⎪⎪⎝⎭, 383∵120MON ∠=︒, 384∴ 90GON ∠=︒. 385又OG =1ON =, 386∴30OGN ∠=︒. 387∴60MGN ∠=︒. 388∴G 是线段MN 关于点O 的关联点. 389经验证,点)E在直线2y =+上. 390结合图象可知, 当点F 在线段GE 上时 ,符合题意.391∵G F E x x x ≤≤, 392∴F x 分 393 394 .395 396 39739839940040140225。
东城区2017- 2018学年度第一学期期末教学统一检测初三数学2018. 1学校:班级:姓名:考号:考生须知:1.本试卷共8页,共三道大题,28道小题,满分100分,考试时间120分钟.2.在试卷上和答题卡上准确填写学校名称、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,请将本试卷、答题卡和草稿纸一-并交回。
一、选择题(本题共16分,每小题2分)下面各题均有四个选项其中只有一个是符合题意的.1.下列图形中,是中心对称图形但不是轴对称图形的是()2.边长为2的正方形内接于⊙M,则⊙M的半径是()A.1B.2C.2D.223.若要得到函数y=(x+1)2+2的图象,只需将函数y=x2的图象()A.先向右平移1个单位长度,再向上平移2个单位长度B.先向左平移1个单位长度,再向上平移2个单位长度C.先向左平移1个单位长度,再向下平移2个单位长度D.先向右平移1个单位长度,再向下平移2个单位长度的图象上,若x1<x2<0,则()4.点A(x1,y1 ),B(x2,y2)都在反比例函数y=2xA.y2>y1>0B.y1>y2>0C.y2<y1<0D.y1<y2<0,则∠AOB的度数是()5. A、B是⊙O上的两点,OA=1,弧AB的长是13A.30〫B.60°C.90〫D.120〫6. △DEF和△ABC是位似图形,点O是位似中心,点D、E、F分别是OA、OB、OC的中点,若△DEF的面积是2,则△ABC的面积是()A.2B.4C.6D.87.已知函数y=-x2+bx+c,其中b>0,c<0,此函数的图象可以是()8.小张承包了一片荒山,他想把这片荒山改造成一个草果园,现在有一种草果树苗,它的成活率如下表所示:下面有四个推断:①当移植棵数是1500时,表格记录的成活棵数是1335,所以这种树苗成活的概率是0.890;②随着移植棵数的增加,树苗成活的频颊率总在0.900附近援动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;③若小张移植10000棵这种树苗,则可能成活9000棵;④若小张移植200000棵这种树苗,则一定成活18000棵.其中合理的是()A.①③B.①④C.②③D.②④.二、填空题(本题共16分,每小题2分),AB=6,则AC的长是_____.9.在Rt△ABC中,∠C= 90〫,cos A=1310.若抛物线y=x2+2x+c与x轴没有交点,写出一个满足条件的c的值:11.如图,在平面直角坐标系xOy中,若点B与点A关于点O中心对称,则点B的坐标为12.如图,AB是⊙O的弦,C是AB的中点,连接OC并延长交⊙O于点D,若CD=1,AB=4,则⊙O的半径是13.某校九年级的4位同学借助三根木棍和皮尺测量校园内旗杆的高度,为了方便操作和观察,他们用三根木棍围成直角三角形并放在高1m的桌子上,且使旗杆的顶端和直角三角形的斜边在同一直线上(如图),经测量,木棍围成的直角三角形的两直角边AB、OA的长分别为0.7m、0.3m,观测点O到旗杆的距离OE为6m,旗杆MN的高度为m.14.⊙O是四边形ABCD的外接圆,若AC平分∠BAD,则正确结论的序号是①AB=AD;②BC=CD;③弧AB=弧AD;④∠BCA=∠DCA;⑤弧BC=弧CD.15.已知函数y=x2-2x-3,当-1≤x≤a时,函数的最小值是-4,实数a的取值范围是16.如图,在平面直角坐标系xOy中,已知A(8,0),C(0,6),矩形OABC的对角线交于点P,点M在经过点P的函数(x>0)的图象上运动,k的值为______,OM长的最小值为y=kx三.解答题(本题失68分,第17-24题,每小题5分,第25题6分,第26-27题,每小题7分,第28题8分)17.计算:2cos 30°- 2sin 45〫+3tan 60〫+|1-2|.18.已知等腰△ABC内接于⊙O,AB=AC,∠BOC=100〫,求△ABC的顶角和底角的度数.19.如图,在四边形ABCD中,AD//BC,AB⊥BC,点E在AB上,∠DEC= 90〫.(1)求证: △ADE∽△BEC;(2)若AD=1,BC=3,AE=2,求AB的长.20.在△ABC中,∠B= 135〫,AB=22,BC=1.(1)求△ABC的面积;(2)求AC的长.21.北京2018年中考方案规定,考试科目为语文数学、外语、历史、地理、思想品德、物理、生化(生物和化学)、体育九门课程。
东城区2017-2018学年度第一次模拟检测初三数学考生须知1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的1.如图,若数轴上的点A,B分别与实数-1,1对应,用圆规在数轴上画点C,则与点C 对应的实数是A. 2B.3C. 4D. 52. 当函数()212y x=--的函数值y随着x的增大而减小时,x的取值范围是A.x>0B.x<1C.1x>D.x为任意实数3.若实数a,b满足a b>,则与实数a,b对应的点在数轴上的位置可以是4.如图,Oe是等边△ABC的外接圆,其半径为3. 图中阴影部分的面积是A.πB.3π2C.2πD.3π5.点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90°D.绕原点顺时针旋转90°6.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相同,求甲每小时做中国结的个数. 如果设甲每小时做x个,那么可列方程为A.30456x x=+B.30456x x=-C.30456x x=-D.30456x x=+7.第24届冬奥会将于2022年在北京和张家口举行.冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等. 如图,有5张形状、大小、质地均相同的卡片,正面分别印有跳台滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的项目图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪图案的概率是A.15B.25C.12D.358.如图1是一座立交桥的示意图(道路宽度忽略不计), A 为入口, F ,G 为出口,其 中直行道为AB ,CG ,EF ,且AB =CG =EF ;弯道为以点O 为圆心的一段弧,且错误!未指定书签。
, 错误!未指定书签。
,»DE所对的圆心角错误!未指定书签。
均为90°.甲、乙两车由A 口同时驶入立交桥,均以10m/s 的速度行驶,从不同出口驶出. 其间两车到点O 的距离y (m )与时间x (s)的对应关系如图2所示.结合题目信息,下列说法错误..的是A. 甲车在立交桥上共行驶8sB. 从F 口出比从G 口出多行驶40mC. 甲车从F 口出,乙车从G 口出D. 立交桥总长为150m二、填空题(本题共16分,每小题2分) 91x -有意义,则实数x 的取值范围是__________________.10.分解因式:24m n n -= ________________.11.若多边形的内角和为其外角和的3倍,则该多边形的边数为________________.12. 化简代数式11+122x x x x ⎛⎫+÷ ⎪--⎝⎭,正确的结果为________________.13. 含30°角的直角三角板与直线l 1,l 2的位置关系如图所示,已知l 1//l 2,∠1=60°. 以下三个结论中正确的是_____________(只填序号).①2AC BC =; ②BCD △为正三角形; ③AD BD =14. 将直线y =x 的图象沿y 轴向上平移2个单位长度后,所得直线的函数表达式为____________,这两条直线间的距离为____________.15. 举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为0. 甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):年份选手2015上半年2015下半年2016上半年2016下半年2017上半年2017下半年甲 290(冠军) 170(没获奖) 292(季军) 135(没获奖) 298(冠军) 300(冠军) 乙285(亚军)287(亚军)293(亚军)292(亚军)294(亚军)296(亚军)如果你是教练,要选派一名选手参加国际比赛,那么你会选派____________(填“甲”或“乙”),理由是______________________________________. 16.已知正方形ABCD .求作:正方形ABCD 的外接圆. 作法:如图,(1)分别连接AC ,BD ,交于点O ;(2) 以点O 为圆心,OA 长为半径作O e .O e 即为所求作的圆.请回答:该作图的依据是_____________________________________.三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27,每小题7分,第28题8分)17.计算:()212sin 60-π-2++1-33-⎛⎫︒ ⎪⎝⎭.18. 解不等式组4+6,23x x x x ⎧⎪+⎨⎪⎩>≥, 并写出它的所有整数解.19. 如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D . BF 平分∠ABC 交AD 于点E ,交AC 于点F . 求证:AE =AF .20. 已知关于x 的一元二次方程()2320xm x m -+++=.(1) 求证:无论实数m 取何值,方程总有两个实数根; (2) 若方程有一个根的平方等于4,求m 的值.21.如图,已知四边形ABCD 是平行四边形,延长BA 至点E ,使AE = AB ,连接DE ,AC .(1)求证:四边形ACDE 为平行四边形;(2)连接CE 交AD 于点O . 若AC=AB =3,1cos 3B =,求线段CE 的长.22. 已知函数()30y x x=>的图象与一次函数()20y ax a =-≠的图象交于点A ()3,n . (1)求实数a 的值;(2) 设一次函数()20y ax a =-≠的图象与y 轴交于点B .若点C 在y 轴上,且=2ABC AOB S S △△,求点C 的坐标.23. 如图,AB 为O e 的直径,点C ,D 在O e 上,且点C 是»BD的中点.过点C 作 AD 的垂线EF 交直线AD 于点E . (1)求证:EF 是O e 的切线;(2)连接BC . 若AB =5,BC =3,求线段AE 的长.24.随着高铁的建设,春运期间动车组发送旅客量越来越大.相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间铁路发送旅客量情况进行了调查,具体过程如下. (I)收集、整理数据请将表格补充完整:(II )描述数据为了更直观地显示春运期间动车组发送旅客量占比的变化趋势,需要用 ___________(填“折线图”或“扇形图”)进行描述; (III )分析数据、做出推测预计2019年春运期间动车组发送旅客量占比约为___________,你的预估理由是 _________________________________________ .25. 如图,在等腰△ABC 中,AB =AC ,点D ,E 分别为BC ,AB 的中点,连接AD .在线段AD 上任取一点P ,连接PB ,PE .若BC =4,AD =6,设PD =x (当点P 与点D 重合时,x 的值为0),PB +PE =y .小明根据学习函数的经验,对函数y 随自变量x 的变换而变化的规律进行了探究. 下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x 与y 的几组值,如下表:(说明:补全表格时,相关数值保留一位小数). (参考数据:2 1.414≈3 1.732≈5 2.236≈)(2) 建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)函数y 的最小值为__________(保留一位小数),此时点P 在图1中的位置为____________.x 0 1 2 3 4 5 6 y5.24.24.65.97.69.526.在平面直角坐标系xOy 中,抛物线()02342≠-+-=a a ax ax y与x 轴交于A ,B 两点(点A 在点B 左侧). (1)当抛物线过原点时,求实数a 的值; (2)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a 的代数式表示); (3)当AB ≤4时,求实数a 的取值范围.27. 已知△ABC 中,AD 是BAC ∠的平分线,且AD =AB , 过点C 作AD 的垂线,交 AD 的延长线于点H .(1)如图1,若60BAC ∠=︒①直接写出B ∠和ACB ∠的度数; ②若AB =2,求AC 和AH 的长;(2)如图2,用等式表示线段AH 与AB +AC 之间的数量关系,并证明.28.给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点P是线段MN关于点O 的关联点.图1是点P为线段MN关于点O的关联点的示意图.在平面直角坐标系xOy中,⊙O的半径为1.(1)如图2,22,22M⎛⎫⎪⎪⎝⎭,2222N⎛-⎝⎭.在A(1,0),B(1,1),)2,0C 三点中, 是线段MN关于点O的关联点的是;(2)如图3,M(0,1),N31,22⎛⎫-⎪⎪⎝⎭,点D是线段MN关于点O的关联点.①∠MDN的大小为°;②在第一象限内有一点E)3,m m,点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;③点F在直线323y x=-+上,当∠MFN≥∠MDN时,求点F的横坐标Fx的取值范围.东城区2017-2018学年度第一次模拟检测初三数学试题参考答案及评分标准 2018.5二、填空题(本题共16分,每小题 2分)9. 1x ≥10. ()()22n m m +- 11. 8 12. 2x 13. ②③14. 2y x =+ 15. 答案不唯一 ,理由须 支撑推断结论 16. 正方形的对角线相等且互相平分,圆的定义三、解答题(本题共68分,17-24题,每题5分,第25题6分,26-27题,每小题7分,第28题8分)=22⨯17.解:原式分分18. 解:4+6,23x x x x ⎧⎪⎨+⎪⎩①②>≥,由①得,-x >2,------------------1分由②得,1x ≤, ------------------2分 ∴不等式组的解集为-1x 2<≤.所有整数解为-1, 0, 1. ---------------------5分19.证明: ∵∠BAC =90°,∴∠FBA +∠AFB =90°. -------------------1分 ∵AD ⊥BC ,∴∠DBE +∠DEB =90°.---------------- 2分 ∵BE 平分∠ABC ,∴∠DBE =∠FBA . -------------------3分∴∠AFB =∠DEB . -------------------4分 ∵∠DEB =∠FEA ,∴∠AFB =∠FEA .∴AE =AF . -------------------5分20. (1)证明:()()2=+3-42m m ∆+()2=+1m∵()2+10m ≥,∴无论实数m 取何值,方程总有两个实根. -------------------2分(2)解:由求根公式,得()()1,231=2m m x +±+,∴1=1x ,2=+2x m .∵方程有一个根的平方等于4,∴()2+24m =.解得=-4m ,或=0m . -------------------5分21.(1) 证明:∵平行四边形ABCD ,∴=AB DC ,AB DC ∥.∵AB =AE ,∴=AE DC ,AE DC ∥.∴四边形ACDE 为平行四边形. -------------------2分(2) ∵=AB AC ,∴=AE AC .∴平行四边形ACDE 为菱形.∴AD ⊥CE .∵AD BC ∥,∴BC ⊥CE.在Rt △EBC 中,BE =6, 1cos 3BC B BE ==,∴=2BC . 根据勾股定理,求得=42BC 分22.解:(1)∵点()3,A n 在函数()30y x x=>的图象上, ∴=1n ,点()3,1A .∵直线()20y ax a =-≠过点()3,1A ,∴ 321a -= .解得 1a =. ----------------------2分(2)易求得()0,2B -. 如图,12AOB A S OB x =⋅△,1=2ABC A S BC x ⋅△∵=2ABC AOB S S △△,∴=24BC OB =.∴()10,2C ,或()20,6C -. ----------------------5分23. (1)证明:连接OC .∵»»CD CB =∴∠1=∠3.∵OA OC =,∴∠1=∠2.∴∠3=∠2.∴AE OC ∥.∵AE EF ⊥,∴OC EF ⊥.∵ OC 是O e 的半径,∴EF 是O e 的切线. ----------------------2分(2)∵AB 为O e 的直径,∴∠ACB =90°.根据勾股定理,由AB=5,BC=3,可求得AC=4. ∵AE EF⊥,∴∠AEC=90°.∴△AEC∽△ACB.∴AE AC AC AB=.∴4 45 AE=.∴165AE=. ----------------------5分24. 解:(I):56.8%;----------------------1分(II)折线图;----------------------3分(III)答案不唯一,预估的理由须支撑预估的数据,参考数据61%左右.--------5分25.解:(1)4.5 . --------------------2分(2)--------------------4分(3) 4.2,点P是AD与CE的交点. --------------------6分26.解:(1) ∵点()0,0O在抛物线上,∴320a-=,23a=.--------------------2分(2)①对称轴为直线2x=;②顶点的纵坐标为2a--.--------------------4分(3) (i)当0a>时,依题意,-20 320. aa-⎧⎨-⎩<,≥解得2.3 a≥(ii)当0a<时,依题意,-20 320. aa-⎧⎨-⎩>,≤解得a<-2.综上,2a-<,或23a≥. --------------------7分27. (1)①75B∠=︒,45ACB∠=︒;--------------------2分②作DE⊥AC交AC于点E.Rt△ADE中,由30DAC∠=︒,AD=2可得DE=1,AE3.Rt△CDE中,由45ACD∠=︒,DE=1,可得EC=1.∴AC31=+.Rt△ACH中,由30DAC∠=︒,可得AH33+=;--------------4分(2)线段AH与AB+AC之间的数量关系:2AH=AB+AC 证明:延长AB和CH交于点F,取BF中点G,连接GH.易证△ACH ≌△AFH.∴AC AF=,HC HF=.∴GH BC∥.∵AB AD=,∴ ABD ADB ∠=∠.∴ AGH AHG ∠=∠ .∴ AG AH =.∴()2222AB AC AB AF AB BF AB BG AG AH +=+=+=+==. --------------7分28. 解:(1)C ; --------------2分(2)① 60°;② △MNE 是等边三角形,点E 的坐标为()31,;--------------5分 ③ 直线32y =+交 y 轴于点K (0,2),交x 轴于点()23T ,0. ∴2OK =,23OT =.∴60OKT ∠=︒.作OG ⊥KT 于点G ,连接MG .∵()M 0,1,∴OM =1.∴M 为OK 中点 .∴ MG =MK =OM =1.∴∠MGO =∠MOG =30°,OG 3∴33.2G ⎫⎪⎪⎝⎭, ∵120MON ∠=︒,∴ 90GON ∠=︒. 又3OG 1ON =,∴30OGN ∠=︒.∴60MGN ∠=︒.∴G 是线段MN 关于点O 的关联点. 经验证,点)31E ,在直线32y =+上. 结合图象可知, 当点F 在线段GE 上时 ,符合题意. ∵G F E x x x ≤≤,∴33F x ≤分。