圆的知识点总结及典型例题.
- 格式:doc
- 大小:291.50 KB
- 文档页数:18
圆【知识梳理】1.圆的有关概念和性质(1) 圆的有关概念①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。
上述五个条件中的任何两个条件都可推出其他三个结论。
③弧、半圆、优弧、劣弧:,简称弧.,用符号“⌒”表示,弧:圆上任意两点间的部分叫做圆弧..以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”。
半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆..优弧:大于半圆的弧叫做优弧..。
(为了区别优弧和劣弧,优弧用三个字劣弧:小于半圆的弧叫做劣弧..母表示。
)④弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。
⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧...⑦圆心角:顶点在圆心的角叫做圆心角...⑧弦心距:从圆心到弦的距离叫做弦心距....(3)对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)2.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角。
圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。
高中数学圆与方程知识点归纳与常考题型专题练习(附解析) 知识点:4.1.1 圆的标准方程1、圆的标准方程:222()()x a y b r -+-=圆心为A(a,b),半径为r 的圆的方程2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在圆外(2)2200()()x a y b -+-=2r ,点在圆上(3)2200()()x a y b -+-<2r ,点在圆内4.1.2 圆的一般方程1、圆的一般方程:022=++++F Ey Dx y x ,圆心为半径为2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(E D --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点: (1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切;(3)当r d <时,直线l 与圆C 相交;直线、圆的位置关系注意:1.直线与圆的位置关系 直线与圆相交,有两个公共点d R ⇔<⇔方程组有两组不同实数解(0)∆> 直线与圆相切,只有一个公共点d R ⇔=⇔方程组有唯一实数解(0)∆=直线与圆相离,没有公共点d R ⇔>⇔方程组无实数解(0)∆<2.求两圆公共弦所在直线方程的方法:将两圆方程相减。
用圆的相关知识解决生活中的实际问题用圆的相关知识解决生活中的实际问题在我们的日常生活中,圆是一种非常常见的形状。
除了在几何学中被广泛研究和讨论之外,圆的相关知识也可以帮助我们解决一些实际的问题。
本文将从几何学的角度探讨圆的相关知识,并通过一些实际问题来展示如何运用这些知识。
一、圆的定义和性质我们首先来回顾一下圆的定义和一些基本性质。
圆是由平面上所有到一个固定点(圆心)的距离相等的点组成的集合。
圆的特点有以下几点:1. 圆心:圆心是圆上所有点的中心,用O表示。
2. 半径:半径是从圆心到圆上任意一点的距离,用r表示。
3. 直径:直径是通过圆心的两个点的距离,等于半径的两倍,用d表示。
4. 弦:弦是连接圆上的两个点的线段。
5. 弧:弧是圆上的一段弦。
6. 切线:切线是与圆只有一个交点的直线。
以上是圆的一些基本概念,接下来我们将通过一些实际问题来展示如何应用这些知识。
二、应用示例1. 圆的面积计算假设我们有一个圆形花坛,半径为5米,现在我们想知道花坛的面积以确定需要多少土壤来填充。
根据圆的面积公式,我们可以得到:面积= π * r²其中,π是一个常数,约等于3.14159。
将半径代入公式,我们可以计算出面积:面积= 3.14159 * 5² = 78.53975 平方米花坛的面积约为78.54平方米。
通过这个简单的例子,我们可以看到如何利用圆的面积公式来解决实际问题。
2. 圆的周长计算假设我们需要围绕一个圆形的游泳池铺设防滑地板,现在我们想确定需要多长的防滑地板。
根据圆的周长公式,我们可以得到:周长= 2 * π * r将半径代入公式,我们可以计算出周长:周长 = 2 * 3.14159 * 5 = 31.4159 米我们需要约31.42米的防滑地板来围绕游泳池铺设。
3. 圆与设计除了计算圆的面积和周长,我们还可以运用圆的相关知识来进行设计。
在建筑设计中,圆形的大厅和楼梯间可以增加空间的流动感和美感。
一、圆的概念与周长1.圆的定义:平面上的一种曲线图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
∆4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2r r =12d用文字表示为:半径=直径÷2 直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。
△10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母π表示。
圆周率是一个无限不循环小数。
在计算时,取π≈3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
☆11.圆的周长公式:C=πd 或C=2πr圆周长=π×直径圆周长=π×半径×212.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
折痕所在的这条直线叫做对称轴。
☆13.有一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
有2条对称轴的图形是:长方形有3条对称轴的图形是:等边三角形有4条对称轴的图形是:正方形有无数条对称轴的图形是:圆、圆环。
△14.圆是轴对称图形,直径所在的直线是圆的对称轴。
例题讲解:一、填空题△1、圆是()图形,()所在的直线是圆的(),圆有()条对称轴。
2、圆的周长是它的直径的()倍多一些,这个倍数是一个固定的数,我们把它叫(),常用字母()表示。
它是一个()小数,取两位小数是()。
1.半圆或直径所对的圆周角是直角.2.任意一个三角形一定有一个外接圆.. 3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆4.在同圆或等圆中,相等的圆心角所对的弧相等.5.同弧所对的圆周角等于圆心角的一半.6.同圆或等圆的半径相等.7.过三个点一定可以作一个圆.8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等.10.经过圆心平分弦的直径垂直于弦。
直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切.2.三角形的外接圆的圆心叫做三角形的外心.3.弦切角等于所夹的弧所对的圆心角.4.三角形的内切圆的圆心叫做三角形的内心.5.垂直于半径的直线必为圆的切线.6.过半径的外端点并且垂直于半径的直线是圆的切线.7.垂直于半径的直线是圆的切线.8.圆的切线垂直于过切点的半径.圆与圆的位置关系1.两个圆有且只有一个公共点时,叫做这两个圆外切.2.相交两圆的连心线垂直平分公共弦.3.两个圆有两个公共点时,叫做这两个圆相交.4.两个圆内切时,这两个圆的公切线只有一条.5.相切两圆的连心线必过切点.正多边形基本性质1.正六边形的中心角为60°.2.矩形是正多边形.3.正多边形都是轴对称图形.4.正多边形都是中心对称图形.1.如图,四边形ABCD 内接于⊙O,已知∠C=80°,则∠A 的度数是 .A. 50°B. 80°C. 90°D. 100°2.已知:如图,⊙O 中, 圆周角∠BAD=50°,则圆周角∠BCD 的度数是 .A.100° B.130° C.80° D.50°3.已知:如图,⊙O 中, 圆心角∠BOD=100°,则圆周角∠BCD 的度数是 .A.100°B.130°C.80°D.50°4.已知:如图,四边形ABCD 内接于⊙O ,则下列结论中正确的是.A.∠A+∠C=180°B.∠A+∠C=90°C.∠A+∠B=180°D.∠A+∠B=905.半径为5cm 的圆中,有一条长为6cm 的弦,则圆心到此弦的距离为 . A.3cm B.4cm C.5cmD.6cm 6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD 的度数是 . A.100° B.130° C.80° D.507.已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 .A.100° B.130° C.200° D.508. 已知:如图,⊙O 中, 圆周角∠BCD=130°,则圆心角∠BOD 的度数是.A.100°B.130°C.80°D.50°9. 在⊙O 中,弦AB 的长为8cm,圆心O 到AB 的距离为3cm,则⊙O 的半径为 cm.A.3B.4C.5D. 10点、直线和圆的位置关系1.已知⊙O 的半径为10㎝,如果一条直线和圆心O 的距离为10㎝,那么这条直线和这个圆的位置关系为 .A.相离 B.相切 C.相交 D.相交或相离2.已知圆的半径为6.5cm,直线l 和圆心的距离为7cm,那么这条直线和这个圆的位置关系是 .A.相切 B.相离 C.相交 D. 相离或相交3.已知圆O 的半径为6.5cm,PO=6cm,那么点P 和这个圆的位置关系是 A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定4.已知圆的半径为6.5cm,直线l 和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是 . A.0个 B.1个 C.2个 D.不能确定5.一个圆的周长为a cm,面积为a cm 2,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是 .A.相切 B.相离 C.相交 D. 不能确定6.已知圆的半径为6.5cm,直线l 和圆心的距离为6cm,那么这条直线和这个圆的位置关系是 .A.相切B.相离C.相交D.不能确定7. 已知圆的半径为6.5cm,直线l 和圆心的距离为4cm,那么这条直线和这个圆的位置关系是 .A.相切 B.相离 C.相交 D. 相离或相交8. 已知⊙O 的半径为7cm,PO=14cm,则PO 的中点和这个圆的位置关系是 .A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定•BADO C•CBAO•BOCAD•BOCAD•BOCAD•DBAO •D BAO •DBCAO圆与圆的位置关系1.⊙O1和⊙O2的半径分别为3cm和4cm,若O1O2=10cm,则这两圆的位置关系是 .A. 外离B. 外切C. 相交D. 内切2.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的位置关系是.A.内切B. 外切C. 相交D. 外离3.已知⊙O1、⊙O2的半径分别为3cm和5cm,若O1O2=1cm,则这两个圆的位置关系是.A.外切B.相交C. 内切D. 内含4.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2==7cm,则这两个圆的位置关系是.A.外离B. 外切C.相交D.内切35.已知⊙O1、⊙O2的半径分别为3cm和4cm,两圆的一条外公切线长4,则两圆的位置关系是.A.外切B. 内切C.内含D. 相交6.已知⊙O1、⊙O2的半径分别为2cm和6cm,若O1O2=6cm,则这两个圆的位置关系是.A.外切B.相交C. 内切D. 内含公切线问题1.如果两圆外离,则公切线的条数为.A. 1条B.2条C.3条D.4条2.如果两圆外切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条3.如果两圆相交,那么它们的公切线的条数为.A. 1条B. 2条C.3条D.4条4.如果两圆内切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条5. 已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条6.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=7cm,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条正多边形和圆1.如果⊙O的周长为10πcm,那么它的半径为 .A. 5cmB.cmC.10cmD.5πcm102.正三角形外接圆的半径为2,那么它内切圆的半径为.32A. 2B.C.1D.3.已知,正方形的边长为2,那么这个正方形内切圆的半径为.23A. 2B. 1C.D.24.扇形的面积为,半径为2,那么这个扇形的圆心角为= .3A.30°B.60°C.90°D. 120°5.已知,正六边形的外接圆半径为R,那么这个正六边形的边长为 .A.R B.RC.RD.212R 36.圆的周长为C,那么这个圆的面积S= .A.B.C. D.2C ππ2C π22C π42C 7.正三角形内切圆与外接圆的半径之比为 .A.1:2B.1:C.:2D.1:3328. 圆的周长为C,那么这个圆的半径R= .A.2B.C.D.C πC ππ2CπC9.已知,正方形的边长为2,那么这个正方形外接圆的直径为 .A.2B.4C.2D.22310.已知,正三角形的外接圆半径为3,那么这个正三角形的边长为 .A. 3B.C.3D.3323。
圆与椭圆例题和知识点总结一、圆的知识点圆是平面几何中一个非常重要的图形,具有许多独特的性质。
1、圆的定义平面内到定点的距离等于定长的点的集合叫做圆,定点称为圆心,定长称为半径。
2、圆的标准方程圆心为$(a,b)$,半径为$r$的圆的标准方程为$(x a)^2 +(y b)^2 = r^2$。
3、圆的一般方程$x^2 + y^2 + Dx + Ey + F = 0$($D^2 + E^2 4F > 0$),圆心坐标为$(\frac{D}{2},\frac{E}{2})$,半径为$r =\frac{1}{2}\sqrt{D^2 + E^2 4F}$。
4、圆的直径所对的圆周角为直角。
5、圆的弦心距、弦长与半径的关系设圆的半径为$r$,弦心距为$d$,弦长为$l$,则$l = 2\sqrt{r^2d^2}$。
6、圆的切线性质(1)圆心到切线的距离等于半径。
(2)切线垂直于经过切点的半径。
7、圆与圆的位置关系两圆的圆心距为$d$,两圆的半径分别为$r_1$,$r_2$,则有:(1)外离:$d > r_1 + r_2$(2)外切:$d = r_1 + r_2$(3)相交:$|r_1 r_2| < d < r_1 + r_2$(4)内切:$d =|r_1 r_2|$(5)内含:$d <|r_1 r_2|$二、椭圆的知识点椭圆是平面内到两个定点的距离之和等于常数(大于两定点间的距离)的点的轨迹。
1、椭圆的标准方程(1)焦点在$x$轴上:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$($a > b > 0$),其中$a$为长半轴长,$b$为短半轴长,$c$为半焦距,满足$c^2 = a^2 b^2$,焦点坐标为$(\pm c, 0)$。
(2)焦点在$y$轴上:$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$($a > b > 0$),焦点坐标为$(0, \pm c)$。
九年级数学圆知识点及习题(含答案)1.圆上各点到圆心的距离都等于半径。
2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形, 圆心是它的对称中心。
3.垂直于弦的直径平分这条弦 ,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等 ,那么它们所对应的其余各组量都分别相等。
5.同弧或等弧所对的圆周角相等 ,都等于它所对的圆心角的一半。
6.直径所对的圆周角是 90° ,90°所对的弦是直径。
7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。
8.与三角形各边都相切的圆叫做三角形的内切圆 ,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。
9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角2、与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外 ,②点在圆上 ,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交 ,②相切 ,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含 ,②相内切 ,③相交 ,④相外切 ,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长相等,这点与圆心之间的连线平分这两条切线的夹角。
4.1圆的方程基础知识梳理1.圆的标准方程:222)()(r b y a x =-+-,圆心:),(b a ,半径:r ;2.圆的一般方程:)04(,02222>-+=++++F E D F Ey Dx y x .习题巩固一、选择题1.点(sin θ,cos θ)与圆x 2+y 2=12的位置关系是( ) A .在圆上 B .在圆内C .在圆外D .不能确定2.已知以点A (2,-3)为圆心,半径长等于5的圆O ,则点M (5,-7)与圆O 的位置关系是( )A .在圆内B .在圆上C .在圆外D .无法判断3.若直线y =ax +b 通过第一、二、四象限,则圆(x +a )2+(y +b )2=1的圆心位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.圆(x -3)2+(y +4)2=1关于直线y =x 对称的圆的方程是( )A .(x +3)2+(y +4)2=1B .(x +4)2+(y -3)2=1C .(x -4)2+(y -3)2=1D .(x -3)2+(y -4)2=15.方程y =9-x 2表示的曲线是( )A .一条射线B .一个圆C .两条射线D .半个圆6.已知一圆的圆心为点(2,-3),一条直径的两个端点分别在x 轴和y 轴上.则此圆的方程是( )A .(x -2)2+(y +3)2=13B .(x +2)2+(y -3)2=13C .(x -2)2+(y +3)2=52D .(x +2)2+(y -3)2=527.圆2x 2+2y 2+6x -4y -3=0的圆心坐标和半径分别为( )A .⎝⎛⎭⎫-32,1和194B .(3,2)和192C .⎝⎛⎭⎫-32,1和192D .⎝⎛⎭⎫32,-1和1928.方程x 2+y 2+4x -2y +5m =0表示圆的条件是( )A .14<m <1 B .m >1 C .m <14D .m <1 9.M (3,0)是圆x 2+y 2-8x -2y +10=0内一点,过M 点最长的弦所在的直线方程是( )A .x +y -3=0B .x -y -3=0C .2x -y -6=0D .2x +y -6=010.圆x 2+y 2-2x +4y +3=0的圆心到直线x -y =1的距离为( )A .2B .22C .1D .2 11.已知圆x 2+y 2-2ax -2y +(a -1)2=0(0<a <1),则原点O 在( )A .圆内B .圆外C .圆上D .圆上或圆外12.若圆M 在x 轴与y 轴上截得的弦长总相等,则圆心M 的轨迹方程是( )A .x -y =0B .x +y =0C .x 2+y 2=0D .x 2-y 2=0二、填空题13.已知圆的内接正方形相对的两个顶点的坐标分别是(5,6),(3,-4),则这个圆的方程是_____________________________.14.圆O的方程为(x-3)2+(y-4)2=25,点(2,3)到圆上的最大距离为________.15.如果直线l将圆(x-1)2+(y-2)2=5平分且不通过第四象限,那么l的斜率的取值范围是________.16.如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆面积最大时,圆心坐标为________.17.已知圆C:x2+y2+2x+ay-3=0(a为实数)上任意一点关于直线l:x-y+2=0的对称点都在圆C上,则a=________.18.已知圆的方程为x2+y2-6x-8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为________.三、解答题19.已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C在直线l:x-y+1=0上,求圆心为C的圆的标准方程.20.已知一个圆与y轴相切,圆心在直线x-3y=0上,且该圆经过点A(6,1),求这个圆的方程.21.平面直角坐标系中有A(-1,5),B(5,5),C(6,-2),D(-2,-1)四个点能否在同一个圆上?22.如果方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0表示一个圆.(1)求t的取值范围;(2)求该圆半径r的取值范围.。
人教版初中数学——圆的性质及与圆有关的位置关系知识点归纳及中考典型例题解析一、圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.2.注意(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、三角形与圆1.三角形的外接圆相关概念经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.考向一圆的基本认识1.在一个圆中可以画出无数条弦和直径.2.直径是弦,但弦不一定是直径.3.在同一个圆中,直径是最长的弦.4.半圆是弧,但弧不一定是半圆.弧有长度和度数,规定半圆的度数为180°,劣弧的度数小于180°,优弧的度数大于180°.5.在同圆或等圆中能够互相重合的弧是等弧,度数或长度相等的弧不一定是等弧.典例1下列命题中正确的有①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个【答案】A【解析】①弦是圆上任意两点之间所连线段,所以①错误;②半径不是弦,所以②错误;③直径是最长的弦,正确;④只有180°的弧才是半圆,所以④错误,故选A.1.把圆的半径缩小到原来的14,那么圆的面积缩小到原来的A.12B.14C.18D.1162.半径为5的圆的一条弦长不可能是A.3 B.5 C.10 D.12考向二垂径定理1.垂径定理中的“弦”为直径时,结论仍然成立.2.垂径定理是证明线段相等、弧相等的重要依据,同时也为圆的计算和作图问题提供了理论依据.典例2如图,已知⊙O的半径为6 cm,两弦AB与CD垂直相交于点E,若CE=3 cm,DE=9 cm,则AB=A3cm B.3cm C.3D.3【答案】D【解析】如图,连接OA,∵⊙O的半径为6 cm,CE+DE=12 cm,∴CD是⊙O的直径,∵CD⊥AB,∴AE=BE,OE=3,OA=6,∴AE=2233OA OE-=,∴AB=2AE=63,故选D.典例3如图,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2 cm B.3cmC.23cm D.25cm【答案】C【解析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.作OD⊥AB于D,连接OA.根据题意得OD=12OA=1cm,再根据勾股定理得:AD3,根据垂径定理得AB3.故选C.3.如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为4,则弦AB的长是A.3 B.6 C.4 D.84.如图,某菜农在蔬菜基地搭建了一个横截面为圆弧形的蔬菜大棚,大棚的跨度弦AB的长为8515米,大棚顶点C离地面的高度为2.3米.(1)求该圆弧形所在圆的半径;(2)若该菜农的身高为1.70米,则他在不弯腰的情况下,横向活动的范围有几米?考向三弧、弦、圆心角、圆周角1.圆心角的度数等于它所对弧的度数,把顶点在圆心的周角等分成360份,每一份的圆心角是1°的角,1°的圆心角对着1°的弧.2.圆周角要具备两个特征:①顶点在圆上;②角的两边都和圆相交,二者缺一不可.典例4如图,在⊙O中∠O=50°,则∠A的度数为A.50°B.20°C.30°D.25°【答案】D【解析】∠A=12BOC=12×50°=25°.故选D.典例5如图,AB是⊙O的直径,△ACD内接于⊙O,延长AB,CD相交于点E,若∠CAD=35°,∠CDA=40°,则∠E的度数是A.20°B.25°C.30°D.35°【答案】B【解析】如图,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,由三角形内角和定理得,∠ACD=180°﹣∠CAD﹣∠CDA=105°,∴∠ABD=180°﹣∠ACD=75°,∴∠BAD=90°﹣∠ABD=15°,∴∠E=∠CDA﹣∠DAB=25°,故选B.5.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为A.103πB.109πC.59πD.518π6.如图,AB是⊙O的直径,=BC CD DE,∠COD=38°,则∠AEO的度数是A.52°B.57°C.66°D.78°考向四点、直线与圆的位置关系1.点和圆的位置关系:①在圆上;②在圆内;③在圆外.2.直线和圆的位置关系:相交、相切、相离.典例6已知⊙O的半径是5,点A到圆心O的距离是7,则点A与⊙O的位置关系是A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与圆心O重合【答案】C【解析】∵O的半径是5,点A到圆心O的距离是7,即点A到圆心O的距离大于圆的半径,∴点A在⊙O外.故选C.【点睛】直接根据点与圆的位置关系的判定方法进行判断.典例7在△ABC中,AB=AC=2,∠A=150°,那么半径长为1的⊙B和直线AC的位置关系是A.相离B.相切C.相交D.无法确定【答案】B【解析】过B作BD⊥AC交CA的延长线于D,∵∠BAC=150,∴∠DAB=30°,∴BD=11222AB=⨯=1,即B到直线AC的距离等于⊙B的半径,∴半径长为1的⊙B和直线AC的位置关系是相切,故选B.【点睛】本题考查了直线与圆的位置关系的应用,过B作BD⊥AC交CA的延长线于D,求出BD和⊙B的半径比较即可,主要考查学生的推理能力.7.如图,⊙O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与⊙O的位置关系是A.在⊙O内B.在⊙O上C.在⊙O外D.以上都有可能8.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC 所在直线向下平移__________cm时与⊙O相切.考向五切线的性质与判定有圆的切线时,常常连接圆心和切点得切线垂直半径,这是圆中作辅助线的一种方法.典例8如图,⊙O以AB为直径,PB切⊙O于B,近接AP,交⊙O于C,若∠PBC=50°,∠ABC=A.30°B.40°C.50°D.60°【答案】B【解析】∵⊙O以AB为直径,PB切⊙O于B,∴∠PBA=90°,∵∠PBC=50°,∴∠ABC=40°.故选B.典例9如图,Rt△ABC中,∠C=90°,AB=5,AC=3,点E在中线AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径为A.78B.67C.56D.1【答案】B【解析】作EH⊥AC于H,EF⊥BC于F,EG⊥AB于G,连接EB,EC,设⊙E的半径为r,如图,∵∠C=90°,AB=5,AC=3,∴BC22AB AC-,而AD为中线,∴DC=2,∵以E为圆心的⊙E分别与AB、BC相切,∴EG=EF=r,∴HC=r,AH=3–r,∵EH∥BC,∴△AEH∽△ADC,∴EH∶CD=AH∶AC,即EH=233r-(),∵S △ABE +S △BCE +S △ACE =S △ABC , ∴()1112154333422232r r r ⨯⨯+⨯⨯+⨯⨯-=⨯⨯,∴67r =.故选B .9.已知四边形ABCD 是梯形,且AD ∥BC ,AD <BC ,又⊙O 与AB 、AD 、CD 分别相切于点E 、F 、G ,圆心O 在BC 上,则AB +CD 与BC 的大小关系是 A .大于 B .等于C .小于D .不能确定10.如图,以等腰△ABC 的腰AB 为⊙O 的直径交底边BC 于D ,DE AC ⊥于E .求证:(1)DB DC =; (2)DE 为⊙O 的切线.1.下列关于圆的叙述正确的有①圆内接四边形的对角互补; ②相等的圆周角所对的弧相等;③正多边形内切圆的半径与正多边形的半径相等; ④同圆中的平行弦所夹的弧相等.A .1个B .2个C .3个D .4个2.如图,AB 是⊙O 的直径,C 是⊙O 上一点(A 、B 除外),∠AOD =136°,则∠C 的度数是A .44°B .22°C .46°D .36°3.如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD ,已知DE =6,∠BAC +∠EAD =180°,则弦BC 的长等于A .41B .34C .8D .64.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,则圆心坐标是A .点(1,0)B .点(2,1)C .点(2,0)D .点(2.5,1)5.如图,O 的直径8AB =,30CBD ∠=︒,则CD 的长为A .2B .3C .4D .36.如图,一圆内切四边形ABCD ,且BC =10,AD =7,则四边形的周长为A .32B .34C .36D .387.已知在⊙O 中,AB =BC ,且34AB AMC =∶∶,则∠AOC =__________.8.如图,A 、B 、C 、D 都在⊙O 上,∠B =130°,则∠AOC 的度数是__________.9.如图,PA 、PB 分别切⊙O 于A 、B ,并与圆O 的切线DC 分别相交于D 、C .已知△PCD 的周长等于14 cm ,则PA =__________cm .10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O的内接正十边形的一边,DE 的度数为__________.11.如图,半圆O 的直径是AB ,弦AC 与弦BD 交于点E ,且OD ⊥AC ,若∠DEF =60°,则tan ∠ABD =__________.12.如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF 的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tan D=34,求AE的长.13.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.14.如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,CD=2,AD=4,求直径AB的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.1.如图,在O 中,AB 所对的圆周角50ACB ∠=︒,若P 为AB 上一点,55AOP ∠=︒,则POB ∠的度数为A .30°B .45°C .55°D .60°2.如图,AD 是O 的直径,AB CD =,若40AOB ∠=︒,则圆周角BPC ∠的度数是A .40︒B .50︒C .60︒D .70︒3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .25B .4C .213D .4.84.如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是A .PA =PB B .∠BPD =∠APDC .AB ⊥PDD .AB 平分PD5.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于A .55°B .70°C .110°D .125°6.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B 的度数为A .60°B .50°C .40°D .30°7.如图,AB 是⊙O 的直径,点C 、D 是圆上两点,且∠AOC =126°,则∠CDB =A .54°B .64°C .27°D .37°8.如图,AB 为O 的直径,BC 为O 的切线,弦AD ∥OC ,直线CD 交的BA 延长线于点E ,连接BD .下列结论:①CD 是O 的切线;②CO DB ⊥;③EDA EBD △∽△;④ED BC BO BE ⋅=⋅.其中正确结论的个数有A .4个B .3个C .2个D .1个9.如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.10.如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D ,若⊙O 的半径为2,则CD 的长为__________.11.如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=45,求tan∠BAD的值.12.如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是BD上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是BD的中点,则DF的长为__________;②取AE的中点H,当∠EAB的度数为__________时,四边形OBEH为菱形.1.【答案】D【解析】设原来的圆的半径为r ,则面积S 1=πr 2, ∴半径缩小到原来的14后所得新圆的面积22211π()π416S r r ==, ∴22211π116π16rS S r ==,故选D . 2.【答案】D【解析】∵圆的半径为5,∴圆的直径为10,又∵直径是圆中最长的弦,∴圆中任意一条弦的长度10l ≤,故选D . 3.【答案】B【解析】如图,连接OA ,∵O 的直径为10,5OA ∴=,∵圆心O 到弦AB 的距离OM 的长为4, 由垂径定理知,点M 是AB 的中点,12AM AB =, 由勾股定理可得,3AM =,所以6AB =.故选B .4.【解析】(1)如图所示:CO ⊥AB 于点D ,设圆弧形所在圆的半径为xm ,根据题意可得:DO 2+BD 2=BO 2, 则(x –2.3)2+851×12)2=x 2,解得x =3. 变式训练答:圆弧形所在圆的半径为3米;(2)如图所示:当MN =1.7米,则过点N 作NF ⊥CO 于点F ,可得:DF =1.7米,则FO =2.4米,NO =3米,故FN =223 2.4-=1.8(米), 故该菜农身高1.70米,则他在不弯腰的情况下,横向活动的范围有3.6米. 5.【答案】B【解析】根据题意可知:∠OAC =∠OCA =50°,则∠BOC =2∠OAC =100°,则弧BC 的长度为:100π210π1809⨯=,故选B .6.【答案】B【解析】∵=BC CD DE =,∴∠BOC =∠DOE =∠COD =38°, ∴∠BOE =∠BOC +∠DOE +∠COD =114°,∴∠AOE =180°–∠BOE =66°, ∵OA =OE ,∴∠AEO =(180°–∠AOE )÷2=57°,故选B . 7.【答案】A【解析】如图,连接OA ,则在直角△OMA 中,根据勾股定理得到OA =223 3.823.445+=<. ∴点A 与⊙O 的位置关系是:点A 在⊙O 内.故选A .8.【答案】2【解析】连接OA .∵直线和圆相切时,OH =5,又∵在直角三角形OHA 中,HA =AB ÷2=4,OA =5,∴OH =3. ∴需要平移5–3=2(cm ).故答案为:2.【点睛】本题考查垂径定理及直线和圆的位置关系.注意:直线和圆相切,应满足d =R . 9.【答案】B【解析】如图,连接OF ,OA ,OE ,作AH ⊥BC 于H .∵AD 是切线,∴OF ⊥AD ,易证四边形AHOF 是矩形,∴AH =OF =OE , ∵S △AOB =12•OB •AH =12•AB •OE ,∴OB =AB ,同理可证:CD =CO , ∴AB +CD =BC ,故选B .【点睛】本题考查了切线的性质,切线垂直于过切点的半径,正确作出辅助线是关键. 10.【解析】(1)如图,连AD ,∵AB 是直径,∴90ADB ∠=︒,AD BC ⊥, 又AB AC =,∴D 为BC 中点,DB DC =; (2)连OD ,∵D 为BC 中点,OA OB =, ∴OD 为ABC △中位线,OD AC ∥, 又DE AC ⊥于,E ∴90ODE DEC ∠=∠=︒, ∴DE 为⊙O 的切线.1.【答案】B【解析】①圆内接四边形的对角互补;正确;②相等的圆周角所对的弧相等;错误;③正多边形内切圆的半径与正多边形的半径相等;错误;④同圆中的平行弦所夹的弧相等;正确; 正确的有2个,故选B . 2.【答案】B【解析】∵∠AOD =136°,∴∠BOD =44°,∴∠C =22°,故选B . 3.【答案】C【解析】如图,延长CA ,交⊙A 于点F ,考点冲关∵∠BAC+∠BAF=180°,∠BAC+∠EAD=180°,∴∠BAF=∠DAE,∴BF=DE=6,∵CF是直径,∴∠ABF=90°,CF=2×5=10,∴BC=228CF BF-=.故选C.4.【答案】C【解析】根据勾股定理可知A、B、C点到(2,0)的距离均为5,然后可知圆心为(2,0)或者通过AB、BC的垂直平分线求解也可以.故选C.5.【答案】C【解析】如图,作直径DE,连接CE,则∠DCE=90°,∵∠DBC=30°,∴∠DEC=∠DBC=30°,∵DE=AB=8,∴12DC DE==4,故选C.6.【答案】B【解析】由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选B.7.【答案】144°【解析】根据AB=BC可得:弧AB的度数和弧BC的度数相等,则弧AMC的度数为:(360°÷10)×4=144°,则∠AOC =144°. 8.【答案】100°【解析】∵∠B =130°,∴∠D =180°-130°=50°,∴∠AOC =2∠D =100°.故答案为100°. 9.【答案】7【解析】如图,设DC 与⊙O 的切点为E ;∵PA 、PB 分别是⊙O 的切线,且切点为A 、B ,∴PA =PB ; 同理,可得:DE =DA ,CE =CB ;则△PCD 的周长=PD +DE +CE +PC =PD +DA +PC +CB =PA +PB =14(cm ); ∴PA =PB =7cm ,故答案是:7. 10.【答案】84︒【解析】如图,连接BD ,OA ,OE ,OD ,∵四边形ABCD 是圆的内接四边形,∴180BAD C ∠+∠=︒, ∵120C ∠=︒,∴60BAD ∠=︒,∵AB AD =,∴ABD △是正三角形,∴60ABD ∠=︒,2120AOD ABD ∠=∠=︒, ∵AE 恰好是⊙的内接正十边形的一边,∴3603610AOE ︒∠==︒, ∴1203684DOE ∠=︒-︒=︒,∴DE 的度数为84°.故答案为:84°.113【解析】∵OD ⊥AC ,∠DEF =60°, ∴∠D =30°,∵OD=OB,∴∠ABD=∠D=30°,∴tan∠ABD=33,故答案为:33.12.【解析】(1)连接OC,如图.∵点C为弧BF的中点,∴弧BC=弧CF,∴∠BAC=∠FAC.∵OA=OC,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AE.∵AE⊥DE,∴OC⊥DE,∴DE是⊙O的切线;(2)在Rt△OCD中,∵tan D=34OCCD=,OC=3,∴CD=4,∴OD=22OC CD+=5,∴AD=OD+AO=8.在Rt△ADE中,∵sin D=35OC AEOD AD==,∴AE=245.13.【解析】(1)直线DE与⊙O相切,理由如下:如图,连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°–90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8–x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8–x)2=22+x2,解得:x=4.75,则DE=4.75.14.【解析】(1)如图1,连接OC.∵OB=OC,∴∠OCB=∠B,∵∠DCA=∠B,∴∠DCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠DCA+∠ACO=∠OCB+∠ACO=90°,即∠DCO=90°,∴CD是⊙O的切线.(2)∵AD⊥CD,CD=2,AD=4.∴222425AC=+=由(1)可知∠DCA=∠B,∠D=∠ACB=90°,∴△ADC∽△ACB,∴AD ACAC AB=2525=,∴AB=5.(3)2AC BC EC=+,如图2,连接BE,在AC上截取AF=BC,连接EF.∵AB 是直径,∠DAB =45°, ∴∠AEB =90°,∴△AEB 是等腰直角三角形, ∴AE =BE ,又∵∠EAC =∠EBC ,∴△ECB ≌△EFA ,∴EF =EC , ∵∠ACE =∠ABE =45°, ∴△FEC 是等腰直角三角形, ∴2FC EC =,∴2AC AF FC BC EC =+=.1.【答案】B【解析】∵∠ACB =50°,∴∠AOB =2∠ACB =100°,∵∠AOP =55°,∴∠POB =45°,故选B . 2.【答案】B【解析】∵AB CD =,40AOB ∠=︒,∴40COD AOB ∠=∠=︒, ∵180AOB BOC COD ∠+∠+∠=︒,∴100BOC ∠=︒, ∴1502BPC BOC ∠=∠=︒,故选B . 3.【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =--=,∵OD AC ⊥,∴142CD AD AC ===, 直通中考在Rt CBD △中,2246213BD =+=.故选C .4.【答案】D【解析】∵PA ,PB 是⊙O 的切线,∴PA =PB ,所以A 成立;∠BPD =∠APD ,所以B 成立; ∴AB ⊥PD ,所以C 成立;∵PA ,PB 是⊙O 的切线,∴AB ⊥PD ,且AC =BC ,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,所以D 不一定成立,故选D . 5.【答案】B【解析】如图,连接OA ,OB ,∵PA ,PB 是⊙O 的切线,∴PA ⊥OA ,PB ⊥OB ,∵∠ACB =55°,∴∠AOB =110°, ∴∠APB =360°-90°-90°-110°=70°.故选B .6.【答案】B【解析】∵AC 是⊙O 的切线,∴AB ⊥AC ,且∠C =40°,∴∠ABC =50°,故选B . 7.【答案】C【解析】∵∠AOC =126°,∴∠BOC =180°-∠AOC =54°,∵∠CDB =12∠BOC =27°.故选C . 8.【答案】A【解析】如图,连接DO .∵AB 为O 的直径,BC 为O 的切线,∴90CBO ∠=︒,∵AD OC ∥,∴DAO COB ∠=∠,ADO COD ∠=∠. 又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.在COD △和COB △中,CO CO COD COB OD OB =⎧⎪∠=∠⎨⎪=⎩,∴COD COB △≌△,∴90CDO CBO ∠=∠=︒.又∵点D 在O 上,∴CD 是O 的切线,故①正确,∵COD COB △≌△,∴CD CB =,∵OD OB =,∴CO 垂直平分DB ,即CO DB ⊥,故②正确; ∵AB 为O 的直径,DC 为O 的切线,∴90EDO ADB ∠=∠=︒,∴90EDA ADO BDO ADO ∠+∠=∠+∠=︒,∴ADE BDO ∠=∠, ∵OD OB =,∴ODB OBD ∠=∠,∴EDA DBE ∠=∠, ∵E E ∠=∠,∴EDA EBD △∽△,故③正确;∵90EDO EBC ∠=∠=︒,E E ∠=∠,∴EOD ECB △∽△, ∴ED ODBE BC=,∵OD OB =, ∴ED BC BO BE ⋅=⋅,故④正确,故选A . 9.【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1. 10.【答案】2【解析】如图,连接CO 并延长交⊙O 于E ,连接BE ,则∠E =∠A =30°,∠EBC =90°,∵⊙O 的半径为2,∴CE =4,∴BC =12CE =2, ∵CD ⊥AB ,∠CBA =45°,∴CD =22BC =2,故答案为:2. 11.【解析】(1)∵AB =AC ,∴AB AC =,∠ABC =∠ACB ,∴∠ABC =∠ADB ,∠ABC =(180°-∠BAC )=90°-∠BAC ,∵BD⊥AC,∴∠ADB=90°-∠CAD,∴12∠BAC=∠CAD,∴∠BAC=2∠CAD.(2)∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=12∠BDC=12∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=45,设AE=x,CE=10-x,由AB2-AE2=BC2-CE2,得100-x2=80-(10-x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE=648AE CEBE⋅⨯==3,∴BD=BE+DE=3+8=11,如图,作DH⊥AB,垂足为H,∵12AB·DH=12BD·AE,∴DH=11633105 BD AEAB⋅⨯==,∴BH2244 5BD DH-=,∴AH=AB-BH=10-446 55=,∴tan∠BAD=331162 DHAH==.12.【解析】(1)∵BA=BC,∠ABC=90°,∴∠BAC=45°,∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°,∴∠DAF=∠DBG,∵∠ABD+∠BAC=90°,∴∠ABD=∠BAC=45°,∴AD=BD,∴△ADF≌△BDG.(2)①如图2,过F作FH⊥AB于H,∵点E是BD的中点,∴∠BAE=∠DAE,∵FD⊥AD,FH⊥AB,∴FH=FD,∵FHBF=sin∠ABD=sin45°2,∴22FDBF=BF2FD,∵AB=4,∴BD=4cos45°2,即BF+FD22+1)FD2,∴FD=2221=4-22,故答案为:4-22.②连接OH,EH,∵点H是AE的中点,∴OH⊥AE,∵∠AEB=90°,∴BE⊥AE,∴BE∥OH,∵四边形OBEH为菱形,∴BE=OH=OB=12 AB,∴sin∠EAB=BEAB=12,∴∠EAB=30°.故答案为:30°.31。
《圆》知识点及练习题一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;A四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
圆的知识点总结(一)圆的有关性质[知识归纳]1. 圆的有关概念:圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高;圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。
2. 圆的对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性。
3. 圆的确定不在同一条直线上的三点确定一个圆。
4. 垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧;推论1(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
垂径定理及推论1可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧。
推论2圆的两条平行弦所夹的弧相等。
5. 圆心角、弧、弦、弦心距之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。
推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两条弧所对的弦相等;④两条弦的弦心距相等。
圆心角的度数等于它所对的弧的度数。
6. 圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等;推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
圆知识点总结一.圆的定义1.在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.2.圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.3.确定圆的条件:⑴圆心;⑵半径,其中圆心确定圆的位置,半径长确定圆的大小.二.同圆、同心圆、等圆1.圆心相同且半径相等的圆叫做同圆;#2.圆心相同,半径不相等的两个圆叫做同心圆;3.半径相等的圆叫做等圆.三.弦和弧1.连结圆上任意两点的线段叫做弦.经过圆心的弦叫做直径,并且直径是同一圆中最长的弦,直径等于半径的2倍.2.圆上任意两点间的部分叫做圆弧,简称弧.以A B、为端点的弧记作AB,读作弧AB.在同圆或等圆中,能够重合的弧叫做等弧.*3.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.4.从圆心到弦的距离叫做弦心距.5.由弦及其所对的弧组成的图形叫做弓形.四.与圆有关的角及相关定理1.顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.2.顶点在圆上,并且两边都和圆相交的角叫做圆周角.…圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.(在同圆中,半弧所对的圆心角等于全弧所对的圆周角)3.顶点在圆内,两边与圆相交的角叫圆内角.圆内角定理:圆内角的度数等于圆内角所对的两条弧的度数和的一半.4.顶点在圆外,两边与圆相交的角叫圆外角.【圆外角定理:圆外角的度数等于圆外角所对的长弧的度数与短弧的度数的差的一半. 5.圆内接四边形的对角互补,一个外角等于其内对角.6.如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.7.圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等. :五.垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; 2.其它正确结论:⑴ 弦的垂直平分线经过圆心,并且平分弦所对的两条弧;⑵ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. ⑶ 圆的两条平行弦所夹的弧相等. \3.知二推三:⑴直径或半径;⑵垂直弦;⑶平分弦;⑷平分劣弧;⑸平分优弧.以上五个条件知二推三.注意:在由⑴⑶推⑵⑷⑸时,要注意平分的弦非直径. 4.常见辅助线做法:⑴过圆心,作垂线,连半径,造RT △,用勾股,求长度;⑵有弧中点,连中点和圆心,得垂直平分. 相关题目: {1.平面内有一点到圆上的最大距离是6,最小距离是2,求该圆的半径 2.(08郴州)已知在O ⊙中,半径5r =,AB CD ,是两条平行弦,且86AB CD ==,,则弦AC 的长为__________.. 六.点与圆的位置关系 1.点与圆的位置有三种:⑴点在圆外⇔d r >;⑵点在圆上⇔d r =;⑶点在圆内⇔d r <.》2.过已知点作圆⑴经过点A 的圆:以点A 以外的任意一点O 为圆心,以OA 的长为半径,即可作出过点A 的圆,这样的圆有无数个. ⑵经过两点A B 、的圆:以线段AB 中垂线上任意一点O 作为圆心,以OA 的长为半径,即可作出过点A B 、的圆,这样的圆也有无数个.⑶过三点的圆:若这三点A B C 、、共线时,过三点的圆不存在;若A B C 、、三点不共线时,圆心是线段AB 与BC 的中垂线的交点,而这个交点O 是唯一存在的,这样的圆有唯一一个. ⑷过n ()4n ≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆心.3.定理:不在同一直线上的三点确定一个圆. —注意:⑴“不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆;⑵“确定”一词的含义是“有且只有”,即“唯一存在”.4.三角形的外接圆⑴经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形. ⑵三角形外心的性质:①三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等;②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.|⑶锐角三角形外接圆的圆心在它的内部(如图1);直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半,如图2);钝角三角形外接圆的圆心在它的外部(如图3).图3图2图1CBCC五.直线和圆的位置关系的定义、性质及判定从另一个角度,直线和圆的位置关系还可以如下表示:四.切线的性质及判定1. 切线的性质:定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.、2. 切线的判定定义法:和圆只有一个公共点的直线是圆的切线;距离法:和圆心距离等于半径的直线是圆的切线;定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.3. 切线长和切线长定理:⑴在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.⑵从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.:五.三角形内切圆1. 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2. 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,该多边形叫做圆的外切多边形.六.圆和圆的位置关系的定义、性质及判定设O O、⊙⊙的半径分别为(其中),两圆圆心距为,则两圆位置关系如下表:|位置关系图形定义性质及判定外离两个圆没有公共点,并且每个圆上的点都在另一个圆的外部.—d R r>+⇔两圆外离外切两个圆有唯一公共点,并且除了这个公共点之外,每个圆上的点都在另一个圆的外部.d R r=+⇔两圆外切相交#两个圆有两个公共点.R r d R r-<<+⇔两圆相交内切两个圆有唯一公共点,并且除了这个公共点之外,一个圆上的点都在另一个圆的内部.d R r=-⇔两圆内切内含>两个圆没有公共点,并且一个圆上的点都在另一个圆的内部,两圆同心是两圆内含的一种特例.0d R r≤<-⇔两圆内含说明:圆和圆的位置关系,又可分为三大类:相离、相切、相交,其中相离两圆没有公共点,它包括外离与内含两种情况;相切两圆只有一个公共点,它包括内切与外切两种情况.七.正多边形与圆,1. 正多边形的定义:各条边相等,并且各个内角也都相等的多边形叫做正多边形.2. 正多边形的相关概念:⑴正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心.⑵正多边形的半径:正多边形外接圆的半径叫做正多边形的半径.⑶正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.⑷正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距.~3. 正多边形的性质:⑴正n边形的半径和边心距把正n边形分成2n个全等的直角三角形;⑵正多边形都是轴对称图形,正n边形共有n条通过正n边形中心的对称轴;⑶偶数条边的正多边形既是轴对称图形,也是中心对称图形,其中心就是对称中心.八、圆中计算的相关公式设O ⊙的半径为R ,n ︒圆心角所对弧长为l ,、1. 弧长公式:π180n Rl =2. 扇形面积公式:21π3602n S R lR ==扇形 3. 圆柱体表面积公式:22π2πS R Rh =+4. 圆锥体表面积公式:2ππS R Rl =+(l 为母线) 常见组合图形的周长、面积的几种常见方法:① 公式法;② 割补法;③ 拼凑法;④ 等积变换法。
《圆》知识点归类及典例分析圆是初中数学中的一个重要图形,具有丰富的性质和广泛的应用。
以下将对圆的知识点进行归类,并结合典型例题进行分析,帮助大家更好地掌握这部分内容。
一、圆的基本概念1、圆的定义圆是平面内到定点的距离等于定长的点的集合。
这个定点称为圆心,定长称为半径。
2、弦连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径,直径是圆中最长的弦。
3、弧圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
4、圆心角顶点在圆心的角叫做圆心角。
5、圆周角顶点在圆上,并且两边都与圆相交的角叫做圆周角。
二、圆的性质1、圆的对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
3、圆心角、弧、弦的关系在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
4、圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
推论 1:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
推论 2:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等。
三、圆的位置关系1、点与圆的位置关系设圆的半径为 r,点到圆心的距离为 d,则有:当 d > r 时,点在圆外;当 d = r 时,点在圆上;当 d < r 时,点在圆内。
2、直线与圆的位置关系设圆的半径为 r,圆心到直线的距离为 d,则有:当 d > r 时,直线与圆相离;当 d = r 时,直线与圆相切;当 d < r 时,直线与圆相交。
3、圆与圆的位置关系设两圆的半径分别为 R 和 r(R > r),圆心距为 d,则有:当 d > R + r 时,两圆外离;当 d = R + r 时,两圆外切;当 R r < d < R + r 时,两圆相交;当 d = R r 时,两圆内切;当 d < R r 时,两圆内含。
专题30 圆的基本性质【知识要点】知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑴圆心;⑵半径,⑶其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径,并且直径是同一圆中最长的弦.⏜,读作弧AB.在同圆或弧的概念:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作AB等圆中,能够重合的弧叫做等弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.弦心距概念:从圆心到弦的距离叫做弦心距.弦心距、半径、弦长的关系:(考点)知识点二垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;常见辅助线做法(考点):1)过圆心,作垂线,连半径,造RT△,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分.知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑷圆心;⑸半径,⑹其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。
中考数学圆知识点总结5篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。
圆有无数条对称轴,对称轴经过圆心。
圆具有旋转对称性,任意绕圆心旋转一定的角度都可能与原来的圆重合。
二、圆的性质1. 圆心距性质:任意两个圆的圆心距离等于两圆半径之和的,两圆外离;任意两个圆的圆心距离等于两圆半径之差的,两圆内含;任意两个圆的圆心距离小于两圆半径之和但大于两圆半径之差的,两圆相交。
2. 切线性质:圆的切线垂直于经过切点的半径。
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等。
3. 圆的幂性质:如果两条弦与同一条直径垂直,那么这两条弦所对的直径段相等。
4. 圆锥曲线性质:以圆锥的底面直径为长轴,以圆锥的高为短轴的椭圆,叫做圆锥椭圆。
圆锥椭圆的两焦点是圆锥的底面圆心和顶点。
双曲线类似。
三、圆的应用1. 在建筑设计中,可以利用圆的旋转对称性,设计出美观大方的建筑外观。
如圆形广场、圆形剧场等。
2. 在机械制造中,许多零部件都是圆形或环形的设计,如轴承、齿轮等。
这些零部件的精确制造和安装对于整个机械的性能和稳定性至关重要。
3. 在电子科技领域,许多电子元件和电路板都是基于圆形或环形的布局设计,如电容、电感等。
这些元件的形状和布局对于电子设备的功能和性能有着重要影响。
4. 在生物学和医学领域,许多生物体的结构和器官都是圆形或近似的圆形设计,如人体的大脑、心脏等。
对于这些结构和器官的研究和理解,有助于我们更好地认识生命的奥秘。
四、圆的解题技巧1. 圆的题目中,常常会出现一些隐含的条件,如切线的性质、圆的幂性质等。
我们需要认真分析题目中的条件,找出这些隐含的条件,并加以利用。
2. 对于一些复杂的题目,我们可以利用几何软件进行辅助分析,如使用CAD软件进行绘图分析,可以帮助我们更好地理解题意和解题思路。
3. 在解题过程中,我们需要注重几何语言的准确性和规范性,避免出现混淆概念、计算错误等问题。
圆知识点一、圆的周长: 1.意义, 围成圆的曲线的长叫做圆的周长, 一般用字母C表示。
2.圆周率:圆的周长与它的直径的比值叫做圆周率, 一般用字母π表示(π≈3.14)。
3.计算公式: C=πd或C=2πr4.半圆的周长:等于远的周长的一半加上一条直径或2条半径,二、圆的面积:1.圆的面积的意义: 圆形物体、圆形所占平面的大小或圆形物体表面的大小就是圆的面积。
2、面积公式: 用S表示圆的面积, S=πr2。
3、圆环的面积计算公式:S环=ΠR2-πr2=π(R2-r2)。
(R为外圆半径, r为内圆半径)4.有关“外方内圆”和“外圆内方”的问题。
(1)在正方形内画一个最多是的圆, 这个圆的直径等于正方形的边长,(2)在圆内画一个最大的正方形, 这个正方形的对角线等于圆的直径。
三、圆的面积、周长计算公式的应用例1 一个圆形花坛的半径是3m, 它的面积是多少平方米?例2 圆形花坛的直径是20m, 它的面积是多少平方米?例3 一个圆形蓄水池的周长是25.12m, 这个蓄水池的占地面积是多少?例4 一个直径是15m的半圆形菜园, 要在菜园四周围上栅栏, 至少需要多少米长的栅栏?四、典型题目精练:1.我爱犯错误一个圆形纽扣的半径是1.5cm, 它的面积是多少?3.14×1.52=3.14×3=9.42(cm2)错题分析: 此题在计算1.52时, 把1.52算作1.5×2, 而1.52=1.5×1.5正确解答: 3.14×1.52=3.14×2.25=7.065(cm2)答: 纽扣的面积是7.065cm2。
2. 难点我来做判断(1)直径相等的两个圆, 面积不一定相等。
()(2)两个圆的半径之比是1:2, 面积之比是1:4。
()(3)一个圆的周长扩大3倍, 面积也扩大3倍。
()3. 疑点题小明的爸爸放羊时把一只羊栓在木桩上, 栓羊的绳子从木桩到羊颈项长4.5米。
圆的知识点总结(一)圆的有关性质[知识归纳]1. 圆的有关概念:圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高;圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。
2. 圆的对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性。
3. 圆的确定不在同一条直线上的三点确定一个圆。
4. 垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧;推论1(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧。
1推论2圆的两条平行弦所夹的弧相等。
5. 圆心角、弧、弦、弦心距之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。
推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两条弧所对的弦相等;④两条弦的弦心距相等。
圆心角的度数等于它所对的弧的度数。
6. 圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等;推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
圆周角的度数等于它所对的弧的度数的一半。
7. 圆内接四边形的性质圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。
※8. 轨迹轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。
(1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆;(2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线;(3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。
[例题分析]例1. 已知:如图1,在⊙O中,半径OM⊥弦AB于点N。
图1①若AB =,ON=1,求MN的长;②若半径OM=R,∠AOB=120°,求MN的长。
解:①∵AB =,半径OM⊥AB,∴AN=BN =∵ON=1,由勾股定理得OA=2∴MN=OM-ON=OA-ON=1②∵半径OM⊥AB,且∠AOB=120°∴∠AOM=60°2∵ON=OA·cos∠AON=OM·cos60°=∴说明:如图1,一般地,若∠AOB=2n°,OM⊥AB于N,AO=R,ON=h,则AB=2Rsin n°=2htan n °=例2. 已知:如图2,在△ABC中,∠ACB=90°,∠B=25°,以点C为圆心、AC为半径作⊙C,交AB于点D ,求的度数。
图2分析:因为弧与垂径定理有关;与圆心角、圆周角有关;与弦、弦心距有关;弧与弧之间还存在着和、差、倍、半的关系,因此这道题有很多解法,仅选几种供参考。
解法一:(用垂径定理求)如图2-1,过点C作CE⊥AB于点E ,交于点F。
图2-1∴又∵∠ACB=90°,∠B=25°,∴∠FCA=25°∴的度数为25°,∴的度数为50°。
解法二:(用圆周角求)如图2-2,延长AC交⊙C于点E,连结ED3图2-2∵AE是直径,∴∠ADE=90°∵∠ACB=90°,∠B=25°,∴∠E=∠B=25°∴的度数为50°。
CD解法三:(用圆心角求)如图2-3,连结图2-3∵∠ACB=90°,∠B=25°,∴∠A=65°∵CA=CD,∴∠ADC=∠A=65°∴∠ACD=50°,∴的度数为50°。
例3. 已知:如图3,△ABC内接于⊙O且AB=AC,⊙O的半径等于6cm,O点到BC的距离OD等于2cm,求AB的长。
析:因为不知道∠A是锐角还是钝角,因此圆心有可能在三角形内部,还可能在三角形外部,所以需分两种情况进行讨论。
略解:(1)假若∠A是锐角,△ABC是锐角三角形。
如图3,由AB=AC,可知点A是优弧的中点,因为OD⊥BC且AB=AC,根据垂径定理推论可知,DO的延长线必过点A,连结BO∵BO=6,OD=2∴在Rt△ADB中,AD=DO+AO=6+2=8∴图3 图3-1(2)若∠A是钝角,则△ABC是钝角三角形,如图3-1添加辅助线及求出,在Rt△ADB中,AD=AO-DO=6-2=44∴AB综上所述AB =小结:凡是与三角形外接圆有关的问题,一定要首先判断三角形的形状,确定圆心与三角形的位置关系,防止丢解或多解。
例4. 已知:如图4,AB是⊙O的直径,弦CD⊥AB,F是CD延长线上一点,AF交⊙OED于E。
求证:AE·EF=EC·图4分析:求证的等积式AE·EF=EC·ED中,有两条线段EF、ED在△EDF中,另两条线段AE、EC没有在同一三角形中,欲将其置于三角形中,只要添加辅助线AC,设法证明△FED∽△CEA即可。
证明:连结AC∵四边形DEAC内接于圆∴∠FDE=∠CAE,∠FED=∠DCA∵直径AB⊥CD ,∴∴∠DCA=∠CEA,∴∠FED=∠CEA∴△FED∽△CEA∴,∴AE·EF=EC·ED小结:四边形内接于圆这一条件,常常不是在已知条件中明确给出的,而是隐含在图形之中,在分析已知条件时,千万不要忽略这一重要条件。
例5. 已知:如图5,AM是⊙O的直径,过⊙O上一点B作BN⊥AM,垂足为N,其延长线交⊙O于点C,弦CD交AM于点E。
图5(1)如果CD⊥AB,求证:EN=NM;(2)如果弦CD交AB于点F,且CD=AB,求证CE2=EF·ED;(3)如果弦CD绕点C旋转,并且与AB的延长线交于点F,且CD=AB,那么(2)的结论是否仍成立?若成立,请证明;若不成立,请说明理由。
5证明:(1)连结BM(如图5-1)图5-1∵AM是直径,∴∠ABM=90°∵CD⊥AB,∴BM∥CD∴∠ECN=∠MBN,又AM⊥BC,∴CN=BN∴Rt△CEN≌Rt△BMN,∴EN=NM(2)连结BD,BE,AC(如图5-2)图5-2∵点E是BC垂直平分线AM上一点,∴BE=EC∵CD=AB ,∴∴∠ACD=∠BDC,又AB=AC,AE=AE∴△ABE≌△ACE,∴∠ABE=∠ACD=∠BDC∵∠BED是公共角,∴△BED∽△FEB∴BE2=EF·ED,∴CE2=EF·ED(3)结论成立。
如图5-3图5-3证明:仿(2)可证△ABE≌△ACE∴BE=CE,且∠ABE=∠ACE又∵AB=CD ,∴∴∠ACB=∠DBC,∴BD∥AC∴∠BDE+∠ACE=180°而∠FBE+∠ABE=180°∴∠BDE=∠FBE,而∠BED是公共角∴△BED∽△FEB6∴BE2=EF·ED,∴CE2=EF·ED(二)直线与圆的关系1.2.经过半径的外端并且垂直于这条半径的直线是圆的切线。
3. 切线的性质(1)圆的切线垂直于经过切点的半径;(2)推论1 经过圆心且垂直于切线的直线必经过切点;(3)推论2 经过切点且垂直于切线的直线必经过圆心。
此定理及推论可理解为以下三个条件中任知其中两个就可推出第三个:①垂直于切线;②经过切点;③经过圆心。
4. 切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
5. 弦切角定理(1)弦切角等于它所夹的弧对的圆周角;(2)推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等;(3)弦切角的度数等于它所夹的弧的度数的一半。
6. 和圆有关的比例线段(1)相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等;(2)推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项;(3)切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项;(4)推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
7. 三角形的内切圆(1)有关概念:三角形的内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形;(2)作图:作一个圆,使它和已知三角形的各边都相切。
[例题分析]例6. 已知:如图6,AB是⊙O的直径,C是AB延长线上一点,CG切⊙O于D,DE⊥AB于E。
78图6求证:∠CDB=∠EDB。
分析:由AB是⊙O的直径,联想到直径的三个性质:图6-1 图6-2 图6-3(1)直径上的圆周角是直角。
若连结AD,则得Rt△ABD;(2)垂径定理。
如图6-2,若延长DE交⊙O于F,则可得DE=EF ,;(3)过直径外端的切线与直径垂直。
如图6-3,若过B点作⊙O的切线BM,则AB⊥BM。
由CD是⊙O的切线,联想到切线的三个性质:(1)过切点的半径垂直于切线。
如图6-1,若连结OD,则OD⊥CD;(2)弦切角等于它所夹的弧对的圆周角。
若连结AD,则∠CDB=∠A;(3)切割线定理。
如图6,CD2=CB·CA。
由DE⊥AB于E,联想到以下一些性质:(1)Rt△DEB中两锐角互余,即∠EDB+∠EBD=90°;(2)垂径定理。
如图6-2,只要延长DE交⊙O于F,则可得到相等的线段,相等的弧;(3)构造与射影定理相关的基本图形。
即连结AD,则可得到△ADB是直角三角形,DE是斜边上的高,又可得到两对相等的锐角,三个相似的三角形,还可运用射影定理、勾股定理、面积公式等。
证明:连结AD,如图6,∵AB是直径,∴∠ADB=90°。
∵DE⊥AB,∴∠EDB=∠A∵CD是⊙O的切线,∴∠CDB=∠A,∴∠CDB=∠EDB此例题还有许多证法,比如连结OD,如图6-1,利用切线的定义;又比如延长DE交⊙O 于F,连结BF,如图6-2,利用垂径定理;还可以过点B作⊙O的切线交CD于点M,如图6-3,利用切线长定理,等等,这诸多证法,读者不妨试证之。