力的合成与分解的知识点
- 格式:doc
- 大小:110.00 KB
- 文档页数:3
力的合成与分解
掌握内容:
1、力的合成与分解。会用直角三角形知识及相似三角形等数学知识求解。
2、力的分解。
3、力矩及作用效果。
知识要点:
一、力的合成:
1、定义:求几个力的合力叫力的合成。
2、力的合成:
(1)F F 12,同一直线情况同向反向()F F F F F F F F =+=->⎧⎨⎩
121212 (2)F F 12,成θ角情况:
①遵循平行四边形法则。
两个互成角度的力的合力,可以用表示这两个力的线段作邻边,作平行四边形,平行四边形的对角线表示合力的大小和方向。
作图时应注意:合力、分力作用点相同,虚线、实线要分清。
②应用方法作图法:严格作出力的合成图示,由图量出合力大小、方向。计算法:作出力的合成草图,根据几何知
识算出大小、方向。F ⎧⎨⎪⎪⎩
⎪⎪
注意:在F F 12,大小一定的情况下,合力F 随θ增大而减小,随θ减小而增大,F 最大值是F F F F F F F F 121212+->,最小值是(),范围是
()~()F F F F 1212-+,F 有可能大于任一个分力,也有可能小于任一个分力,还可能等于某一个分力的大小,求多个力的合力时,可以先求出任意两个力的合力,再求这个合力与第三个力的合力,依此类推。
二、力的分解:
求一个力的分力叫力的分解。是力的合成的逆运算,同样遵守平行四边形法则。一个力的分解应掌握下面几种情况:
1、已知一个力(大小和方向)和它的两个分力的方向,则两个分力有确定的值;
2、已知一个力和它的一个分力,则另一个分力有确定的值;
3、已知一个力和它的一个分力的方向,则另一分力有无数解,且有最小值(两分力方向垂直);
4、一个力可以在任意方向上分解,且能分解成
无数个分力;
5、一个分力和产生这个分力的力是同性质力,
且产生于同一施力物体,如图18中,G 的分力是沿
斜面的分力和垂直于斜面的分力(此力不能说成是
对斜面的压力)。
6、在实际问题中,一个力如何分解,应按下述步骤:①根据力F 产生的两个效果画出分力F F 12和的方向;②根据平行四边形法则用作图法求F F 12和的大小,且注意标度的选取;③根据数学知识用计算法求出分力F F 12和的大小。
三、力的正交分解法:
在处理力的合成和分解的复杂问题时,有一种比较简便宜行的方法——正交分解法。
求多个共点力合成时,如果连续运用平行四边形法则求解,一般说来要求解若干个斜三角形,一次又一次地求部分的合力的大小和方向,计算过程显得十分复杂,如果采用力的正交分解法求合力,计算过程就简单多了。
正交分解法——把力沿着两个经选定的互相垂直的方向分解,其目的是便于运用普通代数运算公式来解决矢量运算。
力的正交分解法步骤如下:
1、正确选定直角坐标系:通常选共点力的作用点为坐标原点,坐标轴的方向的选择则应根据实际问题来确定。原则是使坐标轴与尽可能多的力重合,即是使需要向两坐标轴投影分解的力尽可能少,在处理静力学问题时,通常选用水平方向和竖直方向上的直角坐标,当然在其它方向较简便时,也可选用。
2、分别将各个力投影到坐标轴上:分别求x 轴和y 轴上各力的投影的合力F x 和F y 其中:
F F F F F F F F x x x x y y y y =+++=+++123123
(式中的F F F x y x y 111和是在轴和轴上的两个分量,其余类推。)
这样,共点力的合力大小可由公式:
F F F x y =+()()22求出。
设力的方向与x 轴正方向之间夹角是α。 tg F F y x
α=
∴通过数学用表可知α数值。
注意:如果F F F x y 合,可推出,===000这是处理多个力作用下物体平衡问题的好办法。