高三数学专题复习-条件概率问题

  • 格式:docx
  • 大小:15.94 KB
  • 文档页数:2

下载文档原格式

  / 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学专题复习

一个很有趣的条件概率问题:三扇门问题

昨天看一片电影《玩转21点》,片中有一个很趣的概率问题。

片中涉及的那个车和羊的问题也被称作蒙提霍尔问题(Monty Hall Problem)或三门问题,是一个源自博弈论的数学游戏问题,大致出自美国的电视游戏节目

“Let's Make a Deal”。问题的名字来自该节目的主持人蒙提·霍尔(Monty Hall)。

这个游戏的玩法是:参赛者会看见三扇关闭了的门,其中一扇的后面有一辆汽车,选中后面有车的那扇门就可以赢得该汽车,而另外两扇门后面则各藏有一只山羊。当参赛者选定了一扇门,但未去开启它的时候,节目主持人会开启剩下两扇门的其中一扇,露出其中一只山羊。主持人其后会问参赛者要不要换另一扇仍然关上的门。

明确的限制条件如下:

参赛者在三扇门中挑选一扇。他并不知道内里有什么。

主持人知道每扇门后面有什么。

主持人必须开启剩下的其中一扇门,并且必须提供换门的机会。

主持人永远都会挑一扇有山羊的门。

如果参赛者挑了一扇有山羊的门,主持人必须挑另一扇有山羊的门。

如果参赛者挑了一扇有汽车的门,主持人随机在另外两扇门中挑一扇有山羊的门。

参赛者会被问是否保持他的原来选择,还是转而选择剩下的那一道门。

请问如果是你,你会做哪种选择,哪个选择得到车的概率会更大呢?

讨论:

•当参赛者转向另一扇门而不是继续维持原先的选择时,赢得汽车的机会将会加倍。

解释如下:

有三种可能的情况,全部都有相等的可能性(1/3)︰

参赛者挑山羊一号,主持人挑山羊二号。转换将赢得汽车。

参赛者挑山羊二号,主持人挑山羊一号。转换将赢得汽车。

参赛者挑汽车,主持人挑两头山羊的任何一头。转换将失败。

在头两种情况,参赛者可以通过转换选择而赢得汽车。第三种情况是唯一一种参赛者通过保持原来选择而赢的情况。因为三种情况中有两种是通过转换选择而赢的,所以通过转换选择而赢的概率是2/3。

•历史上这个问题刚被提出的时候却引起了相当大的争议。这个问题源自美国电视娱乐节目Let’s Make a Deal,内容如前所述。作为吉尼斯世界纪录中智商最高的人,Savant在Parade Magazine对这一问题的解答是应该换,因为换了之后有2/3的概率赢得车,不换的话概率只有1/3。她的这一解答引来了大量读者信件,认为这个答案太荒唐了。因为直觉告诉人们:如果被打开的门后什么都没有,这个信息会改变剩余的两种选择的概率,哪一种都只能是1/2。持有这种观点的大约有十分之一是来自数学或科学研究机构,有的人甚至有博士学位。还有大批报纸专栏作家也加入了声讨

Savant的行列。在这种情况下,Savant向全国的读者求救,有数万名学生进行了模拟试验。一个星期后,实验结果从全国各地飞来,是2/3和1/3。随后,MIT的数学家和阿拉莫斯国家实验室的程序员都宣布,他们用计算机进行模拟实验的结果,支持了Savant的答案。

•可以看出,这是一个概率论和人的直觉不太符合的例子,这告诉我们在做基于量化的判断的时候,要以事实和数据为依据,而不要凭主观来决定。否则,想当然的结果往往会在我们不自知的情况下,把我们引入歧途。如片中的老师所说:在校园里骑车可比骑头羊要酷多了。问题是你要做出正确的选择,而这需要以事实为依据。因此有些时候,你选择股票或大盘趋势,不能以感情为基础,要根据事实。。。。。

•Even when given a completely unambiguous statement of the Monty Hall problem, explanations, simulations, and formal mathemati cal proofs, many people still meet the correct answer with disbe lief.

•这个问题我是这么看的:换,就意味着认为第一次是选错的;不换,就意味着认为第一次选的是对的。第一次选错的的概率是2/3;第一次选对的概率是1/3。第二次选择其实不是1/2的概率,是100%,因为你的行为是对第一次选择的确认。基于第一次选错的概率大,所以,应该换。