运算放大器应用电路计算公式
- 格式:ppt
- 大小:632.50 KB
- 文档页数:1
运算放大器的可用输出摆幅范围计算及跨阻放大器的设计全文共四篇示例,供读者参考第一篇示例:运算放大器是一种常见的电子元件,用于放大电压信号。
它具有高输入阻抗、低输出阻抗、无论输入信号大小如何都保持固定的放大倍数等特点,因此被广泛应用在各种电路中。
在设计电路时,我们经常需要计算运算放大器的可用输出摆幅范围,以确保信号能够正常放大并输出。
本文将介绍如何计算运算放大器的可用输出摆幅范围,并结合跨阻放大器的设计原理,为读者详细解析如何设计一个跨阻放大器。
让我们来了解一下运算放大器的可用输出摆幅范围的计算方法。
在实际电路中,运算放大器有一个工作范围,超出这个范围就会导致输出失真或截断。
可用输出摆幅范围指的是在输入信号范围内,输出能够正常工作的幅度范围。
一般来说,运算放大器的输出摆幅范围取决于供电电压和输入信号的幅度。
在理想情况下,运算放大器的输出范围可以达到供电电压的极限值。
如果供电电压为+10V和-10V,那么理想情况下运算放大器的输出范围为+10V到-10V。
但是在实际应用中,由于运算放大器内部的饱和效应、风险电平等因素的影响,实际的输出摆幅通常小于供电电压的极限值。
我们需要通过计算来确定具体的可用输出摆幅范围。
一般来说,可以通过运算放大器的数据手册来查找具体的参数,比如输入失真电压、输出摆幅等。
根据这些参数,可以利用以下公式来计算运算放大器的可用输出摆幅范围:可用输出摆幅范围= Vcc - VsatVcc为正供电电压,Vsat为输出饱和电压。
通常情况下,Vsat的值在数据手册中可以查到,一般为几毫伏。
还需要考虑输出负载的影响。
输出负载的存在会导致输出电压下降,从而影响运算放大器的可用输出摆幅范围。
在实际设计中,还需要考虑输出负载的大小,以确保输出电压不会受到明显的影响。
接下来我们将结合跨阻放大器的设计原理,来详细介绍如何设计一个跨阻放大器。
跨阻放大器是一种常见的放大电路,通过改变输入电阻的方式来实现放大功能。
运算放大器的阻抗计算可以通过多种方法进行,具体取决于所讨论的阻抗类型(输入阻抗、输出阻抗、反馈阻抗等)以及电路的具体配置。
以下是一些基本的阻抗计算方法:
输入阻抗:在同相运算放大器电路中,输入阻抗可以使用以下公式计算:Zin = (1 + Aαβ)Zi。
其中,Aα是开环电压增益,Zi是不使用反馈的运算放大器的输入阻抗,β是一个反馈因子。
输出阻抗:输出阻抗可以通过测量或计算得出。
在同相运算放大器中,输出阻抗可以测量为Zout = Zo/(1 + Aαβ)。
此外,输出阻抗也可以通过计算得出,具体取决于电路的配置和反馈类型。
反馈阻抗:反馈阻抗是运算放大器电路中引入的阻抗,用于影响电路的性能。
反馈阻抗的计算取决于电路的具体配置和反馈类型。
一般来说,反馈阻抗可以通过在电路中测量电压和电流来计算得出。
需要注意的是,运算放大器的阻抗计算是一个复杂的过程,需要综合考虑电路的拓扑结构、元件参数、电源电压等多个因素。
此外,不同的运算放大器型号和电路配置可能会具有不同的阻抗特性。
因此,在实际应用中,建议查阅相关数据手册或咨询专业人士以获取准确的阻抗计算方法和电路设计参数。
积分运算放大电路是一种基于运算放大器的电路,它能够实现输入电压对时间的积分运算。
这种电路的主要特点是输出电压与输入电压的积分(即电压随时间的变化)成正比。
以下是一个基本的积分运算放大电路的构成和工作原理:1. 构成:- 运算放大器:这是电路的核心部分,提供高增益和高输入阻抗。
- 电阻(R):通常用于设置反馈网络的电阻值。
- 电容器(C):电容器在反馈回路中起到关键作用,它存储并释放电荷,使得输出电压与输入电压的积分成比例。
2. 工作原理:- 当输入电压变化时,通过电阻R向电容器C充电或放电。
由于运算放大器的负反馈作用,其输出会调整以保持两个输入端(同相输入端和反相输入端)之间的电压差几乎为零。
- 在积分过程中,电容器C上的电压变化速率与输入电压成正比,因为电容器上的电压变化是通过电流(I=CdV/dt)来实现的,其中dV是电压变化,dt是时间变化。
- 因此,输出电压V out是电容器电压随时间的变化,即输入电压的积分。
3. 传递函数和公式:- 积分运算放大电路的传递函数可以表示为V out = -1/(RC) ∫Vin dt,其中Vin 是输入电压,V out 是输出电压,R 是反馈电阻,C 是电容器。
- 如果输入电压是恒定的,那么输出电压将线性增加(如果电容器正在充电)或线性减小(如果电容器正在放电),斜率由RC 乘积决定。
4. 应用:- 积分运算放大电路在许多领域有应用,包括信号处理、控制系统的设计、模拟计算等。
- 它们常被用来实现低通滤波器、信号整形、相位补偿等功能。
在设计积分运算放大电路时,需要考虑电阻和电容的选择,以满足特定的积分时间常数和精度要求。
同时,也需要考虑运算放大器的性能限制和稳定性问题。
运放电容频率计算公式在电子电路中,运放(运算放大器)是一种重要的电子元件,用于放大电压信号。
而在很多电子电路中,需要使用运放电容频率计算公式来计算电路的频率特性。
本文将介绍运放电容频率计算公式的推导和应用。
1. 运放电容频率计算公式的推导。
在很多电子电路中,运放和电容经常被用来构成低通滤波器。
低通滤波器可以滤除高频信号,只保留低频信号。
在运放电容低通滤波器中,电容的阻抗随着频率的增加而减小,从而实现了对高频信号的滤除。
我们可以通过计算运放电容频率来确定滤波器的截止频率。
首先,我们来推导运放电容频率计算公式。
在运放电容低通滤波器中,电容的阻抗可以用下面的公式来表示:Zc = 1 / (jωC)。
其中,Zc为电容的阻抗,ω为角频率,C为电容的电容值。
角频率ω与频率f之间的关系为:ω = 2πf。
将ω代入电容的阻抗公式中,可以得到:Zc = 1 / (j2πfC)。
在运放电容低通滤波器中,运放的放大倍数A可以用下面的公式来表示:A = -Rf / Rin。
其中,Rf为反馈电阻的阻值,Rin为输入电阻的阻值。
在运放电容低通滤波器中,放大倍数A与电容的阻抗Zc之间的关系可以用下面的公式来表示:A = Zc / Rin。
将电容的阻抗Zc代入上式中,可以得到:A = 1 / (j2πfCRin)。
通过整理上式,可以得到运放电容频率计算公式:f = 1 / (2πCRin)。
这就是运放电容频率计算公式的推导过程。
通过这个公式,我们可以很方便地计算运放电容低通滤波器的截止频率。
2. 运放电容频率计算公式的应用。
在实际的电子电路设计中,运放电容频率计算公式可以用来确定运放电容低通滤波器的截止频率。
通过调整电容的电容值和输入电阻的阻值,可以实现对不同频率信号的滤波效果。
下面我们来举一个例子来说明运放电容频率计算公式的应用。
假设我们需要设计一个运放电容低通滤波器,要求其截止频率为1kHz。
我们可以使用运放电容频率计算公式来确定所需的电容值和输入电阻的阻值。
运算放大器组成的电路五花八门,令人眼花了乱,是模拟电路中学习的重点。
在分析它的工作原理时倘没有抓住核心,往往令人头大。
特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。
???? 遍观所有模拟电子技术的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。
??? 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。
??? 虚短和虚断的概念??? 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。
而运放的输出电压是有限的,一般在 10 V~14 V。
因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。
开环电压放大倍数越大,两输入端的电位越接近相等。
???? “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。
显然不能将两输入端真正短路。
??? 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。
因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。
故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。
“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。
显然不能将两输入端真正断路。
实验七运算放大器及应用电路实验目的:1.认识运放的基本特性,通过仿真测试了解运放的基本参数,学会根据实际情况选择运放2.了解由运放构成的基本电路,并掌握分析方法。
实验内容:一、仿真实验。
1.运放基本参数电压传输特性如图,用DC Sweep给出LM358P线性工作区输入电压范围,根据线性区特性估算该运放的直流电压增益A vd0.DC Sweep仿真结果:A vd0=V(3)/V3=dy/dx=99.599k将扫描电压范围设为-500μV~500μV,当斜率为99.5987k时,测得线性工作区输入电压范围为-14.369V~12.9402V。
思考:A.当输入差模电压为0时,输出电压为多少?若要求输出电压为0,如何施加输入信号?为什么?输入差模电压为0时,输出电压为-3.3536V。
若要求输出电压为0,应将输入电压V3置为33.604μV。
B.观察运放输出电压的最高和最低电压,结合LM358P内部原理图所示电路分析该仿真结果的合理性。
最低电压:-14.369V,最高电压:12.9402V。
最低电压的绝对值大于最高电压的绝对值。
IN+可对OUT下边的PNP管射级电流造成影响。
IN+在很小的正电位时,输出为0,这导致了最低电压的绝对值大于最高电压的绝对值。
输入失调电压根据下图所示电路,仿真得到LM358P的输入失调电压V IO。
R1=1kΩ,R2=10Ω,进行直流工作点仿真,并完成表1R1=10kΩ,R2=100Ω,进行直流工作点仿真,并完成表2R1=100kΩ,R2=1kΩ,进行直流工作点仿真,并完成表3表1V3(μV) V4(μV) V5(μV) V5-V4(μV) -V3/(-R1/R2)(μV) -3416.60 -33.6312 0 33.6312 -34.16687表2V3(μV) V4(μV) V5(μV) V5-V4(μV) -V3/(-R1/R2)(μV) -3596.2 -33.6325 0 33.6325 -35.962表3V3(μV) V4(μV) V5(μV) V5-V4(μV) -V3/(-R1/R2)(μV) -5388.47 -33.6148 0 33.6148 -53.8847根据上述仿真结果,给出运放的输入失调电压V IO。
精心整理运算放大器组成的电路五花八门,令人眼花了乱,是模拟电路中学习的重点。
在分析它的工作原理时倘没有抓住核心,往往令人头大。
特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。
????遍观所有模拟电子技术的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。
???今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。
???虚短和虚断的概念???由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB以上。
而运放的输出电压是有限的,一般在10V~14V。
因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。
开环电压放大倍数越大,两输入端的电位越接近相等。
????“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。
显然不能将两输入端真正短路。
???由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。
因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。
故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。
“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。
显然不能将两输入端真正断路。
???在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。
§8.1比例运算电路令狐采学8.1.1 反相比例电路1. 基本电路电压并联负反馈输入端虚短、虚断特点:反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低输出电阻小,带负载能力强要求放大倍数较大时,反馈电阻阻值高,稳定性差。
如果要求放大倍数100,R1=100K,Rf=10M2. T型反馈网络虚短、虚断8.1.2 同相比例电路1. 基本电路:电压串联负反馈输入端虚短、虚断特点:输入电阻高,输出电阻小,带负载能力强V-=V+=Vi,所以共模输入等于输入信号,对运放的共模抑制比要求高2. 电压跟随器输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§8.2加减运算电路8.2.1 求和电路1.反相求和电路虚短、虚断特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系2.同相求和电路虚短、虚断8.2.2 单运放和差电路8.2.3 双运放和差电路例1:设计一加减运算电路设计一加减运算电路,使 Vo=2Vi1+5Vi2-10Vi3解:用双运放实现如果选Rf1=Rf2=100K,且R4= 100K则:R1=50K R2=20K R5=10K平衡电阻 R3= R1// R2// Rf1=12.5K R6=R4//R5//Rf2= 8.3K例2:如图电路,求Avf,Ri解:§8.3积分电路和微分电路8.3.1 积分电路电容两端电压与电流的关系:积分实验电路积分电路的用途将方波变为三角波(Vi:方波,频率500Hz,幅度1V)将三角波变为正弦波(Vi:三角波,频率500Hz,幅度1V)(Vi:正弦波,频率500Hz,幅度1V)思考:输入信号与输出信号间的相位关系?(Vi:正弦波,频率200Hz,幅度1V)思考:输入信号频率对输出信号幅度的影响?积分电路的其它用途:去除高频干扰将方波变为三角波移相在模数转换中将电压量变为时间量§8.3积分电路和微分电路8.3.2 微分电路微分实验电路把三角波变为方波(Vi:三角波,频率1KHz,幅度0.2V)输入正弦波(Vi:正弦波,频率1KHz,幅度0.2V)思考:输入信号与输出信号间的相位关系?(Vi:正弦波,频率500Hz,幅度1V)思考:输入信号频率对输出信号幅度的影响?§8.4对数和指数运算电路8.4.1 对数电路对数电路改进基本对数电路缺点:运算精度受温度影响大;小信号时exp(VD/VT)与1差不多大,所以误差很大;二极管在电流较大时伏安特性与PN结伏安特性差别较大,所以运算只在较小的电流范围内误差较小。
§8.1 比例运算电路8.1.1 反相比例电路1. 基本电路电压并联负反馈输入端虚短、虚断特点:反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低输出电阻小,带负载能力强要求放大倍数较大时,反馈电阻阻值高,稳定性差。
如果要求放大倍数100,R1=100K,Rf=10M2. T型反馈网络(T型反馈网络的优点是什么?)虚短、虚断8.1.2 同相比例电路1. 基本电路:电压串联负反馈输入端虚短、虚断特点:输入电阻高,输出电阻小,带负载能力强V-=V+=Vi,所以共模输入等于输入信号,对运放的共模抑制比要求高2. 电压跟随器输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§8.2 加减运算电路8.2.1 求和电路1.反相求和电路2.虚短、虚断特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系3.同相求和电路4.虚短、虚断8.2.2 单运放和差电路8.2.3 双运放和差电路例1:设计一加减运算电路设计一加减运算电路,使 Vo=2Vi1+5Vi2-10Vi3解:用双运放实现如果选Rf1=Rf2=100K,且R4= 100K则:R1=50K R2=20K R5=10K平衡电阻 R3= R1// R2// Rf1=12.5K R6=R4//R5//Rf2= 8.3K例2:如图电路,求Avf,Ri解:§8.3 积分电路和微分电路8.3.1 积分电路电容两端电压与电流的关系:积分实验电路积分电路的用途将方波变为三角波(Vi:方波,频率500Hz,幅度1V)将三角波变为正弦波(Vi:三角波,频率500Hz,幅度1V)(Vi:正弦波,频率500Hz,幅度1V)思考:输入信号与输出信号间的相位关系?(Vi:正弦波,频率200Hz,幅度1V)思考:输入信号频率对输出信号幅度的影响?积分电路的其它用途:去除高频干扰将方波变为三角波移相在模数转换中将电压量变为时间量§8.3 积分电路和微分电路8.3.2 微分电路微分实验电路把三角波变为方波(Vi:三角波,频率1KHz,幅度0.2V)输入正弦波(Vi:正弦波,频率1KHz,幅度0.2V)思考:输入信号与输出信号间的相位关系?(Vi:正弦波,频率500Hz,幅度1V)思考:输入信号频率对输出信号幅度的影响?§8.4 对数和指数运算电路8.4.1 对数电路对数电路改进基本对数电路缺点:运算精度受温度影响大;小信号时exp(VD/VT)与1差不多大,所以误差很大;二极管在电流较大时伏安特性与PN结伏安特性差别较大,所以运算只在较小的电流范围内误差较小。
§8.1 比例运算电路之吉白夕凡创作8.1.1 反相比例电路1. 基本电路电压并联负反应输入端虚短、虚断特点:反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低输出电阻小,带负载能力强要求缩小倍数较大时,反应电阻阻值高,稳定性差.如果要求缩小倍数100,R1=100K,Rf=10M2. T型反应网络虚短、虚断8.1.2 同相比例电路1. 基本电路:电压串联负反应输入端虚短、虚断特点:输入电阻高,输出电阻小,带负载能力强V-=V+=Vi,所以共模输入等于输入信号,对运放的共模抑制比要求高2. 电压跟从器输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§8.2加减运算电路8.2.1 求和电路1.反相求和电路虚短、虚断特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系2.同相求和电路虚短、虚断8.2.2 单运放和差电路8.2.3 双运放和差电路例1:设计一加减运算电路设计一加减运算电路,使Vo=2Vi1+5Vi2-10Vi3解:用双运放实现如果选Rf1=Rf2=100K,且R4= 100K则:R1=50K R2=20K R5=10K平衡电阻R3= R1// R2// Rf1=12.5K R6=R4//R5//Rf2= 8.3K例2:如图电路,求Avf,Ri解:§8.3积分电路和微分电路8.3.1 积分电路电容两端电压与电流的关系:积分实验电路积分电路的用途将方波变成三角波(Vi:方波,频率500Hz,幅度1V)将三角波变成正弦波(Vi:三角波,频率500Hz,幅度1V)(Vi:正弦波,频率500Hz,幅度1V)思考:输入信号与输出信号间的相位关系?(Vi:正弦波,频率200Hz,幅度1V)思考:输入信号频率对输出信号幅度的影响?积分电路的其它用途:去除高频搅扰将方波变成三角波移相在模数转换中将电压量变成时间量§8.3积分电路和微分电路8.3.2 微分电路微分实验电路把三角波变成方波(Vi:三角波,频率1KHz,幅度0.2V)输入正弦波(Vi:正弦波,频率1KHz,幅度0.2V)思考:输入信号与输出信号间的相位关系?(Vi:正弦波,频率500Hz,幅度1V)思考:输入信号频率对输出信号幅度的影响?§8.4对数和指数运算电路8.4.1 对数电路对数电路改良基本对数电路缺点:运算精度受温度影响大;小信号时exp(VD/VT)与1差未几大,所以误差很大;二极管在电流较大时伏安特性与PN结伏安特性不同较大,所以运算只在较小的电流规模内误差较小.改良电路1:用三极管代替二极管电路在理想情况下可完全消除温度的影响改良电路3:实用对数电路如果忽略T2基极电流, 则M点电位:8.4.2 指数电路1. 基本指数电路2. 反函数型指数电路电路必须是负反应才干正常任务,所以:§8.5乘除运算电路8.5.1 基本乘除运算电路1. 乘法电路乘法器符号同相乘法器反向乘法器2. 除法电路8.5.2. 乘法器应用1. 平方运算和正弦波倍频如果输入信号是正弦波:只要在电路输出端加一隔直电容,即可得到倍频输出信号.2. 除法运算电路注意:只有在VX2>0时电路才是负反应负反应时,按照虚短、虚断概念:3. 开方运算电路输入电压必须小于0,不然电路将变成正反应.两种可使输入信号大于0的计划:3. 调制(调幅)4. 压控增益乘法器的一个输入端接直流电压(控制信号),另一个接输入信号,则输出信号与输入信号之比(电压增益)成正比.V0=KVXvY 电流-电压变换器由图可知可见输出电压与输入电流成比例.输出端的负载电流:电流-电压变换电路若Rl固定,则输出电流与输入电流成比例,此时该电路也可视为电流缩小电路.电压-电流变换器负载不接地负载接地由负载不接地电路图可知:所以输出电流与输入电压成比例.对负载接地电路图电路,R1和R2组成电流并联负反应;R3、R4和RL组成组成电压串联正反应.讨论:1. 当分母为零时, iO →∞,电路自激.2. 当R2 /R1 =R3 /R4时, 则:说明iO与VS成正比, 实现了线性变换.电压-电流和电流-电压变换器广泛应用于缩小电路和传感器的连接处,是很有用的电子电路.§8.6有源滤波电路8.6.1 滤波电路基础知识一. 无源滤波电路和有源滤波电路无源滤波电路: 由无源元件( R , C , L ) 组成有源滤波电路: 用任务在线性区的集成运放和RC网络组称,实际上是一种具有特定频率响应的缩小器.有源滤波电路的优点, 缺点: 请看书.二. 滤波电路的分类和主要参数1. 按所处理的信号可分为模拟的和数字的两种;2. 按所采取的元器件可分为有源和无源;3. 按通过信号的频段可分为以下五种:a. 低通滤波器( LPF )Avp: 通带电压缩小倍数fp: 通带截至频率过渡带: 越窄标明选频性能越好,理想滤波器没有过渡带b. 高通滤波器( HPF )c. 带通滤波器( BPF )d. 带阻滤波器( BEF )、e. 全通滤波器( APF )4. 按频率特性在截止频率fp邻近形状的不合可分为Butterworth , Chebyshev 和Bessel等.理想有源滤波器的频响:滤波器的用途滤波器主要用来滤除信号中无用的频率成分,例如,有一个较低频率的信号,其中包含一些较高频率成分的搅扰.滤波过程如图所示.§8.6有源滤波电路8.6.2 低通滤波电路( LPF )低通滤波器的主要技术指标(1)通带增益Avp通带增益是指滤波器在通频带内的电压缩小倍数,如图所示.性能良好的LPF通带内的幅频特性曲线是平坦的,阻带内的电压缩小倍数基本为零.(2)通带截止频率fp其定义与缩小电路的上限截止频率相同.通带与阻带之间称为过渡带,过渡带越窄,说明滤波器的选择性越好.8.6.2.1 一阶低通滤波电路( LPF )一. 电路组成组成:简单RC滤波器同相缩小器特点:│Avp│ >0,带负载能力强缺点:阻带衰减太慢,选择性较差.二. 性能阐发有源滤波电路的阐发办法:1.电路图→电路的传递函数Av(s)→频率特性Av(jω)2. 按照定义求出主要参数3. 画出电路的幅频特性一阶LPF的幅频特性:8.6.2.2 简单二阶LPF一. 电路组成组成: 二阶RC网络同相缩小器通带增益:二. 主要性能1. 传递函数:2.通带截止频率:3.幅频特性:特点:在f>f0 后幅频特性以-40dB/dec的速度下降;缺点:f=f0 时,缩小倍数的模只有通带缩小倍数模的三分之一.8.6.2.3 二阶压控电压源LPF二阶压控电压源一般形式二阶压控电压源LPF阐发:Avp同前对节点N , 可以列出下列方程:联立求解以上三式,可得LPF的传递函数:上式标明,该滤波器的通带增益应小于3,才干包管电路稳定任务.频率特性:当Avp≥3时,Q =∞,有源滤波器自激.由于将接到输出端,等于在高频端给LPF加了一点正反应,所以在高频端的缩小倍数有所抬高,甚至可能引起自激.二阶压控电压源LPF的幅频特性:巴特沃思(压控)LPF仿真结果Q=0.707 fp=f0=100Hz§8.6有源滤波电路8.6.2.4 无限增益多路反应滤波器无限增益多路反应有源滤波器一般形式,要求集成运放的开环增益远大于60DB无限增益多路反应LPF由图可知:对节点N , 列出下列方程:通带电压缩小倍数频率响应为:巴特沃思(无限增益)LPF仿真结果Q=0.707 fp=f0=1000Hz8.6.3 高通滤波电路( HPF )8.6.3.1 HPF与LPF的对偶关系1. 幅频特性对偶(相频特性不合错误偶)2. 传递函数对偶低通滤波器传递函数高通滤波器传递函数HPF与LPF的对偶关系3. 电路结构对偶将起滤波作用的电容换成电阻将起滤波作用的电阻换成电容低通滤波电路高通滤波电路8.6.3.2 二阶压控电压源HPF二阶压控电压源LPF 二阶压控电压源HPF电路形式相互对偶二阶压控电压源HPF传递函数: 低通:高通:二阶压控电压源HPF二阶压控电压源HPF幅频特性:8.6.3.3 无限增益多路反应HPF无限增益多路反应LPF无限增益多路反应HPF8.6.4 带通滤波器(BPF)BPF的一般组成办法:优点:通带较宽,通带截至频率容易调整缺点:电路元件较多一般带通滤波电路仿真结果二阶压控电压源BPF二阶压控电压源一般形式二阶压控电压源BPF传递函数:截止频率:RC选定后,改动R1和Rf即可改动频带宽度二阶压控电压源BPF仿真电路仿真结果8.6.5 带阻滤波器(BEF)BEF的一般形式缺点:电路元件较多且HPF与LPF相并比较困难.基本BEF电路同相比例无源带阻(双T网络)双T带阻网络双T带阻网络二阶压控电压源BEF电路正反应,只在f0邻近起作用传递函数二阶压控电压源BEF仿真电路仿真结果例题1:要求二阶压控型LPF的f0=400Hz , Q值为0.7,试求电路中的电阻、电容值.解:按照f0 ,选取C再求R.1. C的容量不容易超出 . 因大容量的电容器体积大,价格高,应尽量避免使用.取计算出:R=3979Ω取R=3.9KΩ2.按照Q值求和,因为时,按照与、的关系,集成运放两输入端外接电阻的对称条件按照与R1 、Rf 的关系,集成运放两输入端外接电阻的对称条件.例题1仿真结果例题与习题2LPF例题与习题2仿真结果例题与习题3HPF例题与习题3仿真结果例题与习题4例题与习题4仿真结果vo1 :红色vo :蓝色。
运放微分方程
我们要解决一个关于运放(运算放大器)的微分方程问题。
首先,我们需要理解运放的基本工作原理和微分方程的基本概念。
运放是一个电子放大器,它可以放大输入信号的幅度。
微分方程是描述一个变量如何随时间变化的数学方程,其中包含该变量的导数。
假设运放的输入电压为 V_in,输出电压为 V_out。
运放的增益为 A,时间常数为 T。
根据运放的工作原理,我们可以建立以下微分方程:
V_out = A (1 - exp(-t/T)) V_in
其中,t 是时间,T 是时间常数,A 是增益。
现在我们要来解这个微分方程,找出 V_out 的表达式。
计算结果为:V_out = AV_in - AV_inexp(-t/T)
所以,运放的输出电压 V_out 是:AV_in - AV_inexp(-t/T)。
运算放大器11种经典电路运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。
在分析它的工作原理时倘没有抓住核心,往往令人头大。
特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。
遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。
今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。
虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。
而运放的输出电压是有限的,一般在 10 V~14 V。
因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。
开环电压放大倍数越大,两输入端的电位越接近相等。
“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。
显然不能将两输入端真正短路。
由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。
因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。
故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。
“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。
显然不能将两输入端真正断路。
在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。