北航数理统计第二次大作业-数据分析模板
- 格式:pdf
- 大小:673.83 KB
- 文档页数:16
应用数理统计作业二学号:姓名:电话:二〇一四年十二月对NBA球队的聚类分析和判别分析摘要:NBA联盟作为篮球的最高殿堂深受广大球迷的喜爱,联盟的30支球队大家也耳熟能详,本文选取NBA联盟30支球队2013-2014常规赛赛季场均数据。
利用spss软件通过聚类分析对27个地区进行实力类型分类,并利用判断分析对其余3支球队对分类结果进行验证。
可以看出各球队实力类型与赛季实际结果相吻合。
关键词:聚类分析,判别分析,NBA目录1. 引言 (4)2、相关统计基础理论 (5)2.1、聚类分析 (5)2.2,判别分析 (6)3.聚类分析 (7)3.1数据文件 (7)3.2聚类分析过程 (9)3.3 聚类结果分析 (11)4、判别分析 (12)4.1 判别分析过程 (12)4.2判别检验 (17)5、结论 (20)参考文献 (21)致谢 (22)1. 引言1896年,美国第一个篮球组织"全国篮球联盟(简称NBL)"成立,但当时篮球规则还不完善,组织机构也不健全,经过几个赛季后,该组织就名存实亡了。
1946年4月6日,由美国波士顿花园老板沃尔特.阿.布朗发起成立了“美国篮球协会”(简称BAA)。
1949年在布朗的努力下,美国两大篮球组织BAA和NBL合并为“全国篮球协会”(简称NBA)。
NBA季前赛是 NBA各支队伍的热身赛,因为在每个赛季结束后,每支球队在阵容上都有相当大的变化,为了让各队磨合阵容,熟悉各自球队的打法,确定各队新赛季的比赛阵容、同时也能增进队员、教练员之间的沟通,所以在每个赛季开始之前,NBA就举办若干场季前赛,使他们能以比较好的状态投入到漫长的常规赛的比赛当中。
为了扩大NBA在全球的影响,季前赛有约三分之一的球队在美国以外的国家举办。
从总体上看,NBA的赛程安排分为常规赛、季后赛和总决赛。
常规赛采用主客场制,季后赛和总决赛采用七场四胜制的淘汰制。
[31]NBA常规赛从每年的11月的第一个星期二开罗,到次年的4月20日左右结束。
《数值分析A》计算实习题目二姓名学号联系方式班级指导教师2012年10月一、算法设计方案整个程序主要分为四个函数,主函数,拟上三角化函数,QR分解函数以及使用双步位移求解矩阵特征值、特征向量的函数。
因为在最后一个函数中也存在QR分解,所以我没有采用参考书上把矩阵M进行的QR分解与矩阵Ak的迭代合并的方法,而是在该函数中调用了QR分解函数,这样增强了代码的复用性,减少了程序长度;但由于时间关系,对阵中方法的运算速度没有进行深入研究。
1.为了减少QR分解法应用时的迭代次数,首先对给定矩阵进行拟上三角化处理。
2.对经过拟上三角化处理的矩阵进行QR分解。
3.注意到计算特征值与特征向量的过程首先要应用前面两个函数,于是在拟上三角化矩阵的基础上对QR分解函数进行了调用。
计算过程中,没有采用goto语句,而是根据流程图采用其他循环方式完成了设计,通过对迭代过程的合并,简化了程序的循环次数,最后在计算特征向量的时候采用了列主元高斯消去法。
二、源程序代码#include<stdio.h>#include<math.h>#include<string.h>int i,j,k,l,m; //定义外部变量double d,h,b,c,t,s;double A[10][10],AA[10][10],R[10][10],Q[10][10],RQ[10][10]; double X[10][10],Y[10][10],Qt[10][10],M[10][10];double U[10],P[10],T[10],W[10],Re[10]={0},Im[10]={0}; double epsilon=1e-12;void main(){void Quasiuppertriangular(double A[][10]);void QRdecomposition(double A[][10]);void DoublestepsQR(double A[][10]);int i,j;for(i=0;i<10;i++){for(j=0;j<10;j++){A[i][j]=sin(0.5*(i+1)+0.2*(j+1));Q[i][j]=0;AA[i][j]=A[i][j];}A[i][i]=1.5*cos(2.2*(i+1));AA[i][i]=A[i][i];}Quasiuppertriangular(A); //调用拟上三角化函数printf( "\n A经过拟上三角化矩阵为:\n\n");for(i=0;i<10;i++) //输出拟上三角化矩阵{for(j=0;j<10;j++){printf("%.12e ",A[i][j]); //输出拟上三角化矩阵}printf( "\n\n");}QRdecomposition(A); //调用QR分解函数printf( " 进行QR分解后,R矩阵为:\n\n"); //输出R矩阵for(i=0;i<10;i++){for(j=0;j<10;j++){printf("%.12e ",R[i][j]);}printf( "\n\n");}printf( " Q矩阵为:\n\n"); //输出Q矩阵for(i=0;i<10;i++){for(j=0;j<10;j++){printf("%.12e ",Q[i][j]);}printf( "\n\n");}printf( " RQ矩阵为:\n\n"); //输出RQ矩阵for(i=0;i<10;i++){for(j=0;j<10;j++){printf("%.12e ",RQ[i][j]);}printf( "\n\n");}DoublestepsQR(A); //调用双步位移函数printf( "\n\n 特征值实部依次为:\n\n"); //输出特征值实部for(j=0;j<10;j++){printf("%.12e ",Re[j]);}printf("\n\n 特征值虚部依次为:\n\n "); //输出特征值虚部for(j=0;j<10;j++){printf("%.12e ",Im[j]);}//按行输出特征向量printf( "\n\n 按行输出实特征根相应特征向量为:\n\n");for(i=0;i<10;i++){if(i==1||i==2||i==5||i==6){continue;}for(j=0;j<10;j++){printf("%.12e ",X[i][j]);}printf( "\n\n");}getchar();}//拟上三角化函数void Quasiuppertriangular(double A[][10]) {for(j=0;j<8;j++){for(i=0;i<10;i++){U[i]=0;P[i]=0;T[i]=0;W[i]=0;}m=0;for(i=j+2;i<10;i++){if(A[i][j]!=0){m=m+1;}}if(m==0){continue;}d=0;for(i=j+1;i<10;i++){d=d+pow(A[i][j],2);}d=sqrt(d);c=-d;if(A[j+1][j]<=0){c=d;}h=c*(c-A[j+1][j]);U[j+1]=A[j+1][j]-c;for(i=j+2;i<10;i++){U[i]=A[i][j];}for(i=0;i<10;i++){for(k=0;k<10;k++){P[i]=P[i]+U[k]*A[k][i];}P[i]=P[i]/h;}t=0;for(i=0;i<10;i++){for(k=0;k<10;k++){T[i]=T[i]+U[k]*A[i][k];}T[i]=T[i]/h;t=t+P[i]*U[i];}t=t/h;for(i=0;i<10;i++){W[i]=T[i]-t*U[i];for(k=0;k<10;k++){A[i][k]=A[i][k]-W[i]*U[k]-U[i]*P[k];if(abs(A[i][k])<1e-12){A[i][k]=0;}}}}}//QR分解函数void QRdecomposition(double A[][10]) {for(i=0;i<10;i++){for(j=0;j<10;j++){RQ[i][j]=0;Q[i][j]=0;R[i][j]=A[i][j];}Q[i][i]=1;}for(j=0;j<9;j++){for(i=0;i<10;i++){U[i]=0;P[i]=0;W[i]=0;}m=0;for(i=j+1;i<10;i++){if(R[i][j]!=0){m=m+1;}}if(m==0){continue;}d=0;for(i=j;i<10;i++){d=d+pow(R[i][j],2);}d=sqrt(d);c=-d;if(R[j][j]<=0){c=d;}h=c*(c-R[j][j]);U[j]=R[j][j]-c;for(i=j+1;i<10;i++){U[i]=R[i][j];}for(i=0;i<10;i++){for(k=0;k<10;k++){W[i]=W[i]+U[k]*Q[i][k];}}for(i=0;i<10;i++){for(k=0;k<10;k++){Q[i][k]=Q[i][k]-((W[i]*U[k])/h);}}for(i=0;i<10;i++){for(k=0;k<10;k++){P[i]=P[i]+U[k]*R[k][i];}P[i]=P[i]/h;}for(i=0;i<10;i++){for(k=0;k<10;k++){R[i][k]=R[i][k]-U[i]*P[k];if(abs(R[i][k])<epsilon){R[i][k]=0;}}}}for(i=0;i<10;i++) //计算A(n+1)=RQ {for(j=0;j<10;j++){for(k=0;k<10;k++){RQ[i][j]=RQ[i][j]+R[i][k]*Q[k][j];}}}}//双步位移法计算特征值特征向量函数void DoublestepsQR(double A[][10]){int L=1000,m=9; //定义最大循环次数for(i=0;i<L;i++){for(;m>-1;){if(abs(A[m][m-1])<=epsilon){Re[m]=A[m][m];m=m-1; //降阶if(m==0) //4{Re[0]=A[0][0];break;}if(m==-1){break;}if(m>1){continue;}}b=-A[m][m]-A[m-1][m-1]; //5c=A[m][m]*A[m-1][m-1]-A[m][m-1]*A[m-1][m];if(m==1) //6{if((b*b-4*c)>=0){Re[m]=(-b+sqrt(b*b-4*c))/2;Re[m-1]=(-b-sqrt(b*b-4*c))/2;}if((b*b-4*c)<0){Re[m]=-b/2; Im[m]=sqrt(4*c-b*b)/2;Re[m-1]=-b/2; Im[m-1]=-sqrt(4*c-b*b)/2;}m=m-1; //循环出口条件break;}if((m>1)&&(abs(A[m-1][m-2])>epsilon)) //8{if(i==L-1){printf("No results! \n");m=0; //循环出口条件break;}break;}if((m>1)&&(abs(A[m-1][m-2])<=epsilon)) //7 {if((b*b-4*c)>0){Re[m]=(-b+sqrt(b*b-4*c))/2;Re[m-1]=(-b-sqrt(b*b-4*c))/2;}if((b*b-4*c)<0){Re[m]=-b/2; Im[m]=sqrt(4*c-b*b)/2;Re[m-1]=-b/2; Im[m-1]=-sqrt(4*c-b*b)/2;}m=m-2; //降阶if(m>0){continue;}if(m==0){Re[0]=A[0][0];break;}}}if(m<=0){break;}s=A[m-1][m-1]+A[m][m]; //9t=A[m][m]*A[m-1][m-1]-A[m][m-1]*A[m-1][m];for(j=0;j<10;j++){for(k=0;k<10;k++){Qt[j][k]=0;Q[j][k]=0;M[j][k]=0;X[j][k]=0;Y[j][k]=0;}}for(j=0;j<m+1;j++){for(k=0;k<m+1;k++){for(l=0;l<m+1;l++){M[j][k]=M[j][k]+A[j][l]*A[l][k];}}}for(j=0;j<m+1;j++){for(k=0;k<m+1;k++){M[j][k]=M[j][k]-s*A[j][k];}M[j][j]=M[j][j]+t;}//调用QR分解函数对M矩阵进行分解并传递参数矩阵QQRdecomposition(M);for(j=0;j<10;j++){for(k=0;k<10;k++){Qt[j][k]=Q[k][j];}}for(j=0;j<m+1;j++){for(k=0;k<m+1;k++){for(l=0;l<m+1;l++){X[j][k]=X[j][k]+Qt[j][l]*A[l][k];}}}for(j=0;j<m+1;j++){for(k=0;k<m+1;k++){for(l=0;l<m+1;l++){Y[j][k]=Y[j][k]+X[j][l]*Q[l][k];}}}for(j=0;j<10;j++){{A[j][k]=Y[j][k];}}}//应用列主元高斯消元法计算实部特征向量for(l=0;l<10;l++){if(l==1||l==2||l==5||l==6){continue;}for(k=0;k<10;k++){for(m=0;m<10;m++){A[k][m]=AA[k][m];}A[k][k]=A[k][k]-Re[l];}for(j=0;j<9;j++){m=j;for(i=j+1;i<10;i++){if(abs(A[i][j])>abs(A[m][j])){m=i;}}{Y[j][k]=A[j][k];A[j][k]=A[m][k];A[m][k]=Y[j][k];}for(k=j+1;k<10;k++){b=A[k][j]/A[j][j];for(i=j;i<10;i++){A[k][i]=A[k][i]-A[j][i]*b;}}}X[l][9]=1;for(i=8;i>=0;i--){c=0;for(j=i+1;j<10;j++){c=c+A[i][j]*X[l][j];}X[l][i]=-c/A[i][i];}}}三、程序输出结果1819。
应用数理统计聚类分析与判别分析(第二次作业)学院:姓名:学号:2015年12月目录我国部分城市经济发展水平的聚类分析和判别分析................................. - 1 - 摘要:................................................................... - 1 -1. 引言 ................................................................ - 1 -2. 相关统计基础理论 .................................................... - 1 -2.1 聚类分析......................................................... - 1 -2.2 判别分析......................................................... - 2 -3. 模型建立 ............................................................ - 3 -3.1 设置变量......................................................... - 3 -3.2 数据收集和整理................................................... - 3 -4. 数据结果及分析 ...................................................... - 5 -4.1 聚类分析......................................................... - 5 -4.2 判别分析......................................................... - 7 -5. 结论 ............................................................... - 11 -参考文献................................................................ - 12 -我国部分城市经济发展水平的聚类分析和判别分析摘要:本文基于《中国统计年鉴》(2014年版)统计数据,统计全国各省市居民消费情况,包括各地区农村居民人均纯收入、农村居民人均现金消费、城镇居民人均可支配收入、城镇居民人均现金消费情况共4个指标,利用统计软件SPSS综合考虑各指标,对所选地区进行K-Means 聚类分析,利用Fisher 线性判别待判地区类型,进一步验证所建模型的有效性。
北航数值分析全部三次大作业第一次大作业是关于解线性方程组的数值方法。
我们被要求实现各种常用的线性方程组求解算法,例如高斯消元法、LU分解法和迭代法等。
我首先学习了这些算法的原理和实现方法,并借助Python编程语言编写了这些算法的代码。
在实验中,我们使用了不同规模和条件的线性方程组进行测试,并比较了不同算法的性能和精度。
通过这个作业,我深入了解了线性方程组求解的原理和方法,提高了我的编程和数值计算能力。
第二次大作业是关于数值积分的方法。
数值积分是数值分析中的重要内容,它可以用于计算曲线的长度、函数的面积以及求解微分方程等问题。
在这个作业中,我们需要实现不同的数值积分算法,例如矩形法、梯形法和辛普森法等。
我学习了这些算法的原理和实现方法,并使用Python编写了它们的代码。
在实验中,我们计算了不同函数的积分值,并对比了不同算法的精度和效率。
通过这个作业,我深入了解了数值积分的原理和方法,提高了我的编程和数学建模能力。
第三次大作业是关于常微分方程的数值解法。
常微分方程是数值分析中的核心内容之一,它可以用于描述众多物理、化学和生物现象。
在这个作业中,我们需要实现不同的常微分方程求解算法,例如欧拉法、龙格-库塔法和Adams法等。
我学习了这些算法的原理和实现方法,并使用Python编写了它们的代码。
在实验中,我们解决了一些具体的常微分方程问题,并比较了不同算法的精度和效率。
通过这个作业,我深入了解了常微分方程的原理和方法,提高了我的编程和问题求解能力。
总的来说,北航数值分析课程的三次大作业非常有挑战性,但也非常有意义。
通过这些作业,我在数值计算和编程方面得到了很大的提升,也更加深入地了解了数值分析的理论和方法。
虽然这些作业需要大量的时间和精力,但我相信这些努力将会对我未来的学习和工作产生积极的影响。
北航数值分析大作业第二题-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII数值分析第二次大作业史立峰SY1505327一、 方案(1)利用循环结构将sin(0.50.2)()1.5cos( 1.2)(){i j i j ij i j i j a +≠+==(i,j=1,2,……,10)进行赋值,得到需要变换的矩阵A ;(2)然后,对矩阵A 利用Householder 矩阵进行相似变换,把A 化为上三角矩阵A (n-1)。
对A 拟上三角化,得到拟上三角矩阵A (n-1),具体算法如下: 记A(1)=A ,并记A(r)的第r 列至第n 列的元素为()n r r j n i a r ij,,1,;,,2,1)( +==。
对于2,,2,1-=n r 执行 1. 若()n r r i a r ir,,3,2)( ++=全为零,则令A(r+1) =A(r),转5;否则转2。
2. 计算()∑+==nr i r irr a d 12)(()()r r r r r r r r r r d c a d a c ==-=++则取,0sgn )(,1)(,1若 )(,12r rr r r r a c c h +-=3. 令()nTr nrr r r r r r r r R a a c a u ∈-=++)()(,2)(,1,,,,0,,0 。
4. 计算r r T r r h u A p /)(= r r r r h u A q /)(=r r Tr r h u p t /=r r r r u t q -=ωT rr T r r r r p u u A A --=+ω)()1(5. 继续。
(3)使用带双步位移的QR 方法计算矩阵A (n-1)的全部特征值,也是A 的全部特征值,具体算法如下:1. 给定精度水平0>ε和迭代最大次数L 。
2. 记n n ij n a A A ⨯-==][)1()1()1(,令n m k ==,1。
数理统计大作业(二)全国各省发展程度的聚类分析及判别分析指导教师院系名称材料科学与工程院学号学生姓名2015 年 12 月21 日目录全国各省发展程度的聚类分析及判别分析 (1)摘要: (1)引言 (1)1实验方案 (2)1.1数据统计 (2)1.2聚类分析 (3)1.3判别分析 (4)2结果分析与讨论 (5)2.1聚类分析结果 (5)2.2聚类分析结果分析: (8)2.3判别分析结果 (9)2.4 Fisher判别结果分析: (11)参考文献: (16)全国各省发展程度的聚类分析及判别分析摘要:利用SPSS软件对全国31个省、直辖市、自治区(浙江、安徽、甘肃除外)的主要经济指标进行多种聚类分析,分析选择最佳聚类类数,并对浙江、湖南、甘肃进行类型判别分析。
通过这两个方法对全国各省进行发展分类。
本文选取了7项社会发展指标作为决定发展程度的影响因素,其中经济因素为主要因素,同时评估城镇化率和人口素质因素。
各项数据均来自2014年国家统计年鉴。
分析结果表明:北京市和上海市和天津市为同一类;江苏省和山东省和广东省为同一类型;河北、湖北、河南、湖南、四川、辽宁为同一类;其余的为另一类。
关键词:聚类分析、判别分析、发展引言聚类分析是根据研究对象的特征对研究对象进行分类的多元统计分析技术的总称。
它直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类。
系统聚类分析又称集群分析,是聚类分析中应用最广的一种方法,它根据样本的多指标(变量)、多个观察数据,定量地确定样品、指标之间存在的相似性或亲疏关系,并据此连结这些样品或指标,归成大小类群,构成分类树状图或冰柱图。
判别分析是根据多种因素(指标)对事物的影响来实现对事物的分类,从而对事物进行判别分类的统计方法。
判别分析适用于已经掌握了历史上分类的每一个类别的若干样品,希望根据这些历史的经验(样品),总结出分类的规律性(判别函数)来指导未来的分类。
数据分析作业数据分析作业是数据分析课程中的一项重要任务,通过对给定的数据进行分析和解读,帮助学生提高数据分析能力和对实际问题的理解能力。
本篇文档将以一个具体的数据分析作业为例,介绍数据分析的基本流程和方法。
一、项目背景本次数据分析作业的背景是一个电商平台的销售数据分析。
该电商平台每天有大量用户在上面购买各种商品,平台方希望通过对这些销售数据的分析,了解用户的购买行为、商品的销售情况以及运营策略的有效性,以便为未来的决策提供参考。
二、数据收集与清洗在进行数据分析之前,首先需要收集和清洗原始数据。
本次数据分析作业使用的数据集包含了一段时间内的用户购买记录、商品信息、用户信息等。
数据集以CSV格式存储,包含多个字段,如用户ID、商品ID、购买数量、购买时间等。
在进行数据清洗时,需要检查数据的完整性和准确性,删除重复数据和异常值,并对缺失值进行处理。
三、数据探索与可视化分析数据清洗完成后,接下来可以进行数据探索和可视化分析。
数据探索的目的是通过使用统计学和可视化方法,对数据的特征和分布进行了解。
通过对用户购买记录和商品销售情况的分析,可以探索以下问题:1.用户消费行为的特征:如用户购买次数、购买金额分布、用户活跃度等。
2.商品销售情况的分析:如畅销商品排名、商品销售额分布、商品的销售趋势等。
3.不同时间维度的分析:如不同时间段内销售情况的变化、季节性特征等。
4.用户购买行为的特征与商品属性的关联:如用户购买的商品类别分布、商品属性对用户购买行为的影响等。
在数据探索的过程中,可以使用各种统计学和可视化工具,如直方图、散点图、箱型图、折线图等。
通过这些分析和可视化结果,可以发现数据的规律和趋势,为后续建模和预测做准备。
四、数据建模与预测在数据探索的基础上,可以进行数据建模和预测。
数据建模是指使用数学或统计的方法,通过对已有数据进行拟合和预测,得到对未来数据的预测结果。
常见的数据建模方法包括回归分析、时间序列分析、聚类分析、关联规则挖掘等。
数值分析大作业(二)学院名称宇航学院专业名称航空宇航推进理论与工程学生姓名段毓学号SY16153062016年11月5日1 算法设计方案首先将矩阵A 进行拟上三角化,把矩阵A 进行QR 分解,计算出RQ 。
要得出矩阵A 的全部特征值,首先对A 进行QR 的双步位移得出特征值。
最后,采用列主元的高斯消元法求解特征向量。
1.1 A 的拟上三角化因为对矩阵进行QR 分解并不改变矩阵的结构,因此在进行QR 分解前对矩阵A 进行拟上三角化可以大大减少计算机的计算量,提高程序的运行效率。
具体算法如下所示,记A A =)1(,并记)(r A 的第r 列至第n 列的元素为()n r r j n i a r ij,,1,;,,2,1)(ΛΛ+==。
对于2,,2,1-=n r Λ执行 若()n r r i a r ir,,3,2)(Λ++=全为零,则令)()1(r r A A =+,转5;否则转2。
计算()∑+==nri r ir r a d 12)(()()r r r r r r r r r r d c a d a c ==-=++则取,0sgn )(,1)(,1若)(,12r rr r r r a c c h +-=令()nTr nrr r r r r r r r R a a c a u ∈-=++)()(,2)(,1,,,,0,,0ΛΛ。
计算r r T r r h u A p /)(=r r rr r Tr r h u p t /=r r r r u t q -=ωT rr T r r r r p u u A A --=+ω)()1(继续。
1.2 A 的QR 分解具体算法如下所示,记)1(1-=n A A ,并记[]nn r ij r a A ⨯=)(,令I Q =1 对于1,,2,1-=n r Λ执行 1.若()n r r i a r ir ,,3,1)(Λ++=全为零,则令r r Q Q =+1r r A A =+1,转5;否则转2。
一、算法设计方案:按题目要求,本程序运用带双步位移的QR方法求解给定矩阵的特征值,并对每一实特征值,求解其相应的特征向量。
总体思路:1)初始化矩阵首先需要将需要求解的矩阵输入程序。
为了防止矩阵在后面的计算中被破坏保存A[][]。
2)对给定的矩阵进行拟上三角化为了尽量减少计算量,提高程序的运行效率,在对矩阵进行QR分解之前,先进行拟上三角化。
由于矩阵的QR 分解不改变矩阵的结构,所以具有拟上三角形状的矩阵的QR分解可以减少大量的计算量。
这里用函数void QuasiTriangularization()来实现,函数形参为double型N维方阵double a[][N]。
3)对拟上三角化后的矩阵进行QR分解对拟上三角化的矩阵进行QR分解会大大减小计算量。
用子程序void QR_decomposition()来实现,将Q、R设为形参,然后将计算出来的结果传入Q和R,然后求出RQ乘积。
4)对拟上三角化后的矩阵进行带双步位移的QR分解为了加速收敛,对QR分解引入双步位移,适当选取位移量,可以避免进行复数运算。
为了进一步减少计算量,在每次进行QR分解之前,先判断是否可以直接得到矩阵的一个特征值或者通过简单的运算得到矩阵的一对特征值。
若可以,则得到特征值,同时对矩阵进行降阶处理;若不可以,则进行QR分解。
这里用函数intTwoStepDisplacement_QR()来实现。
这是用来存储计算得到的特征值的二维数组。
考虑到特征值可能为复数,因此将所有特征值均当成复数处理。
此函数中,QR分解部分用子函数void QR_decompositionMk()实现。
这里形参有三个,分别用来传递引入双步位移后的Mk阵,A矩阵,以及当前目标矩阵的维数m。
5)计算特征向量得到特征值后,计算实特征值相应的特征向量。
这里判断所得特征值的虚数部分是否为零。
求实特征值的特征向量采用求解相应的方程组((A-λI)x=0)的方法。
因此先初始化矩阵Array,计算(A-λI),再求解方程组。
数理统计第二次大作业材料行业股票的聚类分析与判别分析2015年12月26日材料行业股票的聚类分析与判别分析摘要1 引言2 数据采集及标准化处理2.1 数据采集本文选取的数据来自大智慧软件的股票基本资料分析数据,从材料行业的股票中选取了30支股票2015年1月至9月的7项财务指标作为分类的自变量,分别是每股收益(单位:元)、净资产收益率(单位:%)、每股经营现金流(单位:元)、主营业务收入同比增长率(单位:%)、净利润同比增长率(单位:%)、流通股本(单位:万股)、每股净资产(单位:元)。
各变量的符号说明见表2.1,整理后的数据如表2.2。
表2.1 各变量的符号说明自变量符号每股收益(单位:元)X1净资产收益率(单位:%)X2每股经营现金流(单位:元)X3主营业务收入同比增长率(单位:%)X4净利润同比增长率(单位:%)X5流通股本(单位:万股)X6每股净资产(单位:元)X7表2.2 30支股票的财务指标股票代码X1 X2 X3 X4 X5 X6 X7 武钢股份600005-0.0990-2.81-0.0237-35.21-200.231009377.98 3.4444宝钢股份6000190.1400 1.980.9351-14.90-55.011642427.88 6.9197山东钢铁600022-0.11650.060.0938-20.5421.76643629.58 1.8734北方稀土6001110.0830 3.640.652218.33-24.02221920.48 2.2856杭钢股份600126-0.4900-13.190.4184-36.59-8191.0283893.88 3.4497抚顺特钢6003990.219310.080.1703-14.26714.18112962.28 1.4667盛和资源6003920.0247 1.84-0.2141-5.96-19.3739150.00 1.2796宁夏建材6004490.04000.510.3795-22.15-92.3447818.108.7321宝钛股份600456-0.2090-2.53-0.3313-14.81-6070.2043026.578.1497山东药玻6005290.4404 5.26 1.2013 6.5016.7825738.018.5230国睿科技6005620.410011.53-0.2949 3.3018.9416817.86 3.6765海螺水泥600585 1.15169.05 1.1960-13.06-25.33399970.2612.9100华建集团6006290.224012.75-0.57877.90-6.4034799.98 1.8421福耀玻璃6006600.790014.250.9015 3.6017.27200298.63 6.2419宁波富邦600768-0.2200-35.02-0.5129 3.1217.8813374.720.5188马钢股份600808-0.3344-11.710.3939-21.85-689.22596775.12 2.6854亚泰集团6008810.02000.600.1400-23.63-68.16189473.21 4.5127博闻科技6008830.503516.71-0.1010-10.992612.8023608.80 3.0126新疆众和6008880.0523 1.04-0.910662.64162.0464122.59 5.0385西部黄金6010690.0969 3.940.115115.5125.5712600.00 2.4965中国铝业601600-0.0700-2.920.2066-9.0882.79958052.19 2.3811明泰铝业6016770.2688 4.66-1.09040.8227.8640770.247.4850金隅股份6019920.1989 3.390.3310-10.05-39.01311140.26 6.7772松发股份6032680.35007.00-0.3195-4.43-9.622200.00 6.0244方大集团0000550.0950 5.66-0.480939.2920.6742017.94 1.6961铜陵有色0006300.0200 1.220.6132 3.23-30.74956045.21 1.5443鞍钢股份000898-0.1230-1.870.7067-27.32-196.21614893.17 6.4932中钢国际0009280.572714.45-0.4048-14.33410.2441286.57 4.2449中材科技0020800.684610.27 1.219547.69282.1740000.00 6.8936中南重工0024450.1100 4.300.340518.8445.0950155.00 2.70302.2 数据的标准化处理由于不同的变量之间存在着较大的数量级的差别,因此要对数据变量进行标准化处理。
1.??社会再生产个环节中,处于中心环节的是(A )。
A. 生产B. 分配C. 流通D. 使用??????满分:4??分2.??某主管局将下属企业先按轻、重工业分类,再按企业规模分组,这样的分组属于(B )。
A. 简单分组B. 复合分组C. 分析分组D. 结构分组??????满分:4??分3.??下列属于时点数列的是(B )。
A. 某厂各年工业产值B. 某厂各年年初职工人数C. 某厂各年劳动生产率D. 某厂各年生产工人占全部职工的比重??????满分:4??分4.??统计报表制度采用的是( B)为主要特征的调查方法。
A. 随机形式B. 报告形式C. 抽样形式D. 审核形式??????满分:4??分5.??随着样本单位数的无限增加,样本统计量和未知的总体指标之差的绝对值小于任意的正数,称为抽样估计的( B)。
A. 无偏性B. 一致性C. 有效性D. 充分性??????满分:4??分6.??用简单随机重复抽样方法选取样本的时候,如果要使抽样平均误差降低50%,则样本容量需要扩大到原来的( C)。
A. 2倍B. 3倍C. 4倍D. 5倍??????满分:4??分7.??对于经常性的人口总量及构成情况进行的调查,适宜采用(C )。
A. 典型调查B. 重点调查C. 抽样调查D. 普查??????满分:4??分有需要北航答案,加我,免费提供qq25304488218.??总体与总体单位不是固定不变的,是指(C )。
A. 随着客观情况的发展,各个总体所包含的总体单位数也在变动B. 随着人们对客观认识的不同,对总体与总体单位的认识也是有差异的C. 随着统计研究目的与任务的不同,总体和总体单位可以变换位置D. 客观上存在的不同总体和总体单位之间总是存在着差异??????满分:4??分9.??以下哪个是统计表( D)。
A. 列车时刻表B. 对数表C. 抽奖奖品表D. 某公司各子公司计划完成程度表??????满分:4??分10.??采用两个或两个以上标志对社会经济现象总体分组的统计方法是( B)。
“数值分析“计算实习大作业第二题——SY1415215孔维鹏一、计算说明本程序采用带双步位移的QR方法求解矩阵A的所有特征值,然后采用反幂法求解矩阵A的实特征值对应的特征向量。
在采用带双步位移的QR方法求解特征值时,对教材上所提供的具体算法作稍微的改动,以简化程序,具体算法如下所示:1、计算出A拟上三角化后的矩阵,给定精度水平和最大迭代次数L;2、记,令k=1,m=n;3、如果,则可直接计算出最后1或2个特征值,转8,否则转4;4、如果,则可得一个特征值,置m=m-1;转3,否则转5;5、如果,则可得两个特征值,置m=m-2;转3,否则转6;6、记,计算7、k=k+1,转38、A的全部特征值已经求出,停止计算。
二、计算源程序(FORTRAN)PROGRAM SY1415215_2PARAMETER (N=10)DIMENSION A(N,N),A1(N,N),A2(N,N),C(2,N),Q(N,N),R(N,N),CR(N),CM(N)!C为存储特征值的数组,1为实部,为虚部REAL(8) A,A1,A2,C,Q,R,CME=1E-12 !精度水平L=1000 !迭代最大次数OPEN(1,FILE='数值分析大作业第二题计算结果.TXT')DO I=1,NDO J=1,NIF(I==J) THENA(I,J)=*COS(I+*J)ELSEA(I,J)=SIN*I+*J)ENDIFENDDOENDDOA1=AWRITE(*,"('矩阵A为:')")WRITE(1,"('矩阵A为:')")DO I=1,NDO J=1,NWRITE(*,"(2X,,2X,\)") A(I,J)WRITE(1,"(2X,,2X,\)") A(I,J)ENDDOWRITE(*,"(' ')")WRITE(1,"(' ')")ENDDO!使用矩阵的拟上三角化的算法将矩阵A化为拟上三角矩阵A(n-1)CALL HESSENBERG(A,N)WRITE(*,"('拟上三角化后矩阵A(n-1)为:')")WRITE(1,"('拟上三角化后矩阵A(n-1)为:')")DO I=1,NDO J=1,NWRITE(*,"(2X,,2X,\)") A(I,J)WRITE(1,"(2X,,2X,\)") A(I,J)ENDDOWRITE(*,"('')")WRITE(1,"('')")ENDDO!计算对矩阵A(n-1)实行QR方法迭代结束后所得矩阵A2=ACALL QRD(A2,N,Q,R)WRITE(*,"('对矩阵A(n-1)实行QR方法迭代结束后所得Q为:')") WRITE(1,"('对矩阵A(n-1)实行QR方法迭代结束后所得Q为:')") DO I=1,NDO J=1,NWRITE(*,"(2X,,2X,\)") Q(I,J)WRITE(1,"(2X,,2X,\)") Q(I,J)ENDDOWRITE(*,"('')")WRITE(1,"('')")ENDDOWRITE(*,"('对矩阵A(n-1)实行QR方法迭代结束后所得R为:')") WRITE(1,"('对矩阵A(n-1)实行QR方法迭代结束后所得R为:')") DO I=1,NDO J=1,NWRITE(*,"(2X,,2X,\)") R(I,J)WRITE(1,"(2X,,2X,\)") R(I,J)ENDDOWRITE(*,"('')")WRITE(1,"('')")ENDDO!使用带双步位移的QR方法求解矩阵A(n-1)的特征值K=1M=NDO WHILE(K<=L)IF(M<=2) THENIF(M==1) THENC(1,M)=A(M,M)ELSE IF(M==2) THENCALL CALCUS(A,N,M,C)ENDIFEXITELSE IF(ABS(A(M,M-1))<E) THENC(1,M)=A(M,M)M=M-1ELSE IF(ABS(A(M-1,M-2))<E) THENCALL CALCUS(A,N,M,C)M=M-2ELSECALL CALM(A,M,N)ENDIFK=K+1ENDDOWRITE(*,"('矩阵A的全部特征值为:')")WRITE(1,"('矩阵A的全部特征值为:')")DO J=1,NWRITE(*,",'+',,'i')") C(1,J),C(2,J)WRITE(1,",'+',,'i')") C(1,J),C(2,J)ENDDO!使用反幂法求解A的相应于实特征值的特征向量J=1DO I=1,NIF(C(2,I)==0)THENCR(J)=C(1,I)J=J+1ENDIFENDDOJC=J-1WRITE(*,"('矩阵A的实特征值为:')")WRITE(1,"('矩阵A的实特征值为:')")DO I=1,JCWRITE(*,"") CR(I)WRITE(1,"") CR(I)ENDDODO II=1,JCDO I=1,NDO J=1,NIF(I==J) THENA(I,J)=A1(I,J)-CR(II)ELSEA(I,J)=A1(I,J)ENDIFENDDOENDDOCALL INPOVERMETHOD(A,N,CM)WRITE(*,"('与实特征值',,'对应的特征向量为:')") CR(II) WRITE(1,"('与实特征值',,'对应的特征向量为:')") CR(II) DO I=1,NWRITE(*,"(2X,,2X,\)") CM(I)WRITE(1,"(2X,,2X,\)") CM(I)ENDDOWRITE(*,"('')")WRITE(1,"('')")ENDDOCLOSE(1)END!***************拟上三角化子函数*************************!SUBROUTINE HESSENBERG(A,N)DIMENSION A(N,N),P(N),Q(N),W(N),U(N),AT(N,N)REAL(8) A,P,Q,W,U,ATREAL(8) S0,S1,S2,S3,S4,TDO L=1,N-2JUDGE=0DO I=L+2,NIF(A(I,L)/=0) THENJUDGE=1EXITENDIFENDDOIF(JUDGE==0) THENA=ACYCLEELSE IF(JUDGE/=0) THEN!计算DRS0=0DO I=L+1,NS0=S0+A(I,L)**2ENDDODR=SQRT(S0)!计算CRIF(A(L+1,L)==0)THENCR=DRELSECR=-SGN(A(L+1,L))*DRENDIF!计算HRHR=CR**2-CR*A(L+1,L)!给u赋值IF(I<L+1) THENU(I)=0ELSE IF(I==L+1) THEN U(I)=A(I,L)-CRELSE IF(I>L+1) THEN U(I)=A(I,L)ENDIFENDDO!计算PDO I=1,NDO J=1,NAT(I,J)=A(J,I)ENDDOENDDODO I=1,NS1=0DO J=1,NS1=S1+AT(I,J)*U(J)ENDDOP(I)=S1/HRENDDO!计算QDO I=1,NS2=0DO J=1,NS2=S2+A(I,J)*U(J)ENDDOQ(I)=S2/HRENDDO!计算TS3=0DO I=1,NS3=S3+P(I)*U(I)ENDDOT=S3/HR!计算WDO I=1,NW(I)=Q(I)-T*U(I)!计算A(r+1)DO I=1,NDO J=1,NA(I,J)=A(I,J)-W(I)*U(J)-U(I)*P(J)ENDDOENDDOENDIFENDDORETURNEND!***************符号函数子程序*****************!FUNCTION SGN(X)REAL(8) XIF(X>0) THENSGN=1ELSE IF(X<0) THENSGN=-1ELSE IF(X==0) THENSGN=0ENDIFEND!*********计算二阶子阵特征值s1,s2子函数*******!SUBROUTINE CALCUS(X,N,M,Y)DIMENSION X(N,N),Y(2,N)REAL(8) A,B,C,D,X,YA=1C=X(M-1,M-1)*X(M,M)-X(M-1,M)*X(M,M-1)B=-(X(M-1,M-1)+X(M,M))D=B**2-4*CIF(D>=0) THENY(1,M)=(-B-SQRT(D))/2Y(1,M-1)=(-B+SQRT(D))/2ELSEIF(D<0) THENY(1,M)=-B/2Y(1,M-1)=-B/2Y(2,M)=-SQRT(-D)/2Y(2,M-1)=-SQRT(-D)/2ENDIFRETURNEND!*********计算Mk,Ak+1子函数************!SUBROUTINE CALM(A,M,N)DIMENSION A(N,N),MK(M,M),X(M,M),QK(M,M),RK(M,M),S1(M,M),S2(M,M),QKT(M,M) REAL(8) A,MK,X,QK,RK,QKTREAL(8) S0,S1,S2DO I=1,MDO J=1,MIF(I==J) THENX(I,J)=1ELSEX(I,J)=0ENDIFENDDOENDDOS=A(M-1,M-1)+A(M,M)T=A(M-1,M-1)*A(M,M)-A(M,M-1)*A(M-1,M)DO I=1,MDO J=1,MS0=0DO K=1,MS0=S0+A(I,K)*A(K,J)ENDDOMK(I,J)=S0-S*A(I,J)+T*X(I,J)ENDDOENDDO!对Mk做QR分解CALL QRD(MK,M,QK,RK)DO I=1,MDO J=1,MQKT(I,J)=QK(J,I)ENDDOENDDODO I=1,MDO J=1,MS1(I,J)=0DO K=1,MS1(I,J)=S1(I,J)+QKT(I,K)*A(K,J)ENDDOENDDOENDDOA=S1DO I=1,MDO J=1,MS2(I,J)=0DO K=1,MS2(I,J)=S2(I,J)+A(I,K)*QK(K,J)ENDDOENDDOENDDOA=S2RETURNEND!************QR分解子程序***************!SUBROUTINE QRD(A,N,Q,R)DIMENSION A(N,N),AT(N,N),Q(N,N),U(N),W(N),P(N),R(N,N) REAL(8) A,AT,Q,U,W,P,RREAL(8) DR,S0,CR,HR,S1,S2DO I=1,NDO J=1,NIF(I==J) THENQ(I,J)=1ELSEQ(I,J)=0ENDIFENDDOENDDODO L=1,N-1JUDGE=0DO I=L+1,NIF(A(I,L)/=0) THENJUDGE=1EXITENDIF!A(I,L)中有一个不为零,判断条件为真,跳出循环转ENDDOIF(JUDGE==0) THENQ=QA=ACYCLE!A(I,L)全为零,结束本循环,进入下一个ELSE IF(JUDGE/=0) THEN!计算DRS0=0DO I=L,NS0=S0+A(I,L)**2ENDDODR=SQRT(S0)!计算CRIF(A(L,L)==0)THENCR=DRELSECR=-SGN(A(L,L))*DRENDIF!计算HRHR=CR**2-CR*A(L,L)!给u赋值DO I=1,NIF(I<L) THENU(I)=0ELSE IF(I==L) THENU(I)=A(I,L)-CRELSE IF(I>L) THENU(I)=A(I,L)ENDIFENDDO!计算WDO I=1,NS1=0DO J=1,NS1=S1+Q(I,J)*U(J)ENDDOW(I)=S1ENDDO!计算Q(r+1)DO I=1,NDO J=1,NQ(I,J)=Q(I,J)-W(I)*U(J)/HRENDDOENDDO!计算PDO I=1,NDO J=1,NAT(I,J)=A(J,I)ENDDOENDDODO I=1,NS2=0DO J=1,NS2=S2+AT(I,J)*U(J)ENDDOP(I)=S2/HRENDDO!计算A(r+1)DO I=1,NDO J=1,NA(I,J)=A(I,J)-U(I)*P(J)ENDDOENDDOENDIFENDDOQ=QR=ARETURNEND!*************运用反幂法求解矩阵A实特征值的特征向量***********!SUBROUTINE INPOVERMETHOD(A,N,Y)DIMENSION A(N,N),U(N),Y(N),U1(N,N),L1(N,N)REAL(8) E,Z,Z1,Z2,S1,S2,BREAL(8) A,U,Y,U1,L1U(I)=1ENDDO!任取非零向量UCALL DETA(A,N,U1,L1)Z2=EIZ1=E=1K=1DO WHILE (E>1E-12)S1=0DO I=1,NS1=S1+U(I)**2ENDDOB=SQRT(S1) !1DO I=1,NY(I)=U(I)/BENDDO!2CALL DOOLITTLE(U1,L1,Y,N,U) !3利用DOOLITTLE分解法法求解Au=yS2=0DO I=1,NS2=S2+Y(I)*U(I)ENDDOZ1=Z2Z2=S2 !4E=ABS(1/Z2-1/Z1)/ABS(1/Z2) !判断是否满足精度K=K+1ENDDORETURNENDSUBROUTINE DOOLITTLE(U,L,B1,N,X)DIMENSION B(N),U(N,N),X(N),Y(N),B1(N)REAL(8) L(N,N)REAL(8) B,U,X,Y,B1REAL(8) S1,S2,S3,S4B=B1Y(1)=B(1)S3=0DO M=1,I-1S3=S3+L(I,M)*Y(M)ENDDOY(I)=B(I)-S3ENDDOX(N)=Y(N)/U(N,N)DO I=N-1,1,-1S4=0DO M=I+1,NS4=S4+U(I,M)*X(M)ENDDOX(I)=(Y(I)-S4)/U(I,I)ENDDORETURNENDSUBROUTINE DETA(A1,N,U,L) DIMENSION A(N,N),U(N,N),A1(N,N) REAL(8) L(N,N)REAL(8) X,S1,S2REAL(8) A,U,A1X=1A=A1!对矩阵A进行Doolittle分解DO K=1,NDO J=K,NS1=0DO M=1,K-1S1=S1+L(K,M)*U(M,J)ENDDOU(K,J)=A(K,J)-S1A(K,J)=U(K,J)ENDDOIF (K==N) THENEXITELSEDO I=K+1,NS2=0DO M=1,K-1S2=S2+L(I,M)*U(M,K)ENDDOL(I,K)=(A(I,K)-S2)/U(K,K)A(I,K)=L(I,K)ENDDOENDIFENDDORETURNEND三、计算结果矩阵A为:+00 +00 +00 +00 +00 +00 +00 +00 +00 +00+00 +00 +00 +00 +00 +00 +00 +00 +00 +00+00 +00 +01 +00 +00 +00 +00 +00 +00+00 +00 +00 +01 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00+00 +00 +00 +00 +01 +00 +00 +00 +00+00 +00 +00 +00 +00 +00 +01 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00+00 +00 +00 +00 +00 +00 +00 +00 +01拟上三角化后矩阵A(n-1)为:+00 +01 +00 +00 +01 +00 +00 +00+01 +01 +01 +00 +00 +01 +00 +01 +00 +00+01 +01 +01 +00 +01 +00 +00 +00 +00+01 +01 +01 +01 +00 +00 +00 +00+01 +00 +00 +00 +00 +00+00 +01 +00 +00 +00 +00+00 +00 +00+00 +00 +00 +00+00 +00 +00+00 +00对矩阵A(n-1)实行QR方法迭代结束后所得Q为:+00 +00 +00 +00 +00 +00+00 +00 +00 +00+00 +00 +00 +00+00 +00 +00 +00 +00 +00+00 +00+00 +00 +00 +00 +00+00 +00 +00 +00+00+00 +00 +00+00 +00对矩阵A(n-1)实行QR方法迭代结束后所得R为:+01 +01 +01 +00 +01 +00 +00 +00 +00 +01 +00 +00 +00 +00 +00 +00 +00 +00 +01 +01 +00 +01 +00 +01 +00 +00 +00 +00 +01 +00 +00 +00 +00+00 +00 +01 +01 +00 +00 +00+00 +00 +01 +00 +00 +00 +00+00 +00 +00 +00 +00 +00 +00+00 +00 +00 +00 +01 +00 +00+00 +00 +00 +00 +00 +00+00 +00 +00 +00矩阵A的全部特征值为:+01+ +00i+01++00i+01++00i+01+ +00i+01+ +00i+00++00i+00++00i+00+ +00i+00+ +00i+ +00i矩阵A的实特征值为:+01+01+01+00+00与实特征值 +01对应的特征向量为:+00 +00 +00 +00 +00 +00 +00 +00 +00与实特征值 +01对应的特征向量为:+00 +00 +00 +00 +00 +00 +00与实特征值+01对应的特征向量为:+00 +00 +00与实特征值 +00对应的特征向量为:+00 +00 +00 +00 +00与实特征值 +00对应的特征向量为:+00 +00 +00 +00 +00 +00 +00与实特征值对应的特征向量为:+00 +00 +00 +00 +00 +00 +00 +00。
对中国各地财政收入情况的聚类分析和判别分析应用数理统计第二次大作业学院名称学号学生姓名摘要我国幅员辽阔,由于人才、地理位置、自然资源等条件的不同,各地区的财政收入类型各自呈现出不一样的发展趋势,通过准确定位中国各地区财政收入情况对于正确认识我国财政收入具有重要的意义。
本文以中国各地财政收入情况为研究对象,从《中国统计年鉴》中选取2011年期间中国各地财政收入情况为因变量,选取国内增值税、营业税、企业所得税、个人所得税、城市维护建设税、土地增值税、契税、专项收入、行政事业性收费收入、国有资本经营收入和国有资源(资产)有偿使用收入11个可能影响中国各地财政收入的因素为自变量,利用统计软件SPSS,对27个地区的财政收入进行了聚类分析,并对另外4个地区的财政收入进行了判别分析,并最终确定了中国各地区根据财政收入类型的分类情况。
关键词:聚类分析,判别分析,SPSS,中国各地财政收入类型1、引言财政收入,是指政府为履行其职能、实施公共政策和提供公共物品与服务需要而筹集的一切资金的总和。
财政收入表现为政府部门在一定时期内(一般为一个财政年度)所取得的货币收入。
财政收入是衡量一国政府财力的重要指标,政府在社会经济活动中提供公共物品和服务的范围和数量,在很大程度上决定于财政收入的充裕状况。
通过准确定位中国各地区财政收入情况对于正确认识我国财政收入具有重要的意义。
本文利用统计软件SPSS,根据各地区的财政收入情况,对北京、天津、河北等27个地区进行聚类分析,并对青海、重庆、四川、贵州4个省市进行判别分析,判断属于聚类分析结果中的哪种财政收入类型。
1.1 聚类分析聚类分析是根据研究对象的特征对研究对象进行分类的多元统计分析技术的总称,它直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类。
本文采用的是系统聚类分析,它又称集群分析,是聚类分析中应用最广的一种方法,其基本思想是:首先将每个聚类对象看作一类,然后根据对象间的相似程度,将相似程度最高的两类进行合并,并计算合并后的类与其他类之间的距离,再选择相近者进行合并,每合并一次减少一类,直至所有的对象都并为一类为止。
北航数理统计回归分析大作业(总17页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除数理统计(课程大作业1) 逐步回归分析学院:机械工程学院专业:材料加工工程日期:2014年12月7日摘要:本文介绍多元线性回归分析方法以及逐步回归法,然后结合实际,以我国1995-2012年的财政收入为因变量,选取了8个可能的影响因素,选用逐步回归法对各影响因素进行了筛选分析,最终确定了其“最优”回归方程。
关键字:多元线性回归 逐步回归法 财政收入 SPSS1 引言自然界中任何事物都是普遍联系的,客观事物之间往往都存在着某种程度的关联关系。
为了研究变量之间的相关关系,人们常用回归分析的方法,而回归分析是数理统计中一种常用方法。
数理统计作为一种实用有效的工具,广泛应用于国民经济的各个方面,在解决实际问题中发挥了巨大的作用,是一种理论联系实践、指导实践的科学方法。
财政收入,是指政府为履行其职能、实施公共政策和提供公共物品与服务需要而筹集的一切资金的总和。
财政收入表现为政府部门在一定时期内(一般为一个财政年度)所取得的货币收入。
财政收入是衡量一国政府财力的重要指标,政府在社会经济活动中提供公共物品和服务的范围和数量,在很大程度上决定于财政收入的充裕状况。
本文将以回归分析为方法,运用数理统计工具探求财政收入与各种统计指标之间的关系,总结主要影响因素,并对其作用、前景进行分析和展望。
2 多元线性回归2.1 多元线性回归简介在实际问题中,某一因素的变化往往受到许多因素的影响,多元回归分析的任务就是要找出这些因素之间的某种联系。
由于许多非线性的情形都可以通过变换转化为线性回归来处理,因此,一般的实际问题都是基于多元线性回归问题进行处理的。
对多元线性回归模型简要介绍如下:如果随机变量y 与m )2(≥m 个普通变量m x x x 21,有关,且满足关系式:εββββ++++=m m x x x y 22110 2,0σεε==D E(2.1)其中,2210,,,σββββm 是与m x x x 21,无关的未知参数,ε是不可观测的随机变量,),0(~2N I N σε。
统计第二次形考_00081. 引言本文档提供了关于第二次形考_0008的统计数据分析报告。
通过对考试成绩进行细致的统计和分析,可以帮助我们了解学生的整体表现情况,发现存在的问题,并提出相关的建议和改进措施。
2. 数据收集考试成绩数据通过以下方式进行收集:•在考试结束后,由教师汇总所有学生的成绩信息。
•将数据录入电子表格中,包括学生学号、姓名和得分等信息。
3. 数据分析3.1 总体情况分析本次形考共有100名学生参加,他们的成绩分布如下:分数范围人数90-100分10人80-89分30人70-79分40人60-69分15人60分以下5人从表中可以看出,有10人获得90-100分的高分,而只有5人得分低于60分。
大多数学生的得分集中在70-89分的中等水平。
3.2 分项得分分析除了总分之外,我们还对各个具体科目的得分进行了分析。
以下是各科目平均得分的统计结果:科目平均得分数学75英语85物理70化学80生物65历史75地理80从表中可以看出,英语是学生们的最强项,平均得分达到了85分。
而生物的平均得分最低,仅为65分。
这些数据反映出学生在不同科目上的学习水平存在差异,需要进一步加以关注。
3.3 学生成绩排名除了分析得分的总体情况和各科目的表现之外,我们还对学生的成绩进行了排名,以了解学生在班级中的相对表现。
以下是前五名学生的成绩排名:1.张三:95分2.李四:92分3.王五:90分4.赵六:88分5.刘七:85分这些学生在本次形考中表现出色,是学习的榜样,值得鼓励和表扬。
4. 结论和建议根据以上数据分析结果,我们得出以下结论和建议:•学生整体成绩表现较好,中等水平占大多数,但仍有少数学生表现较差,需要更多的关注和辅导。
•英语是学生们的强项,可以借鉴英语教学的经验和方法,以提高其他科目的教学效果。
•特别需要关注生物科目,平均得分较低,可能需要在教学内容和方法上进行调整和优化。
•需要给予表现出色的学生更多的鼓励和奖励,同时也要关注学习成绩相对较低的学生,提供更多的帮助和支持。
数理统计第二次大作业材料行业股票的聚类分析与判别分析2015年12月26日材料行业股票的聚类分析与判别分析摘要1 引言2 数据采集及标准化处理2.1 数据采集本文选取的数据来自大智慧软件的股票基本资料分析数据,从材料行业的股票中选取了30支股票2015年1月至9月的7项财务指标作为分类的自变量,分别是每股收益(单位:元)、净资产收益率(单位:%)、每股经营现金流(单位:元)、主营业务收入同比增长率(单位:%)、净利润同比增长率(单位:%)、流通股本(单位:万股)、每股净资产(单位:元)。
各变量的符号说明见表2.1,整理后的数据如表2.2。
表2.1 各变量的符号说明自变量符号每股收益(单位:元)X1净资产收益率(单位:%)X2每股经营现金流(单位:元)X3主营业务收入同比增长率(单位:%)X4净利润同比增长率(单位:%)X5流通股本(单位:万股)X6每股净资产(单位:元)X7表2.2 30支股票的财务指标股票代码X1 X2 X3 X4 X5 X6 X7 武钢股份600005-0.0990-2.81-0.0237-35.21-200.231009377.98 3.4444宝钢股份6000190.1400 1.980.9351-14.90-55.011642427.88 6.9197山东钢铁600022-0.11650.060.0938-20.5421.76643629.58 1.8734北方稀土6001110.0830 3.640.652218.33-24.02221920.48 2.2856杭钢股份600126-0.4900-13.190.4184-36.59-8191.0283893.88 3.4497抚顺特钢6003990.219310.080.1703-14.26714.18112962.28 1.4667盛和资源6003920.0247 1.84-0.2141-5.96-19.3739150.00 1.2796宁夏建材6004490.04000.510.3795-22.15-92.3447818.108.7321宝钛股份600456-0.2090-2.53-0.3313-14.81-6070.2043026.578.1497山东药玻6005290.4404 5.26 1.2013 6.5016.7825738.018.5230国睿科技6005620.410011.53-0.2949 3.3018.9416817.86 3.6765海螺水泥600585 1.15169.05 1.1960-13.06-25.33399970.2612.9100华建集团6006290.224012.75-0.57877.90-6.4034799.98 1.8421福耀玻璃6006600.790014.250.9015 3.6017.27200298.63 6.2419宁波富邦600768-0.2200-35.02-0.5129 3.1217.8813374.720.5188马钢股份600808-0.3344-11.710.3939-21.85-689.22596775.12 2.6854亚泰集团6008810.02000.600.1400-23.63-68.16189473.21 4.5127博闻科技6008830.503516.71-0.1010-10.992612.8023608.80 3.0126新疆众和6008880.0523 1.04-0.910662.64162.0464122.59 5.0385西部黄金6010690.0969 3.940.115115.5125.5712600.00 2.4965中国铝业601600-0.0700-2.920.2066-9.0882.79958052.19 2.3811明泰铝业6016770.2688 4.66-1.09040.8227.8640770.247.4850金隅股份6019920.1989 3.390.3310-10.05-39.01311140.26 6.7772松发股份6032680.35007.00-0.3195-4.43-9.622200.00 6.0244方大集团0000550.0950 5.66-0.480939.2920.6742017.94 1.6961铜陵有色0006300.0200 1.220.6132 3.23-30.74956045.21 1.5443鞍钢股份000898-0.1230-1.870.7067-27.32-196.21614893.17 6.4932中钢国际0009280.572714.45-0.4048-14.33410.2441286.57 4.2449中材科技0020800.684610.27 1.219547.69282.1740000.00 6.8936中南重工0024450.1100 4.300.340518.8445.0950155.00 2.70302.2 数据的标准化处理由于不同的变量之间存在着较大的数量级的差别,因此要对数据变量进行标准化处理。
本文采用Z得分值法标准化的方法进行标准化,用x的值减去x的均值再除以样本的方差。
也就是把个案转换为样本均值为0、标准差为1的样本。
如果不同变量的变量值数值相差太大,会导致计算个案间距离时,由于绝对值较小的数值权数较小,个案距离的大小几乎由大数值决定,标准化过程可以解决此类问题,使不同变量的数值具有同等的重要性。
经Z标准化输出结果见表 2.2。
表2.2 经Z标准化后的数据ZX1ZX2ZX3ZX4ZX5ZX6ZX7武钢股份-0.75239 -0.53220 -0.29872 -1.43273 0.09044 1.80057 -0.36699 宝钢股份-0.06111 -0.04951 1.27419 -0.54909 0.16571 3.36895 0.82983 山东钢铁-0.80301 -0.24299 -0.10597 -0.79447 0.20551 0.89442 -0.90801 北方稀土-0.22597 0.11777 0.81009 0.89669 0.18178 -0.15036 -0.76605 杭钢股份-1.88333 -1.57819 0.42654 -1.49278 -4.05172 -0.49232 -0.36516 抚顺特钢0.16826 0.76673 0.01953 -0.52124 0.56444 -0.42031 -1.04806 盛和资源-0.39460 -0.06362 -0.61107 -0.16012 0.18419 -0.60318 -1.11250 宁夏建材-0.35035 -0.19764 0.36273 -0.86452 0.14636 -0.58170 1.45398 宝钛股份-1.07056 -0.50398 -0.80334 -0.54517 -2.95236 -0.59357 1.25341 山东药玻0.80777 0.28101 1.71089 0.38199 0.20293 -0.63640 1.38197 国睿科技0.71984 0.91284 -0.74363 0.24276 0.20405 -0.65850 -0.28706 海螺水泥 2.86486 0.66293 1.70219 -0.46903 0.18110 0.29076 2.89275 华建集团0.18186 1.03578 -1.20920 0.44290 0.19091 -0.61395 -0.91879 福耀玻璃 1.81896 1.18694 1.21907 0.25581 0.20318 -0.20393 0.59641 宁波富邦-1.10238 -3.77801 -1.10126 0.23493 0.20350 -0.66703 -1.37450 马钢股份-1.43327 -1.42905 0.38635 -0.85147 -0.16304 0.77834 -0.62837 亚泰集团-0.40820 -0.18857 -0.03017 -0.92891 0.15890 -0.23075 0.00091 博闻科技0.99028 1.43483 -0.42553 -0.37897 1.54862 -0.64168 -0.51569 新疆众和-0.31477 -0.14424 -1.75368 2.82453 0.27823 -0.54131 0.18198 西部黄金-0.18577 0.14800 -0.07102 0.77399 0.20748 -0.66895 -0.69342 中国铝业-0.66851 -0.54329 0.07908 -0.29587 0.23714 1.67341 -0.73317 明泰铝业0.31144 0.22055 -2.04864 0.13486 0.20867 -0.59916 1.02450 金隅股份0.10926 0.09257 0.28316 -0.33807 0.17401 0.07068 0.78075 松发股份0.54630 0.45635 -0.78398 -0.09356 0.18924 -0.69472 0.52151 方大集团-0.19127 0.32132 -1.04876 1.80862 0.20494 -0.59607 -0.96906 铜陵有色-0.40820 -0.12610 0.74611 0.23971 0.17829 1.66843 -1.02134 鞍钢股份-0.82181 -0.43748 0.89950 -1.08946 0.09252 0.82323 0.68295 中钢国际 1.19044 1.20709 -0.92392 -0.52429 0.40688 -0.59788 -0.09131 中材科技 1.51410 0.78587 1.74074 2.17408 0.34050 -0.60107 0.82084 中南重工-0.14788 0.18427 0.29875 0.91888 0.21760 -0.57591 -0.622313 聚类分类3.1 聚类分析概述3.2 聚类分析输出结果本文中使用系统聚类的Ward’s method(最小离差平方和法),度量方法采用Squared Euclidean distance(欧氏距离的平方)。
输出结果如下从表中可以看出:有效数据为30个;缺失数据为0个,即没有缺失数据;数据总数为30个,说明所选随机样本100%有效。
脚注显示聚类时采用的是距离度量法,聚类方法为采用的是欧式距离平方值和Ward联结法。