技术成型及应用3.1 熔融沉积成型技术的工艺原理和工艺特点
- 格式:pptx
- 大小:1.83 MB
- 文档页数:10
试述熔融沉积3d打印加工的工艺原理和优缺点熔融沉积(Fused Deposition Modeling,简称FDM)3D打印加工是一种使用热熔塑料线材进行层层堆积构建物体的加工技术。
其工艺原理主要包括以下几个步骤:
1. 设计模型:使用CAD软件设计所需的3D模型,并将其转换为可被3D打印机读取的文件格式。
2. 切片处理:将3D模型分成一系列的水平层次,称为切片。
每个切片的厚度取决于所使用的3D打印机的设置。
3. 准备工作:将熔融塑料线材装入3D打印机的喂丝机,并让线材传送到打印头。
4. 层层堆积:3D打印机控制打印头的运动,将熔融的塑料线材从喷嘴喷出,并在构建平台上的特定位置堆积,按照切片的顺序逐层构建物体。
5. 结束工作:打印完成后,等待构建物体冷却固化,并将其从构建平台上取下。
熔融沉积3D打印加工的优点包括:
1. 低成本:相对于其他3D打印技术,熔融沉积的设备和材料成本较低。
2. 快速打印速度:熔融沉积3D打印加工可以快速打印整个构建物体,节省时间。
3. 材料种类多样:熔融沉积可以使用多种塑料材料进行打印,如ABS、PLA等。
4. 易于操作:熔融沉积3D打印技术操作简单,容易上手。
熔融沉积3D打印加工的缺点包括:
1. 精度较低:相对于其他3D打印技术,熔融沉积的打印精度较低,表面质量可能不够光滑。
2. 层面可见性:由于是通过堆积层层打印,所以构建物体的层次结构会在表面上可见。
3. 强度有限:熔融沉积3D打印的材料通常比较脆弱,无法承受大的机械应力。
综上所述,熔融沉积3D打印加工是一种成本低、操作简便的3D打印技术,适用于制作一些低要求精度和强度的模型或者原型。
熔融沉积快速成型工艺
SLA LOM SLS/SLM FDM
熔融沉积快速成型工艺FDM是继光固化快速成型和叠层实体快速成型工艺后的另一种应用比较广泛的快速成型工艺方法。
1,熔融沉积快速成型工艺基本原理和特点
熔融沉积又叫熔丝沉积,丝状
2,熔融沉积成型工艺的特点
系统构造和原理简单,运行维护费用低(无激光器)
原材料无毒,适宜在办公环境安装使用
用蜡成型的零件原理,可以直接用于失蜡铸造
支撑去除简单
可直接制作彩色原理
缺点:
成型件表面有较明显条纹
需要设计与制作支撑结构
对原型材料的要求:熔融温度低,粘度低,粘结性好,收缩率小
2.前处理cad建模
3.STL检验
4.确定摆放位置
去除支撑,打磨
材料性能的影响:1改进材料配方,2设计时考虑收缩量进行尺寸补偿
2,喷头温度和成型室温度的影响
措施:1,喷头温度应根据丝材的性质在一定范围内选择,以保证挤出的丝呈熔融流动状态2,一般将成型室
3
4,分层厚度的影响
措施:兼顾效率和精度确定分层厚度,必要时可通过打磨提高表面质量与精度
5,成型时间的影响
措施:加工时控制好喷嘴的工作温度和每层的成型时间,已获得精度较高的成型件
6,扫描方式的影响
措施:可采用复合扫描方式,既外部轮廓。
熔融沉积成型技术原理熔融沉积成型技术(Melt Deposition Modeling,MDM)是一种先进的快速成型技术,它利用高能激光束或电子束将金属粉末熔融成型,逐层堆积,最终形成所需的零件。
这种技术在航空航天、汽车制造、医疗器械等领域有着广泛的应用前景。
本文将介绍熔融沉积成型技术的原理及其应用。
首先,熔融沉积成型技术的原理是基于金属粉末的熔融堆积。
在成型过程中,激光束或电子束对金属粉末进行瞬间加热,使其熔化成液态金属,然后在特定的位置上进行凝固,形成一层固态金属。
接着,工作台下降一个层次,再次喷射金属粉末,重复上述过程,直至整个零件成型。
这种逐层堆积的方式使得熔融沉积成型技术能够制造出复杂形状的零件,且具有较高的成型精度。
其次,熔融沉积成型技术的原理还包括材料的选择和热力学特性的控制。
在选择材料时,需要考虑金属粉末的熔点和热导率等因素,以确保在激光束或电子束的作用下能够快速熔化和凝固。
同时,需要控制金属粉末的喷射速度、激光束或电子束的功率和扫描速度等参数,以使得每一层的成型质量得到保障。
最后,熔融沉积成型技术的原理还涉及到成型过程中的温度控制和残余应力的消除。
由于金属粉末的熔化和凝固过程是在极短的时间内完成的,因此需要对成型区域进行精确的温度控制,以避免出现裂纹和变形等缺陷。
同时,还需要对成型后的零件进行热处理等工艺,以消除残余应力,提高零件的稳定性和耐久性。
总之,熔融沉积成型技术的原理是基于金属粉末的熔融堆积,通过控制材料特性、热力学参数和成型过程中的温度和应力等因素,实现对复杂零件的高效成型。
这种技术具有成型速度快、成本低、适用性广等优点,将在未来的制造业中发挥重要作用。
一概念及简介1.1 概念熔融沉积造型(Fused Deposition Modeling,FDM)采用热熔喷头,使半流动状态的材料按CAD分层数据控制的路径挤压并沉积在指定的位置凝固成型,逐层沉积、凝固后形成整个原型或零件。
这一技术又称为熔化堆积法、熔融挤出成模等。
丝状材料选择性熔覆(Fused Deposition Manufacturing,简称FDM),又称熔融沉积造型。
FDM快速原型工艺是一种不依靠激光作为成型能源,而将各种丝材加热熔化的成型方法。
此工艺通过熔融丝料的逐层固化来构成三维产品,以该工艺制造的产品目前的市场占有率约为6.1%。
研究熔融沉积制造(Fuesd Depostion Modeling 简称FDM)工艺的主要有Stratasys公司和Med Modeler公司。
这种技术以美国Stratasys公司开发的产品制造系统应用FDM-1650(台面为250mmx250mmx250mm)机型后,先后推出FDM-2000、FDM-3000和FDM-8000机型。
FDM-1650[摘要]介绍熔融沉积造型技术的基本原理,分析成型工艺过程的技术特点。
从机械系统和控制系统等主要组成部分论述了熔融沉积沉积成型的设备的整体构造。
最后,讨论了熔融沉积快速成型技术在产品设计、功能展示、样品制造和生物医学等领域的应用情况,同时展望了该技术在未来的发展前景。
关键词:熔融沉积;快速成型;[Abstract]The working principle of rapid prototyping technology is presented based on fused deposition modeling(FDM)and its technology features is summarized.Then integral construction of FDM system is discussed respectively from mechanical device to control cell.Moreover the application of FDM in production design,Fuction demonstration and biomedical engineering is discussed as well as the future development of FDM is prospected.Key word:Fused deposition modeling;Rapid prototyping引人注目的是1998年Stratasys公司推出的FDM-Quantum机型,最大成型体积为600mmx500mmx600mm。
简述熔融沉积成型的成型原理熔融沉积成型是一种先进的制造技术,通过将材料加热至熔点,使其熔化成液态,然后通过喷射或涂覆的方式将熔融材料沉积在基底上,最终形成所需的零件或构件。
这种成型方法具有高效、灵活和精密的特点,被广泛应用于航空航天、汽车制造、医疗器械等领域。
熔融沉积成型的原理是基于材料的熔化和凝固过程。
首先,选择适合的材料并加热至其熔点,使其转变成液态。
然后,通过喷射或涂覆的方式将熔融材料沉积在基底上。
喷射方式通常使用喷嘴将熔融材料喷射到基底上,形成一层薄膜。
涂覆方式则是将熔融材料涂覆在基底上,形成一层均匀的涂层。
最后,熔融材料在基底上冷却凝固,形成所需的零件或构件。
熔融沉积成型的原理可以分为两个主要过程:熔化和凝固。
在熔化过程中,材料被加热至其熔点,形成液态。
这一过程可以通过电弧、激光或电子束等加热源来实现。
加热源的选择取决于材料的性质和所需成型的精度。
在熔化过程中,材料的表面张力会使其形成球形,这种球形的特性有助于喷射或涂覆过程的进行。
在凝固过程中,熔融材料在基底上冷却凝固,形成均匀的涂层或薄膜。
凝固过程中,材料的温度逐渐降低,由液态转变为固态。
在这个过程中,凝固速度对成型的质量和性能起着重要作用。
如果凝固速度过快,可能会导致材料内部产生缺陷,影响成型的质量。
因此,控制凝固速度是熔融沉积成型的关键之一。
熔融沉积成型的原理可以应用于各种材料,包括金属、陶瓷和塑料等。
不同材料的熔化和凝固过程可能存在差异,需要针对不同材料进行调整和优化。
同时,熔融沉积成型还可以实现多材料的复合成型,通过控制不同材料的比例和喷射顺序,可以在基底上形成复合材料结构,提高材料的性能和功能。
熔融沉积成型是一种高效、灵活和精密的制造技术,通过将材料加热至熔点,使其熔化成液态,然后将熔融材料沉积在基底上,最终形成所需的零件或构件。
这种成型原理可以应用于各种材料,并且可以实现多材料的复合成型。
熔融沉积成型的发展将为制造业带来新的机遇和挑战,推动制造业向数字化、柔性化和智能化方向发展。
熔融沉积成型技术原理熔融沉积成型技术(Fused Deposition Modeling,FDM)是一种常见的3D打印技术,也被称为熔融沉积制造。
它是一种将熔融的材料通过喷嘴逐层沉积,最终构建出三维实物的方法。
本文将介绍熔融沉积成型技术的原理及其应用。
熔融沉积成型技术的原理主要分为四个步骤:建模、切片、预处理和成型。
建模是指使用计算机辅助设计(CAD)软件创建三维模型。
这个模型可以是从零开始设计,也可以是从现有的物体扫描或下载。
在建模过程中,可以对模型进行编辑、调整和优化,以确保最终打印出来的物体满足需求。
接下来,切片是将三维模型切割成一层层的二维切片,每个切片都代表了打印出来的一层。
切片软件通常会根据所选的打印参数,例如层高、填充密度等,生成适合打印的切片图像。
然后,预处理是指对切片图像进行处理,以便将其转换为打印机可以理解的指令。
这些指令包括控制打印机的运动、温度和材料供给等。
预处理软件会将每个切片图像转换为打印机可以执行的指令序列,这些指令将用于控制打印机的运动和材料的沉积。
成型是指将熔融的材料通过打印头逐层沉积到打印平台上,逐渐构建出最终的三维实物。
打印头通常会加热并将材料推送到沉积区域,使其熔化并与前一层的材料粘合在一起。
随着打印头的运动,材料会逐渐沉积,从而形成一个完整的三维物体。
熔融沉积成型技术具有许多优点,使其在各个领域得到广泛应用。
首先,它可以实现快速、准确和经济高效的原型制作。
相比传统的制造方法,熔融沉积成型技术可以大大缩短产品的开发周期,节省制造成本。
熔融沉积成型技术可以制造复杂的几何形状和内部结构。
由于打印是逐层进行的,因此可以实现更多细节和内部空间,这是传统制造方法无法实现的。
这使得熔融沉积成型技术在医疗、航空航天和汽车等行业中具有广阔的应用前景。
熔融沉积成型技术可以使用多种材料,如塑料、金属和陶瓷等。
这种多材料选择的灵活性使得熔融沉积成型技术在不同行业和应用中具有广泛的适应性。
熔融沉积快速成型工艺过程分析及应用余东满;李晓静;王笛【摘要】The working principle of rapid prototyping technology is presented based on fused deposition modeling (FDM)and its technology features is summarized.Then integral construction of FDM system is discussed respectively from mechanical device to control cell.Taking a deep groove ball bearing as exper-imental object, main machining process of the workpiece is expounded in detail and object made of ABS material is manufactured in the MEM320A rapid prototyping machine Moreover the application of FDM in production design,function demonstration and biomedical engineering is discussed as well as the future development of FDM is prospected.%介绍熔融沉积快速成型技术的基本原理,分析成型工艺过程的技术特点.从机械系统和控制系统等主要组成部分论述了熔融沉积成型设备的整体构造.以一个深沟球轴承为研究案例,详细地论述了成型件的具体加工过程并在MEM320A快速成型机上加工出ABS材料的实物.最后,探讨了熔融沉积快速成型技术在产品设计、功能展示、样品制造和生物医学等领域的应用情况,同时展望了该技术在未来的发展前景.【期刊名称】《机械设计与制造》【年(卷),期】2011(000)008【总页数】3页(P65-67)【关键词】熔融沉积;快速成型;模型建造【作者】余东满;李晓静;王笛【作者单位】河南工业职业技术学院特种加工中心,南阳473009;河南工业职业技术学院特种加工中心,南阳473009;河南工业职业技术学院特种加工中心,南阳473009【正文语种】中文【中图分类】TH161 引言快速成型技术是80 年代后期发展起来的新兴先进制造技术,被认为是近20 年制造技术领域的一次重大突破,是一种基于离散堆积成型的数字化成形技术[1]。
熔融沉积成型技术原理
熔融沉积成型技术(FDM)是一种广泛应用于快速成型领域的增材制造技术。
它通过将热塑性材料加热至熔化状态,然后通过喷嘴一层一层地沉积到工作台上,最终形成所需的零件或构件。
这种技术具有成本低、制造速度快、适用范围广等优点,因此在航空航天、汽车制造、医疗器械等领域得到了广泛应用。
熔融沉积成型技术的原理主要包括材料熔化、沉积成型和支撑结构三个方面。
首先,材料熔化。
在熔融沉积成型技术中,热塑性材料通常以线状或丝状的形式供给给3D打印机。
在打印过程中,这些材料被送入加热喷嘴,经加热后达到熔化状态。
熔化的温度通常高于材料的玻璃转变温度,使得材料具有足够的流动性,可以被精确地沉积到工作台上。
其次,沉积成型。
熔融的材料通过喷嘴被一层一层地沉积到工作台上,根据预先设计的模型形成所需的零件或构件。
打印头沿着X、Y、Z三个轴向移动,控制喷嘴的运动轨迹,从而实现对零件形状的精确控制。
通过不断地堆积和固化,最终形成完整的零件。
最后,支撑结构。
在打印过程中,由于零件的上层需要支撑,因此需要设置支撑结构。
支撑结构通常由与零件材料相同或类似的材料构成,它们会在打印完成后被去除,以保证零件表面的平整度和精度。
总的来说,熔融沉积成型技术的原理是利用热塑性材料的熔化特性,通过控制喷嘴的运动轨迹和温度,将材料一层一层地沉积到工作台上,最终形成所需的零件或构件。
这种技术在制造业中具有重要的应用前景,可以为产品设计与制造带来革命性的变革。
熔融沉积成型制造工艺特点熔融沉积成型(Fused Deposition Modeling,简称FDM)是一种广泛应用于快速成型领域的制造工艺。
它以熔融的塑料材料为原料,通过控制挤出机将材料逐层堆积,最终构建出三维实体模型。
这种制造工艺具有以下特点。
熔融沉积成型工艺具有较高的制造效率。
它采用了一种连续的层叠方式,可以快速地构建出复杂的三维结构。
对于较小的零件,制造时间可能只需要几个小时,而对于较大的零件,也只需要几天的时间。
相比于传统的加工方法,熔融沉积成型可以大大缩短制造周期,提高生产效率。
熔融沉积成型工艺具有较低的制造成本。
传统的制造方法通常需要制造模具,而模具的制造成本较高。
而熔融沉积成型不需要制造模具,只需要使用计算机辅助设计软件将产品的三维模型转换为切片信息,并通过控制挤出机实现材料的逐层堆积。
这种无模具的制造方式不仅可以节约制造成本,还可以避免模具加工过程中可能出现的误差和问题。
熔融沉积成型工艺具有较高的制造精度。
在熔融沉积成型过程中,挤出机会根据切片信息将材料逐层堆积,因此可以实现较高的制造精度。
同时,通过调整挤出机的工作参数以及优化切片信息,还可以进一步提高制造精度。
这种精度可以满足大多数产品的制造要求,尤其适用于制造具有复杂形状或细节的产品。
熔融沉积成型工艺具有较好的材料适应性。
在熔融沉积成型过程中,可以使用多种类型的塑料材料作为原料,如ABS、聚碳酸酯、尼龙等。
不同种类的塑料材料具有不同的特性,可以满足不同产品的要求。
熔融沉积成型工艺具有较好的环境友好性。
相比于传统的加工方法,熔融沉积成型不需要使用大量的切削液和冷却液,减少了对环境的污染。
此外,熔融沉积成型工艺还可以回收利用材料废料,减少了材料的浪费。
这种环境友好性符合现代制造工艺的发展趋势,也符合社会对可持续发展的要求。
总结起来,熔融沉积成型工艺具有高效、低成本、高精度、材料适应性强和环境友好等特点。
它的出现和应用使得快速成型技术更加普及和便捷,为产品设计和制造带来了许多便利。
试述熔融沉积3d打印加工的工艺原理和优缺点熔融沉积3D打印加工是一种常见的3D打印技术,其工艺原理是通过将材料线性放置并在每个层次上加热熔化,以构建3D模型。
这种技术的优点在于它可以使用多种材料,且制造速度快。
缺点是打印出的模型表面可能不够光滑,且需要在设计前考虑支撑结构以支持打印过程中的悬空部分。
该技术的工艺流程如下:首先,设计师需要使用CAD软件创建3D模型,并将其转换为可读取的文件格式。
然后,使用3D打印机将文件读取到其内存中。
接下来,打印机会将材料线性放置在打印平台上,并使用热源将其加热到熔化点。
一旦材料熔化,打印机会按照预设的路径将其放置在正确的位置。
一旦一层完成,打印机会移动到下一层并重复该过程,直到完整的3D模型完成。
熔融沉积3D打印加工技术的优点之一是可以使用多种材料进行打印。
这包括塑料、金属和陶瓷等。
因此,该技术非常适用于需要使用不同材料的应用程序。
此外,该技术的制造速度也很快。
由于它是逐层构建的,因此可以在几小时内制造出复杂的3D模型。
然而,该技术也存在一些缺点。
首先,由于该技术是逐层构建的,因此可能会出现表面不够光滑的问题。
这可能需要进行后续处理以获得所需的外观。
其次,由于该技术是逐层构建的,因此需要在设计时考虑支撑结构以支持打印过程中的悬空部分。
这可能会增加设计和制造成本。
总之,熔融沉积3D打印加工技术是一种常见的3D打印技术,其工艺原理是通过将材料线性放置并在每个层次上加热熔化,以构建3D模型。
该技术的优点在于可以使用多种材料,并且制造速度快。
缺点是可能会出现表面不够光滑的问题,并且需要在设计时考虑支撑结构以支持打印过程中的悬空部分。
熔融沉积快速成型工艺技术熔融沉积快速成型工艺技术(Rapid Prototyping by Additive Manufacturing)是一种新兴的制造技术,它可以通过将材料一层层地堆积在一起来创建复杂的三维物体。
这种技术已经在许多领域得到了广泛的应用,包括航空航天、医疗、汽车制造等。
熔融沉积快速成型工艺技术的出现,使得制造业在生产效率、成本控制和产品设计方面都取得了重大进展。
熔融沉积快速成型工艺技术的原理是利用计算机辅助设计(CAD)软件将三维模型分解成许多薄层,然后通过一种称为“熔融沉积”的方法,将材料一层层地堆积起来。
这种堆积过程通常是通过喷嘴或激光熔化材料来实现的。
在堆积过程中,每一层的形状都是根据前一层的形状来确定的,这样就可以逐层地构建出复杂的三维结构。
最终,堆积完成后,就可以得到一个与设计模型完全相同的实体物体。
熔融沉积快速成型工艺技术的优势之一是可以快速制造出复杂的结构。
传统的制造方法通常需要制作模具或者进行多道工序的加工,而熔融沉积快速成型工艺技术可以直接根据设计模型来制造物体,大大节省了制造时间。
此外,由于是通过堆积材料来制造物体,因此可以实现对材料的高效利用,减少了浪费。
另外,熔融沉积快速成型工艺技术还可以实现个性化定制,因为可以根据客户的需求来制造不同的产品。
在航空航天领域,熔融沉积快速成型工艺技术已经得到了广泛的应用。
航空航天零部件通常需要具有复杂的结构和高强度,而传统的制造方法往往难以满足这些要求。
熔融沉积快速成型工艺技术可以根据设计模型直接制造出具有复杂结构的零部件,而且可以使用各种先进的材料,如钛合金、高温合金等,来满足航空航天领域对材料性能的要求。
此外,熔融沉积快速成型工艺技术还可以实现对零部件的修复和更新,大大延长了零部件的使用寿命。
在医疗领域,熔融沉积快速成型工艺技术也发挥着重要作用。
医疗器械和假体通常需要根据患者的个体特征来定制,而传统的制造方法往往难以满足这些要求。
熔融沉积造型的特点及应用
熔融沉积造型是一种制造复杂形状部件的金属成型工艺,它将熔化的金属通过喷嘴以高速喷出的方式沉积在零件上,在多次喷涂和冷却过程中逐渐形成所需形状。
其主要特点包括以下几个方面:
一、高度可塑性:熔融沉积造型技术可以制造复杂的外形和尺寸精度较高的零件,特别是大型和壁薄结构、内腔复杂和无法采用传统加工工艺加工的零件,如发动机进气道、涡轮叶片、化工设备、火箭发动机喷嘴等。
二、高效率:相比于其他传统材料加工工艺,熔融沉积造型加工速度快,一次沉积可以在几十秒内完成,而且可以同时制造多个零件,大大提高了生产效率。
三、高适应性:熔融沉积造型技术适用于多种金属,包括钢、铝、钛、铜、镍、钨等,而且可以通过控制沉积参数来实现对材料组织和性能的调节,进一步满足用户的需求。
四、环保节能:熔融沉积造型过程中不需要额外的材料和能量输入,所以具有很高的能源利用率和减少废料产生的优点。
熔融沉积造型技术在航空、航天、汽车、化工、医疗、造船等众多领域得到了广泛应用。
例如,飞机发动机涡轮叶片,燃气轮机叶片,是熔融沉积造型的重要应用领域。
由于熔融沉积造型具有高度的可控性和适应性,可以精确地控制金属沉
积在基体上的位置,可以制造各种尺寸、形状和材料的零件,符合航空航天、汽车等领域对材料力学性能的严格要求。
总之,熔融沉积造型技术是一种极具潜力的先进制造技术,可以有效地解决许多零件加工上的制造难题,具有广泛的应用前景。
熔融沉积成型技术的原理1. 引言嘿,朋友们!今天我们来聊聊一种非常酷炫的技术——熔融沉积成型技术,听起来像是科幻电影里的高科技吧?但其实,它就在我们生活的身边,帮助我们实现各种梦幻的设计。
这个技术不仅让制造过程变得简单,还能让我们的创意瞬间变成现实。
你有没有想过,为什么能轻松地打印出一个小玩具,甚至是复杂的部件?这就要归功于熔融沉积成型(FDM)了!所以,接下来就让我们深入这个神奇的世界吧。
2. 熔融沉积成型技术的基础2.1 原理是什么?好吧,简单来说,熔融沉积成型就是将热塑性材料加热到融化的状态,然后通过喷嘴逐层挤出,形成我们想要的形状。
想象一下,像在玩泥巴,先把泥巴捏成一团,然后慢慢把它堆成你想要的东西。
这种技术的核心就是温度控制和材料的熔化,这样才能让它们在冷却后保持固定的形状。
2.2 材料的选择说到材料,那可真是五花八门。
你可以用PLA(聚乳酸)这种环保材料,打印出花瓶、玩具,甚至是小家具。
它的好处就是无毒,适合家庭使用。
而ABS(丙烯腈丁二烯苯乙烯)则更适合需要耐热的场合,比如汽车零部件。
就像买衣服一样,不同的场合穿不同的材料,选择对了,事半功倍!3. 打印过程3.1 准备工作在开始打印之前,有几步是必须得做的。
首先,你需要设计一个模型,这可以用软件像Tinkercad、Fusion 360来完成,真的超级简单。
设计好之后,将文件转换成3D打印机能识别的格式,这就像把外语翻译成母语,让机器听懂你的指令。
然后,选择好材料,装载进打印机,就等着它大展身手了。
3.2 实际操作接下来就是最激动人心的部分了!打印机开始工作,喷嘴发出“滋滋”的声音,慢慢地将熔化的塑料层层叠加。
这时候,你可能会想,哇,这么神奇的过程,真是让人目瞪口呆!每一层材料就像是画画,上一层下去,再加一层,最后就能看到你设计的物品慢慢成形。
等到打印结束,打开盖子,取出作品,那种成就感简直无法用言语形容,心里暗想:“这就是我的杰作!”4. 总结总的来说,熔融沉积成型技术真的是一门让人眼前一亮的艺术,兼具科技感与创造力。