2014年重庆市中考数学试题(B卷)及答案
- 格式:doc
- 大小:389.71 KB
- 文档页数:11
重庆市2022年初中学业水平暨高中招生考试数学试卷(B 卷)(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;参考公式:抛物线2y ax bx c =++(0a ≠)的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2b x a=-. 一、选择题(共12个小题,每小题4分,共48分)在每个小题的下面,都给出了序号为A 、B 、C 、D 的四个选项,其中只有一个正确的,请将答题卡上题号右侧的正确答案所对应的方框涂黑.1. 2-的相反数是( )A. 2-B. 2C. 12 D. 12- 2. 下列北京冬奥会运动标识图案是轴对称图形的是( )A B.C. D.3. 如图,直线a b ∥,直线m 与a ,b 相交,若1115∠=︒,则2∠的度数为( )A. 115°B. 105°C. 75°D. 65° 4. 如图是小颖0到12时的心跳速度变化图,在这一时段内心跳速度最快的时刻约为.( )A. 3时B. 6时C. 9时D. 12时 5. 如图,ABC 与DEF 位似,点O 是它们的位似中心,且位似比为1∶2,则ABC 与DEF 的周长之比是( )A. 1∶2B. 1∶4C. 1∶3D. 1∶9 6. 把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为( )A. 15B. 13C. 11D. 97. 4的值在( )A. 6到7之间B. 5到6之间C. 4到5之间D. 3到4之间8. 学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x ,根据题意,下列方程正确的是( )A. 2625(1)400x -=B. 2400(1)625x +=C. 2625400x =D. 2400625x =9. 如图,在正方形ABCD 中,对角线AC 、BD 相交于点O . E 、F 分别为AC 、BD 上一点,且OE OF =,连接AF ,BE ,EF .若25AFE ∠=︒,则CBE ∠的度数为( )A. 50°B. 55°C. 65°D. 70° 10. 如图,AB 是O 的直径,C 为O 上一点,过点C 的切线与AB 的延长线交于点P,若AC PC ==,则PB 的长为( )B. 32C. D. 3 11. 关于x 的分式方程31133x a x x x-++=--的解为正数,且关于y 的不等式组92(2)213y y y a +≤+⎧⎪-⎨>⎪⎩的解集为5y ≥,则所有满足条件的整数a 的值之和是( ) A. 13 B. 15 C. 18 D. 20 12. 对多项式x y z m n ----任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:()()x y z m n x y z m n ----=--++,()x y z m n x y z m n ----=--+-,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确个数为( )A. 0B. 1C. 2D. 3二、填空题(共4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13. 0|2|(3-+=_________.14. 不透明的袋子中装有2个红球和1个白球,除颜色外无其他差别,随机摸出一个球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率是________.15. 如图,在矩形ABCD 中,1AB =,2BC =,以B 为圆心,BC 的长为半轻画弧,交AD 于点E .则图中阴影部分的面积为_________.(结果保留π)16. 特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1∶3∶2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为_________.三、解答题(共2个小题,每小题8分,共16分)17. 计算:(1)()()(2)x y x y y y +-+-;(2)2244124m m m m m -+⎛⎫-÷ ⎪⎝⎭-+. 18. 我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a ,高为h 的三角形的面积公式为12S ah =.想法是:以BC 为边作矩形BCFE ,点A 在边FE 上,再过点A 作BC 的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A 作BC 的垂线AD 交BC 于点的D .(只保留作图痕迹)在ADC 和CFA △中,∵AD BC ⊥,∴90ADC ∠=︒.∵90F ∠=︒,∴______①____.∵EF BC ∥,∴______②_____.又∵____③______.∴ADC CFA △≌△(AAS ).同理可得:_____④______.11112222ABC ADC ABD ADCF AEBD BCFE S S S S S S ah =+=+== 矩形矩形矩形. 三、解答题(共7个小题,每小题10分,共70分)19. 在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,经初步统计,所有学生的课外阅读时长都不低于6小时,但不足12小时,从七,八年级中各随机抽取了20名学生,对他们在活动期间课外阅读时长(单位:小时)进行整理、描述和分析(阅读时长记为x ,67x ≤<,记为6;78x ≤<,记为7;89x ≤<,记为8;…以此类推),下面分别给出了抽取的学生课外阅读时长的部分信息,七年级抽取的学生课外阅读时长:6,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,10,10,11, 七、八年级抽取的学生课外阅读时长统计表年级七年级 八年级 平均数8.3 8.3 众数a 9 中位数 8 b8小时及以上所占百分比 75% c根据以上信息,解答下列问题:(1)填空:=a ______________,b =______________,c =______________.(2)该校七年级有400名学生,估计七年级在主题周活动期间课外阅读时长在9小时及以上学生人数.(3)根据以上数据,你认为该校七,八年级学生在主题周活动中,哪个年级学生的阅读积极性更高?请说明理由,(写出一条理由即可)20. 反比例函数4y x =的图象如图所示,一次函数y kx b =+(0k ≠)的图象与4y x =的图象交于(,4)A m ,(2,)B n -两点,(1)求一次函数的表达式,并在所给的平面直角坐标系中面出该函数的图象;(2)观察图象,直接写出不等式4kx b x+<解集; (3)一次函数y kx b =+的图象与x 轴交于点C ,连接OA ,求OAC 的面积. 21. 为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙的的施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?22. 湖中小岛上码头C 处一名游客突发疾病,需要救援.位于湖面B 点处的快艇和湖岸A 处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C 接该游客,再沿CA 方向行驶,与救援船相遇后将该游客转运到救援船上.已知C 在A 的北偏东30°方向上,B 在A 的北偏东60°方向上,且B 在C 的正南方向900米处.(1)求湖岸A 与码头C 的距离(结果精确到11.732=);(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计) 23. 对于一个各数位上的数字均不为0的三位自然数N ,若N 能被它的各数位上的数字之和m 整除,则称N 是m 的“和倍数”.例如:∵247(247)2471319÷++=÷=,∴247是13的“和倍数”.又如:∵214(214)2147304÷++=÷= ,∴214不是“和倍数”.(1)判断357,441否是“和倍数”?说明理由;(2)三位数A 是12的“和倍数”,a ,b ,c 分别是数A 其中一个数位上的数字,且a b c >>.在a ,b ,c 中任选两个组成两位数,其中最大的两位数记为()F A ,最小的两位数记为()G A ,若()()16F AG A +为整数,求出满足条件的所有数A . 24. 如图,在平面直角坐标系中,抛物线234y x bx c =-++与x 轴交于点(4,0)A ,与y 轴交于点(0,3)B .是(1)求抛物线的函数表达式;(2)点P 为直线AB 上方抛物线上一动点,过点P 作PQ x ⊥轴于点Q ,交AB 于点M ,求65PM AM +的最大值及此时点P 的坐标; (3)在(2)的条件下,点P '与点P 关于抛物线234y x bx c =-++的对称轴对称.将抛物线234y x bx c =-++向右平移,使新抛物线的对称轴l 经过点A .点C 在新抛物线上,点D 在l 上,直接写出所有使得以点A 、P '、C 、D 为顶点的四边形是平行四边形的点D 的坐标,并把求其中一个点D 的坐标的过程写出来.25. 在ABC 中,90BAC ∠=︒,AB AC ==D 为BC 的中点,E ,F 分别为AC ,AD 上任意一点,连接EF ,将线段EF 绕点E 顺时针旋转90°得到线段EG ,连接FG ,AG .(1)如图1,点E 与点C 重合,且GF 的延长线过点B ,若点P 为FG 的中点,连接PD ,求PD 的长;(2)如图2,EF 的延长线交AB 于点M ,点N 在AC 上,AGN AEG ∠=∠且GN MF =,求证:AM AF +=;(3)如图3,F 为线段AD 上一动点,E 为AC 的中点,连接BE ,H 为直线BC 上一动点,连接EH ,将BEH △沿EH 翻折至ABC 所在平面内,得到B EH '△,连接B G ',直接写出线段B G '的长度的最小值。
重庆市2023年初中学业水平暨高中招生考试数学试题(B 卷)一、选择题:(本大题10个小题,每小题4分,共40分)1.【答案】D【解析】解:4的相反数是4-,故选:D .2.【答案】A 【解析】解:从正面看到的视图是:,故选:A .3.【答案】C【解析】∵a b ,∴1263∠=∠=︒,故选:C .4.【答案】B【解析】解:∵ABC EDC ∽,∴::AC EC AB DE =,∵:2:3AC EC =,6AB =,∴2:36:DE =,∴9DE =,故选:B.5.【答案】D【解析】解:∵()()326,236,248,236-⨯=-⨯-=--⨯-=⨯=,∴点()2,3在反比例函数6y x=的图象上,故选:D .6.【答案】B【解析】解:因为第①个图案中有2个圆圈,2311=⨯-;第②个图案中有5个圆圈,5321=⨯-;第③个图案中有8个圆圈,8331=⨯-;第④个图案中有11个圆圈,11341=⨯-;…,所以第⑦个图案中圆圈的个数为37120⨯-=;故选:B.7.【答案】A1=,253036<<,<<56<<,415∴<<,故选:A.8.【答案】B【解析】解:如图,连接OC,直线CD与O相切,OC CD∴⊥,90OCD∴∠=︒,50ACD∠=︒,40OCA∴∠=︒,OA OC=,40BAC OCA∴∠=∠=︒,故选:B.9.【答案】D【解析】解:如图,连接AF,四边形ABCD 是正方形,AB BE BC ∴==,90ABC ∠=︒,22AC ==,BEC BCE ∴∠=∠,1802EBC BEC ∴∠=︒-∠,290ABE ABC EBC BEC ∴∠=∠-∠=∠-︒,BF 平分ABE ∠,1452ABF EBF ABE BEC ∴∠=∠=∠=∠-︒,45BFE BEC EBF ∴∠=∠-∠=︒,在BAF △与BEF △,AB EB ABF EBF BF BF =⎧⎪∠=∠⎨⎪=⎩,()SAS BAF BEF ∴△≌△,45BFE BFA ∴∠=∠=︒,90AFC BAF BFE ∴∠=∠+∠=︒,O 为对角线AC 的中点,122OF AC ∴==,故选:D .10.【答案】C【解析】解:x y z m n x y z m n ----=----,故说法①正确.若使其运算结果与原多项式之和为0,必须出现x -,显然无论怎么添加绝对值,都无法使x 的符号为负,故说法②正确.当添加一个绝对值时,共有4种情况,分别是x y z m n x y z m n ----=----;x y z m n x y z m n ----=-+--;||x y z m n x y z m n ----=--+-;x y z m n x y z m n ----=---+.当添加两个绝对值时,共有3种情况,分别是x y z m n x y z m n ----=--+-;x y z m n x y z m n ----=---+;x y z m n x y z m n ----=-+-+.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C .二、填空题:(本大题8个小题,每小题4分,共32分)11.【答案】6【解析】解:05(2516-+-=+=.故答案为:6.12.【答案】14【解析】解:列表如下,清风朗月清清清清风清朗清月风风清风风风朗风月朗朗清朗风朗朗朗月月月清月风月朗月月共有16中等可能结果,其中,抽取的两张卡片上的汉字相同的情形有4种,∴抽取的两张卡片上的汉字相同的概率是14,故答案为:14.13.【答案】800︒##800度【解析】解:∵七边形的内角中有一个角为100︒,∴其余六个内角之和为()180********︒⨯--︒=︒,故答案为:800︒.14.【答案】4【解析】解:∵在ABC 中,AB AC =,AD 是BC 边的中线,∴AD BC ⊥,12BD BC =,在Rt △ABD 中,5AB =,132BD BC ==,∴4AD ===,故答案为:4.15.【答案】2301(1)500x +=【解析】 第一个月新建了301个充电桩,该市新建智能充电桩个数的月平均增长率为x .∴第二个月新建了301(1)x +个充电桩,∴第三个月新建了2301(1)x +个充电桩,第三个月新建了500个充电桩,于是有2301(1)500x +=,故答案为2301(1)500x +=.16.【答案】4π-【解析】解:∵四边形ABCD 是矩形,2AB =,4BC =,E 为BC 的中点,∴12,22AB CD BE CE BC =====,90ABC DCB ∠=∠=︒,∴45BAE AEB DEC CDE ∠=∠=∠=∠=︒,∴()2145212=22222423602ABE BEM S S S πππ⎛⎫⨯⎛⎫=-⨯⨯-=⨯-=- ⎪ ⎪⎝⎭⎝⎭ 阴影扇形;故答案为:4π-.17.【答案】13【解析】解:213241x x x a x +⎧>+⎪⎨⎪+<-⎩①②,解不等式①得:<2x -,解不等式②得:13a x +<-,∵关于x 的不等式组213241x x x a x +⎧>+⎪⎨⎪+<-⎩的解集为<2x -,123a +∴-≥-,解得5a ≤,方程22211a y y y+++=--可化为()2221a y y +--=-,解得23a y +=, 关于y 的分式方程22211a y y y +++=--的解为正数,203a +∴>且2103a +-≠,解得2a >-且1a ≠,52a ∴-<≤且1a ≠,则所有满足条件的整数a 的值之和为10234513-+++++=,故答案为:13.18.【答案】①.6200②.9313【解析】解:根据题意,只需千位数字和百位数字尽可能的小,所以最小的“天真数”为6200;根据题意,6a d -=,2b c -=,69a ≤≤,29b ≤≤,则()8c d a b +=+-,∴()()()348P M a b c d a b =+++=+-,∴()()()485P M M a Q b a +--=,若M 最大,只需千位数字a 取最大,即9a =,∴()()()498795b P Q b M M =+-=+-,∵()()P M Q M 能被10整除,∴3b =,∴满足条件的M 的最大值为9313,故答案为:6200,9313.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)19.【答案】(1)229x +(2)13m n-【解析】(1)解:()()263x x x ++-22669x x x x =++-+229x =+;(2)解:2293n m n m m -⎛⎫+÷ ⎪⎝⎭()()333m n m m m n m n +=⋅+-13m n=-.20.【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠.∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.21.【答案】(1)15,88,98(2)90(3)A 款,理由:评分数据中A 款的中位数比B 款的中位数高(答案不唯一)【解析】(1)解: 抽取的对A 款设备的评分数据中“满意”的有6份,∴“满意”所占百分比为:6100%30%20⨯=,∴“比较满意”所占百分比为:130%45%10%15%---=,15a ∴=,抽取的对A 款设备的评分数据中的中位数是第10份和第11份数据的平均数, “不满意”和“满意”的评分有()2010%15%5⨯+=(份),∴第10份和第11份数据为“满意”,评分分别为87,89,∴8789882m +==, 抽取的对B 款设备的评分数据中出现次数最多的是98,98n ∴=,故答案为:15,88,98;(2)解:600名消费者对A 款自动洗车设备“比较满意”的人数为:60015%90⨯=(人),答:600名消费者对A 款自动洗车设备“比较满意”的人数为90人.(3)解:A 款自动洗车设备更受欢迎,理由:评分数据中A 款的中位数比B 款的中位数高(答案不唯一).22.【答案】(1)当04t <≤时,y t =;当46t <≤时,122y t =-;(2)图象见解析,当04t <≤时,y 随x 的增大而增大(3)t 的值为3或4.5【解析】(1)解:当04t <≤时,连接EF ,由题意得AE AF =,60A ∠=︒,∴AEF △是等边三角形,∴y t =;当46t <≤时,122y t =-;(2)函数图象如图:当04t <≤时,y 随t 的增大而增大;(3)当04t <≤时,3y =即3t =;当46t <≤时,3y =即1223t -=,解得 4.5t =,故t 的值为3或4.5.23.【答案】(1)甲区有农田50000亩,乙区有农田40000亩(2)100亩【解析】(1)解:设甲区有农田x 亩,则乙区有农田()10000x -亩,由题意得:80%10000x x =-,解得50000x =,则10000500001000040000x -=-=,答:甲区有农田50000亩,乙区有农田40000亩.(2)解:设派往甲区每架次无人机平均喷洒y 亩,派往甲区的无人机架次为a 架次,则派往乙区每架次无人机平均喷洒503y ⎛⎫- ⎪⎝⎭亩,派往乙区的无人机架次为1.2a 架次,由题意得:5031.2ay a y ⎛⎫=-⎪⎝⎭,即5031.2y y ⎛⎫=- ⎪⎝⎭,解得100y =,答:派往甲区每架次无人机平均喷洒100亩.24.【答案】(1)2545米(2)能,说明过程见解析【解析】(1)解:如图,过点C 作CD AB ⊥于点D ,由题意得:60,45ACD BCD ∠=︒∠=︒,30,45A B BCD ∴∠=︒∠=∠=︒,118002BD CD AC ∴===米,2545sin 45CD BC ∴=≈︒米,答:B 养殖场与灯塔C 的距离为2545米.(2)解:sin 60AD AC =⋅︒=()1800AB AD BD ∴=+=米,则甲组到达B 处所需时间为()180060038.196+÷=≈(分钟)9<分钟,所以甲组能在9分钟内到达B 处.25.【答案】(1)211344y x x =+-(2)PD 取得最大值为45,52,2P ⎛⎫-- ⎪⎝⎭(3)Q 点的坐标为9,12⎛⎫-⎪⎝⎭或9,52⎛⎫ ⎪⎝⎭或97,24⎛⎫ ⎪⎝⎭.【解析】(1)解:将点()3,0B ,()0,3C -.代入214y x bx c =++得,2133043b c c ⎧⨯++=⎪⎨⎪=-⎩解得:143b c ⎧=⎪⎨⎪=-⎩,∴抛物线解析式为:211344y x x =+-,(2)∵211344y x x =+-与x 轴交于点A ,B ,当0y =时,2113044x x +-=解得:124,3x x =-=,∴()4,0A -,∵()0,3C -.设直线AC 的解析式为3y kx =-,∴430k --=解得:34k =-∴直线AC 的解析式为334y x =--,如图所示,过点P 作PE x ⊥轴于点E ,交AC 于点Q,设211,344P t t t ⎛⎫+- ⎪⎝⎭,则3,34Q t t ⎛⎫-- ⎪⎝⎭,∴223111334444PQ t t t t ⎛⎫=---+-=-- ⎪⎝⎭,∵AQE PQD ∠=∠,90AEQ QDP ∠=∠=︒,∴OAC QPD ∠=∠,∵4,3OA OC ==,∴5AC =,∴4cos cos =5PD AO QPD OAC PQ AC ∠==∠=,∴()222441141425545555PD PQ t t t t ⎛⎫==--=--=-++ ⎪⎝⎭,∴当2t =-时,PD 取得最大值为45,()()2211115322344442t t +-=⨯-+--=-,∴52,2P ⎛⎫-- ⎪⎝⎭;(3)∵抛物线211344y x x =+-211494216x ⎛⎫=+- ⎪⎝⎭将该抛物线向右平移5个单位,得到219494216y x ⎛⎫=-- ⎪⎝⎭,对称轴为直线92x =,点52,2P ⎛⎫-- ⎪⎝⎭向右平移5个单位得到53,2E ⎛⎫- ⎪⎝⎭∵平移后的抛物线与y 轴交于点F ,令0x =,则2194924216y ⎛⎫=⨯-= ⎪⎝⎭,∴()0,2F ,∴22251173224EF ⎛⎫=++= ⎪⎝⎭∵Q 为平移后的抛物线的对称轴上任意一点.则Q 点的横坐标为92,设9,2Q m ⎛⎫ ⎪⎝⎭,∴22295322QE m ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭,()222922QF m ⎛⎫=+- ⎪⎝⎭,当QF EF =时,()22922m ⎛⎫+- ⎪⎝⎭=1174,解得:1m =-或5m =,当QE QF =时,2295322m ⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭=()22922m ⎛⎫+- ⎪⎝⎭,解得:74m =综上所述,Q 点的坐标为9,12⎛⎫-⎪⎝⎭或9,52⎛⎫ ⎪⎝⎭或97,24⎛⎫ ⎪⎝⎭.26.【答案】(1)见解析(2)见解析(32+【解析】(1)证明:∵ABC 为等边三角形,∴60ACB ∠=︒,AC BC =,∵将CE 绕点C 顺时针旋转60︒得到线段CF ,∴CE CF =,60ECF ∠=︒∴ACB ECF∠=∠∴ACB ACE ECF ACE-=-∠∠∠∠即BCE ACF∠=∠在BCE 和ACF △中EC FC BCE ACF BC AC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BCE ACF ≌△△,∴CBE CAF ∠=∠;(2)证明:如图所示,过点F 作∥FK AD ,交DH 点的延长线于点K ,连接EK ,FD,∵ABC 是等边三角形,∴AB AC BC ==,∵AD BC⊥∴BD CD=∴AD 垂直平分BC ,∴EB EC=又∵BCE ACF ≌,∴,AF BE CF CE ==,∴AF CF =,∴F 在AC 的垂直平分线上,∵AB BC=∴B 在AC 的垂直平分线上,∴BF 垂直平分AC∴AC BF ⊥,12AG CG AC ==∴90AGF ∠=︒又∵12DG AC CG ==,60ACD ∠=︒∴DCG △是等边三角形,∴60CGD CDG ∠=∠=︒∴60AGH DGC ∠=∠=︒∴906030KGF AGF AGH ∠=∠-∠=︒-︒=︒,又∵906030ADK ADC GDC ∠=∠-∠=︒-︒=︒,KF AD∥∴30HKF ADK ∠=∠=︒∴30FKG KGF ∠=∠=︒,∴FG FK=在Rt CED 与Rt CGF △中,CF CE CD CG=⎧⎨=⎩∴Rt Rt CED CFG≌∴GF ED=∴ED FK=∴四边形EDFK 是平行四边形,∴EH HF =;(3)解:依题意,如图所示,延长,AP DQ 交于点R ,由(2)可知DCG △是等边三角形,∴30EDG ∠=︒∵将AEG 沿AG 所在直线翻折至ABC 所在平面内,得到APG ,将DEG 沿DG 所在直线翻折至ABC 所在平面内,得到DQG ,∴30PAG EAG ∠=∠=︒,30QDG EDG ∠=∠=︒∴60PAE QDE ∠=∠=︒,∴ADR 是等边三角形,∴906030QDC ADC ADQ ∠=∠-∠=︒-︒=︒由(2)可得Rt Rt CED CFG≌∴DE GF =,∵DE DQ =,∴GF DQ =,∵30GBC QDC ∠=∠=︒,∴GF DQ∥∴四边形GDQF 是平行四边形,∴122QF DG AC ===由(2)可知G 是AC 的中点,则GA GD=∴30GAD GDA ∠=∠=︒∴120AGD ∠=︒∵折叠,120AGP DGQ AGE DGE AGD ∴∠+∠=∠+∠=∠=︒,∴3602120PGQ AGD ∠=︒-∠=︒,又PG GE GQ ==,∴PQ ==,∴当GQ 取得最小值时,即GQ DR ⊥时,PQ 取得最小值,此时如图所示,∴11122GQ GC DC ===,∴3PQ =,∴32PQ QF +=.。
2024年重庆市中考数学试题B 卷+答案解析(试题部分)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫−− ⎪⎝⎭,对称轴为2b x a =−. 一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1. 下列各数中最小的数是( )A. 1−B. 0C. 1D. 22. 下列标点符号中,是轴对称图形的是( )A. B. C. D.3. 反比例函数10y x =−的图象一定经过的点是( ) A. ()1,10 B. ()2,5− C. ()2,5 D. ()2,8 4. 如图,AB CD ∥,若1125∠=︒,则2∠的度数为( )A. 35︒B. 45︒C. 55︒D. 125︒ 5. 若两个相似三角形的相似比为1:4,则这两个三角形面积的比是( )A. 1:2B. 1:4C. 1:8D. 1:16 6.的值应在( )A. 8和9之间B. 9和10之间C. 10和11之间D. 11和12之间 7. 用菱形按如图所示的规律拼图案,其中第①个图案中有2个菱形,第②个图案中有5个菱形,第③个图案中有8个菱形,第④个图案中有11个菱形,…,按此规律,则第⑧个图案中,菱形的个数是( )A. 20B. 21C. 23D. 26 8. 如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,连接BD ,CD .若28D ∠=︒,则OAB ∠的度数为( )A. 28︒B. 34︒C. 56︒D. 62︒9. 如图,在边长为4的正方形ABCD 中,点E 是BC 上一点,点F 是CD 延长线上一点,连接AE ,AF ,AM 平分EAF ∠.交CD 于点M .若1BE DF ==,则DM 的长度为( )A. 2B.C.D. 12510. 已知整式1110:n n n n M a x a x a x a −−++++,其中10,,,n n a a −为自然数,n a 为正整数,且1105n n n a a a a −+++++=.下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A. 0B. 1C. 2D. 3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 计算:023−+=______.12. 甲、乙两人分别从A 、B 、C 三个景区中随机选取一个景区前往游览,则他们恰好选择同一景区的概率为________.13. 若正多边形的一个外角是45°,则该正多边形的边数是_________.14. 重庆在低空经济领域实现了新的突破.今年第一季度低空飞行航线安全运行了200架次,预计第三季度低空飞行航线安全运行将达到401架次.设第二、第三两个季度安全运行架次的平均增长率为x ,根据题意,可列方程为________.15. 如图,在ABC 中,AB AC =,36A ∠=︒,BD 平分ABC ∠交AC 于点D .若2BC =,则AD 的长度为________.16. 若关于x 的一元一次不等式组2133423x x x a+⎧≤⎪⎨⎪−<+⎩的解集为4x ≤,且关于y 的分式方程8122a y y y −−=++的解均为负整数,则所有满足条件的整数a 的值之和是________. 17. 如图,AB 是O 的直径,BC 是O 的切线,点B 为切点.连接AC 交O 于点D ,点E 是O 上一点,连接BE ,DE ,过点A 作AF BE ∥交BD 的延长线于点F .若5BC =,3CD =,F ADE ∠=∠,则AB 的长度是________;DF 的长度是________.18. 一个各数位均不为0的四位自然数M abcd =,若满足9a d b c +=+=,则称这个四位数为“友谊数”.例如:四位数1278,∵18279+=+=,∴1278是“友谊数”.若abcd 是一个“友谊数”,且1b a c b −=−=,则这个数为________;若M abcd =是一个“友谊数”,设()9M F M =,且()13F M ab cd++是整数,则满足条件的M 的最大值是________.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19. 计算:(1)()()()312a a a a −+−+;(2)22241244x x x x −⎛⎫+÷ ⎪−−+⎝⎭. 20. 数学文化有利于激发学生数学兴趣.某校为了解学生数学文化知识掌握的情况,从该校七、八年级学生中各随机抽取10名学生参加了数学文化知识竞赛,并对数据(百分制)进行整理、描述和分析(成绩均不低于70分,用x 表示,共分三组:A .90100x ≤≤,B .8090x ≤<,C .7080x ≤<),下面给出了部分信息:七年级10名学生的竞赛成绩是:76,78,80,82,87,87,87,93,93,97.八年级10名学生的竞赛成绩在B 组中的数据是:80,83,88,88.七、八年级抽取的学生竞赛成绩统计表根据以上信息,解答下列问题:(1)填空:=a ________,b =________,m =________;(2)根据以上数据,你认为该校七、八年级中哪个年级学生数学文化知识较好?请说明理由(写出一条理由即可);(3)该校七年级学生有500人,八年级学生有400人.估计该校七、八年级学生中数学文化知识为“优秀”()90x ≥的总共有多少人?21. 在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹) (2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④. 22. 某工程队承接了老旧小区改造工程中1000平方米的外墙粉刷任务,选派甲、乙两人分别用A 、B 两种外墙漆各完成总粉刷任务的一半.据测算需要A 、B 两种外墙漆各300千克,购买外墙漆总费用为15000元,已知A 种外墙漆每千克的价格比B 种外墙漆每千克的价格多2元.(1)求A 、B 两种外墙漆每千克的价格各是多少元?(2)已知乙每小时粉刷外墙面积是甲每小时粉刷外墙面积的45,乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.问甲每小时粉刷外墙的面积是多少平方米?23. 如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质; (3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2) 24. 如图,A ,B ,C ,D 分别是某公园四个景点,B 在A 的正东方向,D 在A 的正北方向,且在C 的北偏西60︒方向,C 在A 的北偏东30︒方向,且在B 的北偏西15︒方向,2AB =千米.(参考数据:1.41≈ 1.73≈2.45≈)(1)求BC 的长度(结果精确到0.1千米);(2)甲、乙两人从景点D 出发去景点B ,甲选择的路线为:D C B −−,乙选择的路线为:D A B −−.请计算说明谁选择的路线较近?25. 如图,在平面直角坐标系中,抛物线23y ax bx =+−与x 轴交于()1,0A −,B 两点,交y 轴于点C ,抛物线的对称轴是直线52x =.(1)求抛物线的表达式;(2)点P 是直线BC 下方对称轴右侧抛物线上一动点,过点P 作PD x ∥轴交抛物线于点D ,作PE BC ⊥于点E ,求PD PE +的最大值及此时点P 的坐标;(3)将抛物线沿射线BC 2PD PE +取得最大值的条件下,点F 为点P 平移后的对应点,连接AF 交y 轴于点M ,点N 为平移后的抛物线上一点,若45NMF ABC ∠−∠=︒,请直接写出所有符合条件的点N 的坐标.26. 在Rt ABC △中,90ACB ∠=︒,AC BC =,过点B 作BD AC ∥.(1)如图1,若点D 在点B 的左侧,连接CD ,过点A 作AE CD ⊥交BC 于点E .若点E 是BC 的中点,求证:2AC BD =;(2)如图2,若点D 在点B 的右侧,连接AD ,点F 是AD 的中点,连接BF 并延长交AC 于点G ,连接CF .过点F 作FM BG ⊥交AB 于点M ,CN 平分ACB ∠交BG 于点N ,求证:2AM CN BD =+; (3)若点D 在点B 的右侧,连接AD ,点F 是AD 的中点,且AF AC =.点P 是直线AC 上一动点,连接FP ,将FP 绕点F 逆时针旋转60︒得到FQ ,连接BQ ,点R 是直线AD 上一动点,连接BR ,QR .在点P 的运动过程中,当BQ 取得最小值时,在平面内将BQR 沿直线QR 翻折得到TQR △,连接FT .在点R 的运动过程中,直接写出FT CP的最大值.2024年重庆市中考数学试题B 卷+答案解析(答案详解)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫−− ⎪⎝⎭,对称轴为2b x a =−. 一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1. 下列各数中最小的数是( )A. 1−B. 0C. 1D. 2【答案】A【解析】【分析】根据正数大于0,0大于负数,即可作出判断.【详解】1−是负数,其他三个数均是非负数,故1−是最小的数;故选:A .【点睛】本题考查了有理数大小的比较:负数小于一切非负数,明确此性质是关键.2. 下列标点符号中,是轴对称图形的是( )A. B. C. D. 【答案】A【解析】【分析】本题考查轴对称图形的识别.解题的关键是理解轴对称的概念(如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴),寻找对称轴,图形两部分沿对称轴折叠后可重合.据此对各选项逐一进行判断即可.【详解】解:A .该标点符号是轴对称图形,故此选项符合题意;B .该标点符号不是轴对称图形,故此选项不符合题意;C .该标点符号不是轴对称图形,故此选项不符合题意;D .该标点符号不是轴对称图形,故此选项不符合题意.故选:A .3. 反比例函数10y x =−的图象一定经过的点是( ) A. ()1,10B. ()2,5−C. ()2,5D. ()2,8 【答案】B【解析】【分析】本题考查了求反比例函数值.熟练掌握求反比例函数值是解题的关键.分别将各选项的点坐标的横坐标代入,求纵坐标,然后判断作答即可.【详解】解:解:当1x =时,10101y =−=−,图象不经过()1,10,故A 不符合要求; 当2x =−时,1052y =−=−,图象一定经过()2,5−,故B 符合要求; 当2x =时,1052y =−=−,图象不经过()2,5,故C 不符合要求; 当2x =时,1052y =−=−,图象不经过()2,8,故D 不符合要求; 故选:B .4. 如图,AB CD ∥,若1125∠=︒,则2∠的度数为( )A. 35︒B. 45︒C. 55︒D. 125︒【答案】C【解析】 【分析】本题考查了平行线的性质,邻补角的定义,根据邻补角的定义求出3∠,然后根据平行线的性质求解即可.【详解】解:如图,∵1125∠=︒,∴3180155∠=︒−∠=︒,∵AB CD ∥,∴2355∠=∠=︒,故选:C .5. 若两个相似三角形的相似比为1:4,则这两个三角形面积的比是( )A. 1:2B. 1:4C. 1:8D. 1:16 【答案】D【解析】【分析】本题主要考查了相似三角形的性质,根据相似三角形的面积之比等于相似比的平方进行求解即可.【详解】解:∵两个相似三角形的相似比为1:4,∴这两个三角形面积的比是221:41:16=,故选:D .6. 的值应在( )A. 8和9之间B. 9和10之间C. 10和11之间D. 11和12之间 【答案】C【解析】【分析】本题考查的是二次根式的乘法运算,无理数的估算,先计算二次根式的乘法运算,再估算即可.【详解】解:6=,而45<=<,∴10611<<,故答案为:C7. 用菱形按如图所示的规律拼图案,其中第①个图案中有2个菱形,第②个图案中有5个菱形,第③个图案中有8个菱形,第④个图案中有11个菱形,…,按此规律,则第⑧个图案中,菱形的个数是( )A. 20B. 21C. 23D. 26【答案】C【解析】 【分析】本题考查了图形类的规律探索,解题的关键是找出规律.利用规律求解.通过观察图形找到相应的规律,进行求解即可.【详解】解:第①个图案中有()131112+⨯−+=个菱形,第②个图案中有()132115+⨯−+=个菱形,第③个图案中有()133118+⨯−+=个菱形,第④个图案中有()1341111+⨯−+=个菱形,∴第n 个图案中有()131131n n +−+=−个菱形,∴第⑧个图案中菱形的个数为38123⨯−=,故选:C .8. 如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,连接BD ,CD .若28D ∠=︒,则OAB ∠的度数为( )A. 28︒B. 34︒C. 56︒D. 62︒【答案】B【解析】 【分析】本题考查了圆周角定理,等腰三角形的性质等知识,利用圆周角定理求出COB ∠,根据等腰三角形的三线合一性质求出AOB ∠,等边对等角然后结合三角形内角和定理求解即可.【详解】解:∵28D ∠=︒,∴256BOC D ∠=∠=︒,∵OC AB ⊥,OA OB =,∴2112AOB BOC ∠=∠=︒,OAB OBA ∠=∠, ∴()1180342OAB AOB ∠=︒−∠=︒, 故选:B .9. 如图,在边长为4的正方形ABCD 中,点E 是BC 上一点,点F 是CD 延长线上一点,连接AE ,AF ,AM 平分EAF ∠.交CD 于点M .若1BE DF ==,则DM 的长度为( )A. 2B.C.D. 125【答案】D【解析】 【分析】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,先由正方形的性质得到904ABE ADC ADF C AB AD CD BC ====︒====∠∠∠∠,,再证明()SAS ABE ADF △≌△得到AE AF =,进一步证明()SAS AEM AFM △≌△得到EM FM =,设DM x =,则14EM FM DF DM x CM CD DM x ==+=+=−=−,,在Rt CEM △中,由勾股定理得()()222134x x +=+−,解方程即可得到答案. 【详解】解:∵四边形ABCD 是正方形,∴904ABE ADC ADF C AB AD CD BC ====︒====∠∠∠∠,,又∵1BE DF ==,∴()SAS ABE ADF △≌△,∴AE AF =,∵AM 平分EAF ∠,∴EAM FAM ∠=∠,又∵AM AM =,∴()SAS AEM AFM △≌△,∴EM FM =,设DM x =,则14EM FM DF DM x CM CD DM x ==+=+=−=−,,在Rt CEM △中,由勾股定理得222EM CE CM =+,∴()()222134x x +=+−, 解得125x =, ∴125DM =, 故选:D .10. 已知整式1110:n n n n M a x a x a x a −−++++,其中10,,,n n a a −为自然数,n a 为正整数,且1105n n n a a a a −+++++=.下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A. 0B. 1C. 2D. 3 【答案】D【解析】【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得04n ≤≤,再分类讨论得到答案即可.【详解】解:∵10,,,n n a a −为自然数,n a 为正整数,且1105n n n a a a a −+++++=,∴04n ≤≤,当4n =时,则2104345a a a a a +++++=,∴41a =,23100a a a a ====,满足条件的整式有4x ,当3n =时,则210335a a a a ++++=,∴()()3210,,,2,0,0,0a a a a =,()1,1,0,0,()1,0,1,0,()1,0,0,1,满足条件的整式有:32x ,32x x +,3x x +,31x +,当2n =时,则21025a a a +++=,∴()()210,,3,0,0a a a =,()2,1,0,()2,0,1,()1,2,0,()1,0,2,()1,1,1,满足条件的整式有:23x ,22x x +,221x +,22x x +,22x +,21x x ++;当1n =时,则1015a a ++=,∴()()10,4,0a a =,()3,1,()1,3,()2,2,满足条件的整式有:4x ,31x +,3x +,22x +;当0n =时,005a +=,满足条件的整式有:5;∴满足条件的单项式有:4x ,32x ,23x ,4x ,5,故①符合题意;不存在任何一个n ,使得满足条件的整式M 有且只有3个;故②符合题意;满足条件的整式M 共有1464116++++=个.故③符合题意;故选D二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 计算:023−+=______.【答案】3【解析】【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算即可得到结果.【详解】解:原式=2+1=3,故答案为:3.【点睛】此题考查了有理数的运算,熟练掌握运算法则是解本题的关键.12. 甲、乙两人分别从A 、B 、C 三个景区中随机选取一个景区前往游览,则他们恰好选择同一景区的概率为________. 【答案】13【解析】【分析】本题考查了列表法与树状图法:画树状图展示所有9种等可能的结果数,找出甲、乙恰好游玩同一景点的结果数,然后根据概率公式求解.【详解】解:画树状图如下:由图可知,共有9种等可能的情况,他们选择同一个景点有3种, 故他们选择同一个景点的概率是:3193=, 故答案为:13. 13. 若正多边形的一个外角是45°,则该正多边形的边数是_________.【答案】8【解析】【分析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用36045︒÷︒可求得边数. 【详解】解:多边形外角和是360度,正多边形的一个外角是45︒,360458∴︒÷︒=即该正多边形的边数是8,故答案为:8.【点睛】本题主要考查了多边形外角和以及多边形的边数,解题的关键是掌握正多边形的各个内角相等,各个外角也相等.14. 重庆在低空经济领域实现了新的突破.今年第一季度低空飞行航线安全运行了200架次,预计第三季度低空飞行航线安全运行将达到401架次.设第二、第三两个季度安全运行架次的平均增长率为x ,根据题意,可列方程为________.【答案】()22001401x +=【解析】【分析】本题主要考查了一元二次方程的实际应用,设第二、第三两个季度安全运行架次的平均增长率为x ,则第二季度低空飞行航线安全运行了()2001x +架次,第三季度低空飞行航线安全运行了()22001x +架次,据此列出方程即可.【详解】解:设第二、第三两个季度安全运行架次的平均增长率为x ,由题意得,()22001401x +=,故答案为:()22001401x +=.15. 如图,在ABC 中,AB AC =,36A ∠=︒,BD 平分ABC ∠交AC 于点D .若2BC =,则AD 的长度为________.【答案】2【解析】【分析】本题主要考查了等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,先根据等边对等角和三角形内角和定理求出72C ABC ∠=∠=︒,再由角平分线的定义得到36ABD CBD ∠=∠=︒,进而可证明A ABD BDC C ==∠∠,∠∠,即可推出2AD BC ==.【详解】解:∵在ABC 中,AB AC =,36A ∠=︒, ∴180722A C ABC ︒︒−∠∠=∠==, ∵BD 平分ABC ∠, ∴1362ABD CBD ABC ∠=∠=∠=︒, ∴72A ABD BDC A ABD C ==+=︒=∠∠,∠∠∠∠,∴AD BD BD BC ==,,∴2AD BC ==,故答案为:2.16. 若关于x 的一元一次不等式组2133423x x x a+⎧≤⎪⎨⎪−<+⎩的解集为4x ≤,且关于y 的分式方程8122a y y y −−=++的解均为负整数,则所有满足条件的整数a 的值之和是________. 【答案】12【解析】【分析】本题主要考查了根据分式方程解的情况求参数,根据不等式组的解集求参数,先解不等式组中的两个不等式,再根据不等式组的解集求出2a >;解分式方程得到102a y −=,再由关于y的分式方程8122a y y y −−=++的解均为负整数,推出10a <且6a ≠且a 是偶数,则210a <<且6a ≠且a 是偶数,据此确定符合题意的a 的值,最后求和即可. 【详解】解:2133423x x x a +⎧≤⎪⎨⎪−<+⎩①②解不等式①得:4x ≤,解不等式②得:2x a <+ ,∵不等式组的解集为4x ≤,∴24a +>,∴2a >; 解分式方程8122a y y y −−=++得102a y −=, ∵关于y 的分式方程8122a y y y −−=++的解均为负整数, ∴1002a −<且102a −是整数且102202a y −+=+≠, ∴10a <且6a ≠且a 是偶数,∴210a <<且6a ≠且a 是偶数,∴满足题意的a 的值可以为4或8,∴所有满足条件的整数a 的值之和是4812+=.故答案为:12.17. 如图,AB 是O 的直径,BC 是O 的切线,点B 为切点.连接AC 交O 于点D ,点E 是O 上一点,连接BE ,DE ,过点A 作AF BE ∥交BD 的延长线于点F .若5BC =,3CD =,F ADE ∠=∠,则AB 的长度是________;DF 的长度是________.【答案】 ①.203##263②. 83##223 【解析】 【分析】由直径所对的圆周角是直角得到90ADB BDC ∠=∠=︒,根据勾股定理求出4BD =,则3cos 5CD C BC ==,由切线的性质得到90ABC ∠=︒,则可证明C ABD ∠=∠,解直角三角形即可求出20cos 3BD AB ABD ==∠;连接AE ,由平行线的性质得到BAF ABE ∠=∠,再由F ADE ∠=∠,ADE ABE ∠=∠,推出F BAF ∠=∠,得到203BF AB ==,则208433DF BF BD =−=−=. 【详解】解:∵AB 是O 的直径,∴90ADB BDC ∠=∠=︒,在Rt BDC中,由勾股定理得4BD ==, ∴3cos 5CD C BC ==, ∵BC 是O 的切线,∴90ABC ∠=︒,∴90C CBD CBD ABD +=+=︒∠∠∠∠,∴C ABD ∠=∠,在Rt △ABD 中,4203cos 35BD AB ABD ===∠;如图所示,连接AE ,∵AF BE ∥,∴BAF ABE ∠=∠,∵F ADE ∠=∠,ADE ABE ∠=∠,∴F BAF ∠=∠, ∴203BF AB ==, ∴208433DF BF BD =−=−=; 故答案为:203;83. 【点睛】本题主要考查了切线的性质,同弧所对的圆周角相等,直径所对的圆周角是直角,勾股定理,解直角三角形,等腰三角形的判定等等,证明F BAF ∠=∠是解题的关键.18. 一个各数位均不为0的四位自然数M abcd =,若满足9a d b c +=+=,则称这个四位数为“友谊数”.例如:四位数1278,∵18279+=+=,∴1278是“友谊数”.若abcd 是一个“友谊数”,且1b a c b −=−=,则这个数为________;若M abcd =是一个“友谊数”,设()9M F M =,且()13F M ab cd++是整数,则满足条件的M 的最大值是________.【答案】 ①. 3456 ②. 6273【解析】【分析】本题主要考查了新定义,根据新定义得到9a d b c +=+=,再由1b a c b −=−=可求出a 、b 、c 、d 的值,进而可得答案;先求出9999099M a b =++,进而得到()36981313F M ab cda b a ++++=++,根据()13F M ab cd ++是整数,得到369813a b a ++++是整数,即3613a b ++是整数,则36a b ++是13的倍数,求出8a ≤,再按照a 从大到小的范围讨论求解即可. 【详解】解:∵abcd 是一个“友谊数”,∴9a d b c +=+=,又∵1b a c b −=−=,∴45b c ==,,∴36a d ==,,∴这个数为3456; ∵M abcd =是一个“友谊数”,∴100010010M a b c d =+++()10001001099a b b a =++−+−9999099a b =++,∴()11110119M F M a b ==++, ∴()13F M ab cd++ 1111011101013a b a b c d ++++++= ()111101*********a b a b b a+++++−+−= 12011013a b ++= 1173104613a ab ++++= 369813a b a ++=++, ∵()13F M ab cd++是整数,∴369813a b a ++++是整数,即3613a b ++是整数, ∴36a b ++是13的倍数,∵a b c d 、、、都是不为0的正整数,且9a d b c +=+=,∴8a ≤,∴当8a =时,313638a b ≤++≤,此时不满足36a b ++是13的倍数,不符合题意;当7a =时,283635a b ≤++≤,此时不满足36a b ++是13的倍数,不符合题意;当6a =时,253632a b ≤++≤,此时可以满足36a b ++是13的倍数,即此时2b =,则此时37d c ==,,∵要使M 最大,则一定要满足a 最大,∴满足题意的M 的最大值即为6273;故答案为:3456;6273.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19. 计算:(1)()()()312a a a a −+−+;(2)22241244x x x x −⎛⎫+÷ ⎪−−+⎝⎭. 【答案】(1)42a -(2)2x x + 【解析】【分析】本题主要考查了整式的混合计算,分式的混合计算∶(1)先根据单项式乘以多项式的计算法则和多项式乘以多项式的计算法则去括号,然后合并同类项即可得到答案;(2)先把小括号内的式子通分,再把除法变成乘法后约分化简即可得到答案.【小问1详解】解:()()()312a a a a −+−+22322a a a a a =−+−+−42a =−;【小问2详解】 解:22241244x x x x −⎛⎫+÷ ⎪−−+⎝⎭ ()()()2222222x x x x x +−−+=÷−− ()()()22222x x x x x −=⋅−+− 2x x =+. 20. 数学文化有利于激发学生数学兴趣.某校为了解学生数学文化知识掌握的情况,从该校七、八年级学生中各随机抽取10名学生参加了数学文化知识竞赛,并对数据(百分制)进行整理、描述和分析(成绩均不低于70分,用x 表示,共分三组:A .90100x ≤≤,B .8090x ≤<,C .7080x ≤<),下面给出了部分信息:七年级10名学生的竞赛成绩是:76,78,80,82,87,87,87,93,93,97.八年级10名学生的竞赛成绩在B 组中的数据是:80,83,88,88.七、八年级抽取的学生竞赛成绩统计表根据以上信息,解答下列问题:(1)填空:=a ________,b =________,m =________;(2)根据以上数据,你认为该校七、八年级中哪个年级学生数学文化知识较好?请说明理由(写出一条理由即可);(3)该校七年级学生有500人,八年级学生有400人.估计该校七、八年级学生中数学文化知识为“优秀”()90x≥的总共有多少人?【答案】(1)88;87;40(2)八年级学生数学文化知识较好,理由见解析(3)310人【解析】【分析】本题主要考查了中位数,众数,用样本估计总体,扇形统计图等等:(1)根据中位数和众数的定义可求出a、b的值,先求出把年级A组的人数,进而可求出m的值;(2)根据八年级学生成绩的中位数和众数都比七年级学生成绩的高即可得到结论;(3)用七年级的人数乘以七年级样本中优秀的人数占比求出七年级优秀人数,用八年级的人数乘以八年级样本中优秀的人数占比求出八年级优秀人数,再二者求和即可得到答案.【小问1详解】解:八年级C组的人数为1020%2⨯=人,而八年级B组有4人,则把八年级10名学生的成绩按照从低到高排列,处在第5名和第6名的成绩分别为88分,88分,∴八年级学生成绩的中位数8888882a+==;∵七年级10名学生成绩中,得分为87分的人数最多,∴七年级的众数87b=;由题意得,1041020%%100%40%10m−−⨯=⨯=,∴40m=;故答案为:88;87;40;【小问2详解】解:八年级学生数学文化知识较好,理由如下:∵两个年级10名学生的平均成绩相同,但是八年级学生成绩的中位数和众数都比七年级学生成绩的高,∴八年级学生数学文化知识较好;【小问3详解】解:350040040%31010⨯+⨯=人,∴估计该校七、八年级学生中数学文化知识为“优秀”的总共有310人.21. 在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹) (2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.【答案】(1)见解析 (2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【解析】【分析】本题主要考查了矩形的性质,平行四边形的性质与判定,菱形的判定,垂线的尺规作图: (1)根据垂线的尺规作图方法作图即可;(2)根据矩形或平行四边形的对边平行得到OFC OEA ∠=∠,OCF OAE ∠=∠,进而证明()AAS CFO AEO ≌,得到OF OE =,即可证明四边形AECF 是平行四边形.再由EF AC ⊥,即可证明四边形AECF 是菱形.【小问1详解】解:如图所示,即为所求;【小问2详解】证明:∵四边形ABCD 是矩形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.猜想:过平行四边形的一条对角线的中点作这条对角线的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是菱形;证明:∵四边形ABCD 是平行四边形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.故答案为:①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形.22. 某工程队承接了老旧小区改造工程中1000平方米的外墙粉刷任务,选派甲、乙两人分别用A 、B 两种外墙漆各完成总粉刷任务的一半.据测算需要A 、B 两种外墙漆各300千克,购买外墙漆总费用为15000元,已知A 种外墙漆每千克的价格比B 种外墙漆每千克的价格多2元.(1)求A 、B 两种外墙漆每千克的价格各是多少元?(2)已知乙每小时粉刷外墙面积是甲每小时粉刷外墙面积的45,乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.问甲每小时粉刷外墙的面积是多少平方米?【答案】(1)A 种外墙漆每千克的价格为26元,则B 种外墙漆每千克的价格为24元.(2)甲每小时粉刷外墙的面积是25平方米.【解析】【分析】本题考查的是分式方程的应用,一元一次方程的应用,理解题意建立方程是解本题的关键; (1)设A 种外墙漆每千克的价格为x 元,则B 种外墙漆每千克的价格为()2x −元,再根据总费用为15000元列方程求解即可;(2)设甲每小时粉刷外墙面积为y 平方米,则乙每小时粉刷外墙面积是45y 平方米;利用乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.从而建立分式方程求解即可.【小问1详解】解:设A 种外墙漆每千克的价格为x 元,则B 种外墙漆每千克的价格为()2x −元,∴()300300215000x x +−=,解得:26x =,∴224x −=,答:A 种外墙漆每千克的价格为26元,B 种外墙漆每千克的价格为24元.【小问2详解】设甲每小时粉刷外墙面积为y 平方米,则乙每小时粉刷外墙面积是45y 平方米;。
2023年重庆市中考数学试卷(B卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)4的相反数是()A.B.C.﹣4D.42.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是()A.B.C.D.3.(4分)如图,直线a,b被直线c所截,若a∥b,∠1=63°,则∠2的度数为()A.27°B.53°C.63°D.117°4.(4分)如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE的长度为()A.4B.9C.12D.13.55.(4分)反比例函数y=的图象一定经过的点是()A.(﹣3,2)B.(2,﹣3)C.(﹣2,﹣4)D.(2,3)6.(4分)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.267.(4分)估计×(﹣)的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间8.(4分)如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC的度数为()A.30°B.40°C.50°D.60°9.(4分)如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF的长度为()A.2B.C.1D.10.(4分)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:|﹣5|+(2﹣)0=.12.(4分)有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是.13.(4分)若七边形的内角中有一个角为100°,则其余六个内角之和为.14.(4分)如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD 的长度为.15.(4分)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程.16.(4分)如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE.DE.以E为圆心,EB长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为______(结果保留π).17.(4分)若关于x的不等式组的解集为x<﹣2,且关于y的分式方程+=2的解为正数,则所有满足条件的整数a的值之和为.18.(4分)对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵7﹣1=6,3﹣1=2,∴7311是“天真数”;四位数8421,∵8﹣1≠6,∴8421不是“天真数”,则最小的“天真数”为;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=3(a+b)+c+d,Q(M)=a﹣5,若能被10整除,则满足条件的M的最大值为.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)x(x+6)+(x﹣3)2;(2)(3+)÷.20.(10分)在学习了平行四边形的相关知识后,小虹进行了拓展性研究,她发现,如果作平行四边形一条对角线的垂直平分线,那么这条垂直平分线在该四边形内部的线段被这条对角线平分.其解决问题的思路为通过证明对应线段所在两个三角形全等即可得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规作平行四边形ABCD对角线AC的垂直平分线,交DC于点E,交AB于点F,垂足为O.(只保留作图痕迹)如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为O.求证:EO=FO.证明:∵四边形ABCD是平行四边形∴DC∥AB.∴∠ECO=.∵EF垂直平分AC,∴.又∠EOC=,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,请你依照题目中的相关表述完成下面命题的填空:过平行四边形对角线中点的直线.21.(10分)某洗车公司安装了A,B两款自动洗车设备,工作人员从消费者对A、B两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x 表示,分为四个等级:不满意x<70,比较满意70≤x<80,满意80≤x<90,非常满意x≥90),下面给出了部分信息:抽取的对A款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取的对B款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A,B款设备的评分统计表设备平均数中位数众数“非常满意”所占百分比A88m9645%B8887n40%根据以上信息,解答下列问题:(1)填空:a=,m=,n=;(2)5月份,有600名消费者对A款自动洗车设备进行评分,估计其中对A款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).22.(10分)如图,△ABC是边长为4的等边三角形,动点E,F均以每秒1个单位长度的速度同时从点A出发,E沿折线A→B→C方向运动,F沿折线A→C→B方向运动,当两点相遇时停止运动.设运动的时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数关系式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中,画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出点E,F相距3个单位长度时t的值.23.(10分)某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种,甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒亩,求派往甲区每架次无人机平均喷洒多少亩?24.(10分)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品.经测量,A在灯塔C的南偏西60°方向,B在灯塔C的南偏东45°方向,且在A的正东方向,AC=3600米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:≈1.414,≈1.732)25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A,B,与y 轴交于点C,其中B(3,0),C(0,﹣3).(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.26.(10分)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D 重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.2023年重庆市中考数学试卷(B卷)参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.【解答】解:4的相反数是﹣4.故选:C.【点评】本题考查相反数,关键是掌握相反数的定义.2.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,可得选项A的图形.故选:A.【点评】本题考查了简单组合体的三视图.解题的关键是理解简单组合体的三视图的定义,明确从正面看得到的图形是主视图.3.【分析】根据平行线的性质可以得到∠1=∠2,然后根据∠1的度数,即可得到∠2的度数.【解答】解:∵a∥b,∴∠1=∠2,∵∠1=63°,∴∠2=63°,故选:C.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.4.【分析】根据相似三角形的性质列出方程即可求解.【解答】解:∵△ABC∽△EDC,AC:EC=2:3.∴,∴当AB=6时,DE=9.故选:B.【点评】本题主要考查了相似三角形的性质,找到对应的边成比例是解题的关键.5.【分析】根据k=xy对各选项进行逐一判断即可.【解答】解:反比例函数y=中k=6,A、∵(﹣3)×2=﹣6≠6,∴此点不在函数图象上,故本选项不合题意;B、∵2×(﹣3)=﹣6≠6,∴此点不在函数图象上,故本选项不合题意;C、∵﹣2×(﹣4)=8≠6,∴此点不在函数图象上,故本选项不合题意;D、∵2×3=6,∴此点在函数图象上,故本选项符合题意.故选:D.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy为定值是解答此题的关键.6.【分析】根据前4个图中的个数找到规律,再求解.【解答】解:第①个图案中有2个圆圈,第②个图案中有2+3×1=5个圆圈,第③个图案中有2+3×2=8个圆圈,第④个图案中有2+3×3=11个圆圈,...,则第⑦个图案中圆圈的个数为:2+3×6=20,故选:B.【点评】本题考查了规律型﹣图形的变化类,找到变换规律是解题的关键.7.【分析】先化简题干中的式子得到﹣1,明确的范围,利用不等式的性质求出﹣1的范围得出答案.【解答】解:原式=﹣1.∵5<<6.∴4<﹣1<5.故选:A.【点评】本题以计算选择为背景考查了无理数的估算,考核了学生对式子的化简和比较大小的能力,解题关键是将式子化简,确定无理数的范围最后利用不等式的性质.8.【分析】连接OC,根据切线的性质得到∠OCD=90°,求得∠ACO=40°,根据等腰三角形的性质得到∠A=∠ACO=40°.【解答】解:连接OC,∵直线CD与⊙O相切于点C,∴∠OCD=90°,∵∠ACD=50°,∴∠ACO=90°﹣50°=40°,∵OC=OA,∴∠BAC=∠ACO=40°,故选:B.【点评】本题考查了切线的性质,正确地作出辅助线是解题的关键.9.【分析】连接AF,根据正方形ABCD得到AB=BC=BE,∠ABC=90°,根据角平分线的性质和等腰三角形的性质,求得∠BFE=45°,再证明△ABF≌△EBF,求得∠AFC=90°,最后根据直角三角形斜边上的中线等于斜边的一半,即可求出OF的长度.【解答】解:如图,连接AF,∵四边形ABCD是正方形,∴AB=BE=BC,∠ABC=90°,AC=AB=2,∴∠BEC=∠BCE,∴∠EBC=180°﹣2∠BEC,∴∠ABE=∠ABC﹣∠EBC=2∠BEC﹣90°,∵BF平分∠ABE,∴∠ABF=∠EBF=∠ABE=∠BEC﹣45°,∴∠BFE=∠BEC﹣∠EBF=45°,在△BAF与△BEF中,,∴△BAF≌△BEF(SAS),∴∠BFE=∠BFA=45°,∴∠AFC=∠BAF+∠BFE=90°,∵O为对角线AC的中点,∴OF=AC=,故选:D.【点评】本题考查了等腰三角形的判定和性质,三角形内角和定理,正方形的性质,直角三角形特征,作出正确的辅助线,求得∠BFE=45°是解题的关键.10.【分析】根据给定的定义,举出符合条件的说法①和②.说法③需要对绝对操作分析添加一个和两个绝对值的情况,并将结果进行比较排除相等的结果,汇总得出答案.【解答】解:|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,故说法①正确.若使其运算结果与原多项式之和为0,需出现﹣x,显然无论怎么添加绝对值,都无法使x的符号为负号,故说法②正确.当添加一个绝对值时,共有4种情况,分别是|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n;x﹣|y ﹣z|﹣m﹣n=x﹣y+z﹣m﹣n;x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;x﹣y﹣z﹣|m﹣n|=x﹣y ﹣z﹣m+n.当添加两个绝对值时,共有3种情况,分别是|x﹣y|﹣|z﹣m|﹣n=x﹣y﹣z+m ﹣n;|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n;x﹣|y﹣z|﹣|m﹣n|=x﹣y+z﹣m+n.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C.【点评】本题考查新定义题型,根据多给的定义,举出符合条件的代数式进行情况讨论;需要注意去绝对值时的符号,和所有结果可能的比较.主要考查绝对值计算和分类讨论思想的应用.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.【分析】由|﹣5|=5,(2﹣)0=1【解答】解:|﹣5|+(2﹣)0=5+1=6.故答案为:6.【点评】本题考查实数的运算.解题的关键是去绝对值注意符号;掌握任意非零实数的零次幂都等于1.12.【分析】根据题意,可以画出相应的树状图,然后即可求出相应的概率.【解答】解:树状图如图所示,由上可得,一共有16种等可能性,其中抽取的两张卡片上的汉字相同的有4种可能性,∴抽取的两张卡片上的汉字相同的概率为=,故答案为:.【点评】本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.13.【分析】利用多边形内角和公式求得七边形的内角和后与100°作差即可.【解答】解:由题意可得七边形的内角和为:(7﹣2)×180°=900°,∵该七边形的一个内角为100°,∴其余六个内角之和为900°﹣100°=800°,故答案为:800°.【点评】本题主要考查多边形的内角和,此为基础且重要知识点,必须熟练掌握.14.【分析】根据等腰三角形的性质可得AD⊥BC,在Rt△ABD中,根据勾股定理即可求出AD的长.【解答】解:∵AB=AC,AD是BC边的中线,∴AD⊥BC,∴∠ADB=90°,∵AB=5,BC=6,∴BD=CD=3,在Rt△ABD中,根据勾股定理,得AD===4,故答案为:4.【点评】本题考查了等腰三角形的性质,涉及勾股定理,熟练掌握等腰三角形的性质是解题的关键.15.【分析】设该市新建智能充电桩个数的月平均增长率为x,根据第一个月新建了301个充电桩,第三个月新建了500个充电桩,即可得出关于x的一元二次方程.【解答】解:设该市新建智能充电桩个数的月平均增长率为x,依题意得:301(1+x)2=500.故答案为:301(1+x)2=500.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.16.【分析】用三角形ADE的面积减去2个扇形的面积即可.【解答】解:∵AD=2AB=4,E为BC的中点,∴BE=CE=2,∴∠BAE=∠AEB=∠CDE=∠DEC=45°,∴阴影部分的面积为﹣2×=4﹣π.故答案为:4﹣π.【点评】此题主要考查了扇形面积求法以及等腰直角三角形的性质,应用扇形面积的计算方法进行求解是解决本题的关键.17.【分析】先通过不等式组的解确定a的范围,再根据分式方程的解求a值即可得出答案.【解答】解:解不等式组,得:,∵原不等式组的解集为:x<﹣2,∴﹣≥﹣2,∴a≤5,解分式方程+=2,得y=,∵y>0且y≠1,∴>0且≠1,∴a>﹣2且a≠1,∴﹣2<a≤5,且a≠1,∴符合条件的整数a有:﹣1,0,2,3,4,5,∴﹣1+0+2+3+4+5=13.故答案为:13.【点评】本题主要考查解一元一次不等式组、解分式方程,熟练掌握一元一次不等式组、分式方程的解法是解决本题的关键.18.【分析】它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.分为两部分:第一部分千位数和个位数之间的关系,第二部分百位数和十位数之前的关系.【解答】解:求最小的“天真数”,首先知道最小的自然数的0.先看它的千位数字比个位数字多6,个位数为最小的自然数0时,千位数为6;百位数字比十位数字多2,十位数为最小的自然数0时.百位数是2;则最小的“天真数”为6200.故答案为:6200.一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d.由“天真数”的定义得a=d+6,所以6≤a≤9,b=c+2,所以0≤c≤7,又P(M)=3(a+b)+c+d=3(a+c+2)+c+a﹣6=4a+4c;Q(M)=a﹣5.=论能被10整除当a取最大值9时,即当a=9时,满足能被10整除,则c=1,“天真数”M为9313.故答案为:9313.【点评】新定义题型,各数字的取值范围,最值:最小自然数0.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.【分析】(1)按照单项式乘以多项式的法则以及完全平方公式进行计算即可;(2)按照分式的混合运算法则进行计算即可.【解答】解:(1)x(x+6)+(x﹣3)2=x2+6x+x2﹣6x+9=2x2+9;(2)===.【点评】本题考查了分式的混合运算和整式的混合运算,熟练掌握混合运算法则是解题的关键,计算时一定要细心.20.【分析】根据要求画出图形,证明△COE≌△AOF(ASA),可得结论.【解答】解:图形如图所示:理由:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO=∠FAO,∵EF垂直平分AC,∴AO=OC.又∠EOC=∠FOA,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,所以过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:∠FAO,OA=OC,∠FOA,过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分.【点评】本题考查命题与定理,平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是理解题意,正确寻找全等三角形解决问题.21.【分析】(1)用“1”分别减去其他三个等级所占百分比可得a的值,根据中位数的定义可得m的值,根据众数的定义可得n的值;(2)用600乘A款自动洗车设备“比较满意”所占百分比即可;(3)通过比较A,B款设备的评分统计表的数据解答即可.【解答】解:(1)由题意得,a%=1﹣10%﹣45%﹣=15%,即a=15;把A款设备的评分数据从小到大排列,排在中间的两个数是87,89,故中位数m==88;在B款设备的评分数据中,98出现的次数最多,故众数n=98.故答案为:15;88;98;(2)600×15%=90(名),答:估计其中对A款自动洗车设备“比较满意”的人数大约为90名;(3)A款自动洗车设备更受消费者欢迎,理由如下:因为两款自动洗车设备的评分数据的平均数相同,但A款自动洗车设备的评分数据的中位数比B款高,所以A款自动洗车设备更受消费者欢迎(答案不唯一).【点评】本题考查扇形统计图,中位数、众数以及样本估计总体,理解中位数、众数的意义,掌握中位数、众数的计算方法是解决问题的前提.22.【分析】(1)根据动点E、F运动的路线和速度分段进行分析,写出不同时间的函数表达式并注明自变量t的取值范围即可;(2)根据画函数图象的方法分别画出两段函数图象,然后写出这个函数的其中一条性质即可;(3)根据两个函数关系式分别求出当y=3时的t值即可解决问题.【解答】解:(1)当点E、F分别在AB、AC上运动时,△AEF为边长等于t的等边三角形,∴点E,F的距离等于AE、AF的长,∴当0<t≤4时,y关于t的函数表达式为y=t,当点E、F都在BC上运动时,点E,F的距离等于4﹣2(t﹣4),∴当4<t≤6时,y关于t的函数表达式为y=4﹣2(t﹣4)=12﹣2t,∴y关于t的函数表达式为;(2)由(1)中得到的函数表达式可知:当t=0时,y=0;当t=4时,y=4;当t=6时,y=0,分别描出三个点(0,0),(4,4)(6,0),然后顺次连线,如图:根据函数图象可知这个函数的其中一条性质:当0<t≤4时,y随t的增大而增大.(答案不唯一,正确即可)(3)把y=3分别代入y=t和y=12﹣2t中,得:3=t,3=12﹣2t,解得:t=3或t=4.5,∴点E,F相距3个单位长度时t的值为3或4.5.【点评】本题是一道三角形综合题,主要考查等边三角形的性质、一次函数的图象和性质,以及一次函数的应用,深入理解题意是解决问题的关键.23.【分析】(1)设乙区有农田x亩,则甲区有农田(x+10000)亩,根据“甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同”,可得出关于x的一元一次方程,解之可得出乙区的农田亩数,再将其代入(x+10000)中,即可求出甲区的农田亩数;(2)设派往甲区每架次无人机平均喷洒y亩,则派往乙区每架次无人机平均喷洒(y﹣)亩,根据派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),可得出关于y的分式方程,解之经检验后,即可得出结论.【解答】解:(1)设乙区有农田x亩,则甲区有农田(x+10000)亩,根据题意得:80%(x+10000)=x,解得:x=40000,∴x+10000=40000+10000=50000.答:甲区有农田50000亩,乙区有农田40000亩;(2)设派往甲区每架次无人机平均喷洒y亩,则派往乙区每架次无人机平均喷洒(y﹣)亩,根据题意得:=×1.2,解得:y=100,经检验,y=100是所列分式方程的解,且符合题意.答:派往甲区每架次无人机平均喷洒100亩.【点评】本题考查了一元一次方程的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出分式方程.24.【分析】(1)过点C作CD⊥AB于点D,在Rt△ACD中,解直角三角形求出AD,CD.在Rt△BCD中,解直角三角形即可求出BC;(2)求出AD,BD,进而求出AB,根据速度公式即可得到结论.【解答】解:(1)过点C作CD⊥AB于点D,在Rt△ACD中,∠ACD=60°,AC=3600米,cos60°=,sin60°=,∴AD=3600×=1800(米),CD=×3600=1800(米).在Rt△BCD中,∠BCD=45°,∴∠B=45°=∠BCD,∴BD=CD=1800(米),∴BC==1800≈1800×1.414≈2545(米).答:B养殖场与灯塔C的距离约为2545米;(2)AB=AD+BD=1800+1800≈1800×1.732+1800≈4917.6(米),600×9=5400(米),∵5400米>4917.6米,∴能在9分钟内到达B处.【点评】本题考查了解直角三角形的应用﹣方向角问题,解答本题的关键是利用三角函数求出AD与BD的长度,难度一般.25.【分析】(1)由待定系数法即可求解;(2)由PD=PH•sin∠PHC=PH,即可求解;(3)分QE=QF、QF=EF两种情况,列出等式,即可求解.【解答】解:(1)由题意得:,解得:,则抛物线的表达式为:y=x2+x﹣3;(2)令y=x2+x﹣3=0,则x=﹣4或3,则点A(﹣4,0),由点A、C知,直线AC的表达式为:y=﹣x﹣3,过点P作y轴的平行线交AC于点H,则∠PHC=∠ACO,则tan∠PHC=tan∠ACO=,则sin∠PHC=,则PD=PH•sin∠PHC=PH,设点H(x,﹣x﹣3),则点P(x,x2+x﹣3),则PD=PH=(﹣x﹣3﹣x2﹣x+3)=﹣(x+2)2+,即PD的最大值为:,此时点P(﹣2,﹣);(3)平移后的抛物线的表达式为:y=(x﹣5)2+(x﹣5)﹣3=x2﹣x+2,则点F(0,2),设点Q(,m),则QF2=()2+(m﹣2)2,QE2=+(m+)2,EF2=9+,当QE=QF时,则()2+(m﹣2)2=+(m+)2,解得:m=,则点Q的坐标为(,);当QF=EF时,则()2+(m﹣2)2=9+,解得:m=5或﹣1,则点Q的坐标为:(,5)或(,﹣1);综上,点Q的坐标为:(,)或(,5)或(,﹣1).【点评】本题是二次函数综合题,主要考查了一次函数的性质、等腰三角形的性质、解直角三角形等,其中(3),要注意分类求解,避免遗漏.26.【分析】(1)根据旋转的性质得出CE=CF,∠ECF=60°,进而证明△BCE≌AACF(SAS),即可得证;试(2)过点F作FKIIAD,交DH点的延长线于点K,连接EK,FD,证明四边形四边形EDFK是平行四边形,即可得证;(3)如图所示,延长AP,DQ交于点R,由(2)可知△DCG是等边三角形,根据折叠的性质可得∠PAG=∠EAG=30°,∠QDG =∠EDG=30°,进而得出△ADR是等边三角形,由(2)可得RtACED≌RtACFG,得出四边形GDQF是平行四边形,则QF=DC=﹣4C=2.进而得出CPGQ=360°﹣2C4GD =120°,则PQ=√3pG=√3GQ,当GQ取得最小值时,即GQ⊥DR时,PQ取得最小值,即可求解.(1)由“SAS”可证△ACF≌△BCE,可得结论;(2)【解答】(1)证明:∵△ABC为等边三角形,∴∠ACB=60°,AC=BC,∵将CE绕点C顺时针旋转60°得到线段CF,∴CE=CF,∠ECF=60°,∵△ABC是等边三角形,∴∠BCA=∠ECF,∴∠BCE=∠ACF,∴△BCE≌△ACF(SAS),∴∠CBE=∠CAF;(2)证明:如图所示,过点F作FK∥AD,交DH点的延长线于点K,连接EK,FD,∵△ABC是等边三角形,∴AB=AC=BC,∵AD⊥BC,∴BD=CD,∴AD垂直平分BC,∴EB=EC,又∵△BCE≌△ACF,∴AF=BE,CF=CE,∴AF=CF,∴F在AC的垂直平分线上,∵AB=BC,∴B在AC的垂直平分线上,∴BF垂直平分AC,∴AC⊥BF,AG=CG=AC,∴∠AGF=90°,又∵DG=AC=CG,∠ACD=60°,∴△DCG是等边三角形,∴∠CGD=∠CDG=60°,∴∠AGH=∠DGC=60°,∴∠KGF=∠AGF﹣∠AGH=90°﹣60°=30°,又∵∠ADK=∠ADC﹣∠GDC=90°﹣60=30°,KF∥AD,∴∠HKF=∠ADK=30°,∴∠FKG=∠KGF=30°,∴FG=FK,在Rt△CED与Rt△CGF中,,∴Rt△CED≌Rt△CFG,∴GF=ED,∴ED=FK,∴四边形EDFK是平行四边形,∴EH=HF;解法二:连接CH,证明∠CHE=90°,可得结论.(3)解:依题意,如图所示,延长AP,DQ交于点R,由(2)可知△DCG是等边三角形,∴∠EDG=30°,∵将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,∴∠PAG=∠EAG=30°,∠QDG=∠EDG=30°,∴∠PAE=∠QDE=60°,∴△ADR是等边三角形,∴∠QDC=∠ADC﹣∠ADQ=90°﹣60°=30°,由(2)可得Rt△CED≌Rt△CFG,∴DE=GF,∴DE=DQ,∴GF=DQ,∵∠GBC=∠QDC=30°,∴GF∥DQ,∴四边形GDQF是平行四边形,∴QF=DG=AC=2,由(2)可知G是AC的中点,则GA=GD,∴∠GAD=∠GDA=30°,∴∠AGD=120°,∵折叠,∴∠AGP+∠DGQ=∠AGE+∠DGE=∠AGD=120°,∴∠PGQ=360°﹣2∠AGD=120°,又PG=GE=GQ,∴PQ=PG=GQ,∴当GQ取得最小值时,即GQ⊥DR时,PQ取得最小值,此时如图所示,∴GQ=GC=DC=1,∴PQ=,∴PQ+QF=+2.解法二:由两次翻折,推得∠PGQ=360°﹣240°=120°,则PQ=PG=EG,由QF=DG=2,推出PQ1+QF的最小值,只需要求出EG的最小值,当EG⊥AD时,EG的值最小,最小值为1,∴PQ+QF的最小值为+2.【点评】本题考查了等边三角形的性质,旋转的性质,轴对称的性质,勾股定理,平行四边形的性质与判定,全等三角形的性质与判定,熟练掌握以上知识是解题的关键.。
2024年重庆江津中考数学试题及答案(B 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++¹的顶点坐标为24,24b ac b a a æö--ç÷èø,对称轴为2b x a =-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列四个数中,最小的数是( )A .1-B .0C .1D .22.下列标点符号中,是轴对称图形的是( )A .B .C .D .3.反比例函数10y x =-的图象一定经过的点是( )A .()1,10B .()2,5-C .()2,5D .()2,84.如图,AB CD P ,若1125Ð=o ,则2Ð的度数为( )A .35oB .45oC .55oD .125o5.若两个相似三角形的相似比为1:4,则这两个三角形面积的比是( )A .1:2B .1:4C .1:8D .1:166的值应在( )A .8和9之间B .9和10之间C .10和11之间D .11和12之间7.用菱形按如图所示的规律拼图案,其中第①个图案中有2个菱形,第②个图案中有5个菱形,第③个图案中有8个菱形,第④个图案中有11个菱形,…,按此规律,则第⑧个图案中,菱形的个数是( )A .20B .21C .23D .268.如图,AB 是O e 的弦,OC AB ^交O e 于点C ,点D 是O e 上一点,连接BD ,CD .若28D Ð=o ,则OAB Ð的度数为( )A .28oB .34oC .56oD .62o9.如图,在边长为4的正方形ABCD 中,点E 是BC 上一点,点F 是CD 延长线上一点,连接AE ,AF ,AM 平分EAF Ð.交CD 于点M .若1BE DF ==,则DM 的长度为( )A .2B C D .12510.已知整式1110:n n n n M a x a x a x a --++++L ,其中10,,,n n a a -L 为自然数,n a 为正整数,且1105n n n a a a a -+++++=L .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A .0B .1C .2D .3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算:023-+=________.12.甲、乙两人分别从A 、B 、C 三个景区中随机选取一个景区前往游览,则他们恰好选择同一景区的概率为________.13.若正多边形的一个外角为45o,则这个正多边形的边数为________.14.重庆在低空经济领域实现了新的突破.今年第一季度低空飞行航线安全运行了200架次,预计第三季度低空飞行航线安全运行将达到401架次.设第二、第三两个季度安全运行架次的平均增长率为x ,根据题意,可列方程为________.15.如图,在ABC △中,AB AC =,36A Ð=o ,BD 平分ABC Ð交AC 于点D .若2BC =,则AD 的长度为________.16.若关于x 的一元一次不等式组213,3423x x x a+ì£ïíï-<+î的解集为4x £,且关于y 的分式方程8122a y y y --=++的解均为负整数,则所有满足条件的整数a 的值之和是________.17.如图,AB 是O e 的直径,BC 是O e 的切线,点B 为切点.连接AC 交O e 于点D ,点E 是O e 上一点,连接BE ,DE ,过点A 作AF BE P 交BD 的延长线于点F .若5BC =,3CD =,F ADE Ð=Ð,则AB 的长度是________;DF 的长度是________.18.一个各数位均不为0的四位自然数M abcd =,若满足9a d b c +=+=,则称这个四位数为“友谊数”.例如:四位数1278,∵18279+=+=,∴1278是“友谊数”.若abcd 是一个“友谊数”,且1b a c b -=-=,则这个数为________;若M abcd =是一个“友谊数”,设()9M F M =,且()13F M ab cd++是整数,则满足条件的M 的最大值是________.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1)()()()312a a a a -+-+;(2)22241244x x x x -æö+¸ç÷--+èø.20.数学文化有利于激发学生数学兴趣.某校为了解学生数学文化知识掌握的情况,从该校七、八年级学生中各随机抽取10名学生参加了数学文化知识竞赛,并对数据(百分制)进行整理、描述和分析(成绩均不低于70分,用x 表示,共分三组:A .90100x ££,B .8090x £<,C .7080x £<),下面给出了部分信息:七年级10名学生的竞赛成绩是:76,78,80,82,87,87,87,93,93,97.八年级10名学生的竞赛成绩在B 组中的数据是:80,83,88,88.七、八年级抽取的学生竞赛成绩统计表年级平均数中位数众数七年级8687b 八年级86a90根据以上信息,解答下列问题:(1)填空:a =________,b =________,m =________;(2)根据以上数据,你认为该校七、八年级中哪个年级学生数学文化知识较好?请说明理由(写出一条理由即可);(3)该校七年级学生有500人,八年级学生有400人.估计该校七、八年级学生中数学文化知识为“优秀”()90x ³的总共有多少人?21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹)(2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ^.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD P .∴ ① ,OCF OAE Ð=Ð.∵点O 是AC 的中点,∴ ② .∴CFO AEO @△△(AAS ).∴ ③ .又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ^,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论: ④ .22.某工程队承接了老旧小区改造工程中1000平方米的外墙粉刷任务,选派甲、乙两人分别用A 、B 两种外墙漆各完成总粉刷任务的一半.据测算需要A 、B 两种外墙漆各300千克,购买外墙漆总费用为15000元,已知A 种外墙漆每千克的价格比B 种外墙漆每千克的价格多2元.(1)求A 、B 两种外墙漆每千克的价格各是多少元?(2)已知乙每小时粉刷外墙面积是甲每小时粉刷外墙面积的45,乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.问甲每小时粉刷外墙的面积是多少平方米?23.如图,在ABC △中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC P 交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC △的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)24.如图,A ,B ,C ,D 分别是某公园四个景点,B 在A 的正东方向,D 在A 的正北方向,且在C 的北偏西60o 方向,C 在A 的北偏东30o 方向,且在B 的北偏西15o方向,2AB =千米.(参考数据:1.41» 1.73»2.45»)(1)求BC 的长度(结果精确到0.1千米);(2)甲、乙两人从景点D 出发去景点B ,甲选择的路线为:D C B --,乙选择的路线为:D A B --.请计算说明谁选择的路线较近?25.如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于()1,0A -,B 两点,交y 轴于点C ,抛物线的对称轴是直线52x =.(1)求抛物线的表达式;(2)点P 是直线BC 下方对称轴右侧抛物线上一动点,过点P 作PD x P 轴交抛物线于点D ,作PE BC ^于点E ,求PD PE +的最大值及此时点P 的坐标;(3)将抛物线沿射线BC PD PE +取得最大值的条件下,点F 为点P 平移后的对应点,连接AF 交y 轴于点M ,点N 为平移后的抛物线上一点,若45NMF ABC Ð-Ð=o ,请直接写出所有符合条件的点N 的坐标.26.在Rt ABC △中,90ACB Ð=o ,AC BC =,过点B 作BD AC P .(1)如图1,若点D 在点B 的左侧,连接CD ,过点A 作AE CD ^交BC 于点E .若点E 是BC 的中点,求证:2AC BD =;(2)如图2,若点D 在点B 的右侧,连接AD ,点F 是AD 的中点,连接BF 并延长交AC 于点G ,连接CF .过点F 作FM BG ^交AB 于点M ,CN 平分ACB Ð交BG 于点N ,求证:AM CN BD =;(3)若点D 在点B 的右侧,连接AD ,点F 是AD 的中点,且AF AC =.点P 是直线AC 上一动点,连接FP ,将FP 绕点F 逆时针旋转60o得到FQ ,连接BQ ,点R 是直线AD 上一动点,连接BR ,QR .在点P 的运动过程中,当BQ 取得最小值时,在平面内将BQR △沿直线QR 翻折得到TQR △,连接FT .在点R 的运动过程中,直接写出FT CP的最大值.参考答案一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.【1题答案】【答案】A【2题答案】【答案】A【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】C【7题答案】【答案】C【8题答案】【答案】B【9题答案】【答案】D【10题答案】【答案】D二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.【11题答案】【答案】3【12题答案】【答案】13【13题答案】【答案】8【14题答案】【答案】()22001401x +=【15题答案】【答案】2【16题答案】【答案】12【17题答案】【答案】 ①. 203##263②. 83##223【18题答案】【答案】 ①. 3456 ②. 6273三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.【19题答案】【答案】(1)42a -(2)2xx +【20题答案】【答案】(1)88;87;40(2)八年级学生数学文化知识较好,理由见解析(3)310人【21题答案】【答案】(1)见解析 (2)①OFC OEA Ð=Ð;②OA OC =;③OF OE =;④四边形AECF 是菱形【22题答案】【答案】(1)A 种外墙漆每千克价格为26元,则B 种外墙漆每千克的价格为24元.(2)甲每小时粉刷外墙的面积是15平方米.【23题答案】【答案】(1)()()124606063y x x y x x=<£=<£, (2)函数图象见解析,1y 随x 增大而增大,2y 随x 增大而减小(3)2.26x <£【24题答案】【答案】(1)2.5千米(2)甲选择路线较近【25题答案】【答案】(1)215322y x x =-- (2)PD +最大值为152;()5,3P -; (3)4N -或1æççè的的【26题答案】【答案】(1)证明见解析(2)证明见解析(32024年重庆江津中考数学试题及答案(B 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++¹的顶点坐标为24,24b ac b a a æö--ç÷èø,对称轴为2b x a =-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列四个数中,最小的数是( )A .1-B .0C .1D .22.下列标点符号中,是轴对称图形的是( )A .B .C .D .3.反比例函数10y x =-的图象一定经过的点是( )A .()1,10B .()2,5-C .()2,5D .()2,84.如图,AB CD P ,若1125Ð=o ,则2Ð的度数为( )A .35oB .45oC .55oD .125o5.若两个相似三角形的相似比为1:4,则这两个三角形面积的比是( )A .1:2B .1:4C .1:8D .1:166的值应在( )A .8和9之间B .9和10之间C .10和11之间D .11和12之间7.用菱形按如图所示的规律拼图案,其中第①个图案中有2个菱形,第②个图案中有5个菱形,第③个图案中有8个菱形,第④个图案中有11个菱形,…,按此规律,则第⑧个图案中,菱形的个数是( )A .20B .21C .23D .268.如图,AB 是O e 的弦,OC AB ^交O e 于点C ,点D 是O e 上一点,连接BD ,CD .若28D Ð=o ,则OAB Ð的度数为( )A .28oB .34oC .56oD .62o9.如图,在边长为4的正方形ABCD 中,点E 是BC 上一点,点F 是CD 延长线上一点,连接AE ,AF ,AM 平分EAF Ð.交CD 于点M .若1BE DF ==,则DM 的长度为( )A .2B C D .12510.已知整式1110:n n n n M a x a x a x a --++++L ,其中10,,,n n a a -L 为自然数,n a 为正整数,且1105n n n a a a a -+++++=L .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A .0B .1C .2D .3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算:023-+=________.12.甲、乙两人分别从A 、B 、C 三个景区中随机选取一个景区前往游览,则他们恰好选择同一景区的概率为________.13.若正多边形的一个外角为45o,则这个正多边形的边数为________.14.重庆在低空经济领域实现了新的突破.今年第一季度低空飞行航线安全运行了200架次,预计第三季度低空飞行航线安全运行将达到401架次.设第二、第三两个季度安全运行架次的平均增长率为x ,根据题意,可列方程为________.15.如图,在ABC △中,AB AC =,36A Ð=o ,BD 平分ABC Ð交AC 于点D .若2BC =,则AD 的长度为________.16.若关于x 的一元一次不等式组213,3423x x x a+ì£ïíï-<+î的解集为4x £,且关于y 的分式方程8122a y y y --=++的解均为负整数,则所有满足条件的整数a 的值之和是________.17.如图,AB 是O e 的直径,BC 是O e 的切线,点B 为切点.连接AC 交O e 于点D ,点E 是O e 上一点,连接BE ,DE ,过点A 作AF BE P 交BD 的延长线于点F .若5BC =,3CD =,F ADE Ð=Ð,则AB 的长度是________;DF 的长度是________.18.一个各数位均不为0的四位自然数M abcd =,若满足9a d b c +=+=,则称这个四位数为“友谊数”.例如:四位数1278,∵18279+=+=,∴1278是“友谊数”.若abcd 是一个“友谊数”,且1b a c b -=-=,则这个数为________;若M abcd =是一个“友谊数”,设()9M F M =,且()13F M ab cd++是整数,则满足条件的M 的最大值是________.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1)()()()312a a a a -+-+;(2)22241244x x x x -æö+¸ç÷--+èø.20.数学文化有利于激发学生数学兴趣.某校为了解学生数学文化知识掌握的情况,从该校七、八年级学生中各随机抽取10名学生参加了数学文化知识竞赛,并对数据(百分制)进行整理、描述和分析(成绩均不低于70分,用x 表示,共分三组:A .90100x ££,B .8090x £<,C .7080x £<),下面给出了部分信息:七年级10名学生的竞赛成绩是:76,78,80,82,87,87,87,93,93,97.八年级10名学生的竞赛成绩在B 组中的数据是:80,83,88,88.七、八年级抽取的学生竞赛成绩统计表年级平均数中位数众数七年级8687b 八年级86a90根据以上信息,解答下列问题:(1)填空:a =________,b =________,m =________;(2)根据以上数据,你认为该校七、八年级中哪个年级学生数学文化知识较好?请说明理由(写出一条理由即可);(3)该校七年级学生有500人,八年级学生有400人.估计该校七、八年级学生中数学文化知识为“优秀”()90x ³的总共有多少人?21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹)(2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ^.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD P .∴ ① ,OCF OAE Ð=Ð.∵点O 是AC 的中点,∴ ② .∴CFO AEO @△△(AAS ).∴ ③ .又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ^,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论: ④ .22.某工程队承接了老旧小区改造工程中1000平方米的外墙粉刷任务,选派甲、乙两人分别用A 、B 两种外墙漆各完成总粉刷任务的一半.据测算需要A 、B 两种外墙漆各300千克,购买外墙漆总费用为15000元,已知A 种外墙漆每千克的价格比B 种外墙漆每千克的价格多2元.(1)求A 、B 两种外墙漆每千克的价格各是多少元?(2)已知乙每小时粉刷外墙面积是甲每小时粉刷外墙面积的45,乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.问甲每小时粉刷外墙的面积是多少平方米?23.如图,在ABC △中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC P 交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC △的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)24.如图,A ,B ,C ,D 分别是某公园四个景点,B 在A 的正东方向,D 在A 的正北方向,且在C 的北偏西60o 方向,C 在A 的北偏东30o 方向,且在B 的北偏西15o方向,2AB =千米.(参考数据:1.41» 1.73»2.45»)(1)求BC 的长度(结果精确到0.1千米);(2)甲、乙两人从景点D 出发去景点B ,甲选择的路线为:D C B --,乙选择的路线为:D A B --.请计算说明谁选择的路线较近?25.如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于()1,0A -,B 两点,交y 轴于点C ,抛物线的对称轴是直线52x =.(1)求抛物线的表达式;(2)点P 是直线BC 下方对称轴右侧抛物线上一动点,过点P 作PD x P 轴交抛物线于点D ,作PE BC ^于点E ,求PD PE +的最大值及此时点P 的坐标;(3)将抛物线沿射线BC PD PE +取得最大值的条件下,点F 为点P 平移后的对应点,连接AF 交y 轴于点M ,点N 为平移后的抛物线上一点,若45NMF ABC Ð-Ð=o ,请直接写出所有符合条件的点N 的坐标.26.在Rt ABC △中,90ACB Ð=o ,AC BC =,过点B 作BD AC P .(1)如图1,若点D 在点B 的左侧,连接CD ,过点A 作AE CD ^交BC 于点E .若点E 是BC 的中点,求证:2AC BD =;(2)如图2,若点D 在点B 的右侧,连接AD ,点F 是AD 的中点,连接BF 并延长交AC 于点G ,连接CF .过点F 作FM BG ^交AB 于点M ,CN 平分ACB Ð交BG 于点N ,求证:AM CN BD =;(3)若点D 在点B 的右侧,连接AD ,点F 是AD 的中点,且AF AC =.点P 是直线AC 上一动点,连接FP ,将FP 绕点F 逆时针旋转60o得到FQ ,连接BQ ,点R 是直线AD 上一动点,连接BR ,QR .在点P 的运动过程中,当BQ 取得最小值时,在平面内将BQR △沿直线QR 翻折得到TQR △,连接FT .在点R 的运动过程中,直接写出FT CP的最大值.参考答案一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.【1题答案】【答案】A【2题答案】【答案】A【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】C【7题答案】【答案】C【8题答案】【答案】B【9题答案】【答案】D【10题答案】【答案】D二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.【11题答案】【答案】3【12题答案】【答案】13【13题答案】【答案】8【14题答案】【答案】()22001401x +=【15题答案】【答案】2【16题答案】【答案】12【17题答案】【答案】 ①. 203##263②. 83##223【18题答案】【答案】 ①. 3456 ②. 6273三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.【19题答案】【答案】(1)42a -(2)2xx +【20题答案】【答案】(1)88;87;40(2)八年级学生数学文化知识较好,理由见解析(3)310人【21题答案】【答案】(1)见解析 (2)①OFC OEA Ð=Ð;②OA OC =;③OF OE =;④四边形AECF 是菱形【22题答案】【答案】(1)A 种外墙漆每千克价格为26元,则B 种外墙漆每千克的价格为24元.(2)甲每小时粉刷外墙的面积是15平方米.【23题答案】【答案】(1)()()124606063y x x y x x=<£=<£, (2)函数图象见解析,1y 随x 增大而增大,2y 随x 增大而减小(3)2.26x <£【24题答案】【答案】(1)2.5千米(2)甲选择路线较近【25题答案】【答案】(1)215322y x x =-- (2)PD +最大值为152;()5,3P -; (3)4N -或1æççè的的【26题答案】【答案】(1)证明见解析(2)证明见解析(3。
2023年重庆市中考试卷(B卷)数学注意事项:1.本试卷共7页,满分为120分。
考试时间为120分钟。
2.答题前,考生务必先将自己的考生号、姓名、座位号等信息填写在试卷和答题卡的指定位置。
请认真核对条形码上的相关信息后,将条形码粘贴在答题卡的指定位置上。
3.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,修改时用橡皮擦干净,再选涂其他各案。
4.答非选择题时,必须使用0.5毫米的黑色字迹签字笔书写,作图题可先用铅笔绘出,确认后再用0.5毫米的黑色字迹签字笔描清楚。
要求字体工整,笔迹清晰。
严格按题号所示的答题区域作答,超出答题区域书写的答案无效:在试卷、草稿纸上答题无效。
5.保持答题卡清洁、完整,严禁折叠、损坏。
严禁在答题卡上做任何标记,严禁使用涂改液、胶带纸、修正带。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)4的相反数是()A.B.C.﹣4D.42.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是()A.B.C.D.3.(4分)如图,直线a,b被直线c所截,若a∥b,∠1=63°,则∠2的度数为()A.27°B.53°C.63°D.117°4.(4分)如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE的长度为()A.4B.9C.12D.13.55.(4分)反比例函数y=的图象一定经过的点是()A.(﹣3,2)B.(2,﹣3)C.(﹣2,﹣4)D.(2,3)6.(4分)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.267.(4分)估计×(﹣)的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间8.(4分)如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC的度数为()A.30°B.40°C.50°D.60°9.(4分)如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF的长度为()A.2B.C.1D.10.(4分)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:|﹣5|+(2﹣)0=.12.(4分)有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是.13.(4分)若七边形的内角中有一个角为100°,则其余六个内角之和为.14.(4分)如图,在△ABC 中,AB =AC ,AD 是BC 边的中线,若AB =5,BC =6,则AD 的长度为.15.(4分)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x ,根据题意,请列出方程.16.(4分)如图,在矩形ABCD 中,AB =2,BC =4,E 为BC 的中点,连接AE .DE .以E 为圆心,EB 长为半径画弧,分别与AE ,DE 交于点M ,N .则图中阴影部分的面积为(结果保留π).17.(4分)若关于x 的不等式组的解集为x <﹣2,且关于y 的分式方程+=2的解为正数,则所有满足条件的整数a 的值之和为.18.(4分)对于一个四位自然数M ,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M 为“天真数”.如:四位数7311,∵7﹣1=6,3﹣1=2,∴7311是“天真数”;四位数8421,∵8﹣1≠6,∴8421不是“天真数”,则最小的“天真数”为;一个“天真数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,记P (M )=3(a +b )+c +d ,Q (M )=a ﹣5,若能被10整除,则满足条件的M 的最大值为.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)2)3()6(-++x x x x ;(2)mn m m n 229)3(-÷+.20.(10分)在学习了平行四边形的相关知识后,小虹进行了拓展性研究,她发现,如果作平行四边形一条对角线的垂直平分线,那么这条垂直平分线在该四边形内部的线段被这条对角线平分.其解决问题的思路为通过证明对应线段所在两个三角形全等即可得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规作平行四边形ABCD对角线AC的垂直平分线,交DC于点E,交AB于点F,垂足为O.(只保留作图痕迹)如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为O.求证:EO=FO.证明:∵四边形ABCD是平行四边形∴DC∥AB.∴∠ECO=.∵EF垂直平分AC,∴.又∠EOC=,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,请你依照题目中的相关表述完成下面命题的填空:过平行四边形对角线中点的直线.21.(10分)某洗车公司安装了A,B两款自动洗车设备,工作人员从消费者对A、B两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x 表示,分为四个等级:不满意x<70,比较满意70≤x<80,满意80≤x<90,非常满意x≥90),下面给出了部分信息:抽取的对A款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取的对B款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A,B款设备的评分统计表设备平均数中位数众数“非常满意”所占百分比A88m9645%B8887n40%根据以上信息,解答下列问题:(1)填空:a=,m=,n=;(2)5月份,有600名消费者对A款自动洗车设备进行评分,估计其中对A款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).22.(10分)如图,△ABC是边长为4的等边三角形,动点E,F均以每秒1个单位长度的速度同时从点A出发,E沿折线A→B→C方向运动,F沿折线A→C→B方向运动,当两点相遇时停止运动.设运动的时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数关系式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中,画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出点E,F相距3个单位长度时t的值.23.(10分)某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种,甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒亩,求派往甲区每架次无人机平均喷洒多少亩?24.(10分)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品.经测量,A在灯塔C的南偏西60°方向,B在灯塔C的南偏东45°方向,且在A的正东方向,AC=3600米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:≈1.414,≈1.732)2)25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A,B,与y 轴交于点C,其中B(3,0),C(0,﹣3).(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.26.(10分)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D 重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.2023年重庆市中考数学试卷(B卷)参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)4的相反数是()A.B.C.﹣4D.4【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.【解答】解:4的相反数是﹣4.故选:C.【点评】本题考查相反数,关键是掌握相反数的定义.2.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,可得选项A的图形.故选:A.【点评】本题考查了简单组合体的三视图.解题的关键是理解简单组合体的三视图的定义,明确从正面看得到的图形是主视图.3.(4分)如图,直线a,b被直线c所截,若a∥b,∠1=63°,则∠2的度数为()A.27°B.53°C.63°D.117°【分析】根据平行线的性质可以得到∠1=∠2,然后根据∠1的度数,即可得到∠2的度数.【解答】解:∵a∥b,∴∠1=∠2,∵∠1=63°,∴∠2=63°,故选:C.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.4.(4分)如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE的长度为()A.4B.9C.12D.13.5【分析】根据相似三角形的性质联立方程即可求解.【解答】解:∵△ABC∽△EDC,AC:EC=2:3.∴,∴当AB=6时,DE=9.故选:B.【点评】本题主要考查了相似三角形的性质,找到对应的边成比例是解题的关键.5.(4分)反比例函数y=的图象一定经过的点是()A.(﹣3,2)B.(2,﹣3)C.(﹣2,﹣4)D.(2,3)【分析】根据k=xy对各选项进行逐一判断即可.【解答】解:反比例函数y=中k=6,A、∵(﹣3)×2=﹣6≠6,∴此点不在函数图象上,故本选项不合题意;B、∵2×(﹣3)=﹣6≠6,∴此点不在函数图象上,故本选项不合题意;C、∵﹣2×(﹣4)=8≠6,∴此点不在函数图象上,故本选项不合题意;D、∵2×3=6,∴此点在函数图象上,故本选项符合题意.故选:D.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy为定值是解答此题的关键.6.(4分)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【分析】根据前4个图中的个数找到规律,再求解.【解答】解:第①个图案中有2个圆圈,第②个图案中有2+3×1=5个圆圈,第③个图案中有2+3×2=8个圆圈,第④个图案中有2+3×3=11个圆圈,...,则第⑦个图案中圆圈的个数为:2+3×6=20,故选:B.【点评】本题考查了规律型﹣图形的变化类,找到变换规律是解题的关键.7.(4分)估计×(﹣)的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】先化简题干中的式子得到﹣1,明确的范围,利用不等式的性质求出﹣1的范围得出答案.【解答】解:原式=﹣1.∵5<<6.∴4<﹣1<5.故选:A.【点评】本题以计算选择为背景考查了无理数的估算,考核了学生对式子的化简和比较大小的能力,解题关键是将式子化简,确定无理数的范围最后利用不等式的性质.8.(4分)如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC的度数为()A.30°B.40°C.50°D.60°【分析】连接OC,根据切线的性质得到∠OCD=90°,求得∠ACO=40°,根据等腰三角形的性质得到∠A=∠ACO=40°.【解答】解:连接OC,∵直线CD与⊙O相切于点C,∴∠OCD=90°,∵∠ACD=50°,∴∠ACO=90°﹣50°=40°,∵OC=OA,∴∠BAC=∠ACO=40°,故选:B.【点评】本题考查了切线的性质,正确地作出辅助线是解题的关键.9.(4分)如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF的长度为()A.2B.C.1D.【分析】连接AF,根据正方形ABCD得到AB=BC=BE,∠ABC=90°,根据角平分线的性质和等腰三角形的性质,求得∠BFE=45°,再证明△ABF≌△EBF,求得∠AFC=90°,最后根据直角三角形斜边上的中线等于斜边的一半,即可求出OF的长度.【解答】解:如图,连接AF,∵四边形ABCD是正方形,∴AB=BE=BC,∠ABC=90°,AC=AB=2,∴∠BEC=∠BCE,∴∠EBC=180°﹣2∠BEC,∴∠ABE=∠ABC﹣∠EBC=2∠BEC﹣90°,∵BF平分∠ABE,∴∠ABF=∠EBF=∠ABE=∠BEC﹣45°,∴∠BFE=∠BEC﹣∠EBF=45°,在△BAF与△BEF中,,∴△BAF≌△BEF(SAS),∴∠BFE=∠BFA=45°,∴∠AFC=∠BAF+∠BFE=90°,∵O为对角线AC的中点,∴OF=AC=,故选:D.【点评】本题考查了等腰三角形的判定和性质,三角形内角和定理,正方形的性质,直角三角形特征,作出正确的辅助线,求得∠BFE=45°是解题的关键.10.(4分)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【分析】根据给定的定义,举出符合条件的说法①和②.说法③需要对绝对操作分析添加一个和两个绝对值的情况,并将结果进行比较排除相等的结果,汇总得出答案.【解答】解:|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,故说法①正确.若使其运算结果与原多项式之和为0,需出现﹣x,显然无论怎么添加绝对值,都无法使x的符号为负号,故说法②正确.当添加一个绝对值时,共有4种情况,分别是|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n;x﹣|y ﹣z|﹣m﹣n=x﹣y+z﹣m﹣n;x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;x﹣y﹣z﹣|m﹣n|=x﹣y ﹣z﹣m+n.当添加两个绝对值时,共有3种情况,分别是|x﹣y|﹣|z﹣m|﹣n=x﹣y﹣z+m ﹣n;|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n;x﹣|y﹣z|﹣|m﹣n|=x﹣y+z﹣m+n.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C.【点评】本题考查新定义题型,根据多给的定义,举出符合条件的代数式进行情况讨论;需要注意去绝对值时的符号,和所有结果可能的比较.主要考查绝对值计算和分类讨论思想的应用.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:|﹣5|+(2﹣)0=6.【分析】由|﹣5|=5,(2﹣)0=1【解答】解:|﹣5|+(2﹣)0=5+1=6.故答案为:6.【点评】本题考查实数的运算.解题的关键是去绝对值注意符号;掌握任意非零实数的零次幂都等于1.12.(4分)有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是.【分析】根据题意,可以画出相应的树状图,然后即可求出相应的概率.【解答】解:树状图如图所示,由上可得,一共有16种等可能性,其中抽取的两张卡片上的汉字相同的有4种可能性,∴抽取的两张卡片上的汉字相同的概率为=,故答案为:.【点评】本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.13.(4分)若七边形的内角中有一个角为100°,则其余六个内角之和为800°.【分析】利用多边形内角和公式求得七边形的内角和后与100°作差即可.【解答】解:由题意可得七边形的内角和为:(7﹣2)×180°=900°,∵该七边形的一个内角为100°,∴其余六个内角之和为900°﹣100°=800°,故答案为:800°.【点评】本题主要考查多边形的内角和,此为基础且重要知识点,必须熟练掌握.14.(4分)如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为4.【分析】根据等腰三角形的性质可得AD⊥BC,在Rt△ABD中,根据勾股定理即可求出AD的长.【解答】解:∵AB=AC,AD是BC边的中线,∴AD⊥BC,∴∠ADB=90°,∵AB=5,BC=6,∴BD=CD=3,在Rt△ABD中,根据勾股定理,得AD===4,故答案为:4.【点评】本题考查了等腰三角形的性质,涉及勾股定理,熟练掌握等腰三角形的性质是解题的关键.15.(4分)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程301(1+x)2=500.【分析】设该市新建智能充电桩个数的月平均增长率为x,根据第一个月新建了301个充电桩,第三个月新建了500个充电桩,即可得出关于x的一元二次方程.【解答】解:设该市新建智能充电桩个数的月平均增长率为x,依题意得:301(1+x)2=500.故答案为:301(1+x)2=500.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.15.(4分)如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE.DE.以E为圆心,EB长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为4﹣π(结果保留π).【分析】用三角形ADE的面积减去2个扇形的面积即可.【解答】解:∵AD=2AB=4,E为BC的中点,∴AB=2,BE=CE=2,∴∠BAE=∠AEB=∠CDE=∠DEC=45°,∴阴影部分的面积为﹣2×=4﹣π.故答案为:4﹣π.【点评】此题主要考查了扇形面积求法以及等腰直角三角形的性质,应用扇形面积的计算方法进行求解是解决本题的关键.17.(4分)若关于x的不等式组的解集为x<﹣2,且关于y的分式方程+=2的解为正数,则所有满足条件的整数a的值之和为13.【分析】先通过不等式组的解确定a的范围,再根据分式方程的解求a值即可得出答案.【解答】解:解不等式组,得:,∵原不等式组的解集为:x<﹣2,∴﹣≥﹣2,∴a≤5,解分式方程+=2,得y=,∵y>0且y≠1,∴>0且≠1,∴a>﹣2且a≠1,∴﹣2<a≤5,且a≠1,∴符合条件的整数a有:﹣1,0,2,3,4,5,∴﹣1+0+2+3+4+5=13.故答案为:13.【点评】本题主要考查解一元一次不等式组、解分式方程,熟练掌握一元一次不等式组、分式方程的解法是解决本题的关键.18.(4分)对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵7﹣1=6,3﹣1=2,∴7311是“天真数”;四位数8421,∵8﹣1≠6,∴8421不是“天真数”,则最小的“天真数”为6200;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=3(a+b)+c+d,Q(M)=a﹣5,若能被10整除,则满足条件的M的最大值为9313.【分析】它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.分为两部分:第一部分千位数和个位数之间的关系,第二部分百位数和十位数之前的关系.【解答】解:求最小的“天真数”,首先知道最小的自然数的0.先看它的千位数字比个位数字多6,个位数为最小的自然数0时,千位数为6;百位数字比十位数字多2,十位数为最小的的自然数0时,百位数是2;则最小的“天真数”为6200.故答案为:6200.一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d.由“天真数”的定义得a=d+6,所以6≤a≤9,b=c+2,所以0≤c≤7,又P(M)=3(a+b)+c+d=3(a+c+2)+c+a﹣6=4a+4c;Q(M)=a﹣5.=论能被10整除当a取最大值9时,即当a=9时,满足能被10整除,则c=1,“天真数”M为9313.故答案为:9313.【点评】新定义题型,各数字的取值范围,最值:最小自然数0.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)x(x+6)+(x﹣3)2;(2)(3+)÷.【分析】(1)按照单项式乘以多项式的法则以及完全平方公式进行计算即可;(2)按照分式的混合运算法则进行计算即可.【解答】解:(1)x(x+6)+(x﹣3)2=x2+6x+x2﹣6x+9=2x2+9;(2)===.【点评】本题考查了分式的混合运算和整式的混合运算,熟练掌握混合运算法则是解题的关键,计算时一定要细心.20.(10分)在学习了平行四边形的相关知识后,小虹进行了拓展性研究,她发现,如果作平行四边形一条对角线的垂直平分线,那么这条垂直平分线在该四边形内部的线段被这条对角线平分.其解决问题的思路为通过证明对应线段所在两个三角形全等即可得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规作平行四边形ABCD对角线AC的垂直平分线,交DC于点E,交AB于点F,垂足为O.(只保留作图痕迹)如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为O.求证:EO=FO.证明:∵四边形ABCD是平行四边形∴DC∥AB.∴∠ECO=∠FAO.∵EF垂直平分AC,∴OA=OC.又∠EOC=∠FOA,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,请你依照题目中的相关表述完成下面命题的填空:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分.【分析】根据要求画出图形,证明△COE≌△AOF(ASA),可得结论.【解答】解:图形如图所示:理由:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO=∠FAO,∵EF垂直平分AC,∴AO=OC.又∠EOC=∠FOA,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,所以过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:∠FAO,OA=OC,∠FOA,过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分.【点评】本题考查命题与定理,平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是理解题意,正确寻找全等三角形解决问题.21.(10分)某洗车公司安装了A,B两款自动洗车设备,工作人员从消费者对A、B两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x 表示,分为四个等级:不满意x<70,比较满意70≤x<80,满意80≤x<90,非常满意x≥90),下面给出了部分信息:抽取的对A款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取的对B款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A,B款设备的评分统计表设备平均数中位数众数“非常满意”所占百分比A88m9645%B8887n40%根据以上信息,解答下列问题:(1)填空:a=15,m=88,n=98;(2)5月份,有600名消费者对A款自动洗车设备进行评分,估计其中对A款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).【分析】(1)用“1”分别减去其他三个等级所占百分比可得a的值,根据中位数的定义可得m的值,根据众数的定义可得n的值;(2)用600乘A款自动洗车设备“比较满意”所占百分比即可;(3)通过比较A,B款设备的评分统计表的数据解答即可.【解答】解:(1)由题意得,a%=1﹣10%﹣45%﹣=15%,即a=15;把A款设备的评分数据从小到大排列,排在中间的两个数是87,89,故中位数m==88;在B款设备的评分数据中,98出现的次数最多,故众数n=98.故答案为:15;88;98;(2)600×15%=90(名),答:估计其中对A款自动洗车设备“比较满意”的人数大约为90名;(3)A款自动洗车设备更受消费者欢迎,理由如下:因为两款自动洗车设备的评分数据的平均数相同,但A款自动洗车设备的评分数据的中位数比B款高,所以A款自动洗车设备更受消费者欢迎(答案不唯一).【点评】本题考查扇形统计图,中位数、众数以及样本估计总体,理解中位数、众数的意义,掌握中位数、众数的计算方法是解决问题的前提.22.(10分)如图,△ABC是边长为4的等边三角形,动点E,F均以每秒1个单位长度的速度同时从点A出发,E沿折线A→B→C方向运动,F沿折线A→C→B方向运动,当两点相遇时停止运动.设运动的时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数关系式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中,画出这个函数图象,并写出该函数的一条性质;。
2015年数学中考预测-23题 应用题一、工程问题: 1.(13A 23.)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站从去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元。
在保证工程质量的前提下,为了缩短工期,拟安排甲乙两队分工合作完成这项工程。
在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲乙两队的施工时间按月取整数).2.(13B 23、)4.20雅安地震后,某商家为支援灾区人民,计划捐赠帐篷16800顶,该商家备有2辆大货车、8辆小车运送,计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次,两天恰好运完.(1)求大、小货车原计划每辆每次各运送帐篷多少顶?(2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运m 200顶,每辆小货车每次比原计划少运300顶.为了尽快将帐篷运送到灾区,大货车每天比原计划多跑m 21次,小货车每天比原计划多跑m 次,一天刚好运送了帐篷14400顶,求m 的值. 3.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?4.“端午节”是我国的传统佳节,历来有吃“粽子”的习俗。
4题图FEDCBA3题图FECBA8题图ODCB A重庆市2014年初中毕业暨高中招生考试数学试题(B 卷)(满分:150分时间:120分钟)参考公式:抛物线y =ax 2+bx +c(a≠0)的顶点坐标为)44,2(2a b ac a b --,对称轴公式为a b x 2-=. 一.选择题:(本大题共12个小题,每小题4分,共48分)1.某地连续四天每天的平均气温分别是:1℃,-1℃,0℃,2℃,则平均气温中最低的是()A .-1℃B .0℃C .1℃D .2℃ 2.计算2252x x -的结果是()A .3B .3xC .23xD .43x3.如图,△ABC ∽△DEF ,相似比为1:2,若BC =1,则EF 的长是()A .1B .2C .3D .44.如图,直线AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,若∠AEF =50°,则∠EFC 的大小是()A .40°B .50°C .120°D .130°5.某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参加比赛。
为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲.乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8,根据以上数据,下列说法正确的是() A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定 D .无法确定甲、乙的成绩谁更稳定 6.若点(3,1)在一次函数2(0)y kx k =-≠的图像上,则k 的值是()A .5B .4C .3D .1 7.分式方程431x x=+的解是() A .1x = B .1x =-C .3x =D .3x =-8.如图,在矩形ABCD 中,对角线AC .BD 相交于点O ,∠ACB =30°,则∠AOB 的大小为()A .30°B .60°C .90°D .120°11题图ODCBAOGF EDCBA第三个图形第二个图形第一个图形9.夏天到了,某小区准备开放游泳池,物业管理处安排一名清洁工对一个无水的游泳池进行清洗。
数学试卷 第1页(共30页) 数学试卷 第2页(共30页)绝密★启用前重庆市2014年初中毕业暨高中招生考试数 学本试卷满分150分,考试时间120分钟.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a --,对称轴为2b x a=-第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.实数17-的相反数是( ) A .17B .117C .17-D .117- 2.计算642x x ÷的结果是( ) A .2xB .22xC .42x D .102x 3.中,a 的取值范围是( ) A .0a ≥ B .0a ≤C .0a >D .0a < 4.五边形的内角和是( ) A .°180B .°360C .°540D .°6005.2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是4568--℃,℃,℃,℃,当时这四个城市中,气温最低的是( ) A .北京B .上海C .重庆D .宁夏 6.关于x 的方程211x =-的解是( )A .4x =B .3x =C .2x =D .1x =7.2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,它们的平均成绩都是13.2秒,甲、乙、丙、丁成绩的方差分别是0.110.030.050.02,,,,则当天这四位运动员“110米跨栏”的训练成绩最稳定的是( ) A .甲B .乙C .丙D .丁8.如图,直线AB CD ∥,直线EF 分别交直线,AB CD 于点,E F ,过点F 作FG FE ⊥,交直线AB 于点G .若142∠=,则2∠的大小是( )A .56B .48C .46D .409.如图,ABC △的顶点,,A B C 均在O 上,若90AOC ∠=,则AOC ∠的大小是( )A .30B .45C .60D .7010.2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文章,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,下面能反映y 与x 的函数关系的大致图象是( )ABCD11.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共30页) 数学试卷 第4页(共30页)积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律,则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .4012.如图,反比例函数6y x=-在第二象限的图象上有两点,A B ,它们的横坐标分别为1,3--,直线AB 与x 轴交于点C ,则AOC △的面积为( ) A .8B .10C .12D .24第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填在题中的横线上) 13.方程组3,5x x y =⎧⎨+=⎩的解是 .14.据有关部门统计,截止到2014年5月1日,重庆市私家小轿车已达到563000辆,将563000这个数用科学记数法表示为 .15.如图,菱形ABCD 中,60A ∠=,7BD =,则菱形ABCD 的周长为 .16.如图,OAB △中,4,30,OA OB A AB ==∠=与O 相切于点C ,则图中阴影部分的面积为 (结果保留π).17.从1,1,2-这三个数字中,随机抽取一个数,记为a .那么,使关于x 的一次函数2y x a =+的图象与x 轴、y 轴围成的三角形面积为14,且使关于x 的不等式组212x a x a +⎧⎨-⎩≤,≤有解的概率为 . 18.如图,正方形ABCD 的边长为6,点O 是对角线,AC BD 的交点,点E 在CD 上,且2DE CE =,连接BE .过点C 作CF BE ⊥,垂足为F ,连接OF ,则OF 的长为 .三、解答题(本大题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分7分)2011(3)2014|4|()6---⨯-+.20.(本小题满分7分)如图,ABC △中,AD BC ⊥,垂足为D ,若314,12,tan 4BC AD BAD ==∠=,求sin C 的值.数学试卷 第5页(共30页) 数学试卷 第6页(共30页)21.(本小题满分10分)先化简,再求值:221121()11x x x x x x +÷-+-++,其中x 的值为方程251x x =-的解.22.(本小题满分10分)为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇2014年1-5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇2014年1-5月新注册小型企业一共有 家,请将折线统计图补充完整; (2)该镇2014年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.23.(本小题满分10分)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a %(其中0a >),则每户平均集资的资金在150元的基础上减少了109a %,求a 的值.24.(本小题满分10分)如图,ABC △中,90,,BAC AB AC AD BC ∠==⊥,垂足是,D AE 平分BAD ∠,交BC 于点E .在ABC △外有一点F ,使,FA AE FC BC ⊥⊥.(1)求证:BE CF =;(2)在AB 上取一点M ,使2BM DE =,连接MC ,交AD 于点N ,连接ME .求证: ①ME BC ⊥; ②DE DN =.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共30页) 数学试卷 第8页(共30页)25.(本小题满分12分)如图,抛物线223y x x =--+的图象与x 轴交于,A B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求,,A B C 的坐标;(2)点M 为线段AB 上一点(点M 不与点,A B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ AB ∥交抛物线于点Q ,过点Q 作QN x ⊥轴于点N ,若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FC =,求点F 的坐标.26.(本小题满分12分)已知:如图1,在矩形ABCD 中,205,,3AB AD AE BD ==⊥,垂足是E .点F 是点E 关于AB 的对称点,连接,AF BF .(1)求AE 和BE 的长;(2)若将ABF △沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度),当点F 分别平移到线段AB AD ,上时,直接写出相应的m 值;(3)如图2,将ABF △绕点B 顺时针旋转一个角α(0180α<<),记旋转中的ABF △为A BF ''△,在旋转过程中,设A F ''所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P ,Q 两点,使DPQ △为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.5 / 15重庆市2014年初中毕业暨高中招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】根据相反数的定义:只有符号不同的两个数是互为相反数,可知17-的相反数是17,故选A . 【考点】相反数的定义 2.【答案】B【解析】根据同底数幂的除法法则:底数不变,指数相减得64642222x x x x -÷==,故选B . 【考点】同底数幂的除法运算 3.【答案】A【解析】因为二次根式中被开方数是非负数,即0a ≥,故选A 【考点】二次根式中被开方数的取值范围 4.【答案】C【解析】n 边形的内角和是(2)180n -⨯︒,将5n =代人即得五边形的内角和是540,故选C . 【考点】多边形的内角和 5.【答案】D【解析】气温最低即数值最小,8-在这四个数中处在数轴的最左边,故8-最小,故选D 【考点】有理数的大小比较 6.【答案】B【解析】将方程的两边向时乘最简公分母1x -得整式方程21x =-,解得3x =.经检验,3x =是原分式方程的解,故选B . 【考点】分式方程的解法 7.【答案】D【解析】根据方差越小越稳定,而0.020.03 0.050.11<<<,故丁的成绩最稳定,故选D 【考点】方差的意义 8.【答案】B【解析】因为//AB CD ,根据“两直线平行,同位角相等”得142EFD ∠=∠=︒,又因为FG FE ⊥,所以2180904248∠=︒-︒-︒=︒,故选B .【考点】平行线的性质及垂直的定义数学试卷第11页(共30页)数学试卷第12页(共30页)7 / 15,OA OB =43=,43S AB OC ∴=242=3π.所以,DC BC =62210BC CE CF BE ⨯==CF BE ⊥45OCB ∠=OBM CBF ∠+∠△≌△O B M O C F数学试卷 第15页(共30页)数学试卷 第16页(共30页)【解析】解:AD BC ⊥3tan 4BAD ∠=,12AD =9BD ∴=2(1)(x 1)x x -+-11+补图如下:(2)用1A,2A表示餐饮企业,1B,2B表示非餐饮企业,画树状图如下:9 / 15数学试卷 第19页(共30页)数学试卷 第20页(共30页)10%)150(19-则3(1)(1x +24.【答案】证明:如图) BAC ∠=1EAC ∴∠+∠12∴∠=∠,AB AC =B FCA ∠=∠ABF ∴≅△BE CF ∴=45B ∠=︒BG EG ∴=AD BC ⊥2BM ED =⊥②AD BC ∠=∠,∴∠15=MC MC∴∠=∠78∠=BAC∴∠=ACB∴∠=∠57∠=ADE∴=DE DN 【解析】1ME=⨯12x=-,(3)由(2)知,当矩形PMNQ的周长最大时,2)5AB =,2BD AB =+1122ABD AB AD S BD AE ==△ 解得4AE =若点Q 在线段BD 的延长线上时,如图1,34∠=∠4+Q ∴∠∠'A Q A ∴=若点Q 在线段BD 上,如图2:1=3∠∠,3=5+∠∠35∴∠=∠4A ∴∠=∠'1A ∠=∠4A ∴∠=∠设QB QA =③当PD PQ =时,如图4,有1=2=3∠∠∠1A ∠=∠BQ A ∴=253DQ ∴=。
2014年重庆市南岸区中考数学一模试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D、的四个答案,其中只有一个正确的,请将答题卡上对应题目的正确答案标号涂黑...5.如图,已知AD平分∠BAC,AB∥CD,且∠1=25°,则∠2的度数为()6.如图,AB与⊙O相切于点C,OA=OB,若⊙O的直径为4,AB=2,则OA的长为()B.7.二元一次方程组的解是()..8.四名运动员参加了射击预选赛,他们成绩的平均环数及其方差s如表所示.如果选出一个成绩)710个图形中小黑圆点的个数为()的速度为150千米/小时,甲乙两地之间的距离为900千米.若两车同时出发,且到达目的地后停止.则下列折线图能大致表示这两列按所给条件行使时,两车之间的距离y(千米)与快车行驶的时间t(小时)之间的函数图象是()12.如图,在平面直角坐标系内,二次函数y=ax2+bx(a≠0),一次函数y=ax+b以及反比例函数y=(k≠0)的图象都经过点A,其中一次函数的图象与反比例函数的图象还交于另一点B,且一次函数与x轴,y轴分别交于点C,D,若点A的横坐标为1,该二次函数的对称轴是x=2,则下列说法不正确的是()二、填空题:(本大题6个小题,每小题4分,共24分)将每小题的答案直接填在答题卡(卷)中对应的横线上.13.4的相反数是_________.14.不等式2x﹣1>3的解集是_________.15.2002年5月份,某市区一周空气质量报告中某项污染指数的数据是:31 35 31 34 30 32 31这组数据的中位数是_________.16.如图,在边长为2的正三角形ABC中,以BC为直径的半圆分别交AB、AC于点D、E.则图中阴影部分的面积是_________.(结果保留π)17.一个盒子里装有分别标有数字﹣2、﹣1、0、1、2、的五个光滑小球,这五个小球除标的数字外其余完全相同.现从该盒子中随机摸出一个小球其数字记为m,放回后再随机摸出一个小球其数字记为n.如图,在平面直角坐标系内,则点(m,n)恰好落在以点A(0,3)、B(2,0)、C(0,﹣2)、D(﹣2,0)为顶点的四形ABCD内部(不含边界)的概率是_________.18.如图,以矩形OABC的顶点O为坐标原点建立平面直角坐标系,使点A、C分别在x轴、y轴的正半轴上,若点B的坐标为(2,3),双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E.过OC边上一点F,把△BCF沿直线BF翻折,使点C落在点C′处(点C′在矩形OABC内部),且C′E∥BC,则点F的坐标是_________.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.19.计算:(3﹣π)0﹣+|﹣5|20.如图,已知平面直角坐标内有三点,分别为A(﹣1,1),B(﹣2,4),C(﹣3,2).(1)请画出△ABC关于原点O对称的△A1B1C1;(2)直接写出把△ABC绕点O顺时针旋转90°后,点C旋转后对应点C2的坐标.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.21.(10分)已知m是方程x+1=的解,求代数式(﹣1)÷的值.22.(10分)据新浪网调查,全国网民对2014年3月5日在人民大礼堂开幕的第十二届全国人大二中全会政府工作报告关注度非常高.网民们关注的热点话题分别有:消费、教育、环保、反腐、及其它共五类,且关注该五类热点问题的网民的人数所占百分比如图1,关注该五类热点问题网民的人数的不完整条形统计图如图2.请根据图中信息解答下列问题.(1)求出图1中x的值,并将图2中的不完整的条形统计图补充完整;(2)为了深入探讨政府工作报告,新浪网邀请北京、上海、天津、重庆、深圳5个城市的网民代表各1人做客新浪访谈,且一次访谈只选2名代表.请你用列表法或画树状图的方法,求出一次所选代表恰好是重庆代表和深圳代表的概率.23.(10分)某初级中学共有七、八、九三个年级,该校的小兴(化名)同学不幸患上白血病,学校在得知消息后,为了帮助他得到及时的治疗,广大教职工和同学们纷纷自愿捐款.已知八年级的同学捐款总额为2400元,九年级的同学捐款总额为2500元.九年级捐款人数比八年级多10人,而且两个年级人均捐款额恰好相等.(1)求八年级同学的捐款人数;(2)若该校七年级同学的捐款总额是2000元,学校教职工捐款人数是八年级同学捐款人数的,教职工的人均捐款金额是八年级学生人均捐款金额的7.5倍.求该校这次的师生捐款总额是多少?24.(10分)如图,在矩形ABCD中,点E是AD边上一点,点F是CB延长线上一点,连接EF交AB于点G,且DE=BF.AE的垂直平分线MN交AE于点N、交EF于点M.若∠AFG=2∠BFG=45°,AF=2.(1)求证:AF=CE;(2)求△CEF的面积.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.25.(12分)如图,在平面直角坐标系内,以直线x=1为对称轴的抛物线y=ax2+bx﹣3与x轴相交于A、B两点,与y轴相交于点C,点A的坐标为(﹣1,0).(1)求该抛物线解析式;(2)设该抛物线的顶点为D,连接线段BC、BD、CD,求△BCD的面积;(3)将该抛物线向上平移,使平移后的抛物线经过原点O,且与x轴的另一个交点为E.若在y轴上存在一点F,连接DF、EF,使四边形BDFE的周长最小,求此最小值.26.(12分)如图1,直角△ABC中,BC=6,AC=10,∠ABC=90°,点O是BC的中点,点P在CB 的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OC匀速运动,到达C 点后,立即以原速度沿CO返回;另一动点F从P点出发,以每秒1个单位长度的速度沿射线PC匀速运动.若点E、F同时出发,当两点相遇时停止运动.在点E、F的运动过程中,以EF为直角边作等腰直角△EFG,使∠FEG=90°,且△EFG和△ABC在射线CP的同侧.设运动的时间为t秒(t≥0).(1)如图2,当t=0时,等腰直角△EFG的直角边EG交AC于点M,求线段GM的长;(2)在整个运动过程中,设等腰直角△EFG和△ABC重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)在整个运动过程中,是否存在这样的t,使点C、O、M三点构成的三角形是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.。
2014年重庆中考数学试题b及答案一、选择题(本大题共15小题,每小题2分,共30分。
每小题均有一项与其余三项不同,请将其代号填入题前括号内。
)( )1. 下列各选项中,表示成两个甲数之差的运算式是A. 27 ÷ 3B. 120 ÷ 5C. 36 + 9D. 60 × 3( )2. 已知A = {2, 3, 4, 5},B = {2, 4, 6, 8},则 A ∪ B =A. {2, 4, 6, 8}B. {2, 4, 8}C. {2, 3, 4, 5, 6, 8}D. {2, 3, 4, 5, 6}( )3. 3× ( 4÷2 ) × 2= A. 3 B. 4 C. 6 D. 12( )4. 若数学竞赛中两种获奖情况互不相同,奖牌有金、银、铜三种,每人至少得一枚奖牌。
有7 人获金牌,12 人获银牌,3 人获铜牌,则共送出奖牌个数是A. 22B. 21C. 19D. 14( )5. 表示公元 2014 × 28 的尾数是A. 1B. 2C. 3D. 4( )6. 若集合A={x | x<0且 3× x + 5 >1}, B = {x | x<2且8-2×x>1},则A ∩ B =A. {x | x >4⁄3} B.{x | x < 2} C. ∅ D. {x | x >–1}( )7. 若a | b 代表"a能被b整除",下列各式中错误的是A. 4 | 20B. 1 | 0C. 7 | 8D. 121 | 11( )8. 设 a,b,m 为正整数,下列三个命题:①若 a + b > m,则 a > m-b;②若 a > m-b,则 a + b > m;③若 a + b > m,则 a > m -b.其中不正确的命题是A. ①B. ②C. ③D. ①和②( )9. 若y = 0.3×2的t次方,关于t的不等式y < 8的解集是A. t >–1B. t ≥ –1C. t >1D. t ≥ 1( )10. 卢珊珊村有修路工程,村长计划了两条路线,如图(1)所示。
2023年重庆市中考数学试卷(B卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑. 1.(4分)4的相反数是()A.B.C.﹣4D.42.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是()A.B.C.D.3.(4分)如图,直线a,b被直线c所截,若a∥b,∠1=63°,则∠2的度数为()A.27°B.53°C.63°D.117°4.(4分)如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE的长度为()A.4B.9C.12D.13.55.(4分)反比例函数y=的图象一定经过的点是()A.(﹣3,2)B.(2,﹣3)C.(﹣2,﹣4)D.(2,3)6.(4分)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.267.(4分)估计×(﹣)的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间8.(4分)如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC 的度数为()A.30°B.40°C.50°D.60°9.(4分)如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF的长度为()A.2B.C.1D.10.(4分)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:|﹣5|+(2﹣)0=.12.(4分)有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是.13.(4分)若七边形的内角中有一个角为100°,则其余六个内角之和为.14.(4分)如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为.15.(4分)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程.16.(4分)如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE.DE.以E为圆心,EB长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为(结果保留π).17.(4分)若关于x的不等式组的解集为x<﹣2,且关于y的分式方程+=2的解为正数,则所有满足条件的整数a的值之和为.18.(4分)对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵7﹣1=6,3﹣1=2,∴7311是“天真数”;四位数8421,∵8﹣1≠6,∴8421不是“天真数”,则最小的“天真数”为;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=3(a+b)+c+d,Q(M)=a﹣5,若能被10整除,则满足条件的M的最大值为.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)x(x+6)+(x﹣3)2;(2)(3+)÷.20.(10分)在学习了平行四边形的相关知识后,小虹进行了拓展性研究,她发现,如果作平行四边形一条对角线的垂直平分线,那么这条垂直平分线在该四边形内部的线段被这条对角线平分.其解决问题的思路为通过证明对应线段所在两个三角形全等即可得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规作平行四边形ABCD对角线AC的垂直平分线,交DC于点E,交AB于点F,垂足为O.(只保留作图痕迹)如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为O.求证:EO=FO.证明:∵四边形ABCD是平行四边形∴DC∥AB.∴∠ECO=.∵EF垂直平分AC,∴.又∠EOC=,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,请你依照题目中的相关表述完成下面命题的填空:过平行四边形对角线中点的直线.21.(10分)某洗车公司安装了A,B两款自动洗车设备,工作人员从消费者对A、B两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x表示,分为四个等级:不满意x<70,比较满意70≤x<80,满意80≤x<90,非常满意x≥90),下面给出了部分信息:抽取的对A款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取的对B款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A,B款设备的评分统计表设备平均数中位数众数“非常满意”所占百分比A88m9645%B8887n40%根据以上信息,解答下列问题:(1)填空:a=,m=,n=;(2)5月份,有600名消费者对A款自动洗车设备进行评分,估计其中对A款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).22.(10分)如图,△ABC是边长为4的等边三角形,动点E,F均以每秒1个单位长度的速度同时从点A出发,E沿折线A→B→C方向运动,F沿折线A→C→B方向运动,当两点相遇时停止运动.设运动的时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数关系式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中,画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出点E,F相距3个单位长度时t的值.23.(10分)某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种,甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒亩,求派往甲区每架次无人机平均喷洒多少亩?24.(10分)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品.经测量,A在灯塔C的南偏西60°方向,B在灯塔C的南偏东45°方向,且在A的正东方向,AC=3600米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:≈1.414,≈1.732)25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B(3,0),C(0,﹣3).(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.26.(10分)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.2023年重庆市中考数学试卷(B卷)参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑. 1.(4分)4的相反数是()A.B.C.﹣4D.4【解答】解:4的相反数是﹣4.故选:C.2.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是()A.B.C.D.【解答】解:从正面看,可得选项A的图形.故选:A.3.(4分)如图,直线a,b被直线c所截,若a∥b,∠1=63°,则∠2的度数为()A.27°B.53°C.63°D.117°【解答】解:∵a∥b,∴∠1=∠2,∵∠1=63°,∴∠2=63°,故选:C.4.(4分)如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE的长度为()A.4B.9C.12D.13.5【解答】解:∵△ABC∽△EDC,AC:EC=2:3.∴,∴当AB=6时,DE=9.故选:B.5.(4分)反比例函数y=的图象一定经过的点是()A.(﹣3,2)B.(2,﹣3)C.(﹣2,﹣4)D.(2,3)【解答】解:反比例函数y=中k=6,A、∵(﹣3)×2=﹣6≠6,∴此点不在函数图象上,故本选项不合题意;B、∵2×(﹣3)=﹣6≠6,∴此点不在函数图象上,故本选项不合题意;C、∵﹣2×(﹣4)=8≠6,∴此点不在函数图象上,故本选项不合题意;D、∵2×3=6,∴此点在函数图象上,故本选项符合题意.故选:D.6.(4分)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【解答】解:第①个图案中有2个圆圈,第②个图案中有2+3×1=5个圆圈,第③个图案中有2+3×2=8个圆圈,第④个图案中有2+3×3=11个圆圈,...,则第⑦个图案中圆圈的个数为:2+3×6=20,故选:B.7.(4分)估计×(﹣)的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【解答】解:原式=﹣1.∵5<<6.∴4<﹣1<5.故选:A.8.(4分)如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC 的度数为()A.30°B.40°C.50°D.60°【解答】解:连接OC,∵直线CD与⊙O相切于点C,∴∠OCD=90°,∵∠ACD=50°,∴∠ACO=90°﹣50°=40°,∵OC=OA,∴∠BAC=∠ACO=40°,故选:B.9.(4分)如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF的长度为()A.2B.C.1D.【解答】解:如图,连接AF,∵四边形ABCD是正方形,∴AB=BE=BC,∠ABC=90°,AC=AB=2,∴∠BEC=∠BCE,∴∠EBC=180°﹣2∠BEC,∴∠ABE=∠ABC﹣∠EBC=2∠BEC﹣90°,∵BF平分∠ABE,∴∠ABF=∠EBF=∠ABE=∠BEC﹣45°,∴∠BFE=∠BEC﹣∠EBF=45°,在△BAF与△BEF中,,∴△BAF≌△BEF(SAS),∴∠BFE=∠BFA=45°,∴∠AFC=∠BAF+∠BFE=90°,∵O为对角线AC的中点,∴OF=AC=,故选:D.10.(4分)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【解答】解:|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,故说法①正确.若使其运算结果与原多项式之和为0,需出现﹣x,显然无论怎么添加绝对值,都无法使x的符号为负号,故说法②正确.当添加一个绝对值时,共有4种情况,分别是|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n;x﹣|y﹣z|﹣m ﹣n=x﹣y+z﹣m﹣n;x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;x﹣y﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n.当添加两个绝对值时,共有3种情况,分别是|x﹣y|﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n;x﹣|y﹣z|﹣|m﹣n|=x﹣y+z﹣m+n.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:|﹣5|+(2﹣)0=6.【解答】解:|﹣5|+(2﹣)0=5+1=6.故答案为:6.12.(4分)有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是.【解答】解:树状图如图所示,由上可得,一共有16种等可能性,其中抽取的两张卡片上的汉字相同的有4种可能性,∴抽取的两张卡片上的汉字相同的概率为=,故答案为:.13.(4分)若七边形的内角中有一个角为100°,则其余六个内角之和为800°.【解答】解:由题意可得七边形的内角和为:(7﹣2)×180°=900°,∵该七边形的一个内角为100°,∴其余六个内角之和为900°﹣100°=800°,故答案为:800°.14.(4分)如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为4.【解答】解:∵AB=AC,AD是BC边的中线,∴AD⊥BC,∴∠ADB=90°,∵AB=5,BC=6,∴BD=CD=3,在Rt△ABD中,根据勾股定理,得AD===4,故答案为:4.15.(4分)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程301(1+x)2=500.【解答】解:设该市新建智能充电桩个数的月平均增长率为x,依题意得:301(1+x)2=500.故答案为:301(1+x)2=500.16.(4分)如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE.DE.以E为圆心,EB 长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为4﹣π(结果保留π).【解答】解:∵AD=2AB=4,E为BC的中点,∴BE=CE=2,∴∠BAE=∠AEB=∠CDE=∠DEC=45°,∴阴影部分的面积为﹣2×=4﹣π.故答案为:4﹣π.17.(4分)若关于x的不等式组的解集为x<﹣2,且关于y的分式方程+=2的解为正数,则所有满足条件的整数a的值之和为13.【解答】解:解不等式组,得:,∵原不等式组的解集为:x<﹣2,∴﹣≥﹣2,∴a≤5,解分式方程+=2,得y=,∵y>0且y≠1,∴>0且≠1,∴a>﹣2且a≠1,∴﹣2<a≤5,且a≠1,∴符合条件的整数a有:﹣1,0,2,3,4,5,∴﹣1+0+2+3+4+5=13.故答案为:13.18.(4分)对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵7﹣1=6,3﹣1=2,∴7311是“天真数”;四位数8421,∵8﹣1≠6,∴8421不是“天真数”,则最小的“天真数”为6200;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=3(a+b)+c+d,Q(M)=a ﹣5,若能被10整除,则满足条件的M的最大值为9313.【解答】解:求最小的“天真数”,首先知道最小的自然数的0.先看它的千位数字比个位数字多6,个位数为最小的自然数0时,千位数为6;百位数字比十位数字多2,十位数为最小的的自然数0时,百位数是2;则最小的“天真数”为6200.故答案为:6200.一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d.由“天真数”的定义得a=d+6,所以6≤a≤9,b=c+2,所以0≤c≤7,又P(M)=3(a+b)+c+d=3(a+c+2)+c+a﹣6=4a+4c;Q(M)=a﹣5.=论能被10整除当a取最大值9时,即当a=9时,满足能被10整除,则c=1,“天真数”M为9313.故答案为:9313.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)x(x+6)+(x﹣3)2;(2)(3+)÷.【解答】解:(1)x(x+6)+(x﹣3)2=x2+6x+x2﹣6x+9=2x2+9;(2)===.20.(10分)在学习了平行四边形的相关知识后,小虹进行了拓展性研究,她发现,如果作平行四边形一条对角线的垂直平分线,那么这条垂直平分线在该四边形内部的线段被这条对角线平分.其解决问题的思路为通过证明对应线段所在两个三角形全等即可得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规作平行四边形ABCD对角线AC的垂直平分线,交DC于点E,交AB于点F,垂足为O.(只保留作图痕迹)如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为O.求证:EO=FO.证明:∵四边形ABCD是平行四边形∴DC∥AB.∴∠ECO=∠FAO.∵EF垂直平分AC,∴OA=OC.又∠EOC=∠FOA,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,请你依照题目中的相关表述完成下面命题的填空:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分.【解答】解:图形如图所示:理由:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO=∠FAO,∵EF垂直平分AC,∴AO=OC.又∠EOC=∠FOA,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,所以过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:∠FAO,OA=OC,∠FOA,过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分.21.(10分)某洗车公司安装了A,B两款自动洗车设备,工作人员从消费者对A、B两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x表示,分为四个等级:不满意x<70,比较满意70≤x<80,满意80≤x<90,非常满意x≥90),下面给出了部分信息:抽取的对A款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取的对B款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A,B款设备的评分统计表设备平均数中位数众数“非常满意”所占百分比A88m9645%B8887n40%根据以上信息,解答下列问题:(1)填空:a=15,m=88,n=98;(2)5月份,有600名消费者对A款自动洗车设备进行评分,估计其中对A款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).【解答】解:(1)由题意得,a%=1﹣10%﹣45%﹣=15%,即a=15;把A款设备的评分数据从小到大排列,排在中间的两个数是87,89,故中位数m==88;在B款设备的评分数据中,98出现的次数最多,故众数n=98.故答案为:15;88;98;(2)600×15%=90(名),答:估计其中对A款自动洗车设备“比较满意”的人数大约为90名;(3)A款自动洗车设备更受消费者欢迎,理由如下:因为两款自动洗车设备的评分数据的平均数相同,但A款自动洗车设备的评分数据的中位数比B 款高,所以A款自动洗车设备更受消费者欢迎(答案不唯一).22.(10分)如图,△ABC是边长为4的等边三角形,动点E,F均以每秒1个单位长度的速度同时从点A出发,E沿折线A→B→C方向运动,F沿折线A→C→B方向运动,当两点相遇时停止运动.设运动的时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数关系式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中,画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出点E,F相距3个单位长度时t的值.【解答】解:(1)当点E、F分别在AB、AC上运动时,△AEF为边长等于t的等边三角形,∴点E,F的距离等于AE、AF的长,∴当0<t≤4时,y关于t的函数表达式为y=t,当点E、F都在BC上运动时,点E,F的距离等于4﹣2(t﹣4),∴当4<t≤6时,y关于t的函数表达式为y=4﹣2(t﹣4)=12﹣2t,∴y关于t的函数表达式为;(2)由(1)中得到的函数表达式可知:当t=0时,y=0;当t=4时,y=4;当t=6时,y=0,分别描出三个点(0,0),(4,4)(6,0),然后顺次连线,如图:根据函数图象可知这个函数的其中一条性质:当0<t≤4时,y随t的增大而增大.(答案不唯一,正确即可)(3)把y=3分别代入y=t和y=12﹣2t中,得:3=t,3=12﹣2t,解得:t=3或t=4.5,∴点E,F相距3个单位长度时t的值为3或4.5.23.(10分)某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种,甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒亩,求派往甲区每架次无人机平均喷洒多少亩?【解答】解:(1)设乙区有农田x亩,则甲区有农田(x+10000)亩,根据题意得:80%(x+10000)=x,解得:x=40000,∴x+10000=40000+10000=50000.答:甲区有农田50000亩,乙区有农田40000亩;(2)设派往甲区每架次无人机平均喷洒y亩,则派往乙区每架次无人机平均喷洒(y﹣)亩,根据题意得:=×1.2,解得:y=100,经检验,y=100是所列分式方程的解,且符合题意.答:派往甲区每架次无人机平均喷洒100亩.24.(10分)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品.经测量,A在灯塔C的南偏西60°方向,B在灯塔C的南偏东45°方向,且在A的正东方向,AC=3600米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:≈1.414,≈1.732)【解答】解:(1)过点C作CD⊥AB于点D,在Rt△ACD中,∠ACD=60°,AC=3600米,cos60°=,sin60°=,∴AD=3600×=1800(米),CD=×3600=1800(米).在Rt△BCD中,∠BCD=45°,∴∠B=45°=∠BCD,∴BD=CD=1800(米),∴BC==1800≈1800×1.414≈2545(米).答:B养殖场与灯塔C的距离约为2545米;(2)AB=AD+BD=1800+1800≈1800×1.732+1800≈4917.6(米),600×9=5400(米),∵5400米>4917.6米,∴能在9分钟内到达B处.25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B(3,0),C(0,﹣3).(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.【解答】解:(1)由题意得:,解得:,则抛物线的表达式为:y=x2+x﹣3;(2)令y=x2+x﹣3=0,则x=﹣4或3,则点A(﹣4,0),由点A、C知,直线AC的表达式为:y=﹣x﹣3,过点P作y轴的平行线交AC于点H,则∠PHC=∠ACO,则tan∠PHC=tan∠ACO=,则sin∠PHC=,则PD=PH•sin∠PHC=PH,设点H(x,﹣x﹣3),则点P(x,x2+x﹣3),则PD=PH=(﹣x﹣3﹣x2﹣x+3)=﹣(x+2)2+,即PD的最大值为:,此时点P(﹣2,﹣);(3)平移后的抛物线的表达式为:y=(x﹣5)2+(x﹣5)﹣3=x2﹣x+2,则点F(0,2),设点Q(,m),则QF2=()2+(m﹣2)2,QE2=+(m+)2,EF2=9+,当QE=QF时,则()2+(m﹣2)2=+(m+)2,解得:m=,则点Q的坐标为(,);当QF=EF时,则()2+(m﹣2)2=9+,解得:m=5或﹣1,则点Q的坐标为:(,5)或(,﹣1);综上,点Q的坐标为:(,)或(,5)或(,﹣1).26.(10分)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.【解答】(1)证明:∵△ABC为等边三角形,∴∠ACB=60°,AC=BC,∵将CE绕点C顺时针旋转60°得到线段CF,∴CE=CF,∠ECF=60°,∵△ABC是等边三角形,∴∠BCA=∠ECF,∴∠BCE=∠ACF,∴△BCE≌△ACF(SAS),∴∠CBE=∠CAF;(2)证明:如图所示,过点F作FK∥AD,交DH点的延长线于点K,连接EK,FD,∵△ABC是等边三角形,∴AB=AC=BC,∵AD⊥BC,∴BD=CD,∴AD垂直平分BC,∴EB=EC,又∵△BCE≌△ACF,∴AF=BE,CF=CE,∴AF=CF,∴F在AC的垂直平分线上,∵AB=BC,∴B在AC的垂直平分线上,∴BF垂直平分AC,∴AC⊥BF,AG=CG=AC,∴∠AGF=90°,又∵DG=AC=CG,∠ACD=60°,∴△DCG是等边三角形,∴∠CGD=∠CDG=60°,∴∠AGH=∠DGC=60°,∴∠KGF=∠AGF﹣∠AGH=90°﹣60°=30°,又∵∠ADK=∠ADC﹣∠GDC=90°﹣60=30°,KF∥AD,∴∠FKG=∠KGF=30°,∴FG=FK,在Rt△CED与Rt△CGF中,,∴Rt△CED≌Rt△CFG,∴GF=ED,∴ED=FK,∴四边形EDFK是平行四边形,∴EH=HF;(3)解:依题意,如图所示,延长AP,DQ交于点R,由(2)可知△DCG是等边三角形,∴∠EDG=30°,∵将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,∴∠PAG=∠EAG=30°,∠QDG=∠EDG=30°,∴∠PAE=∠QDE=60°,∴△ADR是等边三角形,∴∠QDC=∠ADC﹣∠ADQ=90°﹣60°=30°,由(2)可得Rt△CED≌Rt△CFG,∴DE=GF,∴DE=DQ,∴GF=DQ,∵∠GBC=∠QDC=30°,∴GF∥DQ,∴四边形GDQF是平行四边形,∴QF=DG=AC=2,由(2)可知G是AC的中点,则GA=GD,∴∠AGD=120°,∵折叠,∴∠AGP+∠DGQ=∠AGE+∠DGE=∠AGD=120°,∴∠PGQ=360°﹣2∠AGD=120°,又PG=GE=GQ,∴PQ=PG=GQ,∴当GQ取得最小值时,即GQ⊥DR时,PQ取得最小值,此时如图所示,∴GQ=GC=DC=1,∴PQ=,∴PQ+QF=+2.。
重庆市2023年初中学业水平暨高中招生考试数学试题(B 卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1. 4的相反数是( ) A.14B. 14−C. 4D. 4−【答案】D 【解析】【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案. 【详解】解:4的相反数是4−, 故选:D .【点睛】本题考查相反数的概念,关键是掌握相反数的定义.2. 四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是( )A. B. C. D.【答案】A 【解析】【分析】从正面看到的有三列,从左到右正方形的个数依次是1,1,2,据此判断即可. 【详解】解:从正面看到视图是:,故选:A .【点睛】本题考查了几何体的视图,明确从正面看到的视图是解题关键. 3. 如图,直线a ,b 被直线c 所截,若a b ,163∠=°,则2∠度数为( ).的的A. 27°B. 53°C. 63°D. 117°【答案】C 【解析】【分析】求2∠的度数,根据平行线的性质求解即可. 【详解】�a b , �1263∠=∠=°, 故选:C .【点睛】此题考查了平行线的性质,解题的关键熟练掌握两直线平行,内错角相等的性质. 4. 如图,已知ABC EDC ∽,:2:3AC EC =,若AB 的长度为6,则DE 的长度为( )A. 4B. 9C. 12D. 13.5【答案】B 【解析】【分析】根据相似三角形的性质即可求出. 【详解】解:∵ABC EDC ∽, ∴::AC EC AB DE =, ∵:2:3AC EC =,6AB =, ∴2:36:DE =, ∴9DE =, 故选:B.【点睛】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键. 5. 反比例函数6y x=的图象一定经过的点是( ) A. ()3,2− B. ()2,3−C. ()2,4−−D. ()2,3【答案】D【分析】根据反比例函数的定义,只要点的横纵坐标之积等于k 即可判断该点在函数图象上,据此求解. 【详解】解:∵()()326,236,248,236−×=−×−=−−×−=×=, ∴点()2,3在反比例函数6y x=的图象上, 故选:D .【点睛】本题考查了反比例函数图象上点的坐标特点,熟知点的横纵坐标满足函数解析式是解题关键. 6. 用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为( )A. 14B. 20C. 23D. 26【答案】B 【解析】【分析】根据前四个图案圆圈的个数找到规律,即可求解. 【详解】解:因为第①个图案中有2个圆圈,2311=×−; 第②个图案中有5个圆圈,5321=×−; 第③个图案中有8个圆圈,8331=×−; 第④个图案中有11个圆圈,11341=×−; …,所以第⑦个图案中圆圈的个数为37120×−=; 故选:B .【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n 个图案的规律为31n −是解题的关键.7. −的值应在( ) A. 4和5之间 B. 5和6之间C. 6和7之间D. 7和8之间【答案】A【分析】先计算二次根式的乘法,再根据无理数的估算即可得.1=−,253036<<,<<56<<,415∴<−<,故选:A.【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握二次根式的乘法法则是解题关键.8. 如图,AB为O的直径,直线CD与O相切于点C,连接AC,若50ACD∠=°,则BAC∠的度数为()A. 30°B. 40°C. 50°D. 60°【答案】B【解析】【分析】连接OC,先根据圆的切线的性质可得90OCD∠=°,从而可得40OCA∠=°,再根据等腰三角形的性质即可得.【详解】解:如图,连接OC,直线CD与O相切,OC CD ∴⊥,90OCD ∴∠=°,50ACD ∠=° ,40OCA ∴∠=°,OA OC = ,40BAC OCA ∴∠=∠=°,故选:B .【点睛】本题考查了圆的切线的性质、等腰三角形的性质,熟练掌握圆的切线的性质是解题关键. 9. 如图,在正方形ABCD 中,O 为对角线AC 的中点,E 为正方形内一点,连接BE ,BE BA =,连接CE 并延长,与ABE ∠的平分线交于点F ,连接OF ,若2AB =,则OF 的长度为( )A. 2B.C. 1D.【答案】D 【解析】【分析】连接AF ,根据正方形ABCD 得到AB BC BE ==,90ABC ∠=°,根据角平分线的性质和等腰三角形的性质,求得45BFE ∠=°,再证明ABF EBF ≌,求得90AFC ∠=°,最后根据直角三角形斜边上的中点等于斜边的一半,即可求出OF 的长度. 【详解】解:如图,连接AF ,四边形ABCD 是正方形,AB BE BC ∴==,90ABC ∠=°,AC=,BEC BCE ∴∠=∠,1802EBC BEC ∴∠=°−∠,290ABE ABC EBC BEC ∴∠=∠−∠=∠−°, BF 平分ABE ∠,1452ABF EBF ABE BEC ∴∠=∠=∠=∠−°,45BFE BEC EBF ∴∠=∠−∠=°,在BAF △与BEF △,AB EB ABF EBF BF BF =∠=∠ =, ()SAS BAF BEF ∴△≌△,45BFE BFA ∴∠=∠=°,90AFC BAF BFE ∴∠=∠+∠=°,O 为对角线AC 的中点,12OF AC ∴==,故选:D .【点睛】本题考查了等腰三角形的判定和性质,三角形内角和定理,正方形的性质,直角三角形特征,作出正确的辅助线,求得45BFE ∠=°是解题的关键.10. 在多项式x y z m n −−−−(其中x y z m n >>>>)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x y z m n x y z m n −−−−=−−+−,x y z m n x y z m n −−−−=−−−+,…….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等; ②不存在“绝对操作”,使其运算结果与原多项式之和为0; ③所有的“绝对操作”共有7种不同运算结果. 其中正确的个数是( ) A. 0 B. 1C. 2D. 3【答案】C【解析】【分析】根据“绝对操作”的定义及绝对值的性质对每一项判断即可解答. 【详解】解:∵x y z m n >>>>, ∴x y z m n x y z m n −−−−=−−−−,∴存在“绝对操作”,使其运算结果与原多项式相等, 故①正确;根据绝对操作的定义可知:在多项式x y z m n −−−−(其中x y z m n >>>>)中,经过绝对操作后,z n m 、、的符号都有可能改变,但是x y 、的符合不会改变,∴不存在“绝对操作”,使其运算结果与原多项式之和为0, 故②正确;∵在多项式x y z m n −−−−(其中x y z m n >>>>)中,经过“绝对操作”可能产生的结果如下: ∴x y z m n x y z m n −−−−=−−−−,x y z m n x y z m n −−−−=−+−−,x y z m n x y z m n x y z m n −−−−=−−−−=−−+−, x y z m n x y z m n x y z m n −−−−=−−−−=−−−+, x y z m n x y z m n −−−−=−+−+,共有5种不同运算结果, 故③错误; 故选C .【点睛】本题考查了新定义“绝对操作”,绝对值的性质,整式的加减运算,掌握绝对值的性质是解题的关键.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡...中对应的撗线上.11. 计算:05(2−+=________. 【答案】6 【解析】【分析】根据绝对值、零指数幂法则计算即可.【详解】解:05(2516−+−=+=.故答案为:6.【点睛】本题考查了实数的混合运算,熟练掌握相关运算法则是解决本题的关键.12. 有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是________. 【答案】14【解析】【分析】根据列表法求概率即可求解. 【详解】解:列表如下, 清 风 朗 月 清 清清 清风 清朗 清月 风 风清 风风 风朗 风月 朗 朗清 朗风 朗朗 朗月 月月清月风月朗月月共有16中等可能结果,其中,抽取的两张卡片上的汉字相同的情形有4种, ∴抽取的两张卡片上的汉字相同的概率是14, 故答案为:14. 【点睛】本题考查了列表法求概率,熟练掌握列表法求概率是解题的关键. 13. 若七边形的内角中有一个角为100°,则其余六个内角之和为________. 【答案】800°##800度 【解析】【分析】根据多边形的内角和公式()1802n °−即可得. 【详解】解:�七边形的内角中有一个角为100°,�其余六个内角之和为()18072100800°×−−°=°, 故答案为:800°.【点睛】本题考查了多边形的内角和,熟记多边形的内角和公式是解题关键.14. 如图,在ABC 中,AB AC =,AD 是BC 边中线,若5AB =,6BC =,则AD 的长度为________.【答案】4 【解析】【分析】根据等腰三角形的性质和勾股定理求解即可.【详解】解:∵在ABC 中,AB AC =,AD 是BC 边的中线, ∴AD BC ⊥,12BD BC =, 在Rt △ABD 中,5AB =,132BD BC ==,∴4AD ==,故答案为:4.【点睛】本题考查等腰三角形的性质、勾股定理,熟练掌握等腰三角形的三线合一性质是解答的关键. 15. 为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x ,根据题意,请列出方程________.【答案】2301(1)500x += 【解析】【分析】根据变化前数量2(1)x ×+=变化后数量,即可列出方程. 【详解】 第一个月新建了301个充电桩,该市新建智能充电桩个数的月平均增长率为x .∴第二个月新建了301(1)x +个充电桩, ∴第三个月新建了2301(1)x +个充电桩,第三个月新建了500个充电桩,于是有2301(1)500x +=,的故答案为2301(1)500x +=.【点睛】本题考查了一元二次方程的实际应用中的增长率问题,若设平均增长率为x ,则有(1)n a x b +=,其中a 表示变化前数量,b 表示变化后数量,n 表示增长次数.解决增长率问题时要注意区分变化前数量和变化后数量,同时也要注意变化前后经过了几次增长.16. 如图,在矩形ABCD 中,2AB =,4BC =,E 为BC 的中点,连接AE DE ,,以E 为圆心,EB 长为半径画弧,分别与AE DE ,交于点M ,N ,则图中阴影部分的面积为________.(结果保留π)【答案】4π− 【解析】【分析】利用矩形的性质求得2,2AB CD BE CE ====,进而可得45BAE AEB DEC CDE ∠=∠=∠=∠=°,然后根据()2ABE BEM S S S =− 阴影扇形解答即可. 【详解】解:�四边形ABCD 是矩形,2AB =,4BC =,E 为BC 的中点,∴12,22ABCD BE CE BC =====,90ABC DCB ∠=∠=°, ∴45BAE AEB DEC CDE ∠=∠=∠=∠=°, ∴()2145212=22222423602ABEBEM S S S πππ ×=−×××−=×−=−阴影扇形; 故答案为:4π−.【点睛】本题考查了矩形的性质和不规则面积的计算,熟练掌握矩形的性质、明确阴影面积为两个全等的等腰直角三角形的面积减去两个圆心角为45°的扇形面积是解题关键.17. 若关于x 的不等式组213241x x x a x + >++<− 的解集为<2x −,且关于y 的分式方程22211a y y y +++=−−的解为正数,则所有满足条件的整数a 的值之和为________. 【答案】13 【解析】【分析】先求出一元一次不等式组中两个不等式的解集,从而可得5a ≤,再解分式方程可得2a >−且1a ≠,从而可得25a −<≤且1a ≠,然后将所有满足条件的整数a 的值相加即可得.【详解】解:213241x x x a x + >+ +<− ①②, 解不等式①得:<2x −, 解不等式②得:13a x +<−, ∵关于x 的不等式组213241x x x a x + >+ +<− 的解集为<2x −, 123a +∴−≥−, 解得5a ≤, 方程22211a y y y+++=−−可化为()2221a y y +−−=−, 解得23a y +=, 关于y 的分式方程22211a y y y+++=−−的解为正数, 203a +∴>且2103a +−≠, 解得2a >−且1a ≠,52a ∴−<≤且1a ≠,则所有满足条件的整数a 的值之和为10234513−+++++=,故答案为:13.【点睛】本题考查了一元一次不等式组、分式方程,熟练掌握不等式组和分式方程的解法是解题关键. 18. 对于一个四位自然数M ,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M 为“天真数”.如:四位数7311,�716−=,312−=,�7311是“天真数”;四位数8421,�816−≠,�8421不是“天真数”,则最小的“天真数”为________;一个“天真数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,记()()3P M a b c d =+++,()5Q M a =−,若()()P M Q M 能被10整除,则满足条件的M 的最大值为________.【答案】 �. 6200 �. 9313【解析】【分析】根据题中“天真数”可求得最小的“天真数”;先根据题中新定义得到()8c d a b +=+−,进而()()()485P M M a Q b a +−−=,若M 最大,只需千位数字a 取最大,即9a =,再根据()()P M Q M 能被10整除求得3b =,进而可求解.【详解】解:根据题意,只需千位数字和百位数字尽可能的小,所以最小的“天真数”为6200;根据题意,6a d −=,2b c −=,69a ≤≤,29b ≤≤,则()8c d a b +=+−,∴()()()348P M a b c d a b =+++=+−, ∴()()()485P M M a Q b a +−−=, 若M 最大,只需千位数字a 取最大,即9a =, ∴()()()498795b P Q b M M =+−=+−, ∵()()P M Q M 能被10整除, ∴3b =,∴满足条件的M 的最大值为9313,故答案为:6200,9313.【点睛】本题是一道新定义题,涉及有理数的运算、整式的加减、数的整除等知识,理解新定义是解答的关键.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上. 19. 计算:(1)()()263x x x ++−; (2)2293n m n m m − +÷. 【答案】(1)229x +(2)13m n− 【解析】【分析】(1)先根据单项式乘以多项式的法则、完全平方公式计算,再合并同类项;(2)根据分式混合运算的法则解答即可.【小问1详解】解:()()263x x x ++− 22669x x x x =++−+229x +;【小问2详解】 解:2293n m n m m − +÷()()333m n m m m n m n +⋅+− 13m n=−. 【点睛】本题考查了整式和分式的运算,属于基本计算题型,熟练掌握整式和分式混合运算的法则是解题的关键.20. 学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分. 她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC 的垂直平分线交DC 于点E ,交AB 于点F ,垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,EF 垂直平分AC ,垂足为点O . 求证:OE OF =.证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠= ① . ∵EF 垂直平分AC ,∴ ② .又EOC ∠=___________③ .∴()COE AOF ASA ∆≅∆.∴OE OF =.小虹再进一步研究发现,过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线 ④ .【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】【分析】根据线段垂直平分线的画法作图,再推理证明即可并得到结论.【详解】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠. ∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.【点睛】此题考查了平行四边形的性质,作线段的垂直平分线,全等三角形的判定和性质,熟练掌握平行四边形的性质及线段垂直平分线的作图方法是解题的关键.21. 某洗车公司安装了A ,B 两款自动洗车设备,工作人员从消费者对A ,B 两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x 表示,分为四个等级,不满意70x <,比较满意7080x ≤<,满意8090x ≤<,非常满意90x ≥),下面给出了部分信息.抽取的对A 款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取对B 款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A ,B 款设备的评分统计表 设备 平均数 中位数 众数 “非常满意”所占百分比A88 m 96 45% B 88 87 n40% 根据以上信息,解答下列问题:(1)填空:=a _______,m =_______,n =_______;(2)5月份,有600名消费者对A 款自动洗车设备进行评分,估计其中对A 款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).【答案】(1)15,88,98(2)90 (3)A 款,理由:评分数据中A 款的中位数比B 款的中位数高(答案不唯一)【解析】【分析】(1)先根据“满意”的人数除以总人数求得“满意”所占百分比,进而求得a ,再根据中位数和众数的定义求得m ,n ;(2)利用样本估计总体即可;(3)根据平均数、中位数、众数及“非常满意”所占百分比即可得出结论.【小问1详解】解: 抽取的对A 款设备的评分数据中“满意”的有6份,∴“满意”所占百分比为:6100%30%20×=, 的∴“比较满意”所占百分比为:130%45%10%15%−−−=,15a ∴=,抽取的对A 款设备的评分数据中的中位数是第10份和第11份数据的平均数,“不满意”和“满意”的评分有()2010%15%5×+=(份),∴第10份和第11份数据为“满意”,评分分别为87,89, ∴8789882m +==, 抽取的对B 款设备的评分数据中出现次数最多的是98,98n ∴=,故答案为:15,88,98;【小问2详解】解:600名消费者对A 款自动洗车设备“比较满意”的人数为:60015%90×=(人), 答:600名消费者对A 款自动洗车设备“比较满意”的人数为90人.【小问3详解】解:A 款自动洗车设备更受欢迎,理由:评分数据中A 款的中位数比B 款的中位数高(答案不唯一). 【点睛】本题考查了扇形统计图,中位数,众数,样本估计总体,从统计图表中获取信息时,认真观察、分析,理解各个数据之间的关系是解题的关键.22. 如图,ABC 是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A 出发,点E 沿折线A B C →→方向运动,点F 沿折线A C B →→方向运动,当两者相遇时停止运动.设运动时间为t 秒,点E ,F 的距离为y .(1)请直接写出y 关于t 的函数表达式并注明自变量t 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E ,F 相距3个单位长度时t 的值.【答案】(1)当04t <≤时,y t =;当46t <≤时,122y t =−; (2)图象见解析,当04t <≤时,y 随x 的增大而增大(3)t 的值为3或4.5【解析】【分析】(1)分两种情况:当04t <≤时,根据等边三角形的性质解答;当46t <≤时,利用周长减去2AE 即可;(2)在直角坐标系中描点连线即可;(3)利用3y =分别求解即可.【小问1详解】解:当04t <≤时,连接EF ,由题意得AE AF =,60A ∠=°,∴AEF △是等边三角形,∴y t =;当46t <≤时,122y t =−;【小问2详解】函数图象如图:当04t <≤时,y 随x 的增大而增大;【小问3详解】当04t <≤时,3y =即3t =;当46t <≤时,3y =即1223t −=,解得 4.5t =,故t 的值为3或4.5.【点睛】此题考查了动点问题,一次函数的图象及性质,解一元一次方程,正确理解动点问题是解题的关键.23. 某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种.甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒503亩,求派往甲区每架次无人机平均喷洒多少亩?【答案】(1)甲区有农田50000亩,乙区有农田40000亩(2)100亩【解析】【分析】(1)设甲区有农田x 亩,则乙区有农田()10000x −亩,根据甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同建立方程,解方程即可得;(2)设派往甲区每架次无人机平均喷洒y 亩,派往甲区的无人机架次为a 架次,则派往乙区每架次无人机平均喷洒503y −亩,派往乙区的无人机架次为1.2a 架次,根据两区喷洒的面积相同建立方程,解方程即可得.【小问1详解】解:设甲区有农田x 亩,则乙区有农田()10000x −亩,由题意得:80%10000x x =−,解得50000x =,则10000500001000040000x −=−=,答:甲区有农田50000亩,乙区有农田40000亩.【小问2详解】解:设派往甲区每架次无人机平均喷洒y 亩,派往甲区的无人机架次为a 架次,则派往乙区每架次无人机平均喷洒503y−亩,派往乙区的无人机架次为1.2a 架次, 由题意得:5031.2ay a y=− ,即5031.2y y − , 解得100y =,答:派往甲区每架次无人机平均喷洒100亩.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确建立方程是解题关键.24. 人工海产养殖合作社安排甲、乙两组人员分别前往海面A ,B 养殖场捕捞海产品,经测量,A 在灯塔C 的南偏西60°方向,B 在灯塔C 的南偏东45°方向,且在A 的正东方向,3600AC =米.(1)求B 养殖场与灯塔C 的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B 处协助捕捞,若甲组航行的平均速度为600米/每分钟,请计算说明甲组能否在9分钟内到达B 1.414≈ 1.732≈)【答案】(1)2545米(2)能,说明过程见解析【解析】【分析】(1)过点C 作CD AB ⊥于点D ,先根据含30度角的直角三角形的性质、等腰三角形的判定可得118002BD CD AC ===米,再解直角三角形即可得; (2)先解直角三角形求出AD 的长,从而可得AB 的长,再根据时间等于路程除以速度即可得.【小问1详解】解:如图,过点C 作CD AB ⊥于点D ,由题意得:60,45ACD BCD ∠=°∠=°, 30,45A B BCD ∴∠=°∠=∠=°,118002BD CD AC ∴===米, 2545sin 45CD BC ∴=≈°米, 答:B 养殖场与灯塔C 的距离为2545米.【小问2详解】解:sin 60AD AC =⋅°=()1800AB AD BD ∴=+=+米,则甲组到达B 处所需时间为()180060038.196+÷=≈(分钟)9<分钟, 所以甲组能在9分钟内到达B 处.【点睛】本题考查了解直角三角形的应用,熟练掌握解直角三角形的方法是解题关键. 25. 如图,在平面直角坐标系中,抛物线214y x bx c =++与x 轴交于点A ,B ,与y 轴交于点C ,其中()3,0B ,()0,3C −.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD AC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.写出所有使得以QF 为腰的QEF △是等腰三角形的点Q 的坐标,并把求其中一个点Q 的坐标的过程写出来.【答案】(1)211344y x x =+− (2)PD 取得最大值为45,52,2P −−(3)Q 点的坐标为9,12 −或9,52 或97,24. 【解析】 【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线AC 的解析式为334y x =−−,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t +− ,则3,34Q t t −− ,则45PD PQ =,进而根据二次函数的性质即可求解; (3)根据平移的性质得出219494216y x =−− ,对称轴为直线92x =,点52,2P −− 向右平移5个单位得到53,2E−,()0,2F ,勾股定理分别表示出222,,EF QE QF ,进而分类讨论即可求解. 【小问1详解】解:将点()3,0B ,()0,3C −.代入214y x bx c =++得, 2133043b c c ×++= =− 解得:143b c = =− ,�抛物线解析式为:211344y x x =+−, 【小问2详解】 �211344y x x =+−与x 轴交于点A ,B , 当0y =时,2113044x x +−= 解得:124,3x x =−=, �()4,0A −,�()0,3C −.设直线AC 的解析式为3y kx =−, ∴430k −−= 解得:34k =− ∴直线AC 的解析式为334y x =−−, 如图所示,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t +− ,则3,34Q t t −− , ∴223111334444PQ t t t t t =−−−+−=−−, �AQE PQD ∠=∠,90AEQ QDP ∠=∠=°, ∴OAC QPD ∠=∠, ∵4,3OA OC ==, ∴5AC =, ∴4cos cos =5PD AO QPD OAC PQ AC ∠==∠=, ∴()222441141425545555PD PQ t t t t t ==−−=−−=−++, ∴当2t =−时,PD 取得最大值为45,()()2211115322344442t t +−=×−+×−−=−, ∴52,2P−−; 【小问3详解】�抛物线211344y x x =+−211494216x =+−将该抛物线向右平移5个单位,得到219494216y x =−− ,对称轴为直线92x =, 点52,2P−− 向右平移5个单位得到53,2E −∵平移后的抛物线与y 轴交于点F ,令0x =,则2194924216y =×−= , ∴()0,2F , ∴22251173224EF =++= ∵Q 为平移后的抛物线的对称轴上任意一点.则Q 点的横坐标为92, 设9,2Q m, ∴22295322QE m =−++ ,()222922QF m =+−, 当QF EF =时,()22922m +− =1174, 解得:1m =−或5m =, 当QE QF =时,2295322m −++=()22922m +− , 解得:74m = 综上所述,Q 点的坐标为9,12 − 或9,52 或97,24.【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.26. 如图,在等边ABC 中,AD BC ⊥于点D ,E 线段AD 上一动点(不与A ,D 重合),连接BE ,CE ,将CE 绕点C 顺时针旋转60°得到线段CF ,连接AF .(1)如图1,求证:CBE CAF ∠=∠;(2)如图2,连接BF 交AC 于点G ,连接DG ,EF ,EF 与DG 所在直线交于点H ,求证:EH FH =;(3)如图3,连接BF 交AC 于点G ,连接DG ,EG ,将AEG 沿AG 所在直线翻折至ABC 所在平面内,得到APG ,将DEG 沿DG 所在直线翻折至ABC 所在平面内,得到DQG ,连接PQ ,QF .若4AB =,直接写出PQ QF +的最小值.【答案】(1)见解析 (2)见解析(32【解析】【分析】(1)根据旋转的性质得出CE CF =,60ECF ∠=°,进而证明()SAS BCE ACF ≌△△,即可得为证;(2)过点F 作∥FK AD ,交DH 点的延长线于点K ,连接EK ,FD ,证明四边形四边形EDFK 是平行四边形,即可得证;(3)如图所示,延长,AP DQ 交于点R ,由(2)可知DCG △是等边三角形,根据折叠的性质可得30PAG EAG ∠=∠=°,30QDG EDG ∠=∠=°,进而得出ADR 是等边三角形,由(2)可得Rt Rt CED CFG ≌,得出四边形GDQF 是平行四边形,则122QF DC AC ===,进而得出3602120PGQ AGD ∠=°−∠=°,则PQ=,当GQ 取得最小值时,即GQ DR ⊥时,PQ 取得最小值,即可求解. 【小问1详解】证明:�ABC 为等边三角形,�60ACB ∠=°,AC BC =,�将CE 绕点C 顺时针旋转60°得到线段CF ,∴CE CF =,60ECF ∠=°∴ACB ECF ∠=∠∴ACB ACE ECF ACE −=−∠∠∠∠即BCE ACF ∠=∠在BCE 和ACF △中EC FC BCE ACF BC AC = ∠=∠ =, ∴()SAS BCE ACF ≌△△,∴CBE CAF ∠=∠;【小问2详解】证明:如图所示,过点F 作∥FK AD ,交DH 点的延长线于点K ,连接EK ,FD ,�ABC 是等边三角形,�AB AC BC ==,�AD BC ⊥∴BD CD =∴AD 垂直平分BC ,∴EB EC =又∵BCE ACF ≌,∴,AF BECF CE ==, ∴AF CF =,∴F 在AC 的垂直平分线上,∵AB BC =∴B 在AC 的垂直平分线上,∴BF 垂直平分AC∴AC BF ⊥,12AGCG AC == ∴90AGF ∠=° 又∵12DG AC CG ==,60ACD ∠=° ∴DCG △是等边三角形,∴60CGD CDG ∠=∠=°∴60AGH DGC ∠=∠=°∴906030KGF AGF AGH ∠=∠−∠=°−°=°,又∵906030ADK ADC GDC ∠=∠−∠=°−°=°,KF AD ∥∴30HKF ADK ∠=∠=°∴30FKG KGF ∠=∠=°,∴FG FK =在Rt CED 与Rt CGF △中,CF CE CD CG = =∴Rt Rt CED CFG ≌∴GF ED =∴ED FK =∴四边形EDFK 是平行四边形,∴EH HF =;【小问3详解】解:依题意,如图所示,延长,AP DQ 交于点R ,由(2)可知DCG △是等边三角形,∴30EDG ∠=°�将AEG 沿AG 所在直线翻折至ABC 所在平面内,得到APG ,将DEG 沿DG 所在直线翻折至ABC 所在平面内,得到DQG ,∴30PAG EAG ∠=∠=°,30QDG EDG ∠=∠=° ∴60PAE QDE ∠=∠=°, ∴ADR 是等边三角形,∴906030QDCADC ADQ ∠=∠−∠=°−°=° 由(2)可得Rt Rt CED CFG ≌∴DE GF =,∵DE DQ =,∴GF DQ =,∵30GBC QDC ∠=∠=°, ∴GF DQ ∥∴四边形GDQF 是平行四边形, ∴122QF DG AC === 由(2)可知G 是AC 的中点,则GA GD =∴30GAD GDA ∠=∠=°∴120AGD ∠=°∵折叠,120AGP DGQ AGE DGE AGD ∴∠+∠=∠+∠=∠=°,∴3602120PGQ AGD ∠=°−∠=°, 又PGGE GQ ==,∴PQ =,∴当GQ 取得最小值时,即GQ DR ⊥时,PQ 取得最小值,此时如图所示,∴11122GQ GC DC ===,∴PQ =,∴2PQ QF +.【点睛】本题考查了等边三角形的性质,旋转的性质,轴对称的性质,勾股定理,平行四边形的性质与判定,全等三角形的性质与判定,熟练掌握以上知识是解题的关键.。
4题图FEDC BA3题图FED CBA8题图ODCBA重庆市2014年初中毕业暨高中招生考试数学试题(B 卷)(满分:150分 时间:120分钟)参考公式:抛物线y =ax 2+bx +c(a≠0)的顶点坐标为)44,2(2a b ac a b --,对称轴公式为ab x 2-=. 一、选择题:(本大题共12个小题,每小题4分,共48分)1、某地连续四天每天的平均气温分别是:1℃,-1℃,0℃,2℃,则平均气温中最低的是( )A 、-1℃B 、0℃C 、1℃D 、2℃ 2、计算2252x x -的结果是( ) A 、3 B 、3x C 、23x D 、43x3、如图,△ABC ∽△DEF ,相似比为1:2,若BC =1,则EF 的长是( ) A 、1 B 、2 C 、3 D 、44、如图,直线AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,若∠AEF =50°,则∠EFC 的大小是( )A 、40°B 、50°C 、120°D 、130°5、某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参加比赛。
为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8,根据以上数据,下列说法正确的是( ) A 、甲的成绩比乙的成绩稳定 B 、乙的成绩比甲的成绩稳定 C 、甲、乙两人的成绩一样稳定 D 、无法确定甲、乙的成绩谁更稳定6、若点(3,1)在一次函数2(0)y kx k =-≠的图象上,则k 的值是( ) A 、5 B 、4 C 、3 D 、1yy y y xxxxDCBA第三个图形第二个图形第一个图形11题图ODCBA7、分式方程431x x=+的解是( ) A 、1x = B 、1x =- C 、3x = D 、3x =-8、如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,∠ACB =30°,则∠AOB 的大小为( )A 、30°B 、60°C 、90°D 、120°9、夏天到了,某小区准备开放游泳池,物业管理处安排一名清洁工对一个无水的游泳池进行清洗。
该工人先只打开一个进水管,蓄了少量水后关闭进水管并立即进行清洗,一段时间后,再同时打开两个出水管将池内的水放完,随后将两个出水管关闭,并同时打开两个进水管将水蓄满。
已知每个进水管的进水速度与每个出水管的出水速度相同。
从工人最先打开一个进水管开始,所用的时间为x ,游泳池内的蓄水量为y ,则下列各图中能够反映y 与x 的函数关系的大致图象是( )10、下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,……,依此规律,第五个图形中三角形的个数是( )A 、22B 、24C 、26D 、2811、如图,菱形ABCD 的对角线AC 、BD 相交于点O ,AC =8,BD =6,以AB 为直径作一个半圆,则图中 阴影部分的面积为( ) A 、256π- B 、2562π-OGF EDCBA18题图HGFE DCBA16题图OCBA C 、2566π- D 、2568π- 12、如图,正方形ABCD 的顶点B 、C 在x 轴的正半轴上,反比例函数(0)ky k x=≠在第一象限的图象经过顶点 A (m ,2)和CD 边上的点E (n ,23),过点E 的直线l 交x 轴于点F ,交y 轴于点G (0,-2), 则点F 的坐标是( )A 、5(,0)4 B 、7(,0)4 C 、9(,0)4 D 、11(,0)4二、填空题:(本题共6小题,每小题4分,共24分,) 13、实数12-的相反数是 。
14、函数12y x =-中,自变量x 的取值范围是 。
15、在2014年重庆市初中毕业生体能测试中,某校初三有7名同学的体能测试成绩(单位:分)如下:50,48,47,50,48,49,48。
这组数据的众数是 。
16、如图,C 为⊙O 外点,CA 与⊙O 相切,切点为A ,AB 为⊙O 的直径,连接CB 。
若⊙O 的半径为2,∠ABC =60°,则BC = 。
17、在一个不透明的盒子里装有4个分别标有数字1,2,3,4的小球,它们除数字不同 其余完全相同,搅匀后从盒子里随机取出1个小球,将该小球上的数字作为a 的值,则使关于x 的不等式组212x a x a >-⎧⎨≤+⎩只有一个整数解的概率为 。
18、如图,在边长为的正方形ABCD 中,E 是AB 边上一点,G 是AD 延长线上一点,BE =DG ,连接EG ,CF ⊥EG 于点H ,交AD 于点F ,连接CE 、BH 。
若BH =8,则FG = 。
三、解答题:(本大题共2个小题,每小题7分,共14分)DCBAxy四种类型人数的折线统计图DC B A女:男:喜欢程度人数123456789101112131415161718O 四种类型为数占调查总人数的百分比扇形统计图6%20%52%D CBA19、计算:2011(3)22014()2--+---20、如图,在△ABC 中,CD ⊥AB ,垂足为D 。
若AB =12,CD =6,3tan 2A =,求s i n c o sB B+的值。
四、解答题:(本大题共个4小题,每小题10分,共40分)21、先化简,再求值:2344(1)11x x x x x ++--÷++,其中x 是方程12025x x ---=的解。
22、重庆市某餐饮文化公司准备承办“重庆火锅美食文化节”。
为了解市发对火锅的喜爱程度,该公司设计了一个调查问卷,将喜爱程度分为A (非常喜欢)、B (喜欢)、C (不太喜欢)、D (很不喜欢)四种类型,并派业务员进行市场调查。
其中一个业务员小丽在解放碑步行街对市民进行了随机调查,并根据调查结果制成了如下两幅不完整的统计图。
请结合统计图所给信息解答上列问题:(1)在扇形统计图中C 所占的百分比是 ;小丽本次抽样调查的为数共有 人;请将折线统计图补充完整;(2)为了解少数市民很不喜欢吃火锅的原因,小丽决定在上述调查结果中从“很不喜欢”吃火锅的市民里随机选出两位进行电话回访,请你用列表法或画树状图的方法,求所选出的两位市民恰好都是男性的概率。
GF EDCBA 23、某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买。
已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元。
(1)今年5月份该青椒在市区、园区各销售了多少千克?(2)6月份是青椒产出旺季,为了促销,生态农业园决定6月份将该青椒在市区、园区的销售价格均在今年5月份的基础上降低%a ,预计这种青椒在市区、园区的销量将在今年5月份的基础上分别增长30%、20%,要使得6月份该青椒的总销售额不低于18360元,则a 的最大值是多少?24、如图,在△ABC 中,∠ACB =90°,AC =BC ,E 为AC 边的中点,过点A 作AD ⊥AB 交BE 的延长线于点D ,CG 平分∠ACB 交BD 于点G ,F 为AB 边上一点,连接CF ,且∠ACF =∠CBG 。
求证:(1)AF =CG ;(2)CF =2DEN MPCBA 五、解答题:(本大题共2个小题,每小题12分,共24分)25、如图,已知抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,连接BC 。
(1)求A 、B 、C 三点的坐标;(2)若点P 为线段BC 上的一点(不与B 、C 重合),PM ∥y 轴,且PM 交抛物线于点M ,交x 轴于点N ,当△BCM 的面积最大时,求△BPN 的周长;(3)在(2)的条件下,当BCM 的面积最大时,在抛物线的对称轴上存在点Q ,使得△CNQ 为直角三角形,求点Q 的坐标。
图1HGFEDCBA 备用图HD CBA 图2HF /G /GF(E)DCBA26、如图1,在□ABCD 中,AH ⊥DC ,垂足为H ,AB=,AD =7,AH两个动点E 、F 同时从点A 出发,分别以每秒1个单位长度、每秒3个单位长度的速度沿射线AC 方向匀速运动。
在点E 、F 运动过程中,以EF 为边作等边△EFG ,使△EFG 与△ABC 在射线AC 的同侧,当点E 运动到点C 时,E 、F 两点同时停止运动。
设运转时间为t 秒。
(1)求线段AC 的长;(2)在整个运动过程中,设等边△EFG 与△ABC 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式,并写出相应的自变量t 的取值范围;(3)当等边△EFG 的顶点E 到达点C 时,如图2,将△EFG 绕着点C 旋转一个角度 (0360)αα︒<<︒。
在旋转过程中,点E 与点C 重合,F 的对应点为F ′,G 的对应点为G ′。
设直线F ′G ′与射线DC 、射线AC 分别相交于M 、N 两点。
试问:是否存在点M 、N ,使得△CMN 是以∠MCN 为底角的等腰三角形?若存在,请求出线段CM 的长度;若不存在,请说明理由。
2014年重庆中考数学(B卷)答案一、选择题:1-4:ACBD 5-8:ADCB 9-12:CCDC二、填空题:13、__12___ 14、_x≠2__ 15、__48___16、__8 ___ 17、1418三、解答题:19题解:原式921329=+--+=20题解:3 t ACD CD=6tanA=2在R△中,,=4==8Rt BCD34sin==cos=557sin+cos=5ADBD AB ADB-=∴∴在△中,CD BD ∴B,BC BC ∴B B21题解:原式22411(2) x xx x-+ =++2(2)(2)(2)x xx+-=+22xx-=+解方程1225x x---=得:13x=当13x=时,原式2527xx-=-+22题解:(1)22% ;50 ;(2)由图可知:很不喜欢的共有3人,其中男性2人,女性1人.由图可知,共有6种等可能情况,其中恰好都是男性(记为事件A)有2种,其概率2163 P==.23题解:(1)设5月份在市区销售了x千克,则园区里销售了(3000-x)千克. 由题意得:64(3000)16000x x+-=解得2000x =,则30001000x -=答:5月份在市区销售了2000千克,在园区销售了1000千克. (2)由题意得:6(1%)2000(130%)4(1%)1000(120%)18360a a -⨯++-⨯+≥解得:10a ≤ 则a 的最大值为10. 24题证明:(1)∵∠ACB=90°,AC=BC ,CG 平分∠ACB∴∠BCG=∠CAB=45° 又∵∠ACF=∠CBG ,AC=BC∴△ACF ≌△CBG (ASA ) ∴CF=BG ,AF=CG(2)延长CG 交AB 于点H. ∵AC=BC ,CG 平分∠ACB ∴CH ⊥AB ,H 为AB 中点 又∵AD ⊥AB ∴CH ∥AD ∴G 为BD 的中点 ∴BG=DG ∠D=∠EGC ∵E 为AC 中点 ∴AE=EC又∵∠AED=∠CEG ∴△AED ≌△CEG (AAS ) ∴DE=EG∴BG=DG=2DE 由(1)得CF=BG ∴CF=2DE. 25题解:(1)令x=0,解得y=3∴点C 的坐标为(0,3)令y=0,解得x 1=-1,x 2=3 ∴点A 的坐标为(-1,0) 点B 的坐标为(3,0)(2)由A ,B 两点坐标求得直线AB 的解析式为y=-x+3设点P 的坐标为(x ,-x+3)(0<x <3) ∵PM ∥y 轴∠PNB=90°,点M 的坐标为(x ,-x 2+2x+3) ∴PM=(-x 2+2x+3)-(-x+3)=-x 2+3x ∵BCM 3S =2PM △ ∴当x=3-2时BCM S △的面积最大 此时,点P 的坐标为(32,32)∴PN=32,BN=32,BP=2∴BPN C =3+2△. (3)求得抛物线对称轴为x=1设点Q 的坐标为(1,a )∴2222(3)1610CQ a a a =-+=-+222211()24QN a a =+=+2454CN = ① 当∠CNQ=90°时, 如图1所示即222CQ QN CN =+2214561044a a a -+=++ 解得:14a =-∴Q 1(1,14-)② 当∠NCQ=90°时,如图2所示即222QN CQ CN =+2214561044a a a +=-++ 解得:72a =∴Q 2(1,72)③ 当∠CQN=90°时,如图3所示即222CN QN CQ =+2245161044a a a =++-+解得:12a a ==∴Q 3(1)Q 4(1)。