《平行四边形的性质1》教案新部编本
- 格式:doc
- 大小:92.50 KB
- 文档页数:4
平行四边形的性质教案一、教学目标1. 知识目标:了解平行四边形的定义、判定方法和性质。
2. 技能目标:能够熟练运用平行四边形的性质解决相关问题。
3. 情感目标:培养学生对数学知识的兴趣,提高其学习成绩。
二、教学内容平行四边形的性质三、教学重点和难点1. 教学重点:平行四边形的概念、判定方法和性质。
2. 教学难点:平行四边形的性质运用。
四、教学方法板书讲解法、演示法、讨论法、练习法等。
五、教学过程1. 掌握平行四边形的定义和判定方法向学生介绍平行四边形的图像,即四边形的对边是平行的,并要求学生观察和辨认课桌、书架、地板等日常生活中出现的平行四边形。
讲解平行四边形的判定方法:(1) 两对对边分别相等;(2) 一组对边既相等又平行;(3) 对角线互相平分。
2. 确定平行四边形的性质接着,将平行四边形的每个性质都列举出来,并逐一讲解、证明和举例,包括:(1) 对边相等;(2) 对角线相交于中点;(3) 相邻角互补,对角线上的角互补;(4) 同底角相等;(5) 高相等。
3. 如何运用平行四边形的性质解决问题让学生通过练习来掌握平行四边形的应用方法。
设计一些实际问题,如:(1) 已知平行四边形的底边长和高,求其面积;(2) 在平行四边形中连接一对对角线,若交点到底边的距离为3,求对角线的长度;(3) 在平行四边形中,两条对角线的长度分别为6和12,求平行四边形的周长。
六、教学总结通过本节课的学习,学生掌握了平行四边形的定义、判定方法和性质,并能够熟练运用其性质解决相关问题。
这不仅提高了学生的数学水平,而且激发了他们对数学知识的兴趣。
七、教学反思本节课采用了多种教学方法,如板书、演示、讨论和练习,充分调动了学生的积极性和主动性,使他们更好地理解和掌握了平行四边形的性质。
课堂互动也很活跃,体现了学生的主体性和学习能力。
但仍需注意语言表述、演示效果和练习难度的合理性,保证教学的具体效果。
《平行四边形》教案参考5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!《平行四边形》教案参考5篇教案的编写应当充分考虑学生的学习能力和学习需求,以便让每个学生都能够得到适当的教育,一份完善的教案能够提供丰富多样的教学资源和教学辅助材料,下面是本店铺为您分享的《平行四边形》教案参考5篇,感谢您的参阅。
平行四边形的性质教案(6篇)小学四年级数学平行四边形教案篇一教学内容《义务教育课程标准实验教科书数学(四年级上册)》教科书70页例1及相关练习题。
教学目标1、认识平行四边形和梯形,掌握平行四边形和梯形的特征;2、学会四边形分类;概括出长方形、正方形是特殊的平行四边形,正方形是特殊的长方形的关系;3、培养学生动手操作能力,发展空间思维能力。
教学重点掌握平行四边形和梯形的特征。
教学难点理解平行四边形、长方形、正方形的关系。
教学准备教具:多媒体课件、七巧板、吹塑纸贴图学具:拼活动四边形的塑料棒四根、点子图、七巧板、平行四边形、梯形剪纸模型各一个。
教学过程一、创设情境,激发兴趣1、问:同学们,老师要考考你们,愿意接受挑战吗出示一些四边形问:上面图形有什么共同特点(学生回答)概括:由四条线段围成的图形是四边形。
2、师:谁能说说你发现了哪些四边形(学生说出:长方形、正方形、平行四边形、梯形)【设计说明】从学生已有的知识出发,引出本节课要学习的图形,体现了数学学习的系统性。
3、师:都记住了这些四边形,并能画下来吗下面我们就来一个画四边形的比赛,看哪些同学画得又快又好。
比赛开始!(学生活动:画四边形)4、学生展示画图的结果。
师:你觉得他们画得怎样师:认识这些图形吗请说说这些图形的名称5、揭示课题。
本节课我们一起来研究平行四边形和梯形。
【设计说明】在脱手画图的过程中,不要求学生画得很准确,只是通过学生的回答对本课要学的内容有一个初步的认识与了解。
二、自主探究,获取新知(一)平行四边形1、自主探究师:请同学们用四根学具,拼一个平行四边形。
[师示范操作]师:请打开书71页,找到平行四边形的图,结合自制平行四边形学具、平行四边形纸片进行研究,看看平行四边形两组对边有什么特点。
学生操作学具探究,同时教师巡视指导。
【设计说明】给学生一些探究的素材,给他们探究的空间,让他们自主探究平行四边形所具有的特点,并适时加以引导,以便学生加以总结。
《平行四边形的性质》数学教案
标题:《平行四边形的性质》
一、教学目标
1. 让学生理解并掌握平行四边形的基本概念和性质。
2. 培养学生的观察力、思维能力和空间想象能力。
3. 通过实践操作,提高学生的动手能力和合作学习的能力。
二、教学重点与难点
1. 教学重点:平行四边形的定义及其基本性质。
2. 教学难点:理解和应用平行四边形的性质。
三、教学过程
1. 导入新课:
可以通过生活中的实例或者问题导入,引发学生对平行四边形的兴趣和好奇心。
2. 新课讲解:
(1) 平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
(2) 平行四边形的性质:对边相等、对角相等、对角线互相平分、每一条对角线平分一组对角。
3. 实践操作:
设计一些实践活动,让学生亲手画出平行四边形,并验证其性质。
4. 知识巩固:
设计一些习题,让学生运用所学知识解决问题,加深对平行四边形性质的理解。
5. 小结与作业:
对本节课的内容进行总结,布置相关的课后作业。
四、教学反思
在教案的最后,应包含教学反思的部分,这部分主要是教师对自己教学过程的回顾和评价,包括成功之处和需要改进的地方。
平行四边形的性质的教案平行四边形的性质的教案(精选10篇)作为一位不辞辛劳的人民教师,通常需要准备好一份教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
教案应该怎么写呢?下面是小编精心整理的平行四边形的性质的教案,欢迎阅读与收藏。
平行四边形的性质的教案篇1教学目标:1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;2.索并掌握平行四边形的性质,并能简单应用;3.在探索活动过程中发展学生的探究意识。
教学重点:平行四边形性质的探索。
教学难点:平行四边形性质的理解。
教学准备:多媒体课件教学过程第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。
)1.小组活动一内容:问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。
将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。
(1)你拼出了怎样的四边形?与同桌交流一下;(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。
2.小组活动二内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?第二环节探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)小组活动3:用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180°,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?(1)让学生动手操作、复制、旋转、观察、分析;(2)学生交流、议论;(3)教师利用多媒体展示实践的过程。
第三环节推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。
)实践探索内容(1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。
《平行四边形的性质(第一课时)》教学设计一、教学分析(一)教学内容分析《平行四边形的性质》是九年制义务教育课本八年级数学第二学期第十九章第一节内容,它是在学生学过平移和旋转等几何知识的基础上学习的,学习它不仅是对已学平行线、三角形等知识的综合应用和深化,同时对后面学习的矩形、菱形、正方形及梯形等特殊的平行四边形起到引领作用;其次,平行四边形性质在实际生产和生活中有广泛的应用,如:小区的伸缩门、庭院的竹篱笆等制造时都需要用到平行四边形的性质;第三:从培养学生的逻辑思维能力来说,学生已经初步掌握了推理论证方法,需要进一步巩固和提高,本节课及至本章都是为达到这个目标而设置的.(二)教学对象分析由于学生在“第七章三角形”中已经学过多边形的概念以及多边形内角和、外角和的相关知识,且平行四边形的定义也在小学学过,对它们并不陌生,但对于概念的本质属性的理解并不深刻,需加深理解.在认知过程中,对平行四边形通过辅助线与三角形相联系,加以引导,在学生自主探究的学习过程中,不仅要完成对平行四边形性质的认知,还需有效引导学生的探究欲与成就感.(三)教学环境分析本节教学内容是平行四边形的性质,针对数学学科培养学生逻辑思维与理性探究的学科特点,概念与性质的揭示需要一个渐进的探究过程,不适宜通过网络查阅查询,所以本课选择多媒体教室环境,而多媒体课件的作用,应体现在认知过程中,对学生认知前期的引导,和学生认知后期的验证,应避免以动画的过程替代学生大脑中推演的过程.二、教学目标(一)知识与技能理解平行四边形的定义,掌握平行四边形的有关性质,并能初步应用平行四边形的性质进行简单的计算和证明,解决生活中的实际问题.(二)过程与方法在性质的探索、发现与证明的过程中,培养学生的观察能力及逻辑推理论证能力,渗透“转化”的数学思想.(三)情感态度与价值观引导学生观察、发现,激发学生的好奇心和求知欲,并且引导学生在应用数学知识解决实际问题的活动中体验成功,树立学习的自信心.三、教学重点难点(一)教学重点:让学生亲历平行四边形性质定理的“观察——猜想——验证”过程,理解定理内容,并学会用它们进行有关的论证和计算.(二)教学难点:通过性质定理的推导,培养学生独立思考、自主探索的精神,提高分析问题和解决问题的能力.四、教学方法定理推导上采用引导探索法;设置疑问,引导学生通过观察、猜想、论证、应用等环节积极思考,勇于探索,较好地理解和掌握本节课的学习内容,体验解决问题的方法和乐趣,增强数学学习兴趣.在教学手段方面,利用PPT制作的课件,增大教学容量和直观性,提高教学质量和效率.五、教学过程。
平行四边形及其性质1——教案18.1.1平行四边形及其性质1一、内容和内容解析:1、内容:人教版八年级数学下册第十八章第一节平行四边形第1课时,其主要内容是平行四边形的概念,平行四边形边、角的性质(根据学生的实际情况,同时考虑学生对平行四边形的性质的探究、理解与应用,把平行线之间的距离作为第2课时的学习内容)。
2、内容解析:平行四边形是常见的基本的几何图形之一,它不仅具有丰富的几何性质,而且在生产和生活中具有广泛的应用。
平行四边形的性质是在学生小学阶段认识了平行四边形以及学习了平行线、三角形(全等三角形)、四边形的基础上学习的,它是平行线和全等三角形等知识的延续和深入,也是后续学习平行四边形的判定、矩形、菱形、正方形的基础,在教材中起到承上启下的作用,还为证明两直线平行、两条线段相等、两个角相等提供了新的方法和依据,拓展了学生的解题思路.平行四边形的定义采用属加种差的方式,揭示了平行四边形与四边形之间的联系与区别。
平行四边形的性质的探究,经历了观察、猜想、验证(实验与证明)的过程,这也是探究几何图形性质的重要研究方法。
性质的证明,应用了将四边形问题转化为三角形问题的思想方法,这些思想和方法在今后的学习中经常用到。
基于以上分析,本节课的教学重点是:平行四边形的边、角性质的探索与应用。
二、目标和目标解析1、目标:知识与技能:理解平行四边形的概念,掌握平行四边形的边、角性质,能运用性质简单的计算和推理;过程与方法:经历“观察——猜想——验证(实验与证明)”探究平行四边形性质的过程,发展学生的探究意识和推理能力,渗透探究几何图形性质的方法和转化的数学思想;情感态度与价值观:体验数学与生活的联系,激发学生学习数学的兴趣和求知欲,验证性质的过程中,培养学生的合作交流意识和探索精神。
2、目标解析:(1)知道平行四边形与四边形的区别与联系,能应用定义进行判断和推理。
在教学过程中,规范学生的几何符号语言的表达,理清证明问题的思路和方法,发展学生的思维,使学生能利用平行四边形对边平行、对边相等或对角相等的性质进行简单的计算和推理,培养学生的应用意识。
《平行四边形的性质》教案《平行四边形的性质》教案《平行四边形的性质》教案一、教学目的知识技能:掌握平行四边形对角线互相平分这一性质,并会用此性质进展有关的论证和计算. 数学考虑:经历观察、猜测、实验、验证等数学活动,认识平行四边形的性质,开展学生演绎推理才能和发散思维才能. 解决问题:通过多种方法探究平行四边形的性质,体验解决问题策略的多样性,初步形成评价与反思的意识. 情感态度:培养学生勤于理论、勇于探究、合作交流的精神,增强学生学好数学的勇气和信心. 二、教学重难点教学重点:平行四边形的对角线互相平分这一性质的应用. 教学难点:对平行四边形的对角线互相平分这一性质的探究. 三、教学方法与手段采用“创设情境—大胆猜测—实验探究—反思评价”的课堂活动形式,努力营造自主、合作、探究的学习气氛,利用多媒体辅助教学,生动、直观地反映问题情境,使学生在学习中获得愉快的数学体验. 四、教学过程一天,财主巴依遇到阿凡提,想考一考聪明的阿凡提,说给你两块地,一块是平行四边形形状的〔如下列图,AB=10,OA=3,BC=8〕,还有一块是边长是7的正方形EFGH土地,让你来选一下,哪一块面积更大?〔一〕激趣设疑7 GC F E HD O C B A D [老师活动] 老师利用课件展示问题情境. [学生活动] 此时,学生的积极性被调动起来,努力试图寻找各种途径来求平行四边形的面积,但找不到适宜的解决方法. [教学内容] 老师乘机引出课题,明确学习任务. [达成目的与调控措施] 此处创设生动有趣的故事情境,力求更好地激发学生的学习兴趣. 〔二〕深化探究 [教学内容] 请学生观察平行四边形的对角线,并猜测有什么性质. [学生活动] 大多数学生想到了对角线平分,但无视了“互相”两字,也有猜到对角线平分每组对角等错误结论. [老师活动] 此时老师不做解答,但一一记录下学生的各种猜测. [达成目的与调控措施] 学生形形色色的答复,能给他们不同的感受,在锻炼学生的观察及表达才能的同时,并为下一步实验探究指明了方向. [老师活动] 老师将前后四名同学分成一组,学生拿出事先准备好的平行四边形及实验工具〔刻度尺、剪刀、图钉〕,尝试在交流合作中动手探究平行四边形的对角线有何性质. [学生活动] 在探究中,学生使用了以下几种方式.一是大局部学生用刻度尺直接测量,得出结论;二是有一局部学生沿平行四边形的一条对角线将其对折,对折后重叠,也较易得出结论;三是有小局部学生用剪刀将平行四边形沿对角线剪成四个小三角形,尝试能否重叠.用此方法出现了有学生不知道选哪两个三角形重叠,或在重叠时,分不清三角形哪两边是原平行四边形对角线的一半,此时老师提示让学生在各线段上标注字母;四是有个别组将两个形状、大小完全一样的平行四边形,用图钉钉在对角线的交点处将其固定,把其中一个旋转180°.但是个别学生不知道绕交点旋转180°后在什么位置,或不知道重叠后的目的. [老师活动] 这时,老师要引导学生展开议论、交流合作,并以一个参与者、合作者的身份活动在各小组间,鼓励创新,同时关注学生个体差异,施行有效指导. [达成目的与调控措施] 此处为的是更好的突出重点,打破难点,让学生带着问题去探究,感受数学活动充满探究性和创造性,使课堂变成学生探究互助的乐园、师生彰显个性的舞台. [老师活动] 探究完毕后,分组展示结果,老师利用课件展示“旋转法”的实验过程,增强了教学的直观性. [学生活动] 大局部学生会得出对角线互相平分这条性质,也有些学生会得出对角线相等或对角线互相垂直这样的错误结论.老师对学生的错误猜测和结论进展剖析,并让学生反思实验失败的原因:图形画的不准确,或动手操作的误差,或是图形画得过于特殊等等. [达成目的与调控措施] 探究的经历意味着学生要面临很多困惑,甚至失败,也可能花费很多时间和精力后结果还是不够理想,但这些是学生生存、成长、创造所必经的过程,是值得的,因为他们所获得的可能是一生受益无穷的财富. [老师活动] “趁热打铁”,老师又提出: [教学内容] “实验都是有误差的,我们能否对此进展理论证明?” [学生活动] 此问题难度不大. [老师活动] 老师让学生口述证明过程.最后师生共同归纳出“平行四边形的`对角线互相平分”这条性质. [达成目的与调控措施] 猜测与论证的统一,表达知识的系统完好性,开展学生的演绎推理才能. [教学内容]老师再现引课难题. [学生活动] 此问题,这时学生能很容易利用本节课的重点平行四边形对角线互相平分加以解决.请一名学生口答解题过程. [老师活动] 同时老师结合学生的答复板书解题过程. [达成目的与调控措施] 改变例题的呈现方式,体会数学来于生活又效劳于生活,加深对性质的理解与应用. 〔三〕迎接挑战财主不服气,又想考阿凡提,说过点O做一直线EF,交边AD于点E,交BC于点F.直线EF绕点O旋转的过程中〔点E与A、D不重合〕,你能知道这里有多少对全等三角形吗? {挑战一} A E DOADBCO F E BC F [老师活动] 此处组织学生抢答,互相补充完善后,学生答出了全部的全等三角形. [达成目的与调控措施] 此题复习稳固全等三角形的有关知识,进一步应用性质,增强了学生竞争与合作意识. {挑战二} ADBCOEF这时,阿凡提又提出,当EF⊥BD于O,分别交AB、CD于E、F,假设三角形ADE的周长为m,那么平行四边形ABCD的周长是多少?[学生活动] 此题难度稍大,引导学生分组讨论,老师再一次参与到学生的讨论中了来.局部学生想到了利用线段垂直平分线的性质,将DE转化为BE,突破此题难点;对根底稍差的学生有一定困难,但在互相交流后,可达成共识. [达成目的与调控措施] 生生互动、师生互动,表达学生为主体、老师做指导的和谐教学. 正在这时,财主的两个儿子也跑来找阿凡提评理,说父亲偏向,都说对方的地大!聪明的你能帮助解决吗? {挑战三} [学生活动] 此题有多种解法.学生独立考虑.局部学生想到了通过比拟这两个三角形的高;还有一些学生会连接对角线BD,利用平行四边形的对角线的性质,通过面积的分割与拼补得到解决. [老师活动]老师对学生想到的其他正确解法一一肯定并加以鼓励.同时对于没有想到解决问题的学生,老师给予适当提示. [达成目的与调控措施] 一题多解,力求培养学生的发散思维才能.〔四〕开放探究国王听说阿凡提非常聪明,召他进宫,说,我有一块平行四边形的花园〔如上图〕,想在里面种四种不同的花,并且所占的面积一样,你给我设计几个方案. [老师活动] 这是一道开放题.组织学生自己动手设计. [学生活动] 全体学生都能乐于参与,感受问题中蕴涵的宏大乐趣,设计出了非常多的方案.并积极地利用实物投影仪展示自己的设计成果. [达成目的与调控措施] 开放性设计,使不同层次的学生都能答复,进步全体学生的学习数学的自信心. 〔五〕鼓励评价 [学生活动] 我的收获是…… 我感到最困惑的是…… 我最想说的一句话是…… 今后我的学习打算是…… [达成目的与调控措施] 老师鼓励学生自我评价反思,作为本节探究课,老师不必拘泥于学生总结的全面与否、深度如何,只要他们通过学习积累了属于自己的数学活动经历就足够了.老师在学生总结的根底上,进一步总结,强调重点,评价学生的学习表现. 〔六〕反应验收 [教学内容] 必做题:教材练习题:P95 1、2;选做题: 1、设计一道有关平行四边形性质的题目,要求能用上平行四边形的三条性质.2、设计一枚平行四边形的个性邮票. [达成目的与调控措施] 根据因材施教,面向全体的原那么,分必做题和选做题,满足多层次学习的需要,使不同层次的学生都能得到不同的开展. 〔七〕板书设计§19.1.1平行四边形的性质一、平行四边形的性质探究二、例题三、变式四、小结板书设计力求做到条理明晰、重点突出.。
教学内容:平行四边形的性质教学目标:1、掌握平行四边形对边相等、对角相等的性质,能利用平行四边形的性质进行简单的推理和计算。
2、经历“实验----猜想-----验证-----证明”的过程,发展学生的思维水平和良好的思维品质。
3、体验数学与生活的联系,激发学生学习的兴趣。
教学重点:平行四边形的性质极其应用。
教学难点:平行四边形性质的应用。
教学方法:讲解与练习相结合,观察与动手操作相结合。
教具准备:作图工具,平行四边形的图片及PPT 课件。
教学过程: 一、 以图引题四边形是我们熟悉的图形,并与生活密切相关,谁能举出一些生活中用到四边形的例子?(1)出示一组含有平行四边形的图片,让学生找出自己熟悉的几何图形。
(2)你还能举出一些平行四边形的例子吗?(3)结合图形给出平行四边形的定义,符号表示法。
教师画图并板书示范:定义:两组对边分别平行的四边形叫做平行四边形.记作: ABCD 读作:平行四边形ABCD强调:1、用符号法表示一个四边形是平行四边形时,字母要有一定的顺序(举例)。
2、定义的两方面作用:一是平行四边形具有两组对边分别平行的性质;二是可以判定一个四边形是不是平行四边形。
二、探究新知(1)根据定义画一个平行四边形(对画图有困难的同学给予帮助)(2)观察这个四边形,除了“ 两组对边分别平行 ”以外,它的边﹑角之间有什么关系吗?DA BC图(猜想:对边相等;对角相等)(3)度量一下,是不是和你的猜想一致?(4)你能证明你发现的结论吗?(师生共同完成证明过程)证明:连接AC ∵AD ∥BC,AB ∥CD ∴∠1=∠2, ∠3=∠4 在△ABC 和△CDA 中 ∠1=∠2AC=CA ∠3=∠4 ∴ △ABC ≌△CDA ∴AD=BC,AB=CD ,∠B=∠D学生独立完成,证明 ∠BAD=∠BCD 的过程归纳:平行四边形的性质:平行四边形对边相等;平行四边形对角相等 几何语言:(1)平行四边形对边相等.∵四边形ABCD 是平行四边形 ∴AB=CD , AD=BC (2)平行四边形对角相等.∵四边形ABCD 是平行四边形 ∴∠A=∠C ,∠B=∠D例1、如图,小明用一根36m 的绳子围成了一个平行四边形的场地,其中一条边AB 长为8m,其它三条边各长多少?证明:∵四边形ABCD 是平行四边形∴AB=CD,AD=BC ∵AB=8m ∴CD=8m又∵AB ﹢BC ﹢CD ﹢AD= 36m ∴AD=BC=10m答:其他三边的长分别是10m,8m,10m.ADB C1234D图A BCD图A BC三、课堂练习 1.填空:(1)平行四边形___平行,___相等,___相等;(2)如下图中,EF∥BC, GH∥AB, EF 与GH 相交于点O ,则图中共有___个平行四边形.分别是 。
平行四边形的性质教案生:升降机,楼梯上的扶手,伸缩衣架,梯子师:所以在生活中我们可以找到许多平行四边形的形状。
师:小学我们就学习过平行四边形,那大家还记得平行四边形的定是什么吗?生:有两组对边分别平行的四边形叫做平行四边形.师:如图1,如何用符号语言来描述平行四边形的定义?生:、AB∥CD, BC∥AD,所以四边形ABCD是师:表达方法是什么?图1生:口ABCD师:口ABCD的高是?对边,对角有哪些?生:口ABCD的高有AE,AF.对边:AD与BC,AB与CD.对角有∠BAC与∠C,∠B与∠D.(师生问答)设计意图:使学生回忆出平行四边形定义,表达方式及相关概念、,从而使学生融融入本节课的学习氛围中,增强学生学习兴趣。
(二)、合作探究:1、动手操作: (约8分钟)师:根据定义画一个平行四边形,观察它,除了“两组对边分别平行”外它的边之间有什么关系?它们的角之间有什么关系,动手量一量,测一测,是不是和自己猜测的一样?(独立操作)师:根据图1,大家测量以后有什么发现? (举手回答)生1: AB=CD, AD=BC,生2: ∠A=∠C ,∠B二∠D师:大家都找到了它们之间的联系,怎么用语言来表达呢?生:平行四边形的对边相等。
生:平行四边形的对角相等。
(先让同学动测量发现平行四边形之间的联系,再让学生归纳用语言方式表达出来。
)设计意图:加强学生的动于能力,语言根概述能力,使全体学生都参与到课堂情境中。
2、师生交流,推理论证。
(约10分钟)师: 通过观察和度量,我们猜想:平行四边形的对边相等;平行四边形的对角相等,下而我们对它进行证明。
例1:如图2,在口ABCD 中,求证:AB=CD ,BC=DA, ∠B 二∠D, ∠A=∠C 。
师:上述猜想涉及线段相等、角相等.我们知道.利用三角形全等得出全等三角形的对应边边、对应角都相等,是证明线段相等、角相等的一种重要的方法,为此,我们通过添加辅助线,构造两个三角形,通过三角形全等进行证明。
《平行四边形的性质》教学设计一、教学目标1.知识目标:学习平行四边形的定义及性质,包括平行四边形的对边相等、对角线互相平分、同、异位角等。
2.能力目标:能够辨别和应用平行四边形的性质解决问题。
3.情感目标:培养学生对几何学的兴趣,培养学生观察能力、抽象思维能力和逻辑推理能力。
二、教学重点、难点1.教学重点:平行四边形的定义及性质的教学,培养学生的几何直观形象观察能力。
2.教学难点:平行四边形的应用题,培养学生的综合运用能力。
三、教学过程1.导入新知识(10分钟)通过展示一幅平行四边形图片,引发学生对平行四边形的认识,并激发学生的兴趣。
2.学习平行四边形的定义(20分钟)a.分析展示的平行四边形图片,引导学生观察四边形边与边的关系。
b.引导学生总结平行四边形的定义:“四边形的对边分别相等,并且相对的两边平行。
”c.通过展示不同的平行四边形图片,让学生找出其中的特征并进行描述。
3.探究平行四边形的性质(30分钟)a.结合学生已掌握的知识,引导学生观察平行四边形的对角线特点,并引导学生总结:“平行四边形的对角线相交于一点,并且互相平分。
”b.引导学生观察平行四边形的同位角和异位角特点,并引导学生总结:“平行四边形的内角之和为360°,同位角相等,异位角相等。
”c.指导学生通过几何工具绘制平行四边形,并验证以上性质。
4.总结归纳(10分钟)a.引导学生回顾平行四边形的定义和性质,并进行总结。
b.提问学生关于平行四边形的问题,鼓励学生主动回答。
5.拓展应用(30分钟)a.提供一些平行四边形的应用题,引导学生运用所学知识解决问题。
b.布置一些课后练习题,巩固所学知识。
四、板书设计平行四边形的定义:四边形的对边分别相等,并且相对的两边平行。
平行四边形的性质:1.对边相等。
2.对角线互相平分。
3.同位角相等,异位角也相等。
4.内角之和为360°。
五、教学方法和教具准备教学方法:情景教学法、讨论教学法、示范教学法教具准备:电子白板、PPT、平行四边形图片、几何工具六、课堂检查与评价通过课堂提问、练习题、小组讨论等形式对学生进行评价,检查学生对平行四边形的理解和应用能力。
数学教案-平行四边形及其性质【8篇】平行四边形教案篇一教学目标1、知识目标(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.2、能力目标(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。
(2)验证猜想结论,培养学生的论证和逻辑思维能力。
(3)通过开放式教学,培养学生的创新意识和实践能力。
3、非智力目标渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.教学重点、难点重点:平行四边形的概念及其性质.难点:正确理解两条平行线间的距离的概念和性质定理2的推论。
平行四边形的概念及性质的灵活运用教学方法:讲解、分析、转化教学过程设计一、利用分类、特殊化的方法引出平行四边形的概念1.复习四边形的知识.(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.(2)将四边形的边角按位置关系分为两类:教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.2.教师提问:四边形中的两组对边按位置关系分为几种情况?引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.3.对比引出平行四边形的概念.(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.①∵ABCD,∵AD∵BC,AB∵CD.(平行四边形的定义)②∵AD∵BC,AB∵CD,∵四边形ABCD是平行四边形.(平行四边形的定义)练习1(投影)如图4-13,DC∵EF∵AB,DA∵GH∵CB,图中的平行四边形共有__个,它们是__.二、探索平行四边形的性质并证明1.探索性质.启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:(3)对角线⑤对角线互相平分(性质定理3)教师注意解释并强调对角线互相平分的含义及表示方法.2.利用化归的方法对性质逐一进行证明.(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.(3)写出证明过程.3.关于“两条平行线间的平行线段和距离”的教学.(1)利用性质定理2导出推论:夹在两条平行线间的平行线段相等.①提问:在图4-14中,l1∵l2,AB∵CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.练习2(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.练习3在图4-15(d)中,①点A与点C的距离是线段__的长;②点A到直线l2的距离是线段__的长;③两条平行线l1与l2的`距离是线段__或__的长;④由推论可得:两条平行线间的距离__.三、平行四边形的定义及性质的应用1.计算.例1填空.(1)在ABCD中,AB=a,BC=b,∵A=50°,则ABCD的周长为__,∵B=__,∵C=__,∵D=__;(2)在ABCD中:①∵A∵∵B=5∵4,则∵A=__;②∵A+∵C=200°,则∵A=___,∵B=__;(3)已知平行四边形周长为54,两邻边之比为4∵5,则这两边长度分别为__;(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则∵OBC 周长为__;②若AB∵AC,则∵OBC比∵OAB的周长大___;(5)在ABCD中,AB=8cm,BC=10cm,∵B=30°,SABCD=__;说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.2.证明.例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∵CF.求证(1)BE =DF;(2)EF过BD的中点.分析:(1)尽量利用平行四边形的定义和性质,避免证三角形全等.(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE∵BC于E,CF∵AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.例3已知:如图4-17,A′B′∵BA,B′C′∵CB,C′A′∵AC.求证:(1)∵ABC=∵B′,∵CAB=∵A′,∵BCA=∵C′;(2)∵ABC的顶点分别是∵B′C′A′各边的中点.着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD 分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.分析:(1)引导学生证明以OE,OF为边的两个三角形全等,如证∵AOE∵∵COF或证∵BOE∵∵DOF.(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.3.供选用例题.(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?(2)如图4-19,在∵ABC中,AD平分∵BAC,过D作DE∵AC交AB于E,过E作EF∵DC 交AC于F.求证:AE=FC.(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC∵FD.四、师生共同小结1.平行四边形与四边形的关系.2.学习了平行四边形哪些方面的性质?3.两条平行线的距离是怎样定义的?有什么性质?五、作业课本第143页第2,3,4,5,6题.课堂教学设计说明本教学设计需2课时完成.这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.平行四边形及其性质教学目标1、知识目标(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校教学设计------平行四边形的性质敖城中学胡兴中一、教学目标1知识目标经历探索平行四边形有关概念和性质的过程,使学生理解平行四边形的概念和性质;探索并掌握平行四边形的对边相等,对角相等的性质。
2能力目标在进行探索的活动过程中发展学生的探究能力,提高学生运用数学知识解决河题的能力;3情感目标在探索讨论中养成与他人合作交流的习惯,提高克复困难的勇气和信心。
二、教学内容及重点、难点:教学内容:1平行四边形的概念2平行四边形的性质3平行四边形的概念、性质的应用。
教学重点:探索平行四边形的性质教学难点:通过操作、思考、升化、归纳出结论教学方法:探索归纳法三、教学对象分析这节课内容通过图片欣赏引出平行四边形的定义,让学生经历探索、探究研究、讨论的过程,对平行四边形的概念及性质有本质性的理解,同时通过自己动手操作发现平行四边形的很多性质,教师在教学过程中,结合具体的背景适时的提出问题,满足学生多样化的要求,这节内容对以后的菱形、矩形内容的引入埋下伏笔。
四、教学策略及教学设计通过学生们自己动手操作,自己推导,自己发现从而得到平行四边形的有关知识,充分发挥学生们的探究意识和合作交流习惯。
五、教学媒体设计黑板、、ppt课件,几何画板交互使用,发挥各自长处,课件中的图形力求形象、美观,以引起学生的注意,对平行四边形的边、角(线段、角)特别用醒目的色彩、动感的画面、,以期牢牢抓住学生的注意力,激发起学生探求未知的欲望;同时借助现代教育技术手段,营造一个创新的学习环境,为学生创设自由、全面发展的时间和空间。
六、过程设计:活动一:图片欣赏1、举出自己身边存在的平行四边形的例子。
例如:汽车的防护链,折叠衣架,篱笆格子(用幻灯打出实物的照片)2、将实物转化为几何图形。
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校19.1平行四边形的性质教学设计(第一课时)康县城关中学李蓓【教材分析】本节课是冀教版八年级数学下册第二十二章第一节的内容,是本章的重点内容之一. 首先,平行四边形是四边形的一种延伸和发展,它的性质的探索需要借助已学过的平行线和三角形的相关知识以及平移旋转中心对称的知识进行探索。
其次它又为我们接下来类比学习矩形、菱形等特殊四边形奠定重要基础.此外,平行四边形的性质还是计算、证明线段相等和角相等的重要依据和方法。
因此平行四边形在本章中起着承上启下的作用.【教学目标】知识技能:1.能准确叙述平行四边形的概念和性质. 并能用符号语言表示.2.能初步应用平行四边形的概念及其性质进行计算和证明.能力目标:经历平行四边形的概念及其性质探究过程,发展合情推理能力,体会转化、数形结合等数学思想.情感态度:1.通过图片欣赏,感受数学在生活中的运用,激发学习热情.2.在探究活动中,学会与他人合作、交流思维过程和探究结果.【教学重点、难点】重点:因为平行四边形的概念和性质的探索,为接下来的平行四边形的判定及矩形、菱形的概念、性质和判定均起到引导和示范的作用,因此我把平行四边形的概念和性质作为本课的教学重点.难点:因为八年级学生数学实验素养还比较薄弱,所以我把对于平行四边形性质的探索定为本课的教学难点.难点突破策略:以学生的生活经验和已有的数学活动经验为基础,选取易得材料,以实验操作的方法辅以多媒体演示并运用转化的数学思想方法,即如何将平行四边形转化为三角形使问题得到解决.教学过程:一、引言(感受生活)出示课件:同学们前面我们讲了“图案的欣赏与设计”我们知道有的图案可以看作是由一个基本图形经过平移,旋转和轴对称得到的,下面我们欣赏几个图案,看这些图案可以看作是由哪种图形经过平移,旋转和轴对称得到。
教师学科教案[ 20 – 20 学年度第__学期]
任教学科:_____________
任教年级:_____________
任教老师:_____________
xx市实验学校
《平行四边形的性质》教案
教学目标
知识与技能
1.掌握平行四边形的定义及对边相等、对角相等的性质.
2.了解平行线间的距离的概念及性质.
过程与方法
1.会证明平行四边形的性质1、
2.
2.进一步学习有条理地思考与表达,培养学生的探索能力和合作交流的习惯.尝试从不同角度寻求解决问题的多种方法,提高解决问题的能力.
情感、态度与价值观
感受数学学习的乐趣,增加学习数学的兴趣和自信心.
教学重点
平行四边形的性质.
教学难点
探索和掌握平行四边形的性质1、2.
教学设计
一、创设情境,导入新课
展示图片(可用本章章前图),引导学生去阅读此内容.
从这段文字中,我们知道,平行四边形是我们生活中常见的一种图形,它有十分和谐的对称美,这就告诉我们平行四边形就在我们身边,与我们生活息息相关.
二、新知探究
探究1:平行四边形的定义
(1)让学生交流生活中见到的平行四边形,教师可投影部分平行四边形图片.
(2)概括并板书:两组对边分别平行的四边形是平行四边形.如果四边形ABCD是平行四边形,记作□ABCD.
(3)你能从课本第72页图18.1.1中找出平行四边形吗?
思考:
(1)要识别一个图形是平行四边形,目前的方法有几个?
(2)平行四边形首先应该是几边形?
(3)应该有几组对边平行?
说明:定义既是性质也是判定方法,现在判定一个四边形是平行四边形的方法只有一个,就是利用定义判定.
探究2:平行四边形的性质
(1)按课本第73页的“探索”画图.
(2)剪下平行四边形,沿平行四边形的各边再在一张纸上画一个平行四边形,各顶点记为A、B、C、D.通过连结对角线得交点O,用一枚图钉穿过点O,把其中一个平行四边形绕点O旋转,观察旋转180°后的图形与原来的图形是否重合.重复旋转几次,看看是否得到同样的结果.
思考:(1)平行四边形是否是中心对称图形?
(2)请说出平行四边形边、角之间的位置关系和数量关系.
在学生操作、讨论、交流猜想出结论后,最后概括:
平行四边形的对边相等,对角相等.
思考:这个结论正确吗?你能用推理的方法证明吗?
教师引导学生画出图形,写出已知、求证,并让学生思考证明线段相等、角相等的方法,从而得出用全等三角形证明得到的结论.证明后得到平行四边形的性质:
性质定理1:平行四边形的对边相等.
性质定理2:平行四边形的对角相等.
应用举例
例1如课本第74页图18.1.5,在□ABCD中,已知∠A=40°.求其他各内角的大小.
分析:要求平行四边形ABCD的各内角的大小,就是要知道∠B与已知∠A的关系、∠C 与∠A的关系,∠D与∠A的关系.
例2如课本第74页图18.1.6,在□ABCD中,AB=8,周长等于24,求其余三条边的长.
例3如课本第75页图18.1.8,已知平行四边形的周长是24,相邻两边的长度相差4,求该平行四边形相邻两边的长.
例4如课本第76页图18.1.9,在□ABCD中,∠ADC的平分线与AB相交于点E,求证:B E+BC=CD.
巩固练习
1.课本第75页练习第1、3题.
2.已知在平行四边形ABCD中,∠A=100°,AB=7,BC=5,求其余的边和角.
3.在平行四边形ABCD中,已知∠A+∠C=100°,求其余角的度数.
4.已知在平行四边形ABCD中,AD+DC=13,求它的周长.
探究3:平行线之间的距离
知识拓展
(1)想一想:在笔直的铁轨上,夹在两根铁轨之间的枕木是否一样长?
(2)试一试,准备一张方格纸,按下面步骤,完成如下作图,并按要求回答问题:
步骤1:在方格纸上画两条平行线:AB与CD;
步骤2:在直线AB上取M、N、P、Q…;
步骤3:分别作MM'丄CD、NN'丄CD、PP'丄CD、QQ'丄CD…;
步骤4:用刻度尺度量MM'、NN'、PP'、QQ'…的长度;
问题1:经过测量你发现MM'、NN'、PP'、QQ'…有何关系?
问题2:在直线AB上再取—点E,试一试.
从上述的操作中,我们可发现:这些平行线之间的垂直线段的长度相等.两条直线平行,其中一条直线的任一点到另一条直线的距离叫做这两条平行线之间的距离.
概括:平行线之间的距离处处相等.
对应练习
课本第75页练习第2题.
三、本课小结
这节课你学了那些知识?解决了什么问题?
(1)平行四边形的概念:两组对边_______的四边形是平行四边形.
(2)平行四边形的性质:平行四边形对边_______,对角_______,邻角______;平行四边形是_______图形.
(3)思想方法:数形结合的思想.
五、作业
1.课本第80页习题18.1第2、3题.。