运筹学例题解析
- 格式:doc
- 大小:738.50 KB
- 文档页数:6
(一)线性规划建模与求解
B.样题:活力公司准备在5小时内生产甲、乙两种产品。甲、乙两种产品每生产1
单位分别消耗2小时、1小时。又根据市场需求信息,乙产品的产量应该至少是甲产品产量的3倍。已知甲、乙两种产品每销售1单位的利润分别为3百元和1百元。请问:在5小时内,甲、乙两种产品各生产多少单位,才能够使得总销售利润最大?
要求:1、建立该问题的线性规划模型。
2、用图解法求出最优解和最大销售利润值,并写出解的判断依据。如果不存在最优解,也请说明理由。
解:1、(1)设定决策变量: 设甲、乙两种产品分别生产x 1
、x 2
单位 。
(2)目标函数: max z=2 x 1+x 2
(3)约束条件如下:1221
12
25..3,0+≤⎧⎪≥⎨⎪≥⎩x x s t x x x x
2、该问题中约束条件、目标函数、可行域和顶点见图1所示,其中可行域用阴影部分标记,不等式约束条件及变量约束要标出成立的方向,目标函数只须画出其中一条等值线,
结论:本题解的情形是: 无穷多最优解 ,理由: 目标函数等值线z=2 x 1
+x 2
与
约束条件2 x 1+x 2≤5的边界平行 。甲、乙两种产品的最优产量分别为 (5,0)或(1,3)单位;最大销售利润值等于 5 百元。
(二)图论问题的建模与求解样题
A.正考样题(最短路问题的建模与求解,清华运筹学教材编写组第三版267-268页例
13)某企业使用一台设备,每年年初,企业都要做出决定,如果继续使用旧的,要付维修费;若购买一台新设备,要付购买费。但是变卖旧设备可以获得残值收入,连续使用1年、2年、3年、4年以上卖掉的设备残值分别为8万元、6万元、3万元和0万元。试制定一个5年的更新计划,使总支出最少。已知设备在各年的购买费与维修费如表2所示。要求:(1)建立某种图论模型;(2)求出最少总支出金额。
解:(1)建立图论——最短路问题模型。
①设点V i 表示第i 年年初,虚设一个点V 6,表示第五年年底;
②弧(V i , V j )表示第i 年初购进一台设备一直使用到第j 年初(即第i-1年年底)再卖掉并获得残值收入;
③弧(V i , V j )上的权数表示第i 年初购进一台设备,一直使用到第j 年初所需支付的购买、维修及抵扣残值收入以后的全部费用(单位:万元)。例如:弧(V 1, V 4)上的费用权数30=11+(5+6+8)-3=27(万元)。
模型如图2所示:
(2)用Dijkstra 法求解从V 1到V 6的最短路。 给起点V 1标号(0,v 1);
1.I={v 1} ; J={v 2,v 3,v 4,v 5,v 6} 弧集合{[v 1,v 2]、[v 1,v 3] 、[v 1,v 4] 、[v 1,v 5] 、[v 1,v 6]} s 12=l 1+b 12=0+8=8;s 13=l 1+b 13=0+16=16;s 14=l 1+b 14=0+27=27; s 15=l 1+b 15=0+41=41;s 16=l 1+b 16=0+59=59
∵min{s 12,s 13,s 14,s 15,s 16}=min{8,16,27,41,59}=8= s 12=l 2 ∴给v 2标号(8,v 1) 2.I={v 1,v 2} J={ v 3,v 4,v 5,v 6}
弧集合{[v 1,v 3] 、[v 1,v 4] 、[v 1,v 5] 、[v 1,v 6] 、[ v 2,v 3]、[v 2,v 4]、[v 2,v 5]、[v 2,v 6]} s 23=l 2+b 23=8+8=16;s 24=l 2+b 24=8+16=24;s 25=l 2+b 25=8+27=35;s 26=l 2+b 26=8+41=49 ∵min{s 13,s 14,s 15,s 16,s 23,s 24,s 25,s 26}=min{16,27,41,59,16,24,35,49}=16= s 13或s 23=l 3 , ∴任选一个s 13,选择给v 3标号(16, v 1)。
3.I={v 1,v 2,v 3} J={v 4,v 5,v 6} 弧集合{[v 1,v 4]、[v 1,v 5] 、[v 1,v 6] 、[v 2,v 4]、[v 2,v 5] 、[v 2,v 6]、
[v 3,v 4]、[v 3,v 5] 、[v 3,v 6] }
s 34=l 3+b 34=16+9=25; s 35=l 3+b 35=16+27=35;s 26=l 2+b 26=8+41=49 ∵min{s 14,s 15,s 16,s 24,s 25,s 26,s 34,s 35,s 36}=min{27,41,59,24,35,49,25,35,49}=24=s 24=l 4 ∴给v 4标号(24,v 2)
4.I={v 1,v 2,v 3,v 4} J={v 5,v 6} 弧集合{ [v 1,v 5] 、[v 1,v 6] 、[v 2,v 5] 、[v 2,v 6]、 [v 3,v 5] 、[v 3,v 6]、[v 4,v 5] 、[v 4,v 6 } s 45=l 4+b 45=24+9=33; s 46=l 4+b 46=24+17=41
∵min{s 15,s 16,s 25,s 26,s 35,s 36,s 45,s 46}=min{41,59,35,49,35,49,33,41}=33=s 45=l 5 ∴给v 5标号(33,v 4)
5.I={v 1,v 2,v 3,v 4,v 5} J={v 6} 弧集合{ [v 1,v 6]、[v 2,v 6]、[v 3,v 6]、[v 4,v 6]、[v 5,v 6] } s 56=l 5+b 56=33+10=43 ∵min{s 16,s 26,s 36,s 46,s 56}=min{59,49,49,41,43}=41=s 46=l 6 ∴给v 6
表2
17
17
41 28 27 41 v 6 v 5 27
v 4 v 2 v 3 16
16 9
8 8 v 1 10 9
59
图2