(完整版)物理必修二知识点总结
- 格式:doc
- 大小:200.01 KB
- 文档页数:6
高二物理必修二知识点总结高二物理必修二知识点总结(7篇)总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,它可以给我们下一阶段的学习和工作生活做指导,让我们来为自己写一份总结吧。
但是总结有什么要求呢?以下是小编为大家整理的高二物理必修二知识点总结,仅供参考,希望能够帮助到大家。
高二物理必修二知识点总结1一、电源和电流1、电流产生的条件:(1)导体内有大量自由电荷(金属导体——自由电子;电解质溶液——正负离子;导电气体——正负离子和电子)(2)导体两端存在电势差(电压)(3)导体中存在持续电流的条件:是保持导体两端的电势差。
2电流的方向电流可以由正电荷的定向移动形成,也可以是负电荷的定向移动形成,也可以是由正负电荷同时定向移动形成。
习惯上规定:正电荷定向移动的方向为电流的方向。
说明:(1)负电荷沿某一方向运动和等量的正电荷沿相反方向运动产生的效果相同。
金属导体中电流的方向与自由电子定向移动方向相反。
(2)电流有方向但电流强度不是矢量。
(3)方向不随时间而改变的电流叫直流;方向和强度都不随时间改变的电流叫做恒定电流。
通常所说的直流常常指的是恒定电流。
二、电动势1、电源(1)电源是通过非静电力做功把其他形式的能转化为电势能的装置。
(2)非静电力在电源中所起的作用:是把正电荷由负极搬运到正极,同时在该过程中非静电力做功,将其他形式的能转化为电势能。
【注意】在不同的电源中,是不同形式的能量转化为电能。
2、电动势(1)定义:在电源内部,非静电力所做的功W与被移送的电荷q 的比值叫电源的电动势。
(2)定义式:E=W/q(3)物理意义:表示电源把其它形式的能(非静电力做功)转化为电能的本领大小。
电动势越大,电路中每通过1C电量时,电源将其它形式的能转化成电能的数值就越多。
【注意】:①电动势的大小由电源中非静电力的特性(电源本身)决定,跟电源的体积、外电路无关。
②电动势在数值上等于电源没有接入电路时,电源两极间的电压。
必修2物理知识点整理1、 直线运动——合力与速度在同一直线上,曲线运动——合力与速度不在同一直线上,指向曲线内侧。
2、合力的效果:合力沿切线标的目的的分力F 2改变速度的大小,沿径向的分力F 1改变速度的标的目的。
大。
小。
③当合力标的目的与速度标的目的垂直时,物体的速率不变。
(匀速圆周运动)一、 基本物理量矢量:222s v r r fr nr t T πωππ∆=====∆ 单位:m/s 222f n t T ϕπωππ∆====∆ 单位rad/s标量:22r T v ππω== 单位:s 1f T = 单位:Hz Nn t = 单位:r/s (单位是r/s 时,n f =)矢量:2222n 2()(2)πωωπ=====v a r v r f r r T标的目的时刻指向圆心,标的目的改变,向心加速度是变量。
2222n n 2()(2)πωωπ======v F ma m m r m v m r m f r r T标的目的始终指向圆心,标的目的改变,向心力是变量。
匀速圆周运动特点是线速度大小不变,标的目的改变,即n =合F F 。
条件是合力标的目的始终与线速度标的目的垂直,则上述7个物理量,变化的物理量是 ,不变的是二、模型归纳1、水平面内的匀速圆周运动①火车转弯:如果车轮与铁轨间无挤压力,向心力由重力和支持力提供rv m mg 2tan =ααtan gr v = v 增加,挤压外轨,如果v 减小,挤压内轨。
(飞机转弯、汽车在内低外高路面转弯,汽车在水平路面转弯静摩擦力提供向心力)②圆锥摆:在横线上写出向心力来源公式, , , 2、 竖直面内的匀速圆周运动①无支撑物情况:绳栓小球和小球在圆内轨运动(弹力只能指向圆心)不考虑阻力情况下,小球机械能守恒,物体做圆周运动的速率时刻在改变。
最低点:2m mv F mg R -=弹(超重) 最高点:Rmv mg F 2min=+弹(失重)过最高点临界条件:Rmv mg 2临=,gr v =临, gR v ≥是过最高点条件。
高中物理必修二知识点高中物理必修二知识点第一章电学基础1.电荷与电场2.静电场及其能量3.恒定电流4.恒定电流的欧姆定律5.功率6.电功及其应用7.简单电路的分析和计算8.肖特基二极管原理第二章流体静力学1.流体静力学引论2.液体静压力3.大气压力与气压计4.液体表面张力和毛细现象5.流体动力学引论6.连通管和泵的基本原理第三章阻力和三大运动定律1.弹性和塑性2.卡车定理3.摩擦力和牛顿第一定律4.牛顿第二定律5.牛顿第三定律6.匀加速直线运动7.平抛运动第四章动量和能量守恒定律1.动量定理和动量守恒定律2.力的功3.能量守恒定律4.弹性碰撞和非弹性碰撞5.约束系统的动能变化定理第五章万有引力和行星运动1.万有引力的发现2.牛顿万有引力定律3.行星运动4.卫星运动第六章震动和波动1.周期、频率和相位2.简谐振动3.阻尼振动和强迫振动4.波动的基本概念和分类5.机械波和电磁波的传播6.多普勒效应第七章光学1.光的波动理论2.光速的测定3.光的干涉和衍射4.杨氏双缝干涉实验5.菲涅尔衍射和菲涅尔透镜6.偏振光与双折射现象7.光的反射和折射8.球面镜成像第八章原子物理1.原子的结构和能级2.玻尔原子模型和玻尔-里德堡公式3.氢谱系和能级图4.量子力学的基本概念5.波粒二象性6.爱因斯坦光电效应7.康普顿效应和弗兰克-赫兹实验。
高中物理必修二知识点总结(优秀3篇)高中物理必修二知识点总结篇一1.万有引力定律:引力常量G=6.67×N?m2/kg22.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距。
(物体的尺寸比两物体的。
距离r小得多时,可以看成质点)3.万有引力定律的应用:(中心天体质量M,天体半径R,天体表面重力加速度g)(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)(2)重力=万有引力地面物体的重力加速度:mg=Gg=G≈9.8m/s2高空物体的重力加速度:mg=Gg=G9.8m/s24.第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运动的卫星中线速度是最大的。
由mg=mv2/R或由==7.9km/s5.开普勒三大定律6.利用万有引力定律计算天体质量7.通过万有引力定律和向心力公式计算环绕速度8.大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度(含义)高中物理必修二知识点总结篇二一、直线运动1、质点:用来代替物体的有质量的点。
2、说明:(1)质点是一个理想化模型,实际上并不存在。
(2)物体可以简化成质点的情况:①物体各部分的运动情况都相同时(如平动)。
②物体的大小和形状对所研究问题的影响可以忽略不计的情况下(如研究地球的公转)。
二、参考系和坐标系1、参考系:在描述一个物体的运动时,用来作为标准的另外的物体。
说明:(1)同一个物体,如果以不同的物体为参考系,观察结果可能不同。
(2)参考系的选取是任意的,原则是以使研究物体的运动情况简单为原则;一般情况下如无说明,则以地面或相对地面静止的物体为参考系。
2、坐标系:为定量研究质点的位置及变化,在参考系上建立坐标系,如质点沿直线运动,以该直线为x轴;研究平面上的运动可建立直角坐标系。
三、时刻和时间1、时刻:指的是某一瞬间,在时间轴上用—个确定的点表示。
如“3s末”;和“4s初”。
物理必修二知识点整理一.曲线运动1.曲线运动的位移:平面直角坐标系通常设位移方向与x轴夹角为α2.曲线运动的速度:①质点在某一点的速度,沿曲线在这一点的切线方向②速度在平面直角坐标系中可分解为水平速度V x及竖直速度V y V2=V x2+V y23.曲线运动是变速运动(速度是矢量,方向或大小任一的改变都会造成速度的变化,曲线运动中,速度的方向一定改变)4.物体做曲线运动的条件:物体所受合力的方向与它的速度方向不在同一直线上二.平抛运动(曲线运动特例)1.定义:以一定的速度将物体抛出,如果物体只受重力的作用,这时的运动叫做抛体运动,抛体运动开始时的速度叫做初速度。
如果初速度是沿水平方向的,这个运动叫做平抛运动2.平抛运动的速度:①水平方向做匀速直线运动初速度V0即为V x 一直保持不变②竖直方向做自由落体运动V y=gt③合速度:V2=V x2+V y2=V02+(gt)2 方向:与X轴的夹角为θtanθ=V y/V0=gt/V03.平抛运动的位移:①水平方向X=V0t②竖直方向y=½gt2 ③合位移S2=x2+y2=(V0t)2+(½gt2 )2 方向:与X轴夹角为αtanα=y/x=V0t/½gt2=2V0/gt三.圆周运动1.线速度V:①圆周运动的快慢可以用物体通过的弧长与所用时间的比值来量度该比值即为线速度②V=Δs/Δt 单位:m/s③匀速圆周运动:物体沿着圆周运动,并且线速度的大小处处相等(tips:方向时时改变)2.角速度ω:①物体做圆周运动的快慢还可以用它与圆心连线扫过角度的快慢来描述,即角速度②公式ω=Δθ/Δt (角度使用弧度制)ω的单位是rad/s3.转速r:物体单位时间转过的圈数单位:转每秒或转每分4.周期T:做匀速圆周运动的物体,转过一周所用的时间单位:秒S5.关系式:V=ωr(r为半径)ω=2π/T6.向心加速度①定义:任何做匀速圆周运动的物体的加速度都指向圆心,这个加速度叫做向心加速度②表达式 a=V2/r=ω2r=(4π2/T2)r=4π2f2r=4π2n2r(n指转过的圈数)方向:指向圆心7.向心力 F=m V2/r=mω2r=m(4π2/T2)r=4π2f2mr=4π2n2mr 方向:指向圆心8.生活中的圆周运动①铁路的弯道:②拱形桥:(1)凹形:F向=F N-G向心加速度的方向竖直向上(2)凸形:F向=G-F N向心加速度的方向竖直向下③航天器失重:航天员受到地球引力与飞船座舱的支持力,合力提供绕地球做匀速圆周运动的所需的向心力 mg-F N=mv2/R v=√gR时F N=0 航天员处于失重状态④离心运动(逐渐远离圆心):(1)做圆周运动的物体,由于惯性,总有沿切线方向飞去的倾向。
(完整版)高中物理人教版必修二知识点总
结
力学
第一章机械基础知识
- 机械运动和参照系
- 直线运动的描述
- 动能和动能定理
- 动量和动量定理
- 机械能守恒定律
第二章力的作用和力的效果
- 分类和测量力
- 推力和拉力
- 摩擦力
- 弹力
- 合力和力的分解
- 牛顿第一和第二定律
第三章牛顿第三定律和力的平衡
- 牛顿第三定律
- 力的合成
- 力的平衡和不平衡
- 平衡的条件
- 弹簧测力计
热学
第四章热学基础知识
- 热学现象和热量的传递
- 温度和热平衡
- 热膨胀和热机械转换
- 热力学第一定律
第五章气体的分子动理论
- 分子动理论的基本假设
- 气体分子的速率分布
- 热力学温度和分子动理论温度的联系- 分子自由度和平均动能定理
第六章热力学第二定律及其应用
- 热力学第二定律
- 卡诺热机
- 熵和热力学第二定律的表述
光学
第七章光的直线传播
- 光的直线传播
- 光的反射
- 光的折射
- 光的透射和光的反射、折射定律
- 可见光谱和线性偏振光
第八章光的波动性
- 光的干涉
- 光的衍射
- 杨氏实验和光的相干性
- 光的偏振和偏振器
- 波粒二象性
第九章光的粒子特性
- 光电效应
- 光子的概念
- 康普顿散射
- 波粒二象性的应用
以上是高中物理人教版必修二的知识点总结。
希望对你有所帮助。
高中物理必修二知识点总结一、功与机械能1. 功:力对物体做功,即改变物体的位置、速度或形状。
力的功的大小:F·s=FScosφ。
其中,F为力的大小,s是力的方向上的位移的大小,φ是力与位移方向的夹角。
2. 功与能:功是一种能的转移。
把能从一个物体或一个系统转移到另一个物体或系统,就是做功。
功是能的量度。
3. 功率:单位时间内做功的多少。
功率的大小P等于功W对时间t的比值,即P=W/t。
功率的单位是瓦特(W),1W=1J/s。
4. 机械能守恒定律:系统总机械能守恒的条件是:只要物体之间的相互作用力是保守力,当没有非保守力对系统做功时,系统的总机械能守恒。
二、牛顿运动定律1. 牛顿第一定律:当物体没有受到合外力,或合外力为零时,物体要么静止,要么以匀速直线运动。
2. 牛顿第二定律:物体受合外力作用时,其加速度与合外力成正比,与物体的质量成反比。
F=ma。
其中,F为合外力,m为物体的质量,a为物体的加速度。
3. 牛顿第三定律:当两个物体相互作用时,彼此之间的作用力大小相等,方向相反。
这两个物体所受的合外力是相等的,方向相反。
三、万有引力与万有引力定律1. 万有引力:地球是一个大质量物体,可以给周围的物体施加吸引力,这种吸引力称为地球引力。
地球引力的大小与物体的质量和地球的质量成正比,与物体和地球的距离的平方成反比。
2. 万有引力定律:两个物体之间的引力与它们质量的乘积成正比,与它们之间距离的平方成反比。
两个物体之间的引力大小由万有引力定律来描述:F=G(m1m2/r^2),其中,F为引力的大小,m1、m2分别是两个物体的质量,r为它们之间的距离,G为万有引力常量。
四、牛顿引力定律1. 地球引力:地球上物体所受重力,是一种宏观现象。
重力的大小与物体的质量成正比,与地球到物体距离的平方成反比。
2. 重力加速度:地球每个地方都存在一个重力加速度g,大小约为9.8m/s²。
3. 牛顿引力定律:两个质量分别为m1,m2的物体之间的引力大小与它们质量的乘积成正比,与它们之间距离的平方成反比。
高一物理必修二知识点1。
曲线运动1.曲线运动的特征(1)曲线运动的轨迹是曲线。
(2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。
即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。
(3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。
(注意:合外力为零只有两种状态:静止和匀速直线运动。
)曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动.2.物体做曲线运动的条件(1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。
(2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。
3.匀变速运动:加速度(大小和方向)不变的运动.也可以说是:合外力不变的运动。
4曲线运动的合力、轨迹、速度之间的关系(1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。
(2)合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度的方向.①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。
②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。
③当合力方向与速度方向垂直时,物体的速率不变.(举例:匀速圆周运动)2。
绳拉物体合运动:实际的运动。
对应的是合速度。
方法:把合速度分解为沿绳方向和垂直于绳方向。
3.小船渡河例1:一艘小船在200m 宽的河中横渡到对岸,已知水流速度是3m/s ,小船在静水中的速度是5m/s, 求:(1)欲使船渡河时间最短,船应该怎样渡河?最短时间是多少?船经过的位移多大?(2)欲使航行位移最短,船应该怎样渡河?最短位移是多少?渡河时间多长?船渡河时间:主要看小船垂直于河岸的分速度,如果小船垂直于河岸没有分速度,则不能渡河.min cos d dt t v v θ=⇒=船船(此时θ=0°,即船头的方向应该垂直于河岸)解:(1)结论:欲使船渡河时间最短,船头的方向应该垂直于河岸。
物理必修二知识点总结6篇篇1一、机械能1. 功:功是标量,没有方向,但有正负。
正功表示动力对物体做功,负功表示阻力对物体做功。
功的公式:W=FS。
2. 动能:物体由于运动而具有的能量叫动能。
动能定理:合外力做的功等于物体动能的变化,即W=ΔEK。
3. 势能:势能是相对的,与零势能面的选择有关。
重力势能:Ep=mgh,弹性势能:Ep=kx²/2。
4. 机械能守恒定律:在只有重力或弹力做功的物体系统内,物体的动能和势能可以相互转化,但机械能的总和保持不变。
二、曲线运动1. 曲线运动的条件:物体所受合外力方向与速度方向不在同一直线上。
2. 曲线运动的性质:曲线运动的速度方向时刻改变,是变速运动。
3. 生活中的曲线运动:平抛运动、斜抛运动、圆周运动等。
三、万有引力与航天1. 万有引力定律:任何两个物体都要相互吸引,引力的大小与两物体的质量的乘积成正比,与两物体间的距离的平方成反比。
公式:F=GMm/r²。
2. 重力:由于地球的吸引而使物体受到的力叫重力。
地球表面附近的重力加速度为g=9.8m/s²。
3. 宇宙速度:(1)第一宇宙速度(环绕速度):v1=7.9km/s,这是卫星的最小发射速度,也是卫星的最大运行速度。
(2)第二宇宙速度(脱离速度):v2=11.2km/s,这是使卫星脱离地球引力束缚的最小发射速度。
(3)第三宇宙速度(逃逸速度):v3=16.7km/s,这是使卫星挣脱太阳引力束缚的最小发射速度。
4. 卫星的变轨:通过改变卫星的轨道高度和速度,可以实现卫星的变轨。
轨道高度越大,速度越小,周期越大。
5. 航天器:航天器按用途可分为人造地球卫星、载人飞船、空间站、深空探测器等。
四、动量与动量守恒定律1. 动量:物体的质量和速度的乘积叫动量。
公式:P=mv。
2. 动量守恒定律:一个系统不受外力或所受外力的矢量和为零,这个系统的总动量保持不变。
公式:m1v1+m2v2+ 03. 弹性碰撞:两球发生碰撞后,两球都发生形变,形变后的两球重新恢复原状,这种碰撞叫弹性碰撞。
物理必修二知识点总结第一章力学一、力学基本概念1. 力的概念:力是物体之间相互作用的结果,可以改变物体的形状、速度、方向等。
2. 力的性质:力是矢量,具有大小和方向,可以叠加,同时也遵循牛顿第三定律。
3. 力的计算:力的计算可以使用受力分析法,通过分解力的合力和分力来求解问题。
4. 力的单位:国际单位制中,力的单位是牛顿(N),在实验中也可以用弹簧测力计来测量力的大小。
二、力的直接测量1. 弹簧测力计:通过弹簧的伸缩变形来测量力的大小,根据胡克定律可以计算出物体受到的力。
2. 测力计:利用杠杆原理来测量力的大小,通过杠杆的平衡条件来确定力的大小。
三、运动学1. 位移、速度、加速度:位移是描述物体位置的变化,速度是位移对时间的导数,加速度是速度对时间的导数。
2. 运动方程:匀变速直线运动的运动方程可以用来描述物体运动的规律,包括位移、速度、加速度的关系。
3. 自由落体:自由落体是指物体在没有任何阻力的情况下下落,可以根据重力加速度求解自由落体运动的问题。
四、牛顿力学1. 牛顿三定律:牛顿第一定律(惯性定律)、牛顿第二定律(运动定律)、牛顿第三定律(作用-反作用定律)是力学的基本定律。
2. 弹簧力:弹簧的伸长或缩短产生的恢复力可以根据胡克定律来计算。
3. 惯性系和非惯性系:惯性系是牛顿运动定律成立的参考系,而非惯性系则需要引入惯性力来描述物体的运动。
第二章力学一、力与运动1. 动力学:动力学是研究物体受力作用下的运动情况的一部分,包括牛顿第二定律的应用。
2. 一维运动:一维运动是指物体在一条直线上的运动,可以根据牛顿第二定律求解一维运动问题。
3. 二维运动:二维运动是指物体在平面上的运动,需要利用受力分析和向量法来求解二维运动问题。
二、物体的受力分析1. 平衡条件:当物体处于静止或匀速运动时,受到的合力和合力矩为零,称为力的平衡条件。
2. 物体的平衡:通过受力分析和力矩平衡条件可以求解物体的平衡状态,包括悬挂、支持等情况。
第一节 曲线运动 运动的合成与分解【基本概念、规律】 一、曲线运动1.速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向.2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动. 3.曲线运动的条件:物体所受合力的方向跟它的速度方向不在同一条直线上或它的加速度方向与速度方向不在同一条直线上. 二、运动的合成与分解 1.运算法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则. 2.合运动和分运动的关系(1)等时性:合运动与分运动经历的时间相等.(2)独立性:一个物体同时参与几个分运动时,各分运动独立进行,不受其他分运动的影响. (3)等效性:各分运动叠加起来与合运动有完全相同的效果. 【重要考点归纳】考点一 对曲线运动规律的理解 1.曲线运动的分类及特点(1)匀变速曲线运动:合力(加速度)恒定不变. (2)变加速曲线运动:合力(加速度)变化. 2.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力方向指向轨迹的“凹”侧. 3.速率变化情况判断(1)当合力方向与速度方向的夹角为锐角时,速率增大; (2)当合力方向与速度方向的夹角为钝角时,速率减小; (3)当合力方向与速度方向垂直时,速率不变. 考点二 运动的合成及合运动性质的判断 1.运动的合成与分解的运算法则运动的合成与分解是指描述运动的各物理量即位移、速度、加速度的合成与分解,由于它们均是矢量,故合成与分解都遵循平行四边形定则. 2.合运动的性质判断⎩⎪⎨⎪⎧加速度或合外力⎩⎨⎧变化:变加速运动不变:匀变速运动加速度或合外力与速度方向⎩⎨⎧共线:直线运动不共线:曲线运动3.两个直线运动的合运动性质的判断两个互成角度的分运动 合运动的性质 两个匀速直线运动 匀速直线运动 一个匀速直线运动、匀变速曲线运动进行各量的合成运算.【思想方法与技巧】两种运动的合成与分解实例一、小船渡河模型1.模型特点两个分运动和合运动都是匀速直线运动,其中一个分运动的速度大小、方向都不变,另一分运动的速度大小不变,研究其速度方向不同时对合运动的影响.这样的运动系统可看做小船渡河模型.2.模型分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度).(3)两个极值①过河时间最短:v1⊥v2,t min=dv1(d为河宽).②过河位移最小:v⊥v2(前提v1>v2),如图甲所示,此时x min=d,船头指向上游与河岸夹角为α,cos α=v2v1;v1⊥v(前提v1<v2),如图乙所示.过河最小位移为x min=dsin α=v2v1d.3.求解小船渡河问题的方法求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移.无论哪类都必须明确以下三点:(1)解决这类问题的关键是:正确区分分运动和合运动,在船的航行方向也就是船头指向方向的运动,是分运动;船的运动也就是船的实际运动,是合运动,一般情况下与船头指向不共线.(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则沿水流方向和船头指向分解.(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关.二、绳(杆)端速度分解模型1.模型特点绳(杆)拉物体或物体拉绳(杆),以及两物体通过绳(杆)相连,物体运动方向与绳(杆)不在一条直线上,求解运动过程中它们的速度关系,都属于该模型.2.模型分析(1)合运动→绳拉物体的实际运动速度v(2)分运动→⎩⎨⎧其一:沿绳或杆的分速度v 1其二:与绳或杆垂直的分速度v 2(3)关系:沿绳(杆)方向的速度分量大小相等. 3.解决绳(杆)端速度分解问题的技巧(1)明确分解谁——分解不沿绳(杆)方向运动物体的速度; (2)知道如何分解——沿绳(杆)方向和垂直绳(杆)方向分解;(3)求解依据——因为绳(杆)不能伸长,所以沿绳(杆)方向的速度分量大小相等.第二节 抛体运动【基本概念、规律】 一、平抛运动1.性质:平抛运动是加速度恒为重力加速度g 的匀变速曲线运动,轨迹是抛物线.2.规律:以抛出点为原点,以水平方向(初速度v 0方向)为x 轴,以竖直向下的方向为y 轴建立平面直角坐标系,则(1)水平方向:做匀速直线运动,速度:v x =v 0,位移:x =v 0t .(2)竖直方向:做自由落体运动,速度:v y =gt ,位移:y =12gt 2. (3)合运动①合速度:v =v 2x +v 2y ,方向与水平方向夹角为θ,则tan θ=v y v 0=gt v 0. ②合位移:x 合=x 2+y 2,方向与水平方向夹角为α,则tan α=y x =gt2v 0.二、斜抛运动 1.性质加速度为g 的匀变速曲线运动,轨迹为抛物线.2.规律(以斜向上抛为例说明,如图所示)(1)水平方向:做匀速直线运动,v x =v 0cos θ. (2)竖直方向:做竖直上抛运动,v y =v 0sin θ-gt . 【重要考点归纳】考点一 平抛运动的基本规律及应用 1.飞行时间:由t =2hg 知,时间取决于下落高度h ,与初速度v 0无关.2.水平射程:x =v 0t =v 02hg ,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关.3.落地速度:v t =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与x轴正方向的夹角,有tan θ=v y v x =2ghv 0,所以落地速度也只与初速度v 0和下落高度h 有关.4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g,所以做平抛运动的物体在任意相等时间间隔Δt内的速度改变量Δv=gΔt相同,方向恒为竖直向下,如图甲所示.5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图乙中A点和B点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ.6.“化曲为直”思想在抛体运动中的应用(1)根据等效性,利用运动分解的方法,将其转化为两个方向上的直线运动,在这两个方向上分别求解.(2)运用运动合成的方法求出平抛运动的速度、位移等.考点二与斜面相关联的平抛运动1.斜面上的平抛问题是一种常见的题型,在解答这类问题时除要运用平抛运动的位移和速度规律,还要充分运用斜面倾角,找出斜面倾角同位移和速度与水平方向夹角的关系,从而使问题得到顺利解决.常见的模型如下:2.(1)从斜面上某点抛出又落到斜面上,位移与水平方向夹角等于斜面倾角;(2)从斜面外抛出的物体落到斜面上,注意找速度方向与斜面倾角的关系.考点三与圆轨道关联的平抛运动在竖直半圆内进行平抛时,圆的半径和半圆轨道对平抛运动形成制约.画出落点相对圆心的位置,利用几何关系和平抛运动规律求解.平抛运动的临界问题(1)在解决临界和极值问题时,正确找出临界条件(点)是解题关键.(2)对于平抛运动,已知平抛点高度,又已知初速度和水平距离时,要进行平抛运动时间的判断,即比较t1=2hg与t2=xv0,平抛运动时间取t1、t2的小者.(3)本题中,两发子弹不可能打到靶上同一点的说明:若打到靶上同一点,则子弹平抛运动时间相同,即t =Lv 0+v =L -90v ,L =3 690 m ,t =4.5 s >2hg =0.6 s ,即子弹0.6 s 后就已经打到地上.第三节 圆周运动【基本概念、规律】一、描述圆周运动的物理量1.线速度:描述物体圆周运动的快慢,v =Δs Δt =2πrT .2.角速度:描述物体转动的快慢,ω=ΔθΔt =2πT .3.周期和频率:描述物体转动的快慢,T =2πr v ,T =1f . 4.向心加速度:描述线速度方向变化的快慢.a n =rω2=v 2r =ωv =4π2T 2r .5.向心力:作用效果产生向心加速度,F n =ma n . 二、匀速圆周运动和非匀速圆周运动的比较 项目 匀速圆周运动 非匀速圆周运动 定义 线速度大小不变的圆周运动 线速度大小变化的圆周运动 运动特点 F 向、a 向、v 均大小不变,方向变化,ω不变F 向、a 向、v 大小、方向均发生变化,ω发生变化向心力F 向=F 合由F 合沿半径方向的分力提供三、离心运动1.定义:做圆周运动的物体,在合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动. 2.供需关系与运动如图所示,F 为实际提供的向心力,则: (1)当F =mω2r 时,物体做匀速圆周运动; (2)当F =0时,物体沿切线方向飞出; (3)当F <mω2r 时,物体逐渐远离圆心; (4)当F >mω2r 时,物体逐渐靠近圆心. 【重要考点归纳】考点一 水平面内的圆周运动1.运动实例:圆锥摆、火车转弯、飞机在水平面内做匀速圆周飞行等.2.重力对向心力没有贡献,向心力一般来自弹力、摩擦力或电磁力.向心力的方向水平,竖直方向的合力为零.3.涉及静摩擦力时,常出现临界和极值问题. 4.水平面内的匀速圆周运动的解题方法(1)对研究对象受力分析,确定向心力的来源,涉及临界问题时,确定临界条件; (2)确定圆周运动的圆心和半径; (3)应用相关力学规律列方程求解.考点二竖直面内的圆周运动1.物体在竖直平面内的圆周运动有匀速圆周运动和变速圆周运动两种.2.只有重力做功的竖直面内的圆周运动一定是变速圆周运动,遵守机械能守恒.3.竖直面内的圆周运动问题,涉及知识面比较广,既有临界问题,又有能量守恒的问题.4.一般情况下,竖直面内的变速圆周运动问题只涉及最高点和最低点的两种情形.考点三圆周运动的综合问题圆周运动常与平抛(类平抛)运动、匀变速直线运动等组合而成为多过程问题,除应用各自的运动规律外,还要结合功能关系进行求解.解答时应从下列两点入手:1.分析转变点:分析哪些物理量突变,哪些物理量不变,特别是转变点前后的速度关系.2.分析每个运动过程的受力情况和运动性质,明确遵守的规律.3.平抛运动与圆周运动的组合题,用平抛运动的规律求解平抛运动问题,用牛顿定律求解圆周运动问题,关键是找到两者的速度关系.若先做圆周运动后做平抛运动,则圆周运动的末速等于平抛运动的水平初速;若物体平抛后进入圆轨道,圆周运动的初速等于平抛末速在圆切线方向的分速度.【思想方法与技巧】竖直平面内圆周运动的“轻杆、轻绳”模型1.模型特点在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接、小球在弯管内运动等),称为“轻杆模型”.2.模型分析绳、杆模型常涉及临界问题,分析如下:(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同,其原因主要是“绳”不能支持物体,而“杆”既能支持物体,也能拉物体.(2)确定临界点:v 临=gr ,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N 表现为支持力还是拉力的临界点. (3)定规律:用牛顿第二定律列方程求解.第四节 万有引力与航天【基本概念、规律】 一、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比.2.公式:F =G m 1m 2r 2,其中G =6.67×10-11 N·m 2/kg 2.3.适用条件:严格地说,公式只适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时,物体可视为质点.均匀的球体可视为质点,其中r 是两球心间的距离.一个均匀球体与球外一个质点间的万有引力也适用,其中r 为球心到质点间的距离. 二、宇宙速度1.经典时空观(1)在经典力学中,物体的质量是不随速度的改变而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的.2.相对论时空观同一过程的位移和时间的测量与参考系有关,在不同的参考系中不同. 3.经典力学的适用范围只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界. 【重要考点归纳】考点一 天体质量和密度的估算 1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即 G Mm r 2=ma n =m v 2r =mω2r =m 4π2r T 2(2)在中心天体表面或附近运动时,万有引力近似等于重力,即G MmR 2=mg (g 表示天体表面的重力加速度).2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于G Mm R 2=mg ,故天体质量M =gR 2G ,天体密度ρ=M V =M 43πR 3=3g4πGR .(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3GT 2; ②若已知天体半径R ,则天体的平均密度 ρ=M V =M 43πR 3=3πr 3GT 2R 3;③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT 2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度. 3.(1)利用圆周运动模型,只能估算中心天体质量,而不能估算环绕天体质量.(2)区别天体半径R 和卫星轨道半径r :只有在天体表面附近的卫星才有r ≈R ;计算天体密度时,V =43πR 3中的R 只能是中心天体的半径.考点二 卫星运行参量的比较与运算 1.卫星的各物理量随轨道半径变化的规律2.卫星运动中的机械能(1)只在万有引力作用下卫星绕中心天体做匀速圆周运动和沿椭圆轨道运动,机械能均守恒,这里的机械能包括卫星的动能、卫星(与中心天体)的引力势能.(2)质量相同的卫星,圆轨道半径越大,动能越小,势能越大,机械能越大. 3.极地卫星、近地卫星和同步卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s. (3)同步卫星①轨道平面一定:轨道平面和赤道平面重合.②周期一定:与地球自转周期相同,即T =24 h =86 400 s. ③角速度一定:与地球自转的角速度相同. ④高度一定:卫星离地面高度h =3.6×104 km.⑤速率一定:运动速度v=3.07 km/s(为恒量).⑥绕行方向一定:与地球自转的方向一致.考点三卫星(航天器)的变轨问题1.轨道的渐变做匀速圆周运动的卫星的轨道半径发生缓慢变化,由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动.解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径r是增大还是减小,然后再判断卫星的其他相关物理量如何变化.2.轨道的突变由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其进入预定的轨道.(1)当卫星的速度突然增加时,G Mmr2<mv2r,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v=GMr可知其运行速度比原轨道时减小.(2)当卫星的速度突然减小时,G Mmr2>mv2r,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v=GMr可知其运行速度比原轨道时增大;卫星的发射和回收就是利用这一原理.不论是轨道的渐变还是突变,都将涉及功和能量问题,对卫星做正功,卫星机械能增大,由低轨道进入高轨道;对卫星做负功,卫星机械能减小,由高轨道进入低轨道.考点四宇宙速度的理解与计算1.第一宇宙速度v1=7.9 km/s,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.2.第一宇宙速度的求法:(1)GMmR2=mv21R,所以v1=GMR. (2)mg=mv21R,所以v1=gR.【思想方法与技巧】双星系统模型1.模型特点(1)两颗星彼此相距较近,且间距保持不变.(2)两颗星靠相互之间的万有引力做匀速圆周运动.(3)两颗星绕同一圆心做圆周运动.2.模型分析(1)双星运动的周期和角速度相等,各以一定的速率绕某一点转动,才不至于因万有引力作用而吸在一起.(2)双星做匀速圆周运动的向心力大小相等,方向相反.(3)双星绕共同的中心做圆周运动时总是位于旋转中心的两侧,且三者在一条直线上.(4)双星轨道半径之和等于它们之间的距离.3.(1)解决双星问题时,应注意区分星体间距与轨道半径:万有引力定律中的r为两星体间距离,向心力公式中的r为所研究星球做圆周运动的轨道半径.(2)宇宙空间大量存在这样的双星系统,如地月系统就可视为一个双星系统,只不过旋转中心没有出地壳而已,在不是很精确的计算中,可以认为月球绕着地球的中心旋转.求极值的六种方法从近几年高考物理试题来看,考查极值问题的频率越来越高,由于这类试题既能考查考生对知识的理解能力、推理能力,又能考查应用数学知识解决问题的能力,因此必将受到高考命题者的青睐.下面介绍极值问题的六种求解方法. 一、临界条件法对物理情景和物理过程进行分析,利用临界条件和关系建立方程组求解,这是高中物理中最常用的方法.二、二次函数极值法对于二次函数y =ax 2+bx +c ,当a >0时,y 有最小值y min =4ac -b 24a ,当a <0时,y 有最大值y max =4ac -b 24a .也可以采取配方法求解. 三、三角函数法某些物理量之间存在着三角函数关系,可根据三角函数知识求解极值. 四、图解法此种方法一般适用于求矢量极值问题,如动态平衡问题,运动的合成问题,都是应用点到直线的距离最短求最小值. 五、均值不等式法任意两个正整数a 、b ,若a +b =恒量,当a =b 时,其乘积a ·b 最大;若a ·b =恒量,当a =b 时,其和a +b 最小. 六、判别式法一元二次方程的判别式Δ=b 2-4ac ≥0时有实数根,取等号时为极值,在列出的方程数少于未知量个数时,求解极值问题常用这种方法.第五节 功和功率【基本概念、规律】 一、功1.做功的两个必要条件:力和物体在力的方向上发生的位移.2.公式:W =Fl cos_α.适用于恒力做功.其中α为F 、l 方向间夹角,l 为物体对地的位移. 3.功的正负判断(1)α<90°,力对物体做正功.(2)α>90°,力对物体做负功,或说物体克服该力做功. (3)α=90°,力对物体不做功.特别提示:功是标量,比较做功多少看功的绝对值. 二、功率1.定义:功与完成这些功所用时间的比值. 2.物理意义:描述力对物体做功的快慢. 3.公式(1)定义式:P =Wt ,P 为时间t 内的平均功率.(2)推论式:P=Fv cos_α.(α为F与v的夹角)【重要考点归纳】考点一恒力做功的计算1.恒力做的功直接用W=Fl cos α计算.不论物体做直线运动还是曲线运动,上式均适用.2.合外力做的功方法一:先求合外力F合,再用W合=F合l cos α求功.适用于F合为恒力的过程.方法二:先求各个力做的功W1、W2、W3…,再应用W合=W1+W2+W3+…求合外力做的功.3.(1)在求力做功时,首先要区分是求某个力的功还是合力的功,是求恒力的功还是变力的功.(2)恒力做功与物体的实际路径无关,等于力与物体在力方向上的位移的乘积,或等于位移与在位移方向上的力的乘积.考点二功率的计算1.平均功率的计算:(1)利用P=W t.(2)利用P=F·v cos α,其中v为物体运动的平均速度.2.瞬时功率的计算:利用公式P=F·v cos α,其中v为t时刻的瞬时速度.注意:对于α变化的不能用P=Fv cos α计算平均功率.3.计算功率的基本思路:(1)首先要明确所求功率是平均功率还是瞬时功率,对应于某一过程的功率为平均功率,对应于某一时刻的功率为瞬时功率.(2)求瞬时功率时,如果F与v不同向,可用力F乘以F方向的分速度,或速度v乘以速度v 方向的分力求解.考点三机车启动问题的分析1.两种启动方式的比较v↑⇒F=P不变v↓⇒a=F-F阻m↓F-F2.三个重要关系式(1)无论哪种运行过程,机车的最大速度都等于其匀速运动时的速度,即v m=PF min=PF阻(式中F min为最小牵引力,其值等于阻力F阻).(2)机车以恒定加速度启动的过程中,匀加速过程结束时,功率最大,速度不是最大,即v=P F<v m=P F阻.(3)机车以恒定功率运行时,牵引力做的功W=Pt.由动能定理:Pt-F阻x=ΔE k.此式经常用于求解机车以恒定功率启动过程的位移大小.3.分析机车启动问题时的注意事项(1)在用公式P=Fv计算机车的功率时,F是指机车的牵引力而不是机车所受到的合力.(2)恒定功率下的加速一定不是匀加速,这种加速过程发动机做的功可用W=Pt计算,不能用W=Fl计算(因为F是变力).(3)以恒定牵引力加速时的功率一定不恒定,这种加速过程发动机做的功常用W=Fl计算,不能用W=Pt计算(因为功率P是变化的).【思想方法与技巧】变力做功的求解方法一、动能定理法动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力功也适用于求变力功.二、平均力法如果力的方向不变,力的大小对位移按线性规律变化(即F=kx+b)时,F由F1变化到F2的过程中,力的平均值为F=F1+F22,再利用功的定义式W=F l cos α来求功.三、微元法当物体在变力的作用下做曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,可将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和.通过微元法不难得到,在往返的运动中,摩擦力、空气阻力做的功,其大小等于力和路程的乘积.四、等效转换法若某一变力的功和某一恒力的功相等,即效果相同,则可以通过计算该恒力做的功,求出该变力做的功,从而使问题变得简单,也就是说通过关联点,将变力做功转化为恒力做功,这种方法称为等效转换法.五、图象法由于功W=Fx,则在F-x图象中图线和x轴所围图形的面积表示F做的功.在x轴上方的“面积”表示正功,x轴下方的“面积”表示负功.六、用W=Pt计算机车以恒定功率P行驶的过程,随速度增加牵引力不断减小,此时牵引力所做的功不能用W=Fx来计算,但因功率恒定,可以用W=Pt计算.第六节动能动能定理【基本概念、规律】一、动能1.定义:物体由于运动而具有的能.2.表达式:E k =12mv 2.3.单位:焦耳,1 J =1 N·m =1 kg·m 2/s 2. 4.矢标性:标量. 二、动能定理1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.2.表达式:W =E k2-E k1=12mv 22-12mv 21. 3.适用范围(1)动能定理既适用于直线运动,也适用于曲线运动. (2)既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用. 【重要考点归纳】考点一 动能定理及其应用 1.对动能定理的理解(1)动能定理公式中等号表明了合外力做功与物体动能的变化间的两个关系: ①数量关系:即合外力所做的功与物体动能的变化具有等量代换关系. ②因果关系:合外力的功是引起物体动能变化的原因.(2)动能定理中涉及的物理量有F 、l 、m 、v 、W 、E k 等,在处理含有上述物理量的问题时,优先考虑使用动能定理.2.运用动能定理需注意的问题(1)应用动能定理解题时,不必深究物体运动过程中状态变化的细节,只需考虑整个过程的功及过程初末的动能.(2)若过程包含了几个运动性质不同的分过程,既可分段考虑,也可整个过程考虑.但求功时,有些力不是全过程都作用的,必须根据不同的情况分别对待求出总功,计算时要把各力的功连同正负号一同代入公式. 3.应用动能定理解题的基本思路(1)选取研究对象,明确它的运动过程;(2)分析研究对象的受力情况和各力的做功情况: 受哪些力→各力是否做功→做正功还是负功→做多少功→各力做功的代数和(3)明确研究对象在过程的初末状态的动能E k1和E k2;(4)列动能定理的方程W 合=E k2-E k1及其他必要的解题方程,进行求解. 考点二 动能定理与图象结合问题 解决物理图象问题的基本步骤1.观察题目给出的图象,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义. 2.根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.3.将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点,图线下的面积所对应的物理意义,分析解答问题.或者利用函数图线上的特定值代入函数关系式求物理量.4.解决这类问题首先要分清图象的类型.若是F -x 图象,则图象与坐标轴围成的图形的面积。
物理必修二知识点总结6篇篇1一、基本概念与原理1. 动量守恒定律:一个系统不受外力或所受外力的矢量和为零,则系统内物体的动量保持不变,称为动量守恒定律。
2. 角动量守恒定律:对于质点系,若系统所受的外力在系统平面外方向的投影的矢量和为零,则系统内各质点的角动量保持不变,称为角动量守恒定律。
3. 万有引力定律:任何两个物体都要相互吸引,引力的大小与两个物体的质量的乘积成正比,与两个物体间的距离的平方成反比。
4. 库仑定律:在真空中两个静止点电荷之间的作用力与两个电荷的电荷量的乘积成正比,与两个电荷间的距离的平方成反比。
5. 牛顿运动定律:物体保持静止或匀速直线运动的条件是物体不受力或所受合外力为零;物体改变运动状态的依据是物体受到的合外力不为零。
6. 牛顿的万有引力定律:自然界的任何两个物体都要相互吸引,引力的大小与两个物体的质量的乘积成正比,与两个物体间的距离的平方成反比。
7. 牛顿的三大定律:惯性定律、动量定律、角动量定律。
二、力学现象解析1. 抛体运动:物体以一定的初速度向空中抛出,不考虑空气阻力,物体将做匀变速曲线运动,称为抛体运动。
2. 圆周运动:物体做速度大小不变而方向时刻改变的曲线运动,称为圆周运动。
3. 平抛运动:物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体将做匀变速曲线运动,称为平抛运动。
4. 斜抛运动:物体以一定的初速度向倾斜方向抛出,不考虑空气阻力,物体将做匀变速曲线运动,称为斜抛运动。
5. 受迫振动:当驱动力的频率等于物体的固有频率时,受迫振动的振幅最大。
6. 机械波:机械波是机械振动在介质中的传播过程,它具有波粒二象性。
7. 电磁波:电磁波是由变化电磁场产生的波动,它具有波粒二象性。
8. 光波:光波是电磁波的一种,它具有波粒二象性。
9. 超声波:超声波是频率高于20000赫兹的机械波,它具有波粒二象性。
10. 次声波:次声波是频率低于20赫兹的机械波,它不具有波粒二象性。
物理必修二知识点总结8篇第1篇示例:物理是一门研究物质运动规律和能量变化规律的自然科学,对于学生来说,物理必修二是学习物理课程中非常重要的一部分。
本文将对物理必修二中的知识点进行总结,希望对学生们的学习有所帮助。
一、力和运动1. 力的概念力是使物体产生变化的原因,常用符号F表示,单位是牛顿(N)。
2. 力的作用效果力的作用效果包括使物体产生形变,改变物体的速度和改变物体的运动方向等。
3. 动能和动能定理物体的动能是物体运动具有的能量,动能E的计算公式为E=1/2mv^2,其中m为物体的质量,v为物体的速度。
动能定理表明:物体的动能变化量等于外力所做的功。
即ΔE=W。
二、电1. 电荷和电路电荷是物质所带的基本属性,正电荷和负电荷相互吸引,同种电荷相互排斥。
电路是导电体和电源构成的通路,电荷在电路中流动形成电流。
2. 电容和电容器电容是指导体中存储电荷的能力,电容器是利用导体间的电荷储存能力制成的装置。
电容的单位是法拉(F),公式为C=Q/U,其中Q为电容器存储的电荷,U为电容器两端的电压。
三、振动和波动1. 机械振动机械振动是物体周期性的来回运动,包括平衡位置、振幅、周期和频率等概念。
2. 机械波机械波是由物质的振动传播而产生的波动现象,分为横波和纵波两种。
声波和水波都是机械波的典型代表。
四、光学1. 光的直线传播光线在均匀介质中沿直线传播,可以根据光的直线传播规律进行相关光学实验。
2. 光的反射光线撞击光滑表面会发生反射现象,可以根据反射定律计算光的反射角度。
3. 光的折射光线从一种介质射入另一种介质会发生折射现象,可以根据折射定律计算光的折射角度。
五、原子与核能1. 原子结构原子由原子核和电子组成,原子核由质子和中子组成,电子绕核运动。
2. 核能核能是指原子核中储存的能量,核能释放形式包括核裂变和核聚变。
核能的利用有核能发电和核医学等领域。
第2篇示例:物理必修二知识点总结物理必修二是高中物理课程的一部分,是学生必须要学习和掌握的知识点。
物理必修二的知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!物理必修二的知识点高中学习容量大,不但要掌握目前的知识,还要把高中的知识与初中的知识溶为一体才能学好。
高中物理必修二知识点汇总1.曲线运动1.曲线运动的特征(1)曲线运动的轨迹是曲线。
(2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。
即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。
(3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。
(注意:合外力为零只有两种状态:静止和匀速直线运动。
)曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。
2.物体做曲线运动的条件(1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。
(2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。
3.匀变速运动:加速度(大小和方向)不变的运动。
也可以说是:合外力不变的运动。
4曲线运动的合力、轨迹、速度之间的关系(1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。
(2)合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度的方向。
①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。
②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。
③当合力方向与速度方向垂直时,物体的速率不变。
(举例:匀速圆周运动)2.绳拉物体合运动:实际的运动。
对应的是合速度。
方法:把合速度分解为沿绳方向和垂直于绳方向。
3.小船渡河例1:一艘小船在200m 宽的河中横渡到对岸,已知水流速度是3m/s ,小船在静水中的速度是5m/s , 求:(1)欲使船渡河时间最短,船应该怎样渡河?最短时间是多少?船经过的位移多大?(2)欲使航行位移最短,船应该怎样渡河?最短位移是多少?渡河时间多长?船渡河时间:主要看小船垂直于河岸的分速度,如果小船垂直于河岸没有分速度,则不能渡河。
min cos d dt t v v θ=⇒=船船(此时θ=0°,即船头的方向应该垂直于河岸)解:(1)结论:欲使船渡河时间最短,船头的方向应该垂直于河岸。
物理必修二知识点整理完整版1.热力学基本概念:-热力学第一定律:能量守恒定律,能量的增减等于做功和热量的代数和。
-热力学第二定律:热量自发地从高温物体传递到低温物体,不会自发地从低温物体传递到高温物体。
2.理想气体的性质:-状态方程:理想气体的状态可以用理想气体状态方程来描述,即PV=nRT。
-理想气体的分子速率与温度成正比,与分子质量成反比。
-理想气体的压强与温度成正比,与体积成反比。
-理想气体的压强与摩尔数成正比,与体积成反比。
3.热力学循环:-等温过程:系统与外界保持恒温相互作用,气体的压强与体积成反比,温度不变。
-绝热过程:系统与外界没有热交换,气体的压强与体积呈反比关系。
-等压过程:系统与外界保持恒压相互作用,气体的体积与温度成正比。
-等容过程:系统与外界没有体积变化,气体的压强与温度成正比。
4.热机效率:-热机效率等于做功与吸收热量的比值,可以用于评估一个热机的性能。
-热机效率=1-(T2/T1),其中T1为高温热源的温度,T2为低温热源的温度。
5.电流电压和电阻:-电流:单位时间内电荷通过导体截面的数量,单位为安培(A)。
-电压:单位电荷在电场中获得或失去的能量,单位为伏特(V)。
-电阻:导体阻碍电流流动的程度,单位为欧姆(Ω)。
6.欧姆定律和功率:-欧姆定律:电流、电压和电阻之间的关系,I=V/R。
-功率:单位时间内消耗的能量,单位为瓦特(W)。
-功率等于电流与电压的乘积,P=IV。
7.电路:-并联电路:元件两端电压相等,电流之和等于总电流。
-串联电路:元件两端电压之和等于总电压,电流相等。
8.电功和电能:-电功:电能的转换和传输过程中所做的功,计算公式为W=V×q,单位为焦(J)。
-电能:电荷由一点移动到另一点时所获得的能量,计算公式为E=V×q,单位为焦耳(J)。
9.电磁感应和电磁感应定律:-电磁感应:通过磁场变化所产生的感应电流。
- 法拉第电磁感应定律:感应电动势的大小等于磁通量变化率的负值,即ε = -dΦ/dt。
高中物理必修二知识点总结【导语】以下文章作者为您整理的高中物理必修二知识点总结(共20篇),供大家阅读。
篇1:高中物理必修二知识点总结高中物理必修二知识点总结一.曲线运动1.曲线运动的位移:平面直角坐标系通常设位移方向与x轴夹角为α2.曲线运动的速度:①质点在某一点的速度,沿曲线在这一点的切线方向②速度在平面直角坐标系中可分解为水平速度Vx及竖直速度Vy,V2=Vx2+Vy23.曲线运动是变速运动(速度是矢量,方向或大小任一的改变都会造成速度的变化,曲线运动中,速度的方向一定改变)4.物体做曲线运动的条件:物体所受合力的方向与它的速度方向不在同一直线上二.平抛运动(曲线运动特例)1.定义:以一定的速度将物体抛出,如果物体只受重力的作用,这时的运动叫做抛体运动,抛体运动开始时的速度叫做初速度。
如果初速度是沿水平方向的,这个运动叫做平抛运动2.平抛运动的速度:①水平方向做匀速直线运动初速度V0即为Vx一直保持不变②竖直方向做自由落体运动 Vy=gt③合速度:V2=Vx2+Vy2=V02+(gt)2 方向:与X轴的夹角为θ tanθ=Vy=gt3.平抛运动的位移:①水平方向 X=V0t②竖直方向y=1 ③合位移 S2=x2+y2=(V0t)2+(1 )2 方向:与X轴夹角为α tanα=y=V0t/?gt2=2V0三.圆周运动1.线速度V:①圆周运动的快慢可以用物体通过的弧长与所用时间的比值来量度该比值即为线速度②V=Δs/Δt 单位:m③匀速圆周运动:物体沿着圆周运动,并且线速度的大小处处相等(tips:方向时时改变)2.角速度ω:①物体做圆周运动的快慢还可以用它与圆心连线扫过角度的快慢来描述,即角速度② 公式ω=Δθ/Δt (角度使用弧度制) ω的单位是rad3.转速r:物体单位时间转过的圈数单位:转每秒或转每分4.周期T:做匀速圆周运动的物体,转过一周所用的时间单位:秒S5.关系式:V=ωr(r为半径) ω=2π6.向心加速度①定义:任何做匀速圆周运动的物体的加速度都指向圆心,这个加速度叫做向心加速度②表达式a=V2=ω2r=(4π2)r=4π2f2r=4π2n2r(n指转过的圈数)方向:指向圆心7.向心力F=mV2=mω2r=m(4π2)r=4π2f2mr=4π2n2mr 方向:指向圆心8.生活中的圆周运动①铁路的弯道:②拱形桥:(1)凹形:F向=FN-G 向心加速度的方向竖直向上 (2)凸形:F向=G-FN 向心加速度的方向竖直向下③航天器失重:航天员受到地球引力与飞船座舱的支持力,合力提供绕地球做匀速圆周运动的所需的向心力 mg-FN=mv2 v=√gR时FN=0 航天员处于失重状态④离心运动(逐渐远离圆心):(1)做圆周运动的物体,由于惯性,总有沿切线方向飞去的倾向。
高中物理必修二知识点总结(优秀8篇)高中物理必修二知识篇一一、固体1、晶体:外观上有规则的几何外形,有确定的熔点,一些物理性质表现为各向异2、非晶体:外观没有规则的几何外形,无确定的熔点,一些物理性质表现为各向同性①判断物质是晶体还是非晶体的主要依据是有无固定的熔点②晶体与非晶体并不是绝对的,有些晶体在一定的条件下可以转化为非晶体(石英→玻璃)3、单晶体多晶体如果一个物体就是一个完整的晶体,如食盐小颗粒,这样的晶体就是单晶体(单晶硅、单晶锗)如果整个物体是由许多杂乱无章的小晶体排列而成,这样的物体叫做多晶体,多晶体没有规则的几何外形,但同单晶体一样,仍有确定的熔点。
二、液体1、表面张力:当表面层的分子比液体内部稀疏时,分子间距比内部大,表面层的分子表现为引力。
如露珠2、液晶分子排列有序,各向异性,可自由移动,位置无序,具有流动性各向异性:分子的排列从某个方向上看液晶分子排列是整齐的,从另一方向看去则是杂乱无章的三:饱和汽与饱和汽压①汽化汽化:物质由液态变成气态的过程叫汽化。
1、汽化有两种方式:蒸发和沸腾。
2、液体在沸腾过程中要不断吸热,但温度保持不变,这一温度叫沸点。
不同物质的沸点是不同的。
而且沸点与大气压有关,大气压越大,沸点也就越高。
②饱和汽与饱和汽压饱和汽:与液体处于动态平衡的蒸汽叫做饱和汽。
没有达到饱和状态的蒸汽叫做未饱和汽。
饱和汽压:在一定温度下,饱和汽的压强是一定的,叫做饱和汽压。
未饱和汽的压强小于饱和汽压。
1、饱和汽压只是指空气中这种液体蒸汽的分气压,与其它气体的压强无关。
2、饱和汽压与温度和物质种类有关。
四:物态变化中的能量交换①熔化热1、熔化:物质从固态变成液态的过程叫熔化(而从液态变成固态的过程叫凝固)。
注意:晶体在熔化和凝固的过程中温度不变,同一种晶体的熔点和凝固点相同;而非晶体在熔化过程中温度不断升高,凝固的过程中温度不断降低。
2、熔化热:某种晶体熔化过程中所需的能量(Q)与其质量(m)之比叫做这种晶体的熔化热。
物理必修二知识点总结6篇篇1一、机械能1. 功:功是标量,其正负不表示方向,仅表示动力对物体做功还是物体克服阻力做功,功的单位是焦耳,符号是J。
2. 功率:表示做功的快慢,用P表示,单位是瓦特,符号是W。
3. 动能:表示物体由于运动而具有的能量,用Ek表示。
4. 势能:分为重力势能和弹性势能,用Ep表示。
5. 机械能:动能与势能的总和,用E表示。
二、曲线运动1. 曲线运动:物体的运动方向不断改变,即物体的速度方向不断改变。
2. 匀速圆周运动:速度的大小不变,即速率不变,但速度的方向不断改变。
3. 向心力:使物体做匀速圆周运动的力,方向指向圆心。
4. 向心加速度:描述物体做匀速圆周运动时速度方向改变的快慢,用an表示。
5. 万有引力定律:任何两个物体之间都存在引力,用F表示。
6. 卫星的轨道半径、周期、线速度和角速度:描述卫星在太空中的运动状态。
三、能量守恒定律1. 能量守恒定律:能量既不会凭空产生,也不会凭空消失,它只会从一种形式转化为另一种形式,或者从一个物体转移到另一个物体。
2. 功和能的关系:功是能量转化的量度,即做了多少功,就有多少能量被转化。
3. 常见的能量转化:如机械能转化为内能、内能转化为机械能等。
4. 热力学第一定律:一个系统在绝热过程中所吸收或放出的热量Q等于系统内能的增量ΔU,即Q=ΔU。
5. 热力学第二定律:不可能把热量从低温物体传到高温物体而不产生其他影响;不可能从单一热源吸收热量并把它全部用来做功而不产生其他影响;不可逆热力学过程中熵的增量总是大于零。
四、电磁感应1. 电磁感应现象:当导体在磁场中做切割磁感线运动时,会在导体中产生感应电流。
2. 法拉第电磁感应定律:当穿过某一面积的磁通量发生变化时,就会在该面积内产生感应电动势,且感应电动势的大小与磁通量的变化率成正比。
3. 自感现象:线圈自身的电流发生变化时,会在线圈中产生感应电动势。
4. 自感系数:描述线圈自感现象的物理量,用L表示。
第5章1.曲线运动:物体的运动轨迹为一条曲线的运动。
曲线运动中,质点在某一点的速度(运动方向),沿曲线在这一点的切线方向。
2.曲线运动是变速运动。
(速度方向时刻改变)3.物体做曲线运动的条件:当物体所受合力的方向与它的速度方向不在同一直线上时,物体做曲线运动。
4.类似力的合成与分解,运动也可以进行合成与分解。
物体的一个运动结果可以和它参与几个运动的共同结果是相同的,我们把这个运动称为那几个运动的合运动,那几个运动称为这个运动的分运动。
求几个运动的合运动叫运动的合成,求一个运动的几个分运动叫运动的分解。
运动的合成与分解遵循平行四边形定则和三角形定则。
在高中阶段,运动的合成与分解通常指运动学量(F a v x ,,,)的合成与分解。
重要结论:(1)两个匀速直线运动的合运动一定是匀速直线运动。
(2)一个匀速直线运动和一个匀变速直线运动的合运动一定是曲线运动。
(3)两个直线运动的合运动可以是曲线运动也可以是直线运动。
(4)合运动与分运动具有同时性,独立性,同体性5.抛体运动:物体只在重力作用下,以一定的初速度抛出所发生的运动。
分类:平抛运动,竖直上抛,斜抛运动。
特别注意:做抛体运动的物体只受重力,加速度都为g ,它们都是匀变速运动。
研究抛体运动的方法:运动的合成与分解、化曲为直的思想6.平抛运动:物体只在重力作用下,以 一定的水平初速度0v平抛运动的规律: xhh x s v v v v v gt h gh v gt v tv x v v y y y y =+==+=⎪⎪⎪⎩⎪⎪⎪⎨⎧====βαtan tan 21222022022000方向:平抛运动的位移:方向:平抛运动的速度:;分位移:;分速度:由落体运动竖直方向的分运动:自;分位移:分速度:的匀速直线运动度为水平方向的分运动:速7.圆周运动:物体沿着圆周运动。
描述圆周运动的物理学量及其单位: )/(,),(),/(),/(),/(2s m a a s T s r n s rad s m v n τω各物理量间关系:T n r v T T rv n t t lv 1,,2,2,,=====∆∆=∆∆=ωπωπθω,时间圈数向心加速度表达式:r T r r v a n 222)2(πω=== x向心力表达式:r Tm r m r mv ma F n n 222)2(πω==== 特别说明:匀速圆周运动中,质点的线速度大小、向心加速度大小、角速度、周期不变,但是线速度方向、向心加速度方向时刻变化,所以匀速圆周运动是变加速运动。
匀速圆周运动中,物体所受合力完全等于向心力。
变速圆周运动、一般的曲线运动中,物体所受合力一部分提供向心力,一部分提供切向力。
第6章1.日心说比地心说更完善,但是日心说的观点并非都正确。
2.开普勒行星运动定律:(1)所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
(2)对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
(3)所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。
3.在高中阶段,把行星运动当做匀速圆周运动来处理。
4.万有引力定律:自然界中任何两个物体都相互吸引,引力的方向在他们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间的距离r 的二次方成反比。
即:2211221/1067.6,kg m N G G rm m G F •⨯==-叫做引力常量,其中 5.两个重要的等量关系:(1)设天体M 表面的重力加速度为g ,忽略该天体自转,则一质量为m 的物体在该天体表面所受重力等于该天体对物体的万有引力。
即:2rMm G mg =,其中r 为物体到天体中心的距离 (2)在高中阶段,天体的运动当做匀速圆周运动来处理,环绕天体所受万有引力提供向心力。
即: n F F =万有引力6.宇宙速度: 第一宇宙速度:物体在天体表面附近做匀速圆周运动的速度。
RGM v =,其中M 、R 为天体的质量、半径。
22Mm v G m r r=v =卫星轨道半径越大,速度越小。
ω=22M m G r mr ω= 2T π=222()Mm G mr r T π=卫星轨道半径越大,周期越大。
2a Mm G m r =向2M a G r =向卫星轨道半径越大,向心加速度越小。
对于地球来说,第一宇宙速度为7.9km/s 又叫最小的发射速度、最大的环绕速度;第二宇宙速度为11.2km/s 又叫脱离速度,挣脱地球的引力,绕太阳运动;第三宇宙速度为16.7km/s 又叫逃逸速度,挣脱太阳的引力,逃离太阳系。
第7章1.功:力对物体所做的功,等于力的大小、位移的大小、力与位移夹角的余弦这三者的乘积。
即: αcos Fl W =功是标量,在SI 单位制中单位是焦耳,1J 等于1N 的力使物体在力的方向上发生1m 的位移时所做的功。
即:1J=1N·m2.正功、负功取决于公式中力与运动方向的夹角α: 当20πα<≤时,力对物体做正功,该力一定是动力;当παπ≤<2时,力对物体做负功,该力一定是阻力;当2πα=时,力对物体不做功,该力一定垂直物体运动方向。
3.求总功的方法:(1)求各个力做的功的代数和 +++=321W W W W(2)先求合力,再求合力做的功αcos l F W 合=4.功率:描述做功快慢的物理量,我们把功W 跟完成这些功所用时间t 的比值叫做功率。
即:tW P =功率是标量,在SI 单位制中单位是瓦特,1W=1J/s 额定功率:在正常情况下可以长时间工作的最大功率。
功率与速度的关系:一个力对物体做功的功率,等于这个力的大小、受力物体运动速度大小、力与速度方向夹角余弦三者的乘积,即:αcos Fv P =解决汽车的两种启动问题关键:1、 正确分析物理过程。
2、 抓住两个基本公式:(1)功率公式:Fv P =,其中P 是汽车的功率,F 是汽车的牵引力,v 是汽车的速度。
(2)牛顿第二定律:ma f F =-,如图1所示。
正确分析启动过程中P 、F 、f 、v 、a 的变化抓住不变量、变化量及变化关系。
5.重力势能:物体凭借其位置而具有的能量,物体的重力势能等于它所受重力与所处高度的乘积。
即:mgh E p =重力做功的特点:重力对物体做的功只跟它的起点和终点的位置有关,而跟物体的运动路径无关。
重力做功与重力势能变化量的关系:p p p G E E E W ∆-=-=21(功是能量转化的量度)F 图1(1) 重力做正功,物体的重力势能一定减少,减少量等于重力做功的大小(2) 重力做负功,物体的重力势能一定增加,增加量等于重力做功的绝对值重力势能是标量,它的大小与参考平面选取有关,在参考面上物体的重力势能为0,在参考面以上物体具有的重力势能为正值,在参考面以下其值为负。
重力势能的系统性指一个物体的重力势能是物体和地球所组成的系统所共有的。
6.弹簧弹力做功与弹簧的弹性势能关系:p p p E E E W ∆-=-=21弹(功是能量转化的量度)(1)弹力做正功,弹簧的弹性势能一定减少,减少量等于弹力做功的大小(2)弹力做负功,弹簧的弹性势能一定增加,增加量等于弹力做功的绝对值 弹性势能的表达式:221kx E p = 7.动能:物体由于运动而具有的能量,动能的表达式:221mv E k = 动能定理:力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化,即:12k k E E W -=总(功是能量转化的量度)8.机械能守恒定律:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
即:21E E =机械能守恒条件:只有重力或弹簧弹力做功9.验证机械能守恒定律:实验器材:铁架台、打点计时器、纸带、学生电源(低压交流电源)、重锤(重物)、复写纸、刻度尺、导线实验原理:重力势能的减少量等于动能的增加量,即:221mv mgh =其中h 为下落的高度,v 为某点的瞬时速度,v 等于与该点相邻的两点间的平均速度实验误差分析:实验中由于阻力的存在,所以221mv mgh > 实验数据:若以221v 为纵轴,以gh 为横轴做图像,图像应该是过原点的倾斜直线,斜率为重力加速度g10.能量守恒定律:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。
能源耗散过程中反映能量转化的方向性。
选修3-1第1章1.两种电荷:丝绸摩擦过的玻璃棒带正电荷,毛皮摩擦过的橡胶棒带负电荷。
物体带电的三种方式:摩擦起电、感应起电、接触起电使物体带电的实质:电荷从一个物体转移到另一个物体,或从物体的一部分转移到另一部分。
静电感应:靠近带电体一端带异种电荷(近异),远离带电体一端带同种电荷(远同)2.电荷守恒定律:电荷既不能创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变。
一个与外界没有电荷交换的系统,电荷的代数和保持不变。
3.电荷量(电量):电荷的多少,用Q 、q 表示,单位:库仑,用C 表示。
自然界最小的电荷量叫元电荷,用e 表示,C e 19106.1-⨯=,自然界中任何带电体所带电量都是e 的整数倍。
比荷(荷质比):带电体的电量与质量的比值4.库仑定律:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。
即:221rq q k F =其中k 为静电力常量,229/100.9C m N k •⨯= 5.电场强度(场强):描述电场强弱和方向的物理量,电场中某点的场强等于试探电荷所受电场力与该电荷电量的比值。
即:qF E =,国际单位:V/m、N/C 特别说明:电场强度与F 、q 无关方向规定:电场中某点的电场强度的方向跟正电荷在该点所受的静电力的方向相同,跟负电荷在该点受力方向相反。
电荷间的相互作用是通过电场发生的,电场是客观存在的一种物质。
真空中点电荷产生的电场场强表达式:2rkQ E =,其中Q 是场源电荷的电量 若场源电荷是多个点电荷,电场中某点的电场强度为各个点电荷单独在该点产生的电场强度的矢量和。
6.电场线:电场线上某点切线方向为该点的电场强度的方向,电场线的疏密表示电场的强弱。
电场线的特点:(1)电场线从正电荷或无限远出发,终止于无限远或负电荷。
(2)电场线在电场中不相交,电场线是假想的曲线。
7.匀强电场:电场中各点电场强度的大小相等、方向相同。
匀强电场的电场线是间隔相等的平行线。
8.静电力做功的特点:静电力做的功与电荷的起点到终点沿电场方向的距离有关,与电荷的运动路径无关。