奥数专题行程问题流水行船问题
- 格式:docx
- 大小:16.47 KB
- 文档页数:6
流水行船问题【例1】乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时?【解析】乙船顺水速度:120÷2=60(千米/小时).乙船逆水速度:120÷4=30(千米/小时)。
水流速度:(60-30)÷2=15(千米/小时).甲船顺水速度:12O÷3=4O(千米/小时)。
甲船逆水速度:40-2×15=10(千米/小时).甲船逆水航行时间:120÷10=12(小时)。
甲船返【例2小时。
由.【例32710小时,【例4】一艘轮船顺流航行120千米,逆流航行80千米共用16时;顺流航行60千米,逆流航行120千米也用16时。
求水流的速度。
【解析】两次航行都用16时,而第一次比第二次顺流多行60千米,逆流少行40千米,这表明顺流行60千米与逆流行40千米所用的时间相等,即顺流速度是逆流速度的1.5倍。
将第一次航行看成是16时顺流航行了120+80×1.5=240(千米),由此得到顺流速度为240÷16=15(千米/时),逆流速度为15÷1.5=10(千米/时),最后求出水流速度为(15-10)÷2=2.5(千米/时)。
【例5】一条河上有甲、乙两个码头,甲在乙的上游50千米处。
客船和货船分别从甲、乙两码头出发向上游行驶,两船的静水速度相同且始终保持不变。
客船出发时有一物品从船上落入水中,10分钟后此物距客船5千米。
客船在行驶20千米后折向下游追赶此物,追上时恰好和货船相遇。
求水流的速度。
【解析】5÷1/6=30(千米/小时),所以两处的静水速度均为每小时30千米。
50÷30=5/3(小时),所以货船与物品相遇需要5/3小时,即两船经过5/3小时候相遇。
由于两船静水速度相同,所以客船行驶20千米后两船仍相距50千米。
50÷(30+30)=5/6(小时),所以客船调头后经过5/6小时两船相遇。
行程问题——流水行船问题学生姓名年级学科授课教师日期时段核心内容利用和差问题,结合路程,速度,时间关系以及追及相遇运动解决流水行船问题。
课型一对一教学目标1、利用和差问题解决水流问题。
2、运用路程,速度,时间关系解决题目。
3、利用相遇,追及解决相向运动,同向运动,背向运动的解题规律。
4、利用多种方法解决流水行船问题。
重、难点重点:教学目标1、2、3 难点:教学目标2、3、4课首沟通了解学生对行程问题的掌握情况;了解学生对行程图绘制的掌握情况;知识导图课首小测1.某船在静水中的速度是每小时18千米,水流速度是每小时2千米,这艘船从甲地逆水航行到乙地需要15小时,甲、乙两地的路程是多少千米?这艘船从乙地回到甲地需要多少小时?2.(举一反三)水流速度是每小时15千米。
现在有船顺水而行,8小时行320千米。
若逆水行320千米需几小时?3.(举一反三)有只大木船在长江中航行,逆流而上5小时行5千米,顺流而下1小时行5千米。
求这只木船每小时划船速度和河水的流速各是多少?知识梳理船速:是指船在静水中航行的速度。
水速:指江河中水流动的速度。
顺速:指船从江河中的上游往下游航行的速度。
逆速:指船从江河中的下游往上游航行的速度。
常用公式逆水速度=路程÷逆水时间顺水速度=路程÷水速时间顺水速度=船速度+水速度逆水速度=船速度-水速度导学一:逆水速度,顺水速度求法例 1. 轮船在静水中的速度是每小时21千米,轮船自甲港逆水航行8小时,到达相距144千米的乙港,再从乙港返回甲港需要多少小时?我爱展示1.两个码头相距432千米,轮船顺水行这段路程需要16小时。
逆水行每小时比顺水少行9千米,逆水行驶比顺水行驶多用多少小时?2.(举一反三)已知一船自上游向下游航行,经9小时后,已行673千米,此船每小时的划速是47千米。
求此河的水速是多少?3.一艘轮船每小时行15千米,它逆水6小时行了72千米,如果它顺水行驶同样长的航程需要多少小时?导学二:顺水速度,逆水速度,水速的关系知识点讲解 1:顺水速度-2×水速=逆水速度逆水速度+2×水速=顺水速度顺水速度-逆水速度=2×水速例 1. (举一反三)汽船每小时行30千米,在长176千米的河中逆流航行要11小时到达,返回需几小时?我爱展示1.(举一反三)当一机动船在水流每小时3千米的河中逆流而上时,8小时行48千米。
复习八:行程问题——流水行船问题1.甲、乙两港间的水路长432千米,一只船从上游甲港航行到下游乙港需要18小时。
从乙港返回甲港,需要24小时,求船在静水中的速度和水流速度。
2.一艘船在静水中的速度为每小时15千米,它从上游甲地开往下游乙地共花去了8小时,已知水速为每小时3千米,那么从乙地返回甲地需多少小时?3.一艘轮船从甲港开往乙港,顺水而行每小时行28千米,返回甲港时逆水而行用了6小时,已知水速是每小时4千米,甲、乙两港相距多少千米?4.一条大河,河中间(主航道)水的流速为每小时8千米,沿岸边水的速度为每小时6千米。
一条船在河中间顺流而下,13小时行驶520千米,求这条船沿岸边返回原地需要多少小时?5.有人在河中游泳逆流而上,丢失了水壶,水壶顺流而下,经30分钟才发觉此事,他立即返回寻找。
结果在离丢失地点下游6千米处找到水壶,他返回寻找用了多少时间?水流速度是多少?6.一艘货轮顺流航行36千米,逆流航行12千米,共用了10小时,顺流航行20千米,再逆流航行20千米也用了10小时,顺流航行12千米,又逆流航行24千米要用多少小时?7.一只船在水中航行,水速为每小时2千米,它在静水中航行每小时行8千米。
问这只船顺水航行50千米需要多少小时?8.一艘轮船在静水中的速度是每小时15千米,它逆水航行88千米用了11小时,问这艘船返回原地需用几小时?9.一只船往返于一段长120千米的航道,上行时用了10小时,下行时用了6小时。
船在静水中航行的速度与水速各是多少?10.两港口相距432千米,轮船顺水行这段路程需要16小时,逆水每小时比顺水少行9千米。
问行驶这段路程逆水比顺水多用几小时?11.一艘轮船往返于相距198千米的甲、乙两个码头,已知这段水路的水速是每小时2千米,从甲码头到乙码头顺流而下需要9小时。
这艘船往返于甲、乙两码头共需几小时?12.一条船在静水中的速度是每小时16千米,它逆水航行了12小时,行了144千米,如果这是按原路返回,每小时要行多少千米?13.甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时。
流水行船问题知识要点常见流水行船问题1. 乙船顺水航行2小时,行了120千米,返回原地用了4小时。
甲船顺水航行同一段水路,用了3小时。
甲船返回原地比去时多用了几小时?甲乙两港相距120km ,一艘船A 往返两港需要10h ,顺流航行比逆流航行少花了2h ,现有另一船B 顺水航行同一段路程,用了3h ,求此船返回原地比去时多用了多少小时?船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。
流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到。
此外,流水行船问题还有以下两个基本公式: 顺水速度=船速+水速 ⑴ 逆水速度=船速-水速 ⑵由公式⑴可以得到:水速=顺水速度-船速, 船速=顺水速度-水速。
由公式⑵可以得到:水速=船速-逆水速度, 船速=逆水速度+水速。
根据公式⑴和公式⑵,相加和相减就可以得到:船速=(顺水速度+逆水速度)2÷, 水速=(顺水速度-逆水速度)2÷。
两只船在河流中相遇问题:当甲、乙两船(甲在上游、乙在下游)在江河里相向开出,它们单位时间靠拢的路程等于甲、乙两船速度和。
这是因为:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速。
这就是说,两船在水中的相遇问题与静水中的及两车在陆地上的相遇问题一样,与水速没有关系。
同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,也只与路程差和船速有关,与水速无关。
这是因为:甲船顺水速度-乙船顺水速度 =(甲船速+水速)-(乙船速+水速)=甲船速-乙船速。
如果两船逆向追赶时,也有甲船逆水速度-乙船逆水速度 =(甲船速-水速)-(乙船速-水速)=甲船速-乙船速。
这说明水中追及问题与在静水中追及问题及两车在陆地上追及问题一样。
3.甲乙两港相距120km,一艘船A往返两港需要10h,顺流航行比逆流航行少花了2h,现有另一船B静水速度是35/km h,求船B往返两港需要的时间是多少?4.甲、乙两船在静水中速度分别为每小时24千米和每小时32千米,两船从某河相距336千米的两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?5.,A B两码头间河流长为90千米,甲、乙两船分别从,A B码头同时启航。
复习八:行程问题——流水行船问题1.甲、乙两港间的水路长432千米,一只船从上游甲港航行到下游乙港需要18小时。
从乙港返回甲港,需要24小时,求船在静水中的速度和水流速度。
2.一艘船在静水中的速度为每小时15千米,它从上游甲地开往下游乙地共花去了8小时,已知水速为每小时3千米,那么从乙地返回甲地需多少小时?3.一艘轮船从甲港开往乙港,顺水而行每小时行28千米,返回甲港时逆水而行用了6小时,已知水速是每小时4千米,甲、乙两港相距多少千米?4.一条大河,河中间(主航道)水的流速为每小时8千米,沿岸边水的速度为每小时6千米。
一条船在河中间顺流而下,13小时行驶520千米,求这条船沿岸边返回原地需要多少小时?5.有人在河中游泳逆流而上,丢失了水壶,水壶顺流而下,经30分钟才发觉此事,他立即返回寻找。
结果在离丢失地点下游6千米处找到水壶,他返回寻找用了多少时间?水流速度是多少?6.一艘货轮顺流航行36千米,逆流航行12千米,共用了10小时,顺流航行20千米,再逆流航行20千米也用了10小时,顺流航行12千米,又逆流航行24千米要用多少小时?7.一只船在水中航行,水速为每小时2千米,它在静水中航行每小时行8千米。
问这只船顺水航行50千米需要多少小时?8.一艘轮船在静水中的速度是每小时15千米,它逆水航行88千米用了11小时,问这艘船返回原地需用几小时?9.一只船往返于一段长120千米的航道,上行时用了10小时,下行时用了6小时。
船在静水中航行的速度与水速各是多少?10.两港口相距432千米,轮船顺水行这段路程需要16小时,逆水每小时比顺水少行9千米。
问行驶这段路程逆水比顺水多用几小时?11.一艘轮船往返于相距198千米的甲、乙两个码头,已知这段水路的水速是每小时2千米,从甲码头到乙码头顺流而下需要9小时。
这艘船往返于甲、乙两码头共需几小时?12.一条船在静水中的速度是每小时16千米,它逆水航行了12小时,行了144千米,如果这是按原路返回,每小时要行多少千米?13.甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时。
公式类行程问题之流水行船、扶梯问题、环形跑道重要结论:加油站同一条河中两船的相遇与追及和水速无关。
四个速度:丢物品与追物品用的时间一样。
⑴顺水速度=船速+水速,V顺=V船+V水;⑵逆水速度=船速-水速,V逆=V船-V水;⑶船速=(顺水速度+逆水速度)÷2;⑷水速=(顺水速度-逆水速度)÷2。
【例1】(★★)【例2】(★★★)平时轮船从A地顺流而下到B地要行20小时,从B地逆流而上到A 地要行28小时. 现正值雨季,水流速度为平时的2倍,那么,从A 到B再回A共需_____小时. 一只轮船从甲港顺水而下到乙港,马上又从乙港逆水行回甲港,共用了8小时.已知顺水每小时比逆水多行20千米,又知前4小时比后4小时多行60千米.那么,甲、乙两港相距多少千米?1【例3】(★★★★)【例4】(★★★★)一条河上有甲、乙两个码头,甲在乙的上游50 千米处.客船和货船分别从甲、乙两码头出发向上游行驶,两船的静水速度相同且始终保持不变.客船出发时有一物品从船上落入水中,10 分钟后此物距客船5 千米.客船在行驶20 千米后折向下游追赶此物,追上时恰好和货船相遇.求水流的速度.A、B两地相距100千米,甲乙两艘静水速度相同的船同时从A、B两地出发,相向而行,相遇后继续前进,到达B、A后再沿原路返回。
已知第一次和第二次相遇地点相距20千米,水流速度为每秒2米,那么船的静水速度是每小时多少千米?【例5】(★★★)扶梯问题:(1)顺行速度=人速+电梯速度(2)逆行速度=人速-电梯速度(3)电梯级数=可见级数=路程某城市火车站中,从候车室到大厅有一架向上的自动扶梯.海海想逆行从上到下,如果每秒向下迈两级台阶,那么他走过80 级台阶后到达站台;如果每秒向下迈三级台阶,那么走过60级台阶到达站台.自动扶梯有多少级台阶?2【加加点睛】【例6】(★★★)注意路程和时间的转化小丁在捷运站搭一座电扶梯下楼.如果他向下走14阶,则需时30秒即可由电扶梯顶到达底部;如果他向下走28阶,则需时18秒即可由电扶梯顶到达底部.请问这座电扶梯有几阶?【例7】(★★★)环形路线问题:有甲、乙、丙3人,甲每分钟行走120米,乙每分钟行走100米,丙两人同时同地出发每分钟行走70米.如果3个人同时同向,从同地出发,沿周长是400米(1)相向而行:相遇一次合走一圈的圆形跑道行走,那么最少经过多少分钟之后,3人又可以相聚在跑道上同一处?(2)同向而行:追上一次多走一圈3【例8】(★★★)【例9】(★★★★★)甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米? 二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈后,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。
流水行船问题船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程.根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速.由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速.这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
例1、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.分析:根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出.解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米.例2、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?分析:要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。
小学奥数流水行船专题习题小学奥数流水行船专题习题行程问题之流水行船练习11.甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?2.静水中,甲船速度是每小时22千米,乙船速度是每小时18千米,乙船先从某港开出顺水航行,2小时后甲船同方向开出,若水流速度为每小时4千米,求甲船几小时可以追上乙船?3.一条轮船在两码头间航行,顺水航行需4小时,逆水航行需5小时,水速是2千米,求这轮船在静水中的速度.4.甲、乙两港相距360千米,一轮船往返两港需要35小时,逆流航行比顺流航行多花5小时,另一机帆船每小时行12千米,这只机帆船往返两港需要多少小时?5.一只船在河中航行,水速为每小时2千米,它在静水中航行每小时行8千米,顺水航行50千米需用_______小时.6.某船在静水中的速度是每小时13.5千米,水流速度是每小时3.5千米,逆水而行的速度是每小时_______千米.7.某船的航行速度是每小时10千米,水流速度是每小时_____千米,逆水上行5小时行40千米.8.一只每小时航行13千米的客船在一条河中航行,这条河的水速为每小时7千米,那么这只船行140千米需______小时(顺水而行).9.一艘轮船在静水中的速度是每小时15公里,它逆水航行11小时走了88公里,这艘船返回需______小时.10.一只小船第一次顺流航行56公里,逆水航行20公里,共用12小时;第二次用同样的时间,顺流航行40公里,逆流航行28公里,船速______,水速_______.11.甲、乙两个港口相距77千米,船速为每小时9千米,水流速度为每小时2千米,那么由甲港到乙港顺水航行需_______小时.12.甲、乙两个码头相距144千米,汽船从乙码头逆水行驶8小时到达甲码头,又知汽船在静水中每小时行21千米,那么汽船顺流开回乙码头需要_______小时.13.甲、乙两港相距192千米,一艘轮船从甲港到乙港顺水而下行16小时到达乙港,已知船在静水中的速度是水流速度的5倍,那么水速______,船速是______.14.一只船在河里航行,顺流而下,每小时行18千米,船下行2小时与上行3小时的路程相等,那么船速______,水速_______.16.静水中甲、乙两船的速度为22千米、18千米,两船先后自港口顺水开出,乙比甲早出发2小时,若水速是每小时4千米,问甲开出后几小时可追上乙?17.一支运货船队第一次顺水航行42千米,逆水航行8千米,共用了11小时;第二次用同样的时间,顺水航行了24千米,逆水航行了14千米,求这支船队在静水中的速度和水流速度?18.已知80千米水路,甲船顺流而下需要4小时,逆流而上需要10小时,如果乙船顺流而下需5小时,问乙船逆流而上需要几小时?行程问题之流水行船练习21.甲乙两地相距234千米,一只船从甲到乙要9小时,从乙到甲要13小时,问船速和水速各是多少?2.一只客船的船速为每小时15千米,它从上游甲地到下游乙地共花了8小时,水速是每小时3千米,问客船从乙地返回甲地要多少小时?3.两地相距360千米,一艘游艇在其间驶个来回。
五年级数学奥赛练习
第十章行程问题·流水行船
练习2
例静水中甲、乙两船的速度分别为每小时20千米和16千米。
两船先后自某港顺水开出, 乙比甲早出发2小时。
若水速是每小时4千米, 甲开出后几小时追上乙?
1. A,B两个码头之间的水路长80千米, 甲船顺流而下需要4小时, 逆流而上需要10小时。
如果乙船顺流而下需要5小时, 那么乙船在静水中的速度是多少?
2. 一条大河, 河中间(主航道)水速为每小时8千米, 沿岸边水速为每小时6千米, 一艘船在河中间顺流而下, 13小时行驶520千米, 这艘船沿岸边返回原出发点需要多少小时?
3. 甲河是乙河的支流, 甲河的水速为每小时3千米, 乙河的水速是每小时2千米, 一艘船沿甲河顺水航行8小时, 行了152千米到达乙河, 在乙河还要逆水航行84千米, 这艘船还要航行多少小时?
4. 甲、乙两地相距48千米, 一艘船顺流由甲地去乙地, 需航行3小时; 返回时因雨后涨水, 所以用了8小时, 平时水速为每小时4千米, 涨水后水速增加多少?
例10
1. 10
2. 20
3. 6
4. 2。
小学奥数行程问题之流水行船关于小学奥数行程问题之流水行船1.两个码头相距192千米,一艘汽艇顺水行完全程需要8小时,已知这条河的水流速度为4千米/小时,求逆水行完全程需几小时?2.两个码头相距432千米,轮船顺水行这段路程需要16小时,逆水每小时比顺水少行9千米,逆水比顺水需要多用几个小时行完全程?3.甲、乙两个码头相距130千米,汽船从乙码头逆水行驶6.5小时到达甲码头,又知汽船在静水中每小时行驶23千米。
求汽船从甲码头顺流开回乙码头需要几小时?4.一支运货小船队,第一次顺流航行42千米,逆流航行8千米,共用11小时;第二次用同样的时间,顺流航行了24千米,逆流航行了14千米。
求这支小船队在静水中的速度和水流速度。
5.一只船在静水中的速度是每小时18千米,水流速度是每小时2千米。
这只船从甲港逆水航行到乙港需要15小时,甲、乙两港的距离是多少千米?6.一艘轮船每小时行15千米,它逆水6小时行了72千米,如果它顺水行驶同样长的航程需要多少小时?7.甲、乙两港相距240千米。
一艘轮船逆水行完全程要15小时,已知这段航程的水流速度是每小时4千米。
这艘轮船顺水行完全程要用多少小时?8.甲、乙两港之间的距离是140千米。
一艘轮船从甲港开往乙港,顺水7小时到达,从乙港返回甲港逆水10小时到达。
这艘轮船在静水中的'速度和水流速度各是多少?9.一艘轮船从乙港开往甲港,逆流而上每小时行18千米,返回乙港时顺流而下用了4小时。
已知这段航道的水速是每小时3千米,甲、乙两港相距多少千米?10.甲、乙两港相距192千米,从乙港到甲港逆流而上用了12小时,从乙港返回甲港每小时比去时多行8千米。
返回时比去时少用几小时?11.一只小船,第一次顺流航行48千米,逆流航行8千米,共用10小时;第二次用同样的时间顺流航行24千米,逆流航行14千米。
这只小船在静水中的速度和水流速度各是多少?。
流水行船问题船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程.根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速.由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速.这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
例1、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.分析:根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出.解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米.例2、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?分析:要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。
行程问题——流水行船问题船在流水中航行的问题叫做行船问题。
行船问题是行程问题中比较特殊的类型,它除了具备行程问题中路程、速度和时间之间的基本数量关系,同时还涉及到水流的问题,因船在江、河里航行时,除了它本身的前进速度外,还会受到流水的顺推或逆阻。
行船问题中常用的概念有:船速、水速、顺水速度和逆水速度。
船在静水中航行的速度叫船速;江河水流动的速度叫水速;船从上游向下游顺水而行的速度叫顺水速度;船从下游往上游逆水而行的速度叫逆水速度。
除了行程问题中路程、速度和时间之间的基本数量关系在这里要反复用到外,行船问题还有几个基本公式要用到。
顺水速度=船速速+水(1)逆水速度=船速-水速(2)公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速,船速=顺水速度-水速由公式(2)可得:水速=船速-逆水速度,船速=逆水速度+水速这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知*船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港顺流而下到达乙港用了15小时,从乙港返回甲港需要多少小时?【思路导航】求乙港返回甲港所需要的时间,实际还是要用甲、乙两港的全程除以返回时的速度,也就是说路程、速度和时间三者关系很重要,只是速度上要注意是顺水速度还是逆水速度。
【导语】解奥数题时,如果能合理的、科学的、巧妙的借助点、线、⾯、图、表将奥数问题直观形象的展⽰出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。
以下是®⽆忧考⽹整理的《⼩学五年级奥数流⽔⾏船问题》相关资料,希望帮助到您。
1.⼩学五年级奥数流⽔⾏船问题 公式定律: 顺⽔速度=船速+⽔速 逆⽔速度=船速-⽔速 船速=(顺⽔速度+逆⽔速度)÷2 ⽔速=(顺⽔速度-逆⽔速度)÷2 公式说明: (1)船在⽔中航⾏,⽐⼀般的⾏程问题⼜有了⼀个⽔流的影响,研究路程、速度与时间之间的数量关系称为流⽔⾏船问题。
(2)船顺⽔航⾏时,⼀⽅⾯按照船本⾝的速度即船速(船在静⽔中的速度)在⽔⾯⾏驶,同时⽔⾯⼜有⽔流动的速度在前⾏,⽔也带着船⾏进,因此顺⽔速度是船速与⽔速的和,即顺⽔速度=船速+⽔速。
船逆⽔航⾏时,⽔流⽅向与船航⾏的⽅向相反,所以逆⽔速度是船速与⽔速的差,即逆⽔速度=船速-⽔速。
顺⽔速度与逆⽔速度相差2个⽔速,所以⽔速=(顺⽔速度-逆⽔速度)÷2,船速⼆(顺⽔速度+逆⽔速度)÷2。
流⽔⾏船应⽤题: [例1]⼀条船在河中⾏驶,顺⽔每⼩时⾏16千⽶,逆⽔每⼩时⾏10千⽶,求船在静⽔中的速度和⽔流速度各是多少千⽶。
分析:船顺⽔速度是每⼩时16千⽶,是船速与⽔速的和,逆⽔速度是每⼩时10千⽶,是船速与⽔速的差。
16+10=26(千⽶/时)正好是2个船速,由此可以求出船速是26÷2=13(千⽶/时)。
再求出顺⽔速度减去船速16-13=3(千⽶/时),就是⽔速,或者(顺⽔速度-逆⽔速度)÷2,即(16-10)+2=3(千⽶/时)。
解船速:(16+10)÷2=13(千⽶/时) ⽔速:16-13=3(千⽶/时) 或(16-10)÷2=3(千⽶/时) 答:船在静⽔中的速度是每⼩时13千⽶,⽔速是每⼩时3千⽶。
一、参考系速度通常我们所接触的行程问题可以称作为“参考系速度为0”的行程问题,例如当我们研究甲乙两人在一段公路上行走相遇时,这里的参考系便是公路,而公路本身是没有速度的,所以我们只需要考虑人本身的速度即可。
二参考系速度——“水速”但是在流水行船问题中,我们的参考系将不再是速度为0的参考系,因为水本身也是在流动的,所以这里我们必须考虑水流速度对船只速度的影响,具体为:① 水速度=船速+水速;②逆水速度=船速-水速。
(可理解为和差问题)由上述两个式子我们不难得出一个有用的结论:船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2此外,对于河流中的漂浮物,我们还会经常用到一个常识性性质,即:漂浮物速度=流水速度。
三、流水行船问题中的相遇与追及①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出: 甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速 ②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关. 甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系.知识框架流水行船【例 1】两港相距560千米,甲船往返两港需105小时,逆流航行比顺流航行多用了35小时.乙船的静水速度是甲船的静水速度的2倍,那么乙船往返两港需要多少小时?【巩固】 乙两港相距360千米,一艘轮船往返两港需35小时,逆水航行比顺水航行多花了5小时,现在有一艘机帆船,静水中速度是每小时12千米,这艘机帆船往返两港需要多少小时?【例 2】一条小河流过A ,B , C 三镇.A ,B 两镇之间有汽船来往,汽船在静水中的速度为每小时11千米.B ,C两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A ,C 两镇水路相距50千米,水流速度为每小时1.5千米.某人从A 镇上船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C 镇,共用8小时.那么A ,B 两镇间的距离是多少千米?【巩固】 河水是流动的,在 B 点处流入静止的湖中,一游泳者在河中顺流从 A 点到 B 点,然后穿过湖到C 点,共用 3 小时;若他由 C 到 B 再到 A ,共需 6 小时.如果湖水也是流动的,速度等于河水速度,从 B 流向 C ,那么,这名游泳者从 A 到 B 再到 C 只需 2.5小时;问在这样的条件下,他由C 到 B 再到 A ,共需多少小时?例题精讲【例 3】长江沿岸有A,B两码头,已知客船从A到B每天航行500千米,从B到A每天航行400千米。
行程——流水行船问题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:(1)顺水速度=船速+水速(2)逆水速度=船速-水速这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:(3)水速=顺水速度-船速(4)船速=顺水速度-水速由公式(2)可得:(5)水速=船速-逆水速度(6)船速=逆水速度+水速这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:(7)船速=(顺水速度+逆水速度)÷2(8)水速=(顺水速度-逆水速度)÷21、一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?2、一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是多少千米每小时?3、一只船,顺水每小时行20千米,逆水每小时行12千米。
水流的速度是多少千米每小时?4、两个码头相距192千米,一艘汽艇顺水行完全程需要8小时,已知这条河的水流速度为4千米/小时,求逆水行完全程需多少小时?5、某船在静水中每小时行18千米,水流速度是每小时2千米。
六年级奥数专项行程问题-流水行船问题一.选择题1.轮船从A城到B城匀速行驶需行3天,而从B城到A城匀速行驶需行4天,从A城放一个无动力的木筏,它漂到B城需()天.A.24B.25C.26D.272.商场自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了30级到达楼上,男孩走了90级到达楼下.如果男孩单位时间内走的楼梯级数是女孩的3倍.问当时扶梯静止时,扶梯可看到的梯级共有()级.A.30B.45C.60D.753.轮船顺水航行2小时,行了120千米,返回原地又用了4小时,则轮船每小时在静水中行驶( )千米.A.45B.40C.50D.474.一轮船往返A,B两港之间,逆水水航行需要3h,顺水航行需2h,水速是3/km h,则轮船在静水中的速度是()A.18/km h C.12/km h B.15/km hkm h D.20/二.填空题5.一条河水流速度恒为每小时3公里,一只汽船用恒定的速度顺流4公里再返回原地,恰好用1小时(不计船掉头时间),则汽船顺流速度与逆流速度的比是.6.乙船顺水航行2小时,行了120千米,返回原地用了4小时。
甲船顺水航行同一段水路,用了3小时,甲船返回原地比去时多用了小时。
7.A、B是两个港口,A在上游,B在下游,一艘货船从A出发,6小时能到达.B而这艘货船从B 返回A需要8小时.现在一艘客船从A出发到达B需要12小时,那么这艘客船从B返回A需要小时.8.一只汽船在甲、乙两港之间航行,汽船从甲港到乙港匀速行驶需要3小时,从乙港到甲港匀速行驶需要4小时30分,一空塑料桶从甲港顺水漂流到乙港需要小时.9.一只汽船所带的燃料,最多用6小时,去时顺流每小时行15千米,回来是逆流每小时行12千米,这只汽船最多行出千米就需往回开.10.一艘轮船往返于甲、乙两个码头之间,如果船速不变,当水流速度增加时,轮船往返一次所用的时间(①不变②增加③减少).11.有两个顽皮的小孩子逆着自动扶梯行驶的方向行走.该扶梯共有150级台阶,男孩每秒可以走3级台阶,女孩每秒可以走2级台阶,结果从扶梯的一端到达另一端,女孩走了300秒,那么男孩走了秒.12.一艘轮船航行于武汉和宜昌之间,从宜昌向武汉行驶了24小时后,离武汉还差26千米;从武汉行驶到宜昌需31.3小时.已知这艘轮船逆水航行的速度是每小时20千米,那么这艘轮船在静水中的速度是每小时千米.三.应用题13.一艘轮船往返于甲、乙两个码头,去时顺水,每小时行20千米;返回时逆水,每小时行15千米,去时比返回时少用了2小时.甲、乙两个码头相距多少千米?14.一艘轮船顺流航行120千米,逆流航行80千米共用16时;顺流航行60千米,逆流航行120千米也用16时.求水流的速度.15.甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的23,两人相遇后继续前进,甲到达B地、乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点2000米,求A、B两地的距离.16.快船从A码头出发,沿河顺流而下,途径B码头后继续顺流驶向C码头,到达C码头后立即反向驶回到B码头,共用10小时,若A、B相距20千米,快船在静水中的速度是40千米/时,河水的流速是10千米/时.求B、C间的距离.17.一艘轮船在一条河的两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时.求:这两个港口之间的距离?18.一条船顺流行90千米用6小时,如果水流速度为每小时5千米,那么这条船逆流行40千米要用多少小时?19.一艘轮船顺流航行140千米,逆流航行80千米,共用了15小时;后来顺流航行60千米,逆流航行120千米,也用了15小时.求水流的速度.20.小船在静水中的速度是每分钟300米,它从A地开往B地的时候是逆流,一共用了11分钟,水速每分钟30米,想一想小船从B地到A地回来需要多长时间?四.解答题21.轮船以同一速度往返于两码头之间.它顺流而下,行了8小时;逆流而上,行了10小时.如果水流速度是每小时3千米,求两码头之间的距离.22.一艘船在河里航行,顺流而下每小时行16千米.已知这艘船下行3小时恰好与上行4小时所行的路程相等,求静水船速和水速?23.乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.则甲船返回原地比去时多用了几小时?24.一艘轮船从甲城开往乙城,以每小时85千米的速度行驶4小时到达.从乙城返航时由于逆风,轮船每小时的速度慢了17千米,轮船几小时才能到达甲城?25.一位少年短跑选手,顺风跑90米用了10秒钟,在同样的风速下,逆风跑70米,也用了10秒钟.问:在无风的时候,他跑100米要用多少秒?26.甲、乙两港相距288km,一艘轮船顺水去时用了3.2小时,逆水返回时用了4.8小时,求这艘轮船往返的平均速度.27.一艘船逆流而上,途中丢失了一根木棍,2分钟后才发现,立刻去追.问:多久才能追上?已知船的静水速度为18千米/小时.28.甲、乙两船在静水中的时速分别为24和32公里.两船在相距336公里的两港同时同向出发,甲船在前,乙船在后,问几小时后乙船追及甲船?参考答案一.选择题1.解:轮船顺流用3天,逆流用4天,说明轮船在静水中行431+=(天),-=(天),等于水流347即船速是流速的7倍.所以轮船顺流行3天的路程等于水流33724+⨯=(天)的路程,即木筏从A城漂到B城需24天.答:它漂到B城需24天.答案:A.2.解:设两人走的扶梯数是x,由题意得:x x+=-3090x=260x=30+=303060答:当时扶梯静止时,扶梯可看到的梯级共有60级.答案:C.3.解:120260÷=(千米/时)÷=(千米/时)120430(6030)245+÷=(千米/时)答:轮船每小时在静水中行驶45千米;答案:A.4.解:113[()2]23÷-÷ 1312=÷ 36=(千米)3623÷-183=-15=(千米/小时)答:轮船在静水中的速度是15千米/小时.答案:B .二.填空题5.解:设汽船在静水中的速度为每小时x 公里,44133x x +=+-, 24124129x x x -++=-,289x x =-,2890x x --=,(9)(1)0x x -⨯+=,故9x =,(93):(93)12:62:1+-==,答:汽船顺流速度与逆流速度的比是2:1,故填:2:1.6.解:水速:(12021204)2÷+÷÷(6030)2=-÷15=(千米/时)甲船顺水速度:120340÷=(千米/时)甲船逆水速度:4015210-⨯=(千米/时)甲船返回原地比去时多用了:1201039÷-=(小时).答:甲船返回原地比去时多用了9小时。
奥数专题行程问题流水行船问题
流水行船问题
流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:
顺水速度=船速+水速(1)
逆水速度=船速-水速(2)
这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:
水速=顺水速度-船速(3)
船速=顺水速度-水速(4)
由公式(2)可得:
水速=船速-逆水速度(5)
船速=逆水速度+水速(6)
这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:
船速=(顺水速度+逆水速度)÷2 (7)
水速=(顺水速度-逆水速度)÷2 (8)
*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?
解:此船的顺水速度是:
25÷5=5(千米/小时)
因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)
综合算式:
25÷5-1=4(千米/小时)
答:此船在静水中每小时行4千米。
*例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是每小时多少千米?
解:此船在逆水中的速度是:
12÷4=3(千米/小时)
因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:
4-3=1(千米/小时)
答:水流速度是每小时1千米。
*例3一只船,顺水每小时行20千米,逆水每小时行12千米。
这只船在静水中的速度和水流的速度各是多少?
解:因为船在静水中的速度=(顺水速度+逆水速度)÷2,所以,这只船在静水中的速度是:
(20+12)÷2=16(千米/小时)
因为水流的速度=(顺水速度-逆水速度)÷2,所以水流的速度是:
(20-12)÷2=4(千米/小时)
答略。
*例4某船在静水中每小时行18千米,水流速度是每小时2千米。
此船从甲地逆水航行到乙地需要15小时。
求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?
解:此船逆水航行的速度是:
18-2=16(千米/小时)
甲乙两地的路程是:
16×15=240(千米)
此船顺水航行的速度是:
18+2=20(千米/小时)
此船从乙地回到甲地需要的时间是:
240÷20=12(小时)
答略。
*例5某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时。
已知水速为每小时3千米。
此船从乙港返回甲港需要多少小时?
解:此船顺水的速度是:
15+3=18(千米/小时)
甲乙两港之间的路程是:
18×8=144(千米)
此船逆水航行的速度是:
15-3=12(千米/小时)
此船从乙港返回甲港需要的时间是:
144÷12=12(小时)
综合算式:
(15+3)×8÷(15-3)
=144÷12
=12(小时)
答略。
*例6甲、乙两个码头相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米。
求由甲码头到乙码头顺水而行需要几小时,由乙码头到甲码头逆水而行需要多少小时?
解:顺水而行的时间是:
144÷(20+4)=6(小时)
逆水而行的时间是:
144÷(20-4)=9(小时)
答略。
*例7一条大河,河中间(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米。
一只船在河中间顺流而下,6.5小时行驶260千米。
求这只船沿岸边返回原地需要多少小时?
解:此船顺流而下的速度是:
260÷6.5=40(千米/小时)
此船在静水中的速度是:
40-8=32(千米/小时)
此船沿岸边逆水而行的速度是:
32-6=26(千米/小时)
此船沿岸边返回原地需要的时间是:
260÷26=10(小时)
综合算式:
260÷(260÷6.5-8-6)
=260÷(40-8-6)
=260÷26
=10(小时)
答略。
*例8一只船在水流速度是2500米/小时的水中航行,逆水行120千米用24小时。
顺水行150千米需要多少小时?
解:此船逆水航行的速度是:
120000÷24=5000(米/小时)
此船在静水中航行的速度是:
5000+2500=7500(米/小时)
此船顺水航行的速度是:
7500+2500=10000(米/小时)
顺水航行150千米需要的时间是:
150000÷10000=15(小时)
综合算式:
150000÷(120000÷24+2500×2)
=150000÷(5000+5000)
=150000÷10000
=15(小时)
答略。