人教版七年级上册第二章 整式的化简求值(一)
- 格式:docx
- 大小:21.42 KB
- 文档页数:3
七年级上册数学《第二章整式的加减》专题整式的化简求值(50题)整式的加减—化简求值给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.1.先化简,再求值:11a2﹣[a2﹣3(2a﹣5a2)﹣4(a2﹣2a)],其中a=﹣4.【分析】先化简整式,再代入求值.【解答】解:原式=11a2﹣(a2﹣6a+15a2﹣4a2+8a)=11a2﹣a2+6a﹣15a2+4a2﹣8a=(11a2+4a2﹣15a2)﹣a2﹣8a+6a=﹣a2﹣2a.当a=﹣4时,原式=﹣(﹣4)2﹣2×(﹣4)=﹣16+8=﹣8.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.2.(2022秋•香洲区期末)先化简,再求值:2(x2+xy−32y)﹣(x2+2xy﹣1),其中x=﹣4,y=5.【分析】先去括号,然后合并同类项,最后将x=﹣4,y=5代入化简结果进行计算即可求解.【解答】解:原式=2x2+2xy﹣3y﹣x2﹣2xy+1=x2﹣3y+1,当x=﹣4,y=5时,原式=(﹣4)2﹣3×5+1=16﹣15+1=2.【点评】本题考查了整式的加减与化简求值,正确的去括号与合并同类项是解题的关键.3.(2022秋•亭湖区期末)先化简,再求值:a2﹣(3a2﹣2b2)+3(a2﹣b2),其中a=﹣2,b=3.【分析】原式去括号,合并同类项进行化简,然后代入求值.【解答】原式=a2﹣3a2+2b2+3a2﹣3b2=a2﹣b2;当a=﹣2;b=3时,原式=(﹣2)2﹣32=4﹣9=﹣5.【点评】本题考查整式的加减和化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.4.(2022秋•南昌县期中)先化简,再求值:3(x2y﹣2xy)﹣2(x2y﹣3xy)﹣5x2y,其中x=﹣1,y=16.【分析】先去括号,再合并同类项得到原式=﹣4x2y,然后把x、y的值代入计算即可.【解答】解:原式=3x2y﹣6xy﹣2x2y+6xy﹣5x2y=﹣4x2y,当x=﹣1,y=16时,原式=﹣4×(﹣1)2×16=−23.【点评】本题考查了整式的加减﹣化简求值:先把整式去括号,合并,再把给定字母的值代入计算,得出整式的值.5.(2022秋•江岸区期末)先化简,再求值:5a2+4b﹣(5+3a2)+3b+4﹣a2,其中a=3,b=﹣2.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:5a2+4b﹣(5+3a2)+3b+4﹣a2=5a2+4b﹣5﹣3a2+3b+4﹣a2=a2+7b﹣1.当a=3,b=﹣2时,原式=32+7×(﹣2)﹣1=9﹣14﹣1=﹣6.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.6.(2022秋•辽阳期末)先化简,再求值:x2y﹣(3xy2﹣x2y)﹣2(xy2+x2y),其中x=1,y=﹣2.【分析】先去括号,再合并同类项,然后把x=1,y=﹣2代入化简后的结果,即可求解.【解答】解:原式=x2y﹣3xy2+x2y﹣2xy2﹣2x2y=﹣5xy2,当x=1,y=﹣2时,原式=﹣5×1×(﹣2)2=﹣20.【点评】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.7.(2022秋•盘山县期末)先化简再求值:﹣(3a2﹣2ab)+[3a2﹣(ab+2)],其中a=−12,b=4.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=﹣3a2+2ab+3a2﹣ab﹣2=ab﹣2,当a=−12,b=4时,原式=﹣2﹣2=﹣4.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.8.(2022秋•邻水县期末)先化简,再求值:(x2﹣y2﹣2xy)﹣(﹣3x2+4xy)+(x2+5xy),其中x=﹣1,y=2.【分析】去括号,合并同类项,将x,y的值代入计算即可.【解答】解:原式=x2﹣y2﹣2xy+3x2﹣4xy+x2+5xy=5x2﹣xy﹣y2,当x=﹣1,y=2时,原式=5×(﹣1)2﹣(﹣1)×2﹣22=5+2﹣4=3.【点评】本题主要考查了整式的加减与求值,正确利用去括号的法则运算是解题的关键.9.(2022秋•秀屿区期末)先化简,再求值:4x2y﹣3xy2+3(xy﹣2x2y)﹣2(3xy﹣3xy2)其中x=34,y=﹣1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4x2y﹣3xy2+3xy﹣6x2y﹣6xy+6xy2=﹣2x2y+3xy2﹣3xy,当x=34,y=﹣1时,原式=98+94+94=458.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.10.(2022秋•黔江区期末)先化简,再求值:3(2+122−B)−(2B+32−122),其中x=1,y=2.【分析】先去括号,合并同类项,化简整式,然后将x,y的值代入求值.【解答】解:3(2+122−B)−(2B+32−122),=3x2+32y2﹣3xy﹣2xy﹣3x2+12y2=2y2﹣5xy,当x=1,y=2时,原式=2y2﹣5xy=2×22﹣5×1×2=﹣2.【点评】本题考查了整式的化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.11.(2022秋•高新区期末)先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=1,b=﹣2.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=1,b=﹣2时,原式=﹣6﹣4=﹣10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.12.(2022秋•嘉峪关校级期末)先化简,再求值.2(3a﹣4b)﹣3(3a+2b)+4(3a﹣2b),其中=−13,=12.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=6a﹣8b﹣9a﹣6b+12a﹣8b=9a﹣22b,当a=−13,b=12时,原式=9×(−13)﹣22×12=−3﹣11=﹣14.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.13.(2022秋•皇姑区期末)先化简,再求值:3(a2b﹣2b3+2ab)﹣[2(3ab+a2b)﹣4b3],其中a=2,b=﹣1.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:3(a2b﹣2b3+2ab)﹣[2(3ab+a2b)﹣4b3]=3a2b﹣6b3+6ab﹣(6ab+2a2b﹣4b3)=3a2b﹣6b3+6ab﹣6ab﹣2a2b+4b3=a2b﹣2b3.当a=2,b=﹣1时,原式=22×(﹣1)﹣2×(﹣1)3=﹣4+2=﹣2.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.14.(2022秋•寻乌县期末)先化简,再求值:﹣3(x2﹣2x)+2(32x2﹣2x−12),其中x=﹣4.【分析】直接去括号进而合并同类项进而得出答案.【解答】解:原式=﹣3x2+6x+3x2﹣4x﹣1=2x﹣1,把x=﹣4代入得:原式=2×(﹣4)﹣1=﹣9.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.15.(2022秋•市南区校级期末)先化简,再求值:12−2(−132)+(−12+132),其中=−2,=23.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:原式=12x﹣2x+232−12+132=﹣2x+y2;当x=﹣2,y=23时,原式=﹣2×(﹣2)+(23)2=4+49=409.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.16.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.【分析】先化简,再整体代入求值.【解答】解:(4x2+1)﹣2(x2+3x﹣1)=4x2+1﹣2x2﹣6x+2=2x2﹣6x+3=2(x2﹣3x)+3,当x2﹣3x=5时,原式=2×5+3=13.【点评】本题考查了整式的加减,整体代入法是解题的关键.17.(2022秋•范县期中)已知m+4n=﹣1.求(6mn+7n)+[8m﹣(6mn+7m+3n)]的值.【分析】化简整理代数式,整体代入求值.【解答】解:∵m+4n=﹣1.∴(6mn+7n)+[8m﹣(6mn+7m+3n)]=6mn+7n+(8m﹣6mn﹣7m﹣3n)=6mn+7n+8m﹣6mn﹣7m﹣3n=4n+m=﹣1.【点评】本题考查了整式的化简求值,解题的关键是掌握整体代入求值.18.已知x+y=6,xy=﹣4,求:(5x+2y﹣3xy)﹣(2x﹣y+2xy)的值.【分析】先去括号,合并同类项,再将x+y=6,xy=﹣4,整体代入进行计算即可.【解答】解:原式=5x+2y﹣3xy﹣2x+y﹣2xy=3x+3y﹣5xy=3(x+y)﹣5xy,当x+y=6,xy=﹣4时,原式=3×6﹣5×(﹣4)=18+20=38.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(2022秋•芙蓉区校级月考)已知xy=2,x+y=3,求(3xy+10y)+[5x﹣(2xy+2y﹣3x)]的值.【分析】先去括号合并同类项,然后将xy=2,x+y=3整体代入即可.【解答】解:原式=3xy+10y+5x﹣2xy﹣2y+3x=xy+8y+8x=8(x+y)+xy,当xy=2,x+y=3时,原式=8×3+2=26.【点评】本题考查了整式的加减﹣﹣化简求值,熟悉合并同类项是解题的关键.20.已知a2+b2=20,a2b﹣ab2=﹣3,求(b2﹣a2)+(a2b﹣3ab2)﹣2(b2﹣ab2)的值.【分析】去括号、合并同类项,再把已知条件代入即可得到整式的值.【解答】解:(b2﹣a2)+(a2b﹣3ab2)﹣2(b2﹣ab2)=b2﹣a2+a2b﹣3ab2﹣2b2+2ab2=﹣b2﹣a2+a2b﹣ab2=﹣(b2+a2)+(a2b﹣ab2)把a2+b2=20,a2b﹣ab2=﹣3代入,原式=﹣20+(﹣3)=﹣23.【点评】本题主要考查了整式的加减—化简求值,掌握整式的加减运算法则,整体思想是解题的关键.21.(2023春•大荔县期末)已知3a﹣b=﹣2,求代数式3(2B2−163+p−2(3B2−2p+的值.【分析】直接去括号,再合并同类项,再把已知数据代入得出答案.【解答】解:原式=6ab2﹣16a+3b﹣6ab2+4a+b=﹣12a+4b,∵3a﹣b=﹣2,∴原式=﹣4(3a﹣b)=﹣4×(﹣2)=8.【点评】此题主要考查了整式的加减—化简求值,正确合并同类项是解题关键.22.已知b=2a+2,求整式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=6ab2﹣12a+3b﹣6ab2+4a+b=﹣8a+4b,∵b=2a+2,∴﹣2a+b=2,∴原式=4(﹣2a+b)=4×2=8.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.23.(2021秋•浉河区期末)阅读材料:“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+7(a﹣b)2的结果是;(2)拓广探索:已知x2+2y=−13,求﹣6y﹣3x2+2021的值.【分析】(1)把(a﹣b)2看成一个整体,利用合并同类项运算法则进行计算;(2)将原式进行变形,然后利用整体思想代入求值.【解答】解:(1)原式=(3﹣6+7)(a﹣b)2=4(a﹣b)2,故答案为:4(a﹣b)2;(2)原式=﹣3(x2+2y)+2021,当x2+2y=−13时,原式=﹣3×(−13)+2021=1+2021=2022,即原式的值为2022.【点评】本题考查整式的加减运算,理解整体思想解题的应用,掌握合并同类项(系数相加,字母及其指数不变)的运算法则是解题关键.24.(2022秋•黔西南州期中)“整体思想”是中学数学解题中的一种重要思想,它在多项式的化简与求值中应用极为广泛,例如把(a+b)看成一个整体:3(a+b)+2(a+b)=(3+2)(a+b)=5(a+b).请应用整体思想解答下列问题:(1)化简:3(x+y)2﹣5(x+y)2+7(x+y)2;(2)已知a2+2a+1=0,求2a2+4a﹣3的值.【分析】(1)直接利用合并同类项法则计算得出答案;(2)所求式子变形后,将已知等式代入计算即可求出值.【解答】解:(1)3(x+y)2﹣5(x+y)2+7(x+y)2=(3﹣5+7)(x+y)2=5(x+y)2;(2)∵a2+2a+1=0,∴2a2+4a﹣3=2(a2+2a+1)﹣5=0﹣5=﹣5.【点评】此题主要考查了代数式求值,利用了整体代入的思想.25.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b),“整体思想”是一种重要的数学思想方法,它在多项式的化简与求值中应用极为广泛.(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣(a﹣b)2+7(a﹣b)2,其结果是;(2)已知x2﹣2y=1,求﹣3x2+6y+5的值.【分析】(1)把(a﹣b)2看成一个整体,根据合并同类项的法则化简即可;(2)把x2﹣2y=1看成一个整体,整体代入求值即可.【解答】解:(1)原式=(3﹣1+7)(a﹣b)2=9(a﹣b)2,故答案为:9(a﹣b)2;(2)∵x2﹣2y=1,∴原式=﹣3(x2﹣2y)+5=﹣3+5=2.【点评】本题考查了合并同类项,代数式求值,考查整体思想,把x2﹣2y=1看成一个整体,整体代入求值是解题的关键.26.(2022秋•沁县期末)我们知道:4x+2x﹣x=(4+2﹣1)x=5x,类似地,若我们把(a+b)看成一个整体,则有4(a+b)+2(a+b)﹣(a+b)=(4+2﹣1)(a+b)=5(a+b).这种解决问题的方法渗透了数学中的“整体思想”.“整体思想”是中学数学解题中的一种重要的思想方法,其应用极为广泛.请运用“整体思想”解答下面的问题:(1)把(a﹣b)看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2;(2)已知:x2+2y=5,求代数式﹣3x2﹣6y+21的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【分析】(1)利用“整体思想”和合并同类项法则进行计算即可;(2)先把﹣3x2﹣6y+21化成﹣3(x2+2y)+21,再把x2+2y=5整体代入,计算即可;(3)由a﹣2b=3,2b﹣c=﹣5,c﹣d=10,得出a﹣c=﹣2,2b﹣d=5,再代入计算即可.【解答】解:(1)3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2=﹣2(a﹣b)2;(2)﹣3x2﹣6y+21=﹣3(x2+2y)+21,当x2+2y=5时,原式=﹣3×5+21=6;(3)∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴a﹣c=3+(﹣5)=﹣2,2b﹣d=﹣5+10=5,∴(a﹣c)+(2b﹣d)﹣(2b﹣c)=﹣2+5﹣(﹣5)=8.【点评】本题考查了整式的加减—化简求值,会把整式正确化简及运用“整体思想”是解决问题的关键.27.(2022秋•铜梁区期末)先化简,再求值:6a2﹣[2(a2+ab)﹣4ab]﹣ab,其中a,b满足|a+1|+(b﹣2)2=0.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:∵6a2﹣[2(a2+ab)﹣4ab]﹣ab=6a2﹣(2a2+2ab﹣4ab)﹣ab=6a2﹣2a2+2ab﹣ab=4a2+ab,∵a,b满足|a+1|+(b﹣2)2=0,∴a+1=0,a=﹣1.b﹣2=0,b=2.则原式=4×(﹣1)2+(﹣1)×2=4﹣2=2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2022秋•汝阳县期末)已知|a+1|+(b﹣2)2=0,求5ab2﹣[3ab﹣2(﹣2ab2+ab)]的值.【分析】直接利用非负数的性质得出a,b的值,再利用整式的加减运算法则计算,进而得出答案.【解答】解:∵|a+1|+(b﹣2)2=0,∴a+1=0,b﹣2=0,解得:a=﹣1,b=2,∵5ab2﹣[3ab﹣2(﹣2ab2+ab)]=5ab2﹣(3ab+4ab2﹣2ab)=5ab2﹣(ab+4ab2)=ab2﹣ab,将a=﹣1,b=2代入原式=ab2﹣ab=﹣1×22﹣(﹣1)×2=﹣4+2=﹣2.【点评】此题主要考查了整式的加减—化简求值,正确掌握相关运算法则是解题关键.29.(2022秋•沙坪坝区期末)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【分析】首先利用去括号法则去括号,进而合并同类项,再利用非负数的性质得出x,y的值,进而求出即可.【解答】解:原式=﹣6xy+2x2﹣(2x2﹣15xy+6x2﹣xy)=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.【点评】此题主要考查了整式的加减运算以及非负数的性质,正确化简整式是解题关键.30.(2022秋•利州区校级期末)先化简,再求值:3x2+(2xy﹣3y2)﹣2(x2+xy﹣y2),其中x、y满足(x﹣3)2+|+13|=0.【分析】先化简整式,再根据非负数的和为0求出x、y的值,最后代入求值.【解答】解:3x2+(2xy﹣3y2)﹣2(x2+xy﹣y2)=3x2+2xy﹣3y2﹣2x2﹣2xy+2y2=x2﹣y2.∵(x﹣3)2+|+13|=0.又∵(x﹣3)2≥0,|+13|≥0.∴x=3,y=−13.∴原式=32﹣(−13)2=9−19=889.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则,根据非负数的和求出x、y的值是解决本题的关键.31.(2022秋•招远市期末)先化简,再求值;4B−[(2−2)−3(2+3B−132)],其中x、y满足(−2)2+ |+12|=0.【分析】先化简整式,再根据非负数的意义确定x、y的值,最后代入化简后的整式求值.【解答】解:4B−[(2−2)−3(2+3B−132)]=4xy﹣(x2﹣y2﹣3x2﹣9xy+y2)=4xy﹣x2+y2+3x2+9xy﹣y2=13xy+2x2.∵(−2)2+|+12|=0,又∵(x﹣2)2≥0,|y+12|≥0,∴x=2,y=−12.当x=2,y=−12时,原式=13×2×(−12)+2×22=﹣13+2×4=﹣13+8=﹣5.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及非负数的意义是解决本题的关键.32.(2022秋•万州区期末)化简求322b﹣2(ab2+1)−12(3a2b﹣ab2+4)的值,其中2(a﹣3)2022+|b+23|=0.【分析】利用去括号的法则和合并同类项的法则化简运算,利用非负数的性质求得a,b的值,将a,b 的值代入运算即可.【解答】解:原式=322b﹣2ab2﹣2−32a2b+12ab2﹣2=−32B2−4.∵2(−3)2022+|+23|=0,(a﹣3)2022≥0,|b+23|≥0,∴a﹣3=0,+23=0,∴a=3,=−23.∴原式=−32×3×(−23)2−4=−92×49−4=﹣2﹣4=﹣6.【点评】本题主要考查了求代数式的值,整式的加减与化简求值,非负数的应用,正确利用去括号的法则和合并同类项的法则运算是解题的关键.33.(2022秋•潼南区期末)先化简,再求值:已知x,y满足|x﹣1|+(y+5)2=0,求代数式3(2−B+162)−2(2B+2−142)的值.【分析】利用非负数的性质求出x,y的值,去括号合并同类项可得结论.【解答】解:3(2−B+162)−2(2B+2−142)=3x2﹣3xy+12y2﹣4xy﹣2x2+12y2=x2﹣7xy+y2,∵|x﹣1|+(y+5)2=0,∴x=1,y=﹣5,∴原式=12﹣7×1×(﹣5)+(﹣5)2=61.【点评】本题考查整式的加减,非负数的性质等知识,解题的关键是掌握整式的混合运算的法则,属于中考常考题型.34.(2022秋•沙坪坝区校级期中)先化简,再求值:2(2−2B2)−[(−22+42p−13(6B2−322)],其中x是最大的负整数,y是绝对值最小的正整数.【分析】去括号,合并同类项,代入数据求值.【解答】解:∵x是最大的负整数,y是绝对值最小的正整数,∴x=﹣1,y=1,∴2(2−2B2)−[(−22+42p−13(6B2−322)]=2x2y﹣4xy2﹣(﹣x2y2+4x2y﹣2xy2+x2y2)=2x2y﹣4xy2+x2y2﹣4x2y+2xy2﹣x2y2=﹣2x2y﹣2xy2=﹣2×(﹣1)2×1﹣2×(﹣1)×12=﹣2+2=0.∴化简后结果为:﹣2x2y﹣2xy2,值为:0.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的化简.35.(2022秋•松滋市期末)已知关于x,y的单项式7x a y与﹣4x2y b是同类项.(1)求a、b的值;(2)化简求值:5(2a2b﹣ab2)﹣6(−32ab2+2a2b).【分析】(1)根据同类项的定义可得结论;(2)先去括号,再合并同类项.【解答】解:(1)∵单项式7x a y与﹣4x2y b是同类项,∴a=2,b=1.(2)5(2a2b﹣ab2)﹣6(−32ab2+2a2b)=10a2b﹣5ab2+9ab2﹣12a2b=4ab2﹣2a2b.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则、有理数的混合运算是解决本题的关键.36.已知2a3m b和﹣2a6b n+2是同类项,化简并求值:2(m2﹣mn)﹣3(2m2﹣3mn)﹣2[m2﹣(2m2﹣mn+m2)]﹣1.【分析】原式去括号合并得到最简结果,利用同类项定义求出m与n的值,代入计算即可求出值.【解答】解:原式=2m2﹣2mn﹣6m2+9mn﹣2m2+4m2﹣2mn+2m2﹣1=5mn﹣1,∵2a3m b和﹣2a6b n+2是同类项,∴3m=6,n+2=1,即m=2,n=﹣1,则原式=﹣10﹣1=﹣11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.37.已知多项式A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,当a=1,b=﹣1时,试求A+2B的值.【分析】将A与B代入A+2B中,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:∵A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,∴A+2B=3a2﹣6ab+b2+2(﹣2a2+3ab﹣5b2)=3a2﹣6ab+b2﹣4a2+6ab﹣10b2=﹣a2﹣9b2,当a=1,b=﹣1时原式=﹣12﹣9×(﹣1)2=﹣10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.38.先化简,再求值:已知=−12+2,=34−−1.若3b﹣a的值为﹣8,求A﹣2B的值.【分析】此题需要先去括号,再合并同类项,将原整式化简,然后再将3b﹣a=﹣8代入求解即可.【解答】解:∵A=a−12b+2,B=34−b﹣1,∴A﹣2B=(−12+2)−2(34−−1)=−12+2−32+2+2=−12+32+4把3b﹣a=﹣8代入,原式=−r32+4=−82+4=−4+4=0.【点评】此题考查了整式的混合运算,主要考查了整式的加减法、去括号、合并同类项的知识点.注意运算顺序以及符号的处理.39.(2022秋•和平区校级期中)已知A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2.(1)化简:2A﹣3B;(2)当a=﹣1,b=2时,求2A﹣3B的值.【分析】(1)将A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2代入2A﹣3B中,再进行化简即可求解;(2)将a=﹣1,b=2代入(1)中化简的式子即可求解.【解答】解:(1)∵A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2,∴2A﹣3B=2(3b2﹣2a4+5ab)﹣3(4ab+2b2﹣a2)=6b2﹣4a4+10ab﹣12ab﹣6b2+3a2=﹣4a4+3a2﹣2ab;(2)当a=﹣1,b=2时,2A﹣3B=﹣4a4+3a2﹣2ab=﹣4×(﹣1)4+3×(﹣1)2﹣2×(﹣1)×2=﹣4+3+4=3.【点评】本题主要考查了整式的化简,掌握合并同类法则是解题的关键.40.已知A=2x2﹣3xy+y2+x+2y,B=4x2﹣6xy+2y2﹣3x﹣y.当实数x、y满足|x﹣2|+(y−15)2=0时,求B ﹣2A的值.【分析】先把A、B表示的代数式代入并化简整式,再利用非负数的性质求出x、y的值,最后代入计算.【解答】解:B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣2x﹣4y=﹣5x﹣5y.∵|x﹣2|+(y−15)2=0,|x﹣2|≥0,(y−15)2≥0,∴|x﹣2|=0,(y−15)2=0.∴x=2,y=15.当x=2,y=15时,原式=﹣5×2﹣5×15=﹣10﹣1=﹣11.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则,非负数的性质是解决本题的关键.41.(2022秋•榆阳区校级期末)已知A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab.(1)化简:A﹣2(A﹣B);(结果用含a、b的代数式表示)(2)当a=−27,b=3时,求A﹣2(A﹣B)的值.【分析】(1)先去括号,合并同类项,然后把A,B的值代入化简后的式子,进行计算即可解答;(2)把a,b的值代入(1)中的结论,进行计算即可解答.【解答】解:(1)∵A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab,∴A﹣2(A﹣B)=A﹣2A+2B=﹣A+2B=﹣(2a2b﹣ab﹣2a)+2(a2b﹣a+3ab)=﹣2a2b+ab+2a+2a2b﹣2a+6ab=7ab;(2)当a=−27,b=3时,A﹣2(A﹣B)=7×(−27)×3=﹣6.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.42.(2022秋•河池期末)已知,A=3ab+a﹣2b,B=2ab﹣b.(1)化简:2A﹣3B;(2)当b=2a时,求2A﹣3B+4的值.【分析】(1)将A=3ab+a﹣2b,B=2ab﹣b代入2A﹣3B,再进行化简即可求解;(2)由(1)可得2A﹣3B+4,再把b=2a代入可求解.【解答】解:(1)∵A=3ab+a﹣2b,B=2ab﹣b,∴2A﹣3B=2(3ab+a﹣2b)﹣3(2ab﹣b)=6ab+2a﹣4b﹣6ab+3b=2a﹣b;(2)由(1)知,2A﹣3B=2a﹣b,∴2A﹣3B+4=2a﹣b+4,∴当b=2a时,原式=2a﹣2a+4=4.【点评】本题主要考查了整式的加减运算,掌握去括号法则和合并同类项法则是解题的关键.43.(2023春•莱芜区月考)已知A=6a2+2ab+7,B=2a2﹣3ab﹣1.(1)计算:2A﹣(A+3B);(2)当a,b互为倒数时,求2A﹣(A+3B)的值.【分析】(1)把A、B代入2A﹣(A+3B)计算即可;(2)当a,b互为倒数时,ab=1,根据(1)的计算结果,求出2A﹣(A+3B)的值即可.【解答】解:(1)∵A=6a2+2ab+7,B=2a2﹣3ab﹣1,∴2A﹣(A+3B)=2A﹣A﹣3B=A﹣3B=(6a2+2ab+7)﹣3(2a2﹣3ab﹣1)=6a2+2ab+7﹣6a2+9ab+3=11ab+10.(2)当a,b互为倒数时,ab=1,2A﹣(A+3B)=11ab+10=11×1+10=11+10=21.【点评】此题主要考查了整式的加减﹣化简求值问题,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.44.(2022秋•兴城市期末)已知多项式A=3x2﹣bx+6,B=2ax2﹣4x﹣1;(1)若(a﹣3)2+|b﹣2|=0,求代数式2A﹣B的值;(2)若代数式2A+B的值与x无关,求5a+2b的值.【分析】(1)根据两个非负数的和为0,两个非负数分别为0,再进行化简求值即可求解;(2)根据2A+B的值与x的取值无关,即为含x的式子为0即可求解.【解答】解:(1)由题意得,a﹣3=0,b﹣2=0,∴a=3,b=2,∴A=3x2﹣2x+6,B=6x2﹣4x﹣1,∴2A﹣B=2(3x2﹣2x+6)﹣(6x2﹣4x﹣1)=6x2﹣4x+12﹣6x2+4x+1=13;(2)由题意得,2A+B=2(3x2﹣bx+6)+2ax2﹣4x﹣1,=6x2﹣2bx+12+2ax2﹣4x﹣1=(6+2a)x2﹣(2b+4)x+11∵代数式2A+B的值与x无关,∴6+2a=0,2b+4=0,∴a=﹣3,b=﹣2,∴5a+2b=5×(﹣3)+2×(﹣2)=﹣19.【点评】本题考查了整式的化简求值、非负数的性质,解决本题的关键是与x的值无关即是含x的式子为0.45.(2022秋•韩城市期末)已知关于x的多项式A,B,其中A=mx2+2x﹣1,B=x2﹣nx+2(m,n为有理数).(1)化简2B﹣A;(2)若2B﹣A的结果不含x项和x2项,求m、n的值.【分析】(1)根据整式的减法法则计算即可;(2)根据结果不含x项和x2项可知其系数为0,然后列式计算即可.【解答】解:(1)2B﹣A=2(x2﹣nx+2)﹣(mx2+2x﹣1)=2x2﹣2nx+4﹣mx2﹣2x+1=2x2﹣mx2﹣2nx﹣2x+5;(2)2B﹣A=2x2﹣mx2﹣2nx﹣2x+5=(2﹣m)x2﹣(2n+2)x+5,∵2B﹣A的结果不含x项和x2项,∴2﹣m=0,2n+2=0,解得m=2,n=﹣1.【点评】本题考查了整式的加减运算,关键是注意去括号时符号的变化情况.46.(2022秋•北碚区校级期末)已知A=32B2−2x﹣1,B=3x2−13mx+4,(1)当4A−3B的值与x的取值无关,求m、n的值;(2)在(1)的条件下,求多项式(m2﹣3mn+3n2)﹣(2nm﹣mn﹣4n2)的值.【分析】(1)化简整理整式,令含有x的项的系数为0,求出m、n的值;(2)把m、n的数据代入代数式求值.【解答】解:(1)∵A=32B2−2x﹣1,B=3x2−13mx+4,∴4A−3B=4(32B2−2x﹣1)﹣3(3x2−13mx+4)=6nx2﹣8x﹣4﹣9x2+mx﹣12=(6n﹣9)x2+(m﹣8)x﹣16,∵4A−3B的值与x的取值无关,∴6n﹣9=0,m﹣8=0,∴n=32,m=8;(2)由(1)得n=32,m=8,∴(m2﹣3mn+3n2)﹣(2nm﹣mn﹣4n2)=m2﹣3mn+3n2﹣2nm+mn+4n2=m2﹣4mn+7n2=82﹣4×8×32+7×(32)2=64﹣48+634=16+15.75=31.75.【点评】本题考查了整式的混合运算化简求值,解题的关键是掌握整式的混合运算.47.(2022秋•沙坪坝区校级期末)已知A=x2+ax﹣y,B=bx2﹣x﹣2y,当A与B的差与x的取值无关时,求代数式32−[2B2−4(B−342p]+2B2的值.【分析】首先求出a,b的值,再化简求值即可.【解答】解:A﹣B=(x2+ax﹣y)﹣(bx2﹣x﹣2y)=(1﹣b)x2+(a+1)x+y,∵A与B的差与x的取值无关,∴a=﹣1,b=1,∴原式=3a2b﹣2ab2+4ab﹣3a2b+2ab2=4ab=﹣4.【点评】本题考查整式的加减,解题关键是理解题意,掌握整式是加减法则,属于中考常考题型.48.(2022秋•沧州期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+y2.(1)求2A﹣4B;(2)如果x,y满足(x﹣1)2+|y+2|=0,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.【分析】(1)直接将A=2x2+3xy﹣2x,B=x2﹣xy+y2代入计算即可;(2)先根据非负性求出x、y的值,再代入(1)中结果计算即可;(3)直接将10xy﹣4x﹣4y2转化为(10y﹣4)x﹣4y2计算y即可.【解答】解:(1)2A﹣4B=2(2x2+3xy﹣2x)﹣4(x2﹣xy+y2)=4x2+6xy﹣4x﹣4x2+4xy﹣4y2=10xy﹣4x﹣4y2.(2)由题意可知:x﹣1=0,y+2=0,所以x=1,y=﹣2,原式=10×1×(﹣2)﹣4×1﹣4×(﹣2)2=﹣20﹣4﹣16=﹣40.(3)因为2A﹣4B的值与x的取值无关,所以2A﹣4B=10xy﹣4x﹣4y2=2x(5y﹣2)﹣4y2,所以5y﹣2=0,所以=25.【点评】本题考查了整式的混合运算,熟练掌握运算法则是解题的关键.49.(2022秋•河北期末)已知一个多项式(3x2+ax﹣y+6)﹣(﹣6bx2﹣4x+5y﹣1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3ab2﹣[5a2b+2(ab2−12)+ab2]+6a2b,再求它的值.【分析】(1)去括号,合并同类项将原式化为(3+6b)x2+(a+4)x﹣6y+7,再令x项的系数为0即可;(2)根据去括号、合并同类项将原式化简后,再代入求值即可.【解答】解:(1)原式=3x2+ax﹣y+6+6bx2+4x﹣5y+1=(3+6b)x2+(a+4)x﹣6y+7,∵该多项式的值与字母x的取值无关,∴3+6b=0,a+4=0,∴a=﹣4,b=−12;(2)原式=3ab2﹣(5a2b+2ab2﹣1+ab2)+6a2b=3ab2﹣5a2b﹣2ab2+1﹣ab2+6a2b=a2b+1,当a=﹣4,b=−12时,原式=(﹣4)2×(−12)+1=﹣8+1=﹣7.【点评】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提.50.(2022秋•邗江区校级期末)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.【分析】(1)先去括号,再合并同类项,然后根据代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关得出关于a和b的方程,计算即可.(2)先将4A+[(2A﹣B)﹣3(A+B)]去括号,合并同类项,再将A=4a2﹣ab+4b2,B=3a2﹣ab+3b2代入化简,然后将a与b的值代入计算即可.【解答】解:(1)2x2−12bx2﹣y+6=(2−12b)x2﹣y+6,ax+17x﹣5y﹣1=(a+17)x﹣5y﹣1,∵关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关,∴2−12b=0,a+17=0,∴a=﹣17,b=4.(2)4A+[(2A﹣B)﹣3(A+B)]=4A+2A﹣B﹣3A﹣3B=3A﹣4B,∵A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,∴3A﹣4B=3(4a2﹣ab+4b2)﹣4(3a2﹣ab+3b2)=12a2﹣3ab+12b2﹣12a2+4ab﹣12b2=ab,由(1)知a=﹣17,b=4,∴原式=(﹣17)×4=﹣68.【点评】本题考查了整式的加减﹣化简求值,熟练掌握整式的加减的运算法则是解题的关键.。
人教版七年级数学上册第二章整式的加减法复习试题大全(含答案)先化简,再求值(1)3(x 2-7x )-(3x 2-5-7x ),其中x=﹣1;(2)()223(2)322a ab a b ab b ⎡⎤---++⎣⎦,其中12a =-,3b =. 【答案】(1)-14x+5;19;(2)-8ab ;12.【解析】【分析】(1)根据去括号,合并同类项,可化简整式,根据代数式求值,可得答案;(2)根据去括号,合并同类项,可化简整式,根据代数式求值,可得答案.【详解】(1)3(x 2-7x )-(3x 2-5-7x ),=3x 2-21x -3x 2+5+7x ,=-14x+5;当x=-1时,原式=14+5=19;(2)()()2232322a ab a b ab b ⎡⎤---++⎣⎦, =3a 2-6ab-(3a 2+2ab),=3a 2-6ab-3a 2-2ab ,=-8ab ; 当12a =-,3b =时,原式=-8×(12-)×3=12. 【点睛】本题考查了整式的化简求值,利用去括号,合并同类项化简整式是解题关键.(1)()()1072---+- (2)()()()759015-⨯--÷-(3)()12324834⎛⎫+-⨯- ⎪⎝⎭(4)()231113252⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭ (5)223247a a a a --- (6)解方程:35202x x -=-【答案】(1)-5;(2)41;(3)-1;(4)5-6;(5)2--9a a ;(6)5. 【解析】【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)先算乘除,后算减法即可;(3)根据乘法的分配律计算即可;(4)先算乘方,再算括号里,后算乘除,然后算加减即可;(5)找出同类项合并即可;(6)按照移项、合并同类项、系数化为1的步骤求解即可.【详解】计算:(1)()()1072---+-解:原式=()()1072-+++--107-2=+127=-+5=- ;(2)()()()759015-⨯--÷-解:原式()35--6=356=+(3)()12324834⎛⎫+-⨯- ⎪⎝⎭解:原式123-2424-24834⎛⎫=⨯+⨯⨯ ⎪⎝⎭()-316-18=+-1= ;(4)()231113252⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭解:原式[]1-1-34-52=÷⨯ ()11-1--123=⨯⨯ 1-16=+ 5-6= ; (5)223247a a a a ---解:原式()()23-427a a =+--2--9a a = ;(6)解:32205x x +=+,525x =,5x =.【点睛】本题考查了有理数的混合运算,合并同类项及一元一次方程的解法,熟练掌握各知识点是解答本题的关键.43.先化简再求值.(1) -2(x 2-3x)+(x+2x 2),其中 x=-2(2)(2a2-2b2)-3(a2b2+a2)+3(a2b2+b2),其中,a=-1,b=2【答案】(1)7x,-14(2)-a2+b2,3【解析】【分析】根据整式的加减,先去括号,再合并同类项进行化简,最后代入求值即可.【详解】(1)-2(x2-3x)+(x+2x2)=-2x2+6x+ x+2x2=7x当x=-2时,原式=7×2=14;(2)(2a2-2b2)-3(a2b2+a2)+3(a2b2+b2)=2a2-2b2-3a2b2-3a2+3a2b2+3b2=- a2+b2当a=-1,b=2时,原式=-1+4=3.【点睛】此题主要考查了整式的化简求值,关键是灵活利用合并同类项法则进行整式的化简.44.化简:(1)(3a-2)-3(a-5)(2)-3x2y+2x2y+3xy2-2xy2(3)2m+(m+n)-2(m+n)(4)(4a2b-5ab2)+[-2(3a2b-4ab2)]【答案】(1)13(2)-x2y+xy2(3)m-n(4)-2a2b+3ab2【解析】【分析】根据去括号法则和合并同类项法则进行化简即可.【详解】(1)(3a-2)-3(a-5)=3a-2-3a+15=13(2)-3x2y+2x2y+3xy2-2xy2=(-3+2)x2y +(3-2)xy2=- x2y +xy2(3)2m+(m+n)-2(m+n)=2m+m+n-2m-2n=m-n(4)(4a2b-5ab2)+[-2(3a2b-4ab2)]=4a2b-5ab2-6 a2b+8ab2=-2 a2b+3ab2【点睛】此题主要考查了合并同类项,关键是利用合并同类项的法则,先找出同类项,再合并同类项即可求解.45.先化简,再求值:5(3a2b﹣ab2﹣1)﹣(ab2+3a2b﹣5),其中a =1,b=2.【答案】12a2b﹣6ab2,0【解析】【分析】先将原式化简,然后将a与b的值代入原式即可求出答案.【详解】解:原式=15a2b﹣5ab2﹣5﹣ab2﹣3a2b+5=12a2b﹣6ab2当a=1,b=2时,原式=12×1×2﹣6×1×4=24﹣24=0.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.46.按照下面的步骤计算:任意写一个三位数,百位数字比个数数字大3交换差的百位数字与个位数字用大数减去小数交换它的百位数字与个位数字做加法问题:(1)用不同的三位数再做两次,结果都是1089吗?(2)你能解释其中的道理吗?【答案】(1)结果是1089;用不同的三位数再做几次,结果都是一样的;(2)见解析.【解析】【分析】设这个三位数为100(3+c)+10b+c,再交换百位数字与个位数字后为100c+10b+3+c.再根据条件推理,可得结果是1089.【详解】解:(1)结果是1089;用不同的三位数再做几次,结果都是一样的;(2)设这个三位数为100(3+c)+10b+c,再交换百位数字与个位数字后为100c+10b+3+c.根据题意,有[100(3+c)+10b+c]﹣[100c+10b+3+c]=297.再交换297的百位和个位数字得792,而297+792=1089.所以用不同的三位数再做几次,结果都是1089.【点睛】本题考查了整式加减的运用.认真读题,理解题意是关键.47.郑东新区九年制实验学校体育组准备在网上为学校订购一批某品牌羽毛球拍和羽毛球在查阅京东网店后发现羽毛球拍一副定价40元,羽毛球每个定价5元.“双十一”期间A、B两家网店均提供包邮服务,并提出了各自的优惠方案.A网店:买一副球拍送1个羽毛球;B网店:羽毛球拍和羽毛球都按定价的90%付款.已知要购买羽毛球拍30副,羽毛球x个(x>30):(1)若在A网店购买,需付款_____元(用含x的代数式表示);若在B网店购买,需付款_______元.(用含x的代数式表示);(2)若x=40时,通过计算说明此时在哪家网店购买较为合算?(3)当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算出需付款多少元?【答案】(1)(5x+1050),(4.5x+1080);(2)在A网店购买合算;(3)先在A 网店购买30副羽毛球拍,送30个羽毛球需1200元,差10个羽毛球在B网店购买需45元,共需1245元.【解析】【分析】(1)按照对应的方案的计算方法分别列出代数式即可;(2)把x=40代入求得的代数式求得数值,进一步比较得出答案即可;(3)根据两种方案的优惠方式,可得出先A网店购买30副羽毛球拍,送30个羽毛球,另外10副羽毛球拍在B网店购买即可.解:(1)A网店购买需付款30×40+(x﹣30)×5=(5x+1050)元;B网店购买需付款40×90%×30+5×90%×x=(4.5x+1080)元.故答案为(5x+1050),(4.5x+1080);(2)当x=40时,A网店需5×40+1050=1250(元);B网店需4.5×40+1080=1260(元);所以按A网店购买合算;(3)先A网店购买30副羽毛球拍,送30个羽毛球需1200元,差10个羽毛球B网店购买需45元,共需1245元.【点睛】此题考查列代数式,理解两种方案的优惠方案,得出运算的方法是解决问题的关键.48.先化简,再求值.(1) 14(﹣4x2+2x﹣8)﹣(12x﹣2),其中x=12.(2) 已知a2﹣a﹣4=0,求a2﹣2(a2﹣a+3)﹣12(a2﹣a﹣4)﹣a的值.【答案】(1)﹣x2;14;(2)-10.【解析】【分析】(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.解:(1)原式=﹣x2+12x﹣2﹣12x+2=﹣x2,当x=12时,原式=14-;(2)∵a2﹣a﹣4=0,即a2﹣a=4,∴原式=a2﹣2a2+2a﹣6﹣12a2+12a+2﹣a=﹣32(a2﹣a)﹣4=﹣6﹣4=﹣10.【点睛】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.49.(1)一天数学老师布置了一道数学题:已知x=2017,求整式()()()322332678323541x x x x x x x x x--+---+-+++-的值,小明观察后提出:“已知x=2017是多余的”,你认为小明的说法有道理吗?请解释.(2)已知整式2531M x ax x=+--,整式M与整式N之差是234x ax x+-.①求出整式N.②若a是常数,且2M+N的值与x无关,求a的值.【答案】(1)小明说的有道理,理由见解析.(2) ①N=-2x2+ax-2x-1 ②a=811.【解析】【分析】(1)原式去括号合并同类项后得到最简结果,根据化简结果中不含x,得到x的值是多余的.(2)①根据题意,可得N=(x2+5ax-3x-1)-(3x2+4ax-x),去括号合并即可;②把M 与N 代入2M+N ,去括号合并得到最简结果,由结果与x 值无关,求出a 的值即可.【详解】(1)小明说的有道理,理由如下:原式=x 3-6x 2-7x+8+x 2+3x-2x 3+3+x 3+5x 2+4x-1=(1-2+1)x 3+(-6+1+5)x 2+(-7+3+4)x+(8+3-1)=10,由此可知该整式的值与x 的取值无关,所以小明说的有道理.(2)①N=(x 2+5ax-3x-1)-(3x 2+4ax-x )=x 2+5ax-3x-1-3x 2-4ax+x=-2x 2+ax-2x-1;②∵M=x 2+5ax-3x-1,N=-2x 2+ax-2x-1,∴2M+N=2(x 2+5ax-3x-1)+(-2x 2+ax-2x-1)=2x 2+10ax-6x-2-2x 2+ax-2x-1=(11a-8)x-3,由结果与x 值无关,得到11a-8=0,解得:a=811. 【点睛】此题考查了整式的加减,熟练掌握去括号与合并同类项法则是解本题的关键.50.已知3,5,a b a b ==且>,求代数式()322332a ab b b --++的值. 【答案】-43或-7【解析】【分析】根据绝对值的定义求出a 、b ,根据a>b 分两种情况进行讨论. 再把a 、b 的值代入所求的代数式中,根据有理数的运算法则计算即可.【详解】()322332a ab b b --++=322332a ab b b +-+=323a ab b +-∵a 3,b 5==∴a= ±3, b=±5∵a>b∴a= 3,b= -5或a=-3,b= -5当a=3,b= -5 时,原式=()()2333355+⨯⨯--- =27−45−25=−43当a=-3,b= -5时,原式=()()()()3233355-+⨯-⨯--- =274525-+-=7-∴原式的值为43-或7-【点睛】本题考查了代数式求值:把满足条件的值代入代数式,然后利用实数的运算法则进行计算.本题的关键点在于根据条件进行分类讨论.。
七年级数学上册《第二章 整式的加减》化简求值练习及答案-人教版学校:___________班级:___________姓名:___________考号:___________ 1.先化简,再求值:()()()()2222242a b a b a b b b ⎡⎤---+-÷⎣⎦,其中1a =和2b =-.2.先化简,再求值22(2)(2)a a a ---,其中1a =-.3.先化简,再求值()()()222222332a b ab a b ab +---+,其中2a =-和1b .4.先化简,再求值:()()22223233x y xy xy x y ---,其中2x =和1y =-5.先化简,再求值.()()222624420.5a ab a a ab +-+-+,其中1a =和1b .6.先化简再求值:2222332232a b ab ab a b ab ab ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦,其中4a =-和12b =.7.先化简,再求值:()22244xy xy xy xy ⎡⎤---⎣⎦,其中2023,1x y ==-.15.先化简,再求值:224[63(42)]1x y xy x x y ----+.其中,2x =-和12y =.16.先化简再求值:()()222223324xy x y xy xy x y +---,其中4x =-和1y =. 17.先化简,再求值:2225435256x x x x x +----+,其中 =1x -.18.先化简,再求值:()()3223242a b a b a ---+,其中3a =-和2b =-. 1.【答案】22b a - 6-2.【答案】22529a a -+;3.【答案】2ab - 24.【答案】22910x y xy - 56-5.【答案】10ab - 106.【答案】2ab ab + 3-7.【答案】2xy 20238.【答案】ab - 19.【答案】2294xy x y -;3410.【答案】(1)24xy y -(2)9-11.【答案】226x y xy -+ -112.【答案】23xy y - 7-13.【答案】28xy - 814.【答案】21333x y 015.【答案】256125x y xy x -+- 13-16.【答案】2273x y xy - 12417.【答案】1x - 2-18.【答案】22b a - 11。
第二章 整式的加减 2.1 整式(2课时) 第1课时 单项式1.使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数. 2.初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系.重点掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数. 难点识别单项式的系数和次数.一、创设情境,导入新课师:出示图片. 青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?(2)t 小时呢? 二、推进新课(一)用含字母的式子表示数量关系. 师:出示第54页例1.生:解答例1后,讨论问题,用字母表示数有什么意义?学生经过讨论得出一定的答案,但可能不会太规范,教师总结.师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式.一个数或表示数的字母也是代数式).师生共同完成例2,进一步体会用字母表示数的意义.巩固练习:第56页练习. (二)单项式的概念. 师:出示问题.引言与例1中的式子100t ,0.8p ,mn ,a 2h ,-n 这些式子有什么特点? 生:通过观察、对比、讨论得出,各式都是数或字母的积.师:指出单项式的概念,特别地,单独的一个数或字母也是单项式. 巩固练习:下列各式是单项式的式子是____________. 0.7,-a ,-3+b ,2a 2b 7,0,1x .(三)单项式的系数,次数.师:提出问题,观察单项式,6a 2,2.5x ,-n ,2a 2b7,它们各由哪几个部分组成? 生:观察讨论得出结果.师:指出,单项式中的数字因数叫做这个单项式的系数.应当注意的是,单项式的系数包括它前面的性质符号.而如-n,a3这样的式子的系数分别是-1和1,不能说没有系数.师:进一步提出问题:以上各式中的字母部分,每个字母的指数是多少?每个单项式中所有字母的指数的和是多少?生:举手回答.师:指出,一个单项式中,所有字母的指数的和叫做这个单项式的次数.一般地,一个单项式的次数是几,我们就称它为几次单项式.如:6a2叫二次单项式,-n叫做一次单项式,你能举出一个三次单项式的例子吗?练习:第57页练习第1题.(四)例题讲解.例3:用单项式填空,并指出它们的系数和次数:(1)每包书有12册,n包书有________册.(2)底边长为a,高为h的三角形面积是________.(3)一个长方体的长和宽都是a,高是h,它的体积是________.(4)一台电视机原价是a元,现按原价的9折出售,现在的售价是________.(5)一个长方形的长是0.9,宽是a,这个长方形的面积是________.生:独立完成,然后举手回答.师:针对学生的问题,进行点拨和进一步的解释.师:进一步提出问题,观察(4),(5)两个题的答案,你有什么看法?生:自由发表意见.师总结:用字母表示数,相同的字母在同一个式子中表示的意义相同,在不同的式子中可以有不同的含义.请同学们大胆想一想,你还能赋予0.9a什么实际的意义.生:自由发言即可.(教师不必太苛求学生,对学生的回答只要符合题意,就一律给予鼓励)三、练习与小结练习:第57页练习第2题.小结:学习本节内容以后,(1)请你谈一谈你对用字母表示数的认识;(2)请你谈一谈你对单项式的认识.四、布置作业习题2.1第1题.教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.第2课时多项式1.掌握多项式的概念,进而理解整式的概念.2.掌握多项式的项数、次数的概念,并能熟练地说出多项式的项数和次数.重点多项式的概念及多项式的项数、次数的概念.难点多项式的次数.一、创设情境,导入新课师:出示问题(投影).观察一列数1,4,9,16,25,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?观察一列数2,5,10,17,26,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?生:思考得出答案,第一列中第6个数是36,第n 个数是n 2,第二列中第6个数是37,第n 个数是n 2+1. 师:我们知道,n 2是一个单项式,而n 2+1不是单项式,那么,它属于哪一类代数式呢?这就是我们今天要解决的问题. 二、推进新课(一)多项式及多项式的项数、次数的概念师:引导学生回想课本55页例2的内容,进一步观察所列之式υ+2.5,υ-2.5,3x +5y +2z ,12ab -πr 2,x 2+2x +18,有何特点?生:思考讨论.师:进一步提出问题,以上各式显然不是单项式,它们和单项式有联系吗? 生:讨论,交流.自由发言回答上面的问题.师:指出多项式的概念及其相关的几个概念.每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式有几个单项式组成,我们就把它叫做几项式,如2x -3可以叫做二项多项式,3x +5y +2x 可以叫做三项多项式.师:进一步引导学生探究多项式次数的概念. 生:可以发挥自己的想象去探究给多项式的次数命名的方法,教师不必苛求学生怎样想,让学生大胆发言,只要能发挥他们的想象力即可.师:在这一过程中教师可以引导,多项式的次数是不是也可以将所有字母的指数加在一块呢?如果字母多的话是不是有点太乱呢?如果这样的话我们是不是派个代表就行了,派谁当代表呢?引导学生说出,以次数最高的项的次数作为代表.师:多项式中次数最高的项的次数叫做多项式的次数.同单项式一样,一个多项式的次数是几,我们就称它为几次式.如2x -3可以叫做一次二项式,3x +5y +2z 可以叫做一次三项式.(二)整式的概念学生阅读教材,找出整式的概念.师:什么是整式?生:单项式和多项式统称为整式.师:进一步提问,你能说一说单项式、多项式和整式三者之间的关系吗? 生:讨论后回答.师:根据学生回答情况予以点拨、强调. (三)例题例4:如图,用式子表示圆环的面积,当R =15 cm ,r =10 cm 时,求圆环的面积.(π取3.14)解析:圆环的面积是外部大圆的面积与内部小圆面积的差.生:写解答过程.师:巡回指导,发现问题,及时点拨.三、练习与小结练习:58~59页练习.小结:1.说一说单项式、多项式、整式各有什么特点?2.它们三者之间的关系是怎样的?四、布置作业习题2.1第2题.本课的知识点比较简单,属于概念介绍型的,先让学生自己阅读课本,了解相关的概念,然后完成自学检测.教师进行适当点评后,学生完成分层练习,巩固对概念的掌握.整节课基本以学生自学为主线,完成整个教学过程,意在培养学生的自学能力.2.2整式的加减(4课时)第1课时同类项1.理解同类项的概念,在具体情境中,认识同类项.2.理解合并同类项的概念,掌握合并同类项的法则.重点理解同类项的概念,掌握合并同类项的法则.难点根据同类项的概念在多项式中找同类项.活动1:创设情境,导入新课师出示图片引言中的问题2.在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段的时间是2.1t小时,这段路的全长(单位:千米)是100t+120×2.1t,即100t+252t.怎样化简这个式子呢?活动2:探究同类项及合并同类项的方法教师出示教材第62页探究1;学生讨论完成,然后教师继续出示63页探究2内容,学生讨论交流完成.师生共同归纳特点,引出同类项的定义.像100t与252t,3ab2与-4ab2这样的式子,它们所含字母相同,并且相同字母的指数也相同的项叫做同类项.师进一步提出问题,在探究2中,你是如何化简的?学生观察、讨论、交流,然后归纳出合并同类项的法则.尝试运用:化简:4x2+2x+7+3x-8x2-2(找出多项式中的同类项)=(4x2-8x2)+(2x+3x)+(7-2)(运用运算律进行整理)=(4-8)x2+(2+3)x+(7-2)(运用分配律进行合并)=-4x2+5x+5一般结果按某个字母的升降幂排列.活动3:巩固运用法则教师出示例1.师生共同完成,教师要给学生示范,可以采用学生口述,教师板书的方法.过程中注意结合法则和方法.练习:教材第65页练习第1题.教师出示例3.学生尝试独立完成,然后同学交流.教师点拨:这里的结果用整式表示.练习:教材第65页练习2,3题.活动4:小结与作业小结:谈谈你对同类项及合并同类项的认识.作业:习题2.2第1题.本节课在概念的讲解时通过典型的例题让学生充分去感受概念的意义,启发学生,鼓励学生合作交流,让学生充分发表意见,使学生真正成为学习的主人.因而,人人都开动脑筋,积极发言,积极参与,掌握知识效果较好.第2课时去括号法则能运用运算律探究去括号法则,并且利用去括号法则将整式化简.重点去括号法则,准确应用法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:创设情境,导入新课师:数学爱好者发现了一个非常有趣的现象,将一个两位数的个位和十位对调得到一个新的两位数以后,这两个数的差能被9整除,和能被11整除,这是为什么呢?提示:如果设这个两位数的个位数字是a,十位数字是b,如何表示这个两位数?学生讨论以后师生共同得出以下结果:原数10b+a,新数10a+b差是10b+a-(10a+b),和是10b+a+(10a+b).将10b,a,10a,b看做几个数,类似小学中的计算,你能化简这两个式子吗?学生讨论交流,然后尝试完成.10b+a+(10a+b)=10b+a+10a+b==11a+11b10b+a-(10a+b)=10b+a-10a-b=9b-9a现在你能说明为什么一个能被9,另一个能被11整除了吗?再看下面的问题,你能化简这两个式子吗?你的依据是什么?100u+120(u-0.5)100u-120(u-0.5)学生交流讨论,然后尝试完成.活动2:归纳去括号法则师:观察以上各式,在去括号的过程中,你发现有什么规律?学生讨论交流.归纳:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,对于形如+(10a+b),-(10a+b)的式子,可以将因数看做1或者-1.活动3:运用法则教材展示教材例4.教师提示:先观察判断是哪种类型的去括号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.易犯错误:①括号前是“-”时,去括号以后,只是第一项改变了符号,而其他各项未变号.②括号前面的系数不为1或者-1时,容易漏乘除第一项以外的项.师生共同完成,学生口述,教师板书.教师展示例5.问题:船在水中航行时它的速度都与哪些量有关,它们之间的关系如何?学生思考、小组交流.然后学生完成,同学间交流.活动4:练习与小结练习:教材第67页练习.小结:1.谈谈你对去括号法则的认识.2.去括号的依据是什么?活动5:作业布置习题2.2第2,5,8题.通过回顾小学学过的去括号方法,运用类比方法,得到了整式的去括号法则,这样的设计起点低,学生学起来更自然,对新知识更容易接受.第3课时去括号法则的深入1.使学生进一步掌握去括号法则,并能熟练运用去括号法则解决问题.2.培养学生分析解决问题的能力.重点准确应用去括号法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:复习提问,导入新课师提出问题:①合并同类项法则的内容是什么?②去括号法则的内容是什么?活动2:熟练运用合并同类项,去括号法则师:刚才我们回忆了合并同类项,去括号法则,它们是进行整式加减运算的基础.师:出示教材例6.计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).分析:根据法则,应如何进行计算?学生讨论后,教师归纳:先去括号,然后合并同类项.师生共同完成,边讲解边叙述法则.解:(1)(2x-3y)+(5x+4y)=2x-3y+5x+4y………………………………去括号=(2x+5x)+(-3y+4y)……………………找同类项=7x+y ……………………………………合并同类项(2)略教师出示教材例7.教师引导学生从不同的角度去列算式,①小明花________元,小红花________元,二人共花________元.②买笔记本花________元,买圆珠笔花________元,共花________元.学生独立完成,然后交流.教师出示教材例2.(这里将教材内容做了一个调整,没有完全按照教材次序,一来是出于对第一课时时间过紧的考虑,二是为下一节课的化简求值作准备)学生独立完成,教师告诉学生一般这种类型题目先化简再求值.活动3:练习与小结练习:教材第69页练习1,2题.小结:谈谈你这节课的收获.活动4:布置作业习题2.2第3,6题.本节课采用去括号法则与实例相结合的方式导入,经历对同一问题的数量关系的不同表示方法,让学生更形象更具体地体会去括号法则的合理性,整个过程以学生为主,让学生观察思考、合作交流来发现并亲身体会去括号法则的过程和数与式之间的关系,收到效果较好.但在教学中还应给予学生较多的思考反思总结的时间效果会更好些.第4课时整式的加减让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.重点整式的加减.难点总结出整式的加减的一般步骤.一、创设情境,复习引入练习:化简:(1)(x+y)-(2x-3y);(2)2(a2-2b2)-3(2a2+b2).提问:以上化简实际上进行了哪些运算?怎样进行整式的加减运算?二、推进新课师:出示投影.例8:做两个长方体纸盒,尺寸如下(单位:cm)(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?分析:做一个纸盒用料多少,实际上是在求什么?学生回答.大盒用料多少,小盒用料多少?请列式表示.解:略教师讲解后归纳:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项.教师出示教材例9.教师点拨:求代数式的值的问题,一般地,先对多项式进行化简,然后再代入求值.三、练习与小结练习:教材第69页练习第3题.小结:如何进行整式的加减,你能谈谈你学完本节的收获吗?四、布置作业习题2.2第4,7题.其实整式的加减本质上就是合并同类项的问题,重点是让学生较好的记住法则,依据法则去解决问题.只是学生的基本计算能力有待加强,计算出现的错误比较多,说明学生计算的基本功有待加强.有理数的学习不够优秀是本章学习的一大难题.。
整式的加减化简求值专项1.先化简再求值:2(3a2﹣ab)﹣3(2a2﹣ab),其中a=﹣2,b=3.2.先化简再求值:6a2b﹣(﹣3a2b+5ab2)﹣2(5a2b﹣3ab2),其中a=﹣2,b=.3.先化简,再求值:3x2y2﹣[5xy2﹣(4xy2﹣3)+2x2y2],其中x=﹣3,y=2.4.先化简,再求值:5ab2+3a2b﹣3(a2b﹣ab2),其中a=2,b=﹣1.5.先化简再求值:2x2﹣y2+(2y2﹣x2)﹣3(x2+2y2),其中x=3,y=﹣2.6.化简:﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)].7.先化简,再求值:5x2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.8.先化简,再求值:(6a2﹣6ab﹣12b2)﹣3(2a2﹣4b2),其中a=﹣,b=﹣8.10.化简求值:(﹣3x2﹣4y)﹣(2x2﹣5y+6)+(x2﹣5y﹣1),其中x、y满足|x﹣y+1|+(x﹣5)2=0.11.先化简,再求值:(1)5a2b﹣2ab2+3ab2﹣4a2b,其中a=﹣1,b=2;(2)(2x2﹣xyz)﹣2(x2﹣y2+xyz)﹣(xyz+2y2),其中x=1,y=2,z=﹣3.12.先化简,再求值:x2y﹣(2xy﹣x2y)+xy,其中x=﹣1,y=﹣2.13.已知:|x﹣2|+|y+1|=0,求5xy2﹣2x2y+[3xy2﹣(4xy2﹣2x2y)]的值.14.先化简,再求值:﹣9y+6x2+3(y﹣x2),其中x=﹣2,y=﹣.15.设A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.16.已知M=﹣xy2+3x2y﹣1,N=4x2y+2xy2﹣x(1)化简:4M﹣3N;(2)当x=﹣2,y=1时,求4M﹣3N的值.17.求代数式的值:(1)(5x2﹣3x)﹣2(2x﹣3)+7x2,其中x=﹣2;(2)2a﹣[4a﹣7b﹣(2﹣6a﹣4b)],其中a=,b=.18.先化简,再求值:5(xy+3x2﹣2y)﹣3(xy+5x2﹣2y),其中x=,y=﹣1.19.化简:(1)(9y﹣3)+2(y﹣1)(2)求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.20.先化简,再求值:(5a+2a2﹣3+4a3)﹣(﹣a+4a3+2a2),其中a=1.21.当|a|=3,b=a﹣2时,化简代数式1﹣{a﹣b﹣[a﹣(b﹣a)+b]}后,再求这个代数式的值.22.先化简,再求值:a2﹣(2a2+2ab﹣b2)+(a2﹣ab﹣b2),其中a=3,b=﹣2.23.先化简再求值:3a2﹣(2ab+b2)+(﹣a2+ab+2b2),其中a=﹣1,b=2.24.化简求值:3a2b﹣〔2ab2﹣2(ab﹣a2b)+ab〕+3ab2,其中a=3,b=﹣.25.已知3x a﹣2y2z3和﹣4x3y b﹣1z3是同类项,求3a2b﹣[2ab2﹣2(a2b+2ab2)]的值.26.先化简,再求值:﹣8xy2+3xy﹣2(xy2﹣xy),其中x=,y=﹣2.27.已知,A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,求:(1) 2A﹣B;(2)当时,2A﹣B的值.28.先化简,后计算:2(a2b+ab2)﹣[2ab2﹣(1﹣a2b)]﹣2,其中a=﹣2,b=.29.先化简,再求值:2(a2﹣2ab)﹣3(a2+2ab),其中a=﹣1,b=2.30.已知A=4(2﹣x2)﹣2x,B=2x2﹣x+3.(1)当x=时,求A﹣2B的值;(2)若A与2B互为相反数,求x的值.31.先化简再求值,已知a=﹣2,b=﹣1,c=3,求代数式5abc﹣2a2b﹣[(4ab2﹣a2b)﹣3abc]的值.32.化简(求值)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y的值,其中x=﹣2,y=2.33.先化简,再求值:﹣2(ab﹣3a2)﹣[a2﹣5(ab﹣a2)+6ab],其中a=2,b=﹣3.34.先化简,再求值:3a3﹣[a3﹣3b+(6a2﹣7a)]﹣2(a3﹣3a2﹣4a+b)其中a=2,b=﹣1,35.先化简,再求值:(5a2b+4b3﹣2ab2+3a3)﹣(2a3﹣5ab2+3b3+2a2b),其中a=﹣2,b=3.36.先化简,再求值,其中a=1,b=﹣2.37.先化简再求值:(a2﹣3ab﹣2b2)﹣(a2﹣2b2),其中,b=﹣8.38.化简:,其中x=.39.化简求值:3(x3﹣2y2﹣xy)﹣2(x3﹣3y2+xy),其中x=3,y=1.40.先化简再求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=,y=﹣5.41.先化简,再求值:8mn﹣[4m2n﹣(6mn2+mn)]﹣29mn2,其中m=﹣1,n=.42.先化简,再求值:4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)],其中a=1,b=﹣3.43.先化简,再求值:3x2+4x﹣2x2﹣2(x2+2x﹣1)﹣x+1,其中x=﹣2.44.化简求值:(2x2﹣x﹣1)﹣(x2﹣x﹣)+(3x2﹣3),其中x=.45.化简求值:3(x2﹣xy)﹣5(),其中x=﹣2,y=﹣3.46.先化简,再求值:9(xy﹣x2y)﹣2(xy﹣x2y﹣1)其中xy+1=0.47.先化简,再求值:4(3x2y﹣xy2)﹣2(xy2+3x2y),其中x=,y=﹣1.48.已知x=﹣3,y=﹣,求代数式的值.49.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.50.先化简,再求值:(8xy﹣3x2)﹣5xy﹣3(xy﹣2x2+3),其中.51.先化简,再求值:,其中.52.先化简,再求值:3a2﹣7a+[3a﹣2(a2﹣2a﹣1)],其中a=﹣2.53.先化简﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)],再求值,其中x=,y=.54.先化简,再求值:,其中x=﹣2,.55.先化简,再求值:3()﹣(5x2y﹣4xy2),其中x=2,y=﹣1.56.先化简,再求值,已知a=1,b=﹣,求多项式的值.57.先化简,再求值:3(x2﹣xy)﹣(4x2﹣3xy﹣1),其中.58.先化简,再求值:,其中.59.先化简,再求值:2(x2y﹣xy2﹣1)﹣(2x2y﹣xy2﹣y),其中x=2,y=﹣1.60.先化简,再求值:(2m2n+2mn2)﹣2(m2n﹣1)﹣3+mn,其中.61.先化简,再求值.3x﹣5(x﹣2xy2)+8(x﹣3xy2),其中.62.先化简,再求值:,其中x=﹣2.63.先化简,再求值:﹣5x2y﹣[3x2y﹣2(xy2﹣x2y)].其中x=2,y=﹣1.64.先化简,再求值:,其中,y=2008.65.先化简,再求值:5a2﹣3b2+[﹣(a2﹣2ab﹣b2)﹣(5a2+2ab+3b2)],其中a=1,b=﹣.66.先化简,再求值:2x2+3x+5+[4x2﹣(5x2﹣x+1)],其中x=3.67.先简化再求值:(其中x=﹣2,y=)68.先化简,再求值.2(a2b+2b3﹣ab2)+3a3﹣(2a2b﹣3ab2+3a3)﹣4b3,其中a=﹣3,b=2.69.先化简再求值:2(a2b+ab3)﹣3(a2b﹣3)﹣2ab3﹣1,其中a=2,b=﹣2.70.已知a,b满足等式,求代数式的值.71.先化简,再求值.4xy﹣[2(x2+xy﹣2y2)﹣3(x2﹣2xy+y2)],其中x=﹣,y=72.先化简,再求值:2x2+(﹣x2+3xy+2y2)﹣( x2﹣xy+2y2),其中 x=,y=3.73.先化简,再求值:(2x2﹣5xy)﹣3(x2﹣y2)+x2﹣3y2,其中x=﹣3,y=.74.先化简,再求值:5a2b+3b2﹣2(3a2b+ab2)+(4a2b﹣3b2),其中a=﹣2,b=1.75.先化简,再求值:5a﹣[a2+(5a2﹣3a)﹣6(a2﹣2a)],其中a=﹣.76.先化简再求值:3x2y﹣[2xy2﹣4(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣1.77.先化简,再求值:2(a2b+ab2)﹣3(a2b﹣3)﹣2ab2﹣1.其中a=﹣2,b=2.78.先化简,再求值:,其中x=3,y=.79.化简后再求值:x﹣2(3y2﹣2x)﹣4(2x﹣y2),其中|x﹣2|+(y+1)2=0.80.先化简,再求值,5x2﹣(3y2+5x2﹣2xy)+(﹣7xy+4y2),其中:x=﹣1,y=﹣.81.先化简,再求值:,其中x,y满足(x﹣2)2+|y+3|=0.82.先化简,再求值:2(x2﹣3xy﹣y2)﹣(2x2﹣7xy﹣2y2),其中x=4,y=﹣1时.83.求代数式的值:2(3xy+4x2)﹣3(xy+4x2),其中x=﹣3,.84.先化简,再求值:5(a2b﹣ab2)﹣(ab2+3a2b),其中85.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b)﹣4(3a2b﹣ab2),其中a=﹣2,b=.86.先化简,再求值:(a2b﹣2ab2﹣b3)÷b+(b﹣a)(b+a),其中a=﹣,b=2012.87.先化简,再求值:,其中.88.先化简,再求值:4m3﹣(3m2+5m﹣2)+2(3m+m2﹣2m3)﹣1,其中m=2011.89.先化简,再求值 2(3x2﹣x+4)﹣3(2x2﹣2x+3),其中.90.先化简,再求值.2(2xy2﹣y2)﹣(4xy2+y2﹣x2y)﹣y2,其中x=,y=﹣.整式化简求值90题参考答案:1.原式=6a2﹣2ab﹣6a2+3ab=ab,当a=﹣2,b=3时,原式=ab=﹣2×3=﹣6.2.原式=6a2b+3a2b﹣5ab2﹣10a2b+6ab2=﹣a2b+ab2把a=﹣2,b=代入上式得:原式=﹣(﹣2)2×+(﹣2)×2=﹣2﹣=﹣2.3.原式=3x2y2﹣5xy2+4xy2﹣3﹣2x2y2=x2y2﹣xy2﹣3∴当x=﹣3,y=2时,原式=454.原式=5ab2+3a2b﹣3a2b+2ab2(4分)=7ab2.(6分)当a=2,b=﹣1时,原式=7×2×(﹣1)2(7分)=14.5.原式=2x2﹣y2+2y2﹣x2﹣3x2﹣6y2=﹣2x2﹣5y2.当x=3,y=﹣2时,原式=﹣18﹣20=﹣38.6.﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)]=﹣x2﹣3x+5+[4x2﹣3x2+x+y]=﹣2x+6y,7.原式=5x2﹣(x2+5x2﹣2x﹣2x2+6x)=x2﹣4x当x=时,上式=8.原式=6a2﹣6ab﹣12b2﹣6a2+12b2=﹣6ab,当a=﹣,b=﹣8时,原式=﹣6×(﹣)×(﹣8)=﹣24.9.=﹣a2﹣9a+7当a=﹣2时,原式=﹣(﹣2)2﹣9×(﹣2)+7=﹣4+18+7=21.10.∵|x﹣y+1|+(x﹣5)2=0,则x﹣y+1=0,x﹣5=0,解得x=5,y=6.(﹣3x2﹣4y)﹣(2x2﹣5y+6)+(x2﹣5y﹣1)=﹣3x2﹣4y﹣2x2+5y﹣6+x2﹣5y﹣1=﹣4x2﹣4y﹣7=﹣100﹣24﹣7=﹣13111.(1)原式=a2b+ab2,当a=﹣1,b=2时,原式=(﹣1)2×2+(﹣1)×22,=﹣2;(2)原式=2x2﹣xyz﹣2x2+2y2﹣2xyz﹣xyz﹣2y2,=﹣4xyz,当x=1,y=2,z=﹣3时,原式=﹣4×1×2×(﹣3)=2412.原式=x2y﹣2xy+x2y+xy=2x2y﹣xy,当x=﹣1,y=﹣2时,原式=2×(﹣1)2×(﹣2)﹣(﹣1)×(﹣2)=﹣6.13.∵|x﹣2|+|y+1|=0,∴x﹣2=0,y+1=0,解得x=2,y=﹣1,原式=5xy2﹣2x2y+3xy2﹣4xy2+2x2y,=4xy2,=4×2×1,=814.原式=﹣9y+6x2+3y﹣3x2=3x2﹣6y,由x=﹣2,y=﹣得:原式=12+2=1415.∵|x﹣2a|+(y﹣3)2=0∴x=2a,y=3∵B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+2x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣4x﹣4y=﹣7x﹣5y又B﹣2A=a∴﹣7×2a﹣5×3=a∴a=﹣116.(1)4M﹣3N=4(﹣xy2+3x2y﹣1)﹣3(4x2y+2xy2﹣x)=﹣4xy2+12x2y﹣4﹣12x2y﹣6xy2+3x=﹣10xy2+3x﹣4;(2)当x=﹣2,y=1时,4M﹣3N=﹣10×(﹣2)×1+3×(﹣2)﹣4=20﹣6﹣4=10.17.(1)原式=(5x2﹣3x)﹣2(2x﹣3)+7x2=12x2﹣7x+6,当x=﹣2时,原式=12×(﹣2)2﹣7×(﹣2)+6=68;(2)原式=2a﹣[4a﹣7b﹣2+6a+4b],=2a﹣[10a﹣3b﹣2],=﹣8a+3b+2,当a=,b=时,原式=618.原式=5xy+15x2﹣10y﹣3xy﹣15x2+6y=2xy﹣4y,当x=,y=﹣1时,原式=2××(﹣1)﹣4×(﹣1)=3.19.(1)原式=3y﹣1+2y﹣2=5y﹣3;(2)原式=x﹣2x+y2﹣x+y2=﹣3x+y2当x=﹣2,y=时,原式=﹣3×(﹣2)+()2=6+=620.(5a+2a2﹣3+4a3)﹣(﹣a+4a3+2a2)=5a+2a2﹣3+4a3+a﹣4a3﹣2a2=(5a+a)+(2a2﹣2a2)﹣3+(4a3﹣4a3)=6a﹣3当a=1时原式=6×1﹣3=6﹣3=321.化简代数式得,原式=1+a+b;当a=3时,b=1,代数式的值为5;当a=﹣3时,b=﹣5,代数式的值为﹣7.22.a2﹣(2a2+2ab ﹣b2)+(a2﹣ab ﹣b2)=a2﹣2a2﹣2ab+b2+a2﹣ab ﹣b2=﹣a2﹣3ab.当a=3,b=﹣2时,原式=﹣×32﹣3×3×(﹣2)=﹣3+18=1523.原式=2a2﹣ab+b2其中a=﹣1,b=2.所以2a2﹣ab+b2=8 24.原式=3a2b﹣(2ab2﹣2ab+3a2b+ab)+3ab2=ab2+ab;将a=3,b=﹣代入得,原式=ab2+ab=﹣25. ∵3x a﹣2y2z3和﹣4x3y b﹣1z3是同类项∴a﹣2=3,b﹣1=2∴a=5,b=3.3a2b﹣[2ab2﹣2(a2b+2ab2)]=3a2b﹣[2ab2﹣2a2b﹣4ab2]=3a2b﹣2ab2+2a2b+4ab2=5a2b+2ab2当a=5,b=3时,原式=5×52×3+2×5×32=465.26.﹣8xy2+3xy﹣2(xy2﹣xy)=﹣8xy2+3xy﹣2xy2+2xy=﹣10xy2+5xy.当x=,y=﹣2时,原式=﹣10xy2+5xy=﹣10××(﹣2)2+5××(﹣2)=﹣8﹣2=﹣1027.(1)2A﹣B=2(3x2+3y2﹣5xy)﹣(2xy﹣3y2+4x2)=6x2+6y2﹣10xy﹣2xy+3y2﹣4x2=2x2+9y2﹣12xy;(2)当时,2A﹣B=2x2+9y2﹣12xy=3128. 原式=2a2b+2ab2﹣2ab2+1﹣a2b﹣2=a2b﹣1,当a=﹣2,b=时,∴原式=a2b﹣1=(﹣2)2×﹣1=2﹣1=1.29.2(a2﹣2ab)﹣3(a2+2ab)=2a2﹣4ab﹣3a2﹣6ab=﹣a2﹣10ab当a=﹣1,b=2时,原式=﹣(﹣1)2﹣10×(﹣1)×2=﹣1+20=19.30.(1)A=4(2﹣x2)﹣2x,B=2x2﹣x+3.A﹣2B=4(2﹣x2)﹣2x﹣2(2x2﹣x+3)=﹣8x2+2当x=时,A﹣2B=﹣8×()2+2=;(2)A=4(2﹣x2)﹣2x,B=2x2﹣x+3,即:2B=4x2﹣2x+6,由于A与2B互为相反数,即:A+2B=0,4(2﹣x2)﹣2x+4x2﹣2x+6=04x=14,解得:x=所以,x 的值为:.31.原式=5abc﹣2a2b﹣4ab2+a2b+3abc=8abc﹣a2b﹣4ab2;a=﹣2,b=﹣1,c=3时,原式=8×2×1×3﹣4×(﹣1)﹣4×(﹣2)×1=60.32.2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y=2x2y+2 xy2﹣2x2y+2x﹣2xy2﹣2y=2x﹣2y;把x=﹣2,y=2代入上式,原式=2×(﹣2)﹣2×2=﹣833.原式=﹣2ab+6a2﹣(a2﹣5ab+5a2+6ab)=﹣2ab+6a2﹣a2+5ab﹣5a2﹣6ab=﹣3ab;当a=2,b=﹣3时,原式=﹣3×2×(﹣3)=1834.原式=3a3﹣[a3﹣3b+6a2﹣7a]﹣2a3+6a2+8a﹣2b=3a3﹣a3+3b﹣6a2+7a﹣2a3+6a2+8a﹣2b=15a+b当a=2,b=﹣1时,则原式=15×2﹣1=29.35.原式=5a2b+4b3﹣2ab2+3a3﹣2a3+5ab2﹣3b3﹣2a2b=a3+3a2b+3ab2+b3,当a=﹣2,b=3时,原式=(﹣2)3+3×(﹣2)2×3+3×(﹣2)×32+33=﹣8+36﹣54+27=1.36.=a﹣2ab﹣2b 2a+2ab+b2=(+)a+(﹣2+2)ab+(﹣2+1)b2=2a+0﹣b2=2a﹣b2把a=1,b=﹣2代入上式,得上式=2×1﹣(﹣2)2=2﹣4=﹣2.37.原式=a2﹣3ab﹣2b2﹣a2+2b2(3分)=﹣3ab,当,b=﹣8时,原式=﹣3×()×(﹣8)(7分)=﹣12.38.原式=2x2﹣0.5+3x﹣4x+4x2﹣2+x+2.5=6x2;当x=时,原式=6×=.39.原式=3x3﹣6y2﹣3xy﹣3x3+6y2﹣2xy=﹣5xy,当x=3,y=1时,原式=﹣5×3×1=﹣15.40.原式=3x2y﹣[2xy2﹣(2xy﹣3x2y)+xy]+3xy2=3x2y﹣(2xy2﹣2xy+3x2y+xy)+3xy2=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2=xy+xy2,当x=,y=﹣5时,原式=×(﹣5)+×25=.41.原式=8mn﹣[4m2n﹣6mn2﹣mn]﹣29mn2=8mn﹣4m2n+6mn2+mn﹣29mn2=9mn﹣4m2n﹣23mn2当m=﹣1,n=时原式=9×(﹣1)×﹣4×12×﹣23×(﹣1)×=﹣﹣2+=﹣.42.原式=4ab﹣3b2﹣2b2=4ab﹣5b2,当a=1,b=﹣3时,原式=4×1×(﹣3)﹣5×(﹣3)2=﹣57.43.原式=3x2+4x﹣2x2﹣2x2﹣4x+2﹣x+1=﹣x2﹣x+3,当x=﹣2时,原式=﹣(﹣2)2﹣(﹣2)+3=1 44.(2x2﹣x﹣1)﹣(x2﹣x ﹣)+(3x2﹣3)=2x2﹣x﹣1﹣x2+x++3x2﹣3=4x2﹣4,当x=,原式=1﹣4=﹣3.45.原式=3x2﹣3xy﹣3x2+5xy=2xy,当x=﹣2,y=﹣3时,原式=2×(﹣2)×(﹣3)=12.46.原式=3xy﹣x2y﹣2xy+x2y+2…(1分)=xy+2…(2分)∵xy+1=0,∴xy=﹣1…(3分)∴原式=﹣1+2=1…(447.原式=12x2y﹣4xy2﹣2xy2﹣6x2y=6x2y﹣6xy2当x=,y=﹣1时,原式=6x2y﹣6xy2=6xy(x﹣y)=6×(﹣)×(+1)==﹣4.48.原式=x2﹣y ﹣x2﹣y=﹣x2﹣y,当x=﹣3,y=﹣时原式=﹣×(﹣3)2﹣(﹣)=﹣3+=﹣.49.原式=4xy﹣2x2﹣5xy+y2+2x2+6xy)=5xy+y2.当x=﹣2,y=1时,原式=5×(﹣2)+1=﹣9.50.(8xy﹣3x2)﹣5xy﹣3(xy﹣2x2+3)=8xy﹣3x2﹣5xy﹣3xy+6x2﹣9=3x2﹣9,当时,原式=51.原式=x2﹣[7x﹣2x+﹣2x2]+=x2﹣7x+2x ﹣+2x2+=3x2﹣5x当x=﹣时,原式=3×(﹣)2+5×=+=.52.3a2﹣7a+[3a﹣2(a2﹣2a﹣1)]=3a2﹣7a+3a﹣2a2+4a+2=a2+2,当d=﹣2时,原式=4+4=8.53.﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)]=﹣x2﹣3x+5y+[4x2﹣3x2+x+y]=﹣x2﹣3x+5y+4x2﹣3x2+x+y=﹣2x+6y.当x=,y=时,原式=﹣2×+6×=154.原式=x﹣x+y2﹣x+y2=﹣2x+y2,当x=2,y=时,原式=﹣2×2+()2=﹣4+=﹣.55.原式=x2y﹣3xy2﹣5x2y+4xy2=﹣x2y+xy2,当x=2,y=﹣1时,原式=﹣×22×(﹣1)+2×(﹣1)2=1656.=a3﹣2b3+2ab2﹣a2b﹣2ab2+2b3=a3﹣a2b,把a=1,b=﹣代入得:原式=13﹣12×=1+=.57.原式=3x2﹣3xy﹣4x2+3xy+1=﹣x2+1,当x=2,y=﹣3时,原式=﹣22+1=﹣3.58.原式=9x+6x2﹣3x+2x2﹣6x+6=8x2+6,当x=﹣时,原式=8×(﹣)2+6=2+6=8.59.原式=2x2y﹣2xy2﹣2﹣2x2y+xy2+y=﹣xy2+y﹣2,当x=2,y=﹣1时,原式=﹣2×(﹣1)2﹣1﹣2=﹣2﹣1﹣2=﹣5.60.原式=2m2n+2mn2﹣2m2n+2﹣3+mn=2mn2+mn﹣1,当m=﹣2,n=时,原式=2×(﹣2)×()2+(﹣2)×﹣1=﹣361.3x﹣5(x﹣2xy2)+8(x﹣3xy2)=3x﹣5x+10xy2+8x ﹣24xy2=6x﹣14xy2,当x=4,y=﹣时,原式=6×4﹣14×4×(﹣)2=24﹣126=﹣102.62.(2x2﹣x+1)﹣4(x﹣x2+)=2x2﹣x+1﹣4x+4x2﹣2=6x2﹣x﹣1,当x=﹣2时,原式=6×(﹣2)2﹣×(﹣2)﹣1=24+9﹣1=3263.原式=﹣5x2y﹣3x2y+2xy2﹣2x2y=2xy2,当x=2,y=﹣1时,原式=2×2×(﹣1)2=4.故答案为464.原式=﹣x2+x﹣2y+x+2y=﹣x2+x,当x=,y=2008时,原式=﹣()2+×=﹣+=.65.原式=5a2﹣3b2﹣a2+2ab+b2﹣5a2﹣2ab﹣3b2=﹣a2﹣5b2,当a=1,b=﹣时,原式=﹣1﹣5×=﹣66.原式=2x2+3x+5+[4x2﹣5x2+x﹣1]=2x2+3x+5+4x2﹣5x2+x﹣1=2x2+4x2﹣5x2+3x+x+5﹣1=x2+4x+4,∵x=3,∴x2+4x+4=9+12+4=25.67.原式=x2﹣xy+y2﹣x2+xy﹣y2=﹣x2﹣xy,当x=﹣2,y=时,原式=﹣2+=﹣1.68.原式=2a2b+4b3﹣2ab2+3a3﹣2a2b+3ab2﹣3a3﹣4b3=ab2,当a=﹣3,b=2时,原式=﹣3×22=﹣12.69.原式=2a2b,2ab3﹣3a2b+9﹣2ab3﹣1=2a2b﹣3a2b+2ab3﹣2ab3+9﹣1=﹣a2b+8∵a=2,b=﹣2,∴﹣a2b+8=8+8=1670.∵,∴a+=0,3b+2=0,∴a=﹣,b=﹣,=a ﹣b+a+b ﹣a+b+a+b ﹣a+ b=(+﹣+﹣)a+(﹣++++)b=a+ b=×(﹣)+×(﹣)=﹣.71.∵4xy﹣[2(x2+xy﹣2y2)﹣3(x2﹣2xy+y2)]=4xy﹣(2x2+2xy﹣4y2﹣3x2+6xy﹣3y2)=x2﹣4xy+7y2,∴当x=﹣,y=时,原式=x2﹣4xy+7y2=(﹣)2﹣4×(﹣)×+7×()2=+1+=372.原式=2x2﹣x2+3xy+2y2﹣x2+xy﹣2y2,=(2﹣1﹣1)x2+(3+1)xy+(2﹣2)y2,=4xy,当x=,y=3时,原式=4××3=673.原式=2x2﹣5xy﹣3x2+3y2+x2﹣3y2=(2﹣3+1)x2+(3﹣3)y2﹣5xy=﹣5xy,当x=﹣3,y=时,原式=(﹣5)×(﹣3)×=574.原式=5a2b+3b2﹣6a2b﹣2ab2+4a2b﹣3b2=3a2b﹣2ab2,当a=﹣2,b=1时,原式=12+4=16.75.原式=5a﹣a2﹣5a2+3a+6a2﹣12a=8a﹣12,当a=﹣时,原式=﹣2﹣12=﹣14.76.原式=3x2y﹣[2xy2﹣2xy+3x2y+xy]+3xy2=3x2y﹣2xy2+xy﹣3x2y+3xy2=xy2+xy,把x=3,y=﹣1代入得:原式=xy2+xy=077.2(a2b+ab2)﹣3(a2b﹣3)﹣2ab2﹣1,=2a2b+2ab2﹣3a2b+9﹣2ab2﹣1,=﹣a2b+8,当a=﹣2,b=2时,原式=﹣(﹣2)2×2+8=0.78.原式=﹣3x+5y2﹣+=﹣4x+y2,当x=3,y=时,原式=(﹣4)×3+×()2=0.79.∵|x﹣2|+(y+1)2=0,∴x=2,y=﹣1,x﹣2(3y2﹣2x)﹣4(2x﹣y2)=x﹣6y2+4x﹣8x+4y2=﹣3x﹣2y2,当x=2,y=﹣1时,原式=﹣6﹣2=﹣8.80.原式=5x2﹣3y2﹣5x2+2xy﹣7xy+4y2=﹣5xy+y2,当x=﹣1,y=﹣时,原式=﹣5×(﹣1)×(﹣)+(﹣)2=﹣+=﹣.81.原式==﹣3x+y2,由(x﹣2)2+|y+3|=0,知x﹣2=0,y+3=0,解得x=2,y=﹣3,代入化简结果得,原式=﹣3×2+(﹣3)2=382.原式=x2﹣6xy﹣2y2﹣2x2+7xy+2y2=﹣x2+xy,当x=4,y=﹣1时,原式=﹣42+4×(﹣1)=﹣2083.∵原式=5a2b﹣5ab2﹣ab2﹣3a2b=2a2b﹣6ab2,∴当时,原式==.84.∵原式=5a2b﹣5ab2﹣ab2﹣3a2b=2a2b﹣6ab2,∴当时,原式==.85.原式=15a2b﹣5ab2﹣ab2﹣3a2b﹣12a2b+4ab2=﹣2ab2,当a=﹣2,b=时,原式=﹣2×(﹣2)×=186.原式=a2﹣2ab﹣b2+b2﹣a2=﹣2ab,当a=﹣,b=2012时,原式=﹣2×(﹣)×2012=2012.87.原式=2x﹣y﹣6x+y=﹣4x,当x=﹣,y=2010时,原式=﹣4×(﹣)=1.88.原式=6x2﹣2x+8﹣6x2+6x﹣9=4x﹣1,当时,原式==﹣7.89.原式=6x2﹣2x+8﹣6x2+6x﹣9=4x﹣1,当时,原式==﹣7.90.原式=4xy2﹣y2﹣4xy2﹣y2+x2y ﹣y2=﹣3y2+x2y.当x=,y=﹣时,原式=﹣3×(﹣)2+()2×(﹣)==.。
第2章《整式的加减》教案一、课标要求1、知识与技能(1)理解并掌握单项式、多项式和整式的概念,弄清它们之间的区别于联系;(2)理解同类项的概念,掌握合并同类项的方法,掌握去括号时的符号变化的规律,能正确掌握多项式的概念,进而理解整式的概念。
(3)掌握多项式的项数,次数的概念,并能熟练地说出多项式的项数和次数。
(4)会用多项式表示简单的数量关系,并根据多项式中字母的值求多项式的值。
(5)会利用合并同类项将整式化简求值。
会运用整式的加减解决简单的实际问题(6)应用整式和整式的加减运算表示实际问题中的数量关系。
2、过程与方法(1)掌握从特殊到一般,从个体到整体地观察、分析问题的方法。
尝试从不同角度探究问题,培养应用意识和创新意识。
(2)经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法。
3.情感、态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言。
二、本章教材分析1.主要内容:1.本单元结合学生的生活经验,列举了学生熟悉的从数到式表示的实例,•从扩充运算的角度引入单项式与多项式的概念,然后再指出可以用单项式与多项式表示现实生活中具有意义的关系,使学生感受到整式的引入是来自实际生活的需要,体会数学知识与现实世界的联系。
引入整式概念之后,接着给出单项式与多项式的概念。
2.通过怎样用单项式与多项式关系引入整式。
整式的运算是非常重要的数学工具,在揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)单项式与多项式之间的内在关系;(2)单项式与多项式的有关概念;(3)单项式与多项式的运算;(4)在实际问题中,单项式与多项式的表现形式;3.应用整式和整式的加减运算表示实际问题中的数量关系。
掌握从特殊到一般,从个体到整体地观察、分析问题的方法。
尝试从不同角度探究问题,培养应用意识和创新意识。
2.本单元在教材中的地位与作用:1、梳理整式的相关概念,归纳概念之间的区别与联系。
整式的化简求值的五种类型(原卷版)【专题精讲】整式的化简常与求值相结合,体现了特殊与一般的辩证关系.解决这类问题的大体步骤可以简化为“一化、二代、三计算”,但有时也可根据题目的特征和已知条件灵活选择解题方法.根据代入方法的不同,可将整式的化简求值题划分为以下几种类型:(1)利用直接代入法求值;(2)利用整体代入法求值(3)利用拆项或添项法求值(4)利用降次消元法求值;(5)利用赋值法求值◎类型一:利用直接代入法求值解题方法:整式的化简求值一般分为三步:一是利用整式加减的运算法则将整式化简;二是把已知字母或某个整式的值代入化简后的式子;三是依据有理数的运算法则进行计算1.(黑龙江省大庆市庆新中学2021-2022学年六年级(五四学制)下学期期末考试数学试题)先化简再求值213()(1)322----+xy y xy x其中54,33x y==2.(2022·湖南·长沙市开福区清水塘实验学校七年级期末)先化简再求值:()()23343334a a a a a+----+其中a=﹣1.3.(2020·天津市红桥区教师发展中心七年级期中)已知2223A x xy y=+-2223B x xy y=-+(1)求32A B +;(2)当21,==x y 求32A B +的值.4.(2021·福建·福州十八中七年级期中)先化简 再求值:(1)()()2232223,a a a a ---其中3a =-.(2)()2272421,x y xy xy x y ⎡⎤-----+⎣⎦其中x y 满足()2201510x y -++=.◎类型二:利用整体代入法求值解题方法:解答此类题目,先将原式化简,再将已知条件(或变形后的条件)整体代入求值。
5.(2022·全国·七年级单元测试)已知3,2a b c d +=-= 则()()a c b d +--+的值是( ) A .5 B .-5 C .1 D .-16.(2021·福建漳州·七年级期中)若代数式13-22x y = 则代数式2()22421x y y x -+-+的值为( )A .7B .13C .19D .257.(2022·全国·七年级课时练习)已知21x y -= 则式子22(43)(2)y x y y ----的值为( ) A .-1 B .1 C .-5 D .58.(2022·全国·七年级课时练习)若21a a += 则代数式2225+-a a 的值为( ) A .0 B .1 C .2 D .3-◎类型三:无关类题型的求值9.(2020·天津市红桥区教师发展中心七年级期中)已知2232A a b ab abc =-+ 小明错将“2A B -”看成“2A B +”,算得结果22434C a b ab abc =-+.(1)计算B 的表达式;(2)求正确的结果的表达式;(3)小强说(2)中的结果的大小与c 的取值无关 对吗?若1185a b ==,求(2)中代数式的值10.(2021·陕西·西北大学附中七年级期中)如果关于x 、y 的代数式()()22262351x ax y bx x y +-+--+-的值与字母x 所取的值无关 试化简代数式323212234a b a b ⎛⎫--- ⎪⎝⎭再求值.11.(2022·全国·七年级专题练习)已知多项式M =()()2223221x xy y x x yx -+++++. (1)当x =1 y =2 求M 的值;(2)若多项式M 与字母x 的取值无关 求y 的值.12.(2022·全国·七年级专题练习)已知代数式22212,221A x xy y B x xy x =++-=-+-.(1)当x =﹣1 y =﹣2时 求2A ﹣B 的值.(2)若2A ﹣B 的值与x 的取值无关 求y 的值.◎类型四:图形类问题的应用求值13.(2022·浙江绍兴·七年级期末)已知有2个完全相同的边长为a 、b 的小长方形和1个边长为m 、n 的大长方形 小明把这2个小长方形按如图所示放置在大长方形中 小明经过推事得知 要求出图中阴影部分的周长之和 只需知道a 、b 、m 、n 中的一个量即可 则要知道的那个量是( )A .aB .bC .mD .n14.(2022·浙江宁波·七年级期末)如图所示 三张正方形纸片① ① ①分别放置于长()a b + 宽()a c +的长方形中 正方形① ① ①的边长分别为a b c 且a b c >> 则阴影部分周长为( )A .42a c +B .42a b +C .4aD .422a b c ++ 15.(2021·广东·揭西县宝塔实验学校七年级期中)如图 大长方形ABCD 是由一张周长为C 1正方形纸片①和四张周长分别为C 2 C 3 C 4 C 5的长方形纸片① ① ① ①拼成 若大长方形周长为定值 则下列各式中为定值的是( )A .C 1B .C 3+C 5 C .C 1+C 3+C 5D .C 1+C 2+C 416.(2022·山东·万杰朝阳学校期中)如图 阴影部分的面积是 ( )A .72xyB .92xyC .4xyD .2xy◎类型五:利用数轴化简求值17.(2022·全国·七年级课时练习)已知A B C 三点在数轴上如图所示 它们表示的数分别是a b c .且|a |<|b |.(1)填空:abc 0 a +b 0(填“>”“<”或“=”).(2)化简:|a ﹣b |﹣2|a +b |+|b ﹣c |.18.(2022·贵州黔西·七年级期末)(1)已知有理数a b c 在数轴上的对应点的位置如图所示 化简:a b c b b a +--+-;(2)若x 的相反数是2- y 没有倒数 24z = 求2()x y z x y z -++-+-的值.19.(2021·河南开封·七年级期中)已知x 、y 两数在数轴上表示如图.(1)试在数轴上找出表示x - y -的点 并用“<”连接x y x - y -.(2)若x 的绝对值等于3 y 的倒数等于它本身 化简求值:32x y y x -+-.20.(2021·天津·耀华中学七年级期中)已知在数轴上的位置如图所示:(1)判断下列式子正负:a +1 0;c ﹣b 0;b ﹣1 0;(2)化简:|a +1|+|c ﹣b |﹣|b ﹣1|;(3)若332b x y -与123a a x y --的差仍是单项式 且a 与﹣1的距离等于c 与﹣1的距离 求﹣4c 2+2(a ﹣4b )﹣3(﹣c 2+5a ﹣b )的值.【专题训练】1.(2022·广西贵港·七年级期末)若a ﹣5=6b 则(a +2b )﹣2(a ﹣2b )的值为( ) A .5 B .﹣5 C .10 D .﹣102.(2022·全国·七年级课时练习)如果a ﹣4b =0 那么多项式2(b ﹣2a +10)+7(a ﹣2b ﹣3)的值是( )A .﹣1B .﹣2C .1D .23.(2021·黑龙江·绥芬河市第三中学七年级期中)把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m 宽为n )的盒子底部(如图①) 盒子底面未被卡片覆盖的部分用阴影表示 则图①中两块阴影部分的周长和是( )A .4mB .4nC .2(m +n )D .4(m -n ) 4.(2022·浙江绍兴·七年级期中)如图 大长方形按如图方式分成5块 其中标号① ① ①的为正方形 标号① ①的为长方形 若要求出①与①的周长差 则只需知道下列哪个条件( )A .①的周长B .①的周长C .①的面积D .①的面积 5.(2020·湖北·公安县教学研究中心七年级期中)先化简 再求值:()()222221653242ab a b ab ab a b +-+-- 其中a =2、b =-12. 6.(2021·河北·原竞秀学校七年级期中)老师在黑板上书写了一个正确的演算过程 随后用一张纸挡住了一个多项式 形式如下:()2231251x x x +-=--+(1)求所挡的多项式;(2)当1x =-时 求代数式的值.7.(2022·全国·七年级专题练习)已知代数式22232A x xy y B x xy x =++,=﹣+. (1)求A ﹣2B ;(2)当x =﹣1 y =3时 求A ﹣2B 的值;(3)若A ﹣2B 的值与x 的取值无关 求y 的值.8.(2020·浙江·余姚市姚江中学七年级期中)已知:222351 2.A x xy x B x xy =+-+=-++,(1)当2,1x y =-=时 求2A B +的值.(2)若2A B +的值与x 的值无关 求y 的值.9.(2021·重庆市万州第二高级中学七年级阶段练习)(1)已知325A x x =- 2116B x x =-+ 求当1x =时 求()3A A B ---+⎡⎤⎣⎦;(2)已知||5a = ||8b = 且0a b +> 求ab 的值;(3)已知有理数,,a b c 在数轴上对应的点如图所示:化简:|||2|||b a a c c b --+-+= .10.(2020·山东·日照市新营中学七年级期中)条件求值:(1)对于有理数a 、b 定义运算:a ①b =a ×b +|a |-b .计算(-5)①4的值;(2)已知有理数a b c 在数轴上对应点的位置如图所示 化简:|b -c |+2|c +a |-3|a -b |;(3)若代数式x 2的值和代数式2x +y -1的值相等 则代数式9-2(y +2x )+2x 2的值;y=2.(4)先化简再求值:3x2y-[2x2y-3(2xy-x2y)-xy] 其中x=12。
一、选择题1.(0分)[ID :68057]若2312a b x y +与653a bx y -的和是单项式,则+a b =( ) A .3-B .0C .3D .62.(0分)[ID :68054]下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差 B .a 与b 的差的倒数 C .a 与b 的倒数的差 D .a 的相反数与b 的差的倒数3.(0分)[ID :68050]某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( ) A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )4.(0分)[ID :68046]已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36B .40C .44D .465.(0分)[ID :68024]下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个B .3个C .4个D .5个6.(0分)[ID :68015]已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2 B .3 C .4 D .57.(0分)[ID :68012]大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .558.(0分)[ID :68011]如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .669.(0分)[ID :68009]已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( ) A .2-B .13C .23D .3210.(0分)[ID :68001]已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( ) A .﹣1B .﹣2C .﹣3D .﹣411.(0分)[ID :67991]小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时 A .2m n+ B .mnm n+ C .2mnm n+ D .m nnm + 12.(0分)[ID :67986]古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+3113.(0分)[ID :67985]多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( ) A .2和8B .4和8-C .6和8D .2-和8-14.(0分)[ID :67984]下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n不是整式;(3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个 15.(0分)[ID :67972]﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c二、填空题16.(0分)[ID :68156]多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______.17.(0分)[ID :68147]在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空) 18.(0分)[ID :68145]观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.19.(0分)[ID :68141]请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, … 则1111...=133********++++⨯⨯⨯⨯______. 20.(0分)[ID :68138]观察如图,发现第二个和第三个图形是怎样借助第一个图形得到的,概括其中的规律在第n 个图形中,它有n 个黑色六边形,有_______个白色六边形. 21.(0分)[ID :68137]化简:226334xx x x_________.22.(0分)[ID :68124]一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________. 23.(0分)[ID :68118]将连续正整数按以下规律排列,则位于第 7 行第 7 列的数 x 是________________.? 13 6 10 15 2128 2 5 9 1420 27 ? 4813 19 26 ? ? 7121825 ? ? 111724? ?16 23 ??22 ? ? ? ? ? x?24.(0分)[ID :68108]将下列代数式的序号填入相应的横线上.①223a b ab b ++;②2a b +;③23xy -;④0;⑤3y x -+;⑥2xy a ;⑦223x y +;⑧2x;⑨2x .(1)单项式:_______________; (2)多项式:_______________; (3)整式:_________________; (4)二项式:_______________.25.(0分)[ID :68095]如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.26.(0分)[ID :68079]仅当b =______,c =______时,325x y 与23b c x y 是同类项。
专题训练整式的化简求值类型1化简后直接代入求值2221.(柳州期中)先化简,再求值:5x +4-3x -5x -2x -5+6x ,其中x =-3.2解:原式=(5-3-2)x +(-5+6)x +(4-5)=x -1.当x =-3时,原式=-3-1=-4.22222.(北流期中)先化简,再求值:(3a b -2ab )-2(ab -2a b),其中a =2,b =-1.2222解:原式=3a b -2ab -2ab +4a b22=7a b -4ab .当a =2,b =-1时,原式=-28-8=-36.223223.先化简,再求值:2(x +x y)-(3x y +x)-y ,其中x =1,y =-3.32解:原式=2x +2x y -2x y -x -y 2=x -y .当x =1,y =-3时,原式=1-9=-8.122224.(钦南期末)先化简,再求值:2x y -[2xy -2(-x y +4xy )],其中x =,y =-2.2解:原式=2x y -2xy -2x y +8xy 2=6xy .11当x =,y =-2时,原式=6××4=12.222225.(南宁四十七中月考)先化简,再求值:2(x y +xy)-3(x y -xy)-4x y ,其中x ,y 满足|x +1|+(y 12-)=0.2解:原式=2x y +2xy -3x y +3xy -4x y2=-5x y +5xy.222222222212因为|x +1|+(y -)=0,21所以x =-1,y =.255故原式=--=-5.22类型2整体代入求值2222226.若a +2b =5,求多项式(3a -2ab +b )-(a -2ab -3b )的值.2222解:原式=3a -2ab +b -a +2ab +3b 22=2a +4b .22当a +2b =5时,22原式=2(a +2b )=10.7.已知|m +n -2|+(mn +3)=0,求2(m +n)-2[mn +(m +n)]-3[2(m +n)-3mn]的值.解:由已知条件知m +n =2,mn =-3,所以原式=2(m +n)-2mn -2(m +n)-6(m +n)+9mn=-6(m +n)+7mn=-12-21=-33.2专题训练角的计算类型1利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算.1.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD的度数.解:因为∠AOC=75°,∠BOC=30°,所以∠AO B=∠AOC-∠BOC=75°-30°=45°.又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°.2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD时,求∠CAE的度数;(2)如图2所示,在此种情形下,当∠ACE=3∠BCD时,求∠ACD的度数.解:(1)因为∠BAD+∠DAC=90°,∠DAC=4∠B AD,所以5∠BAD=90°,即∠BAD=18°.所以∠DAC=4×18°=72°.因为∠DAE=90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE=3∠BCD,所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°.解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图,点A,O,E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数.解:因为∠EOD=28°46′,OD平分∠COE,所以∠COE=2∠EOD=2×28°46′=57°32′.又因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.4.已知∠AOB=40°,OD是∠BOC的平分线.(1)如图1,当∠AOB与∠BOC互补时,求∠COD的度数;(2)如图2,当∠AOB与∠BOC互余时,求∠COD的度数.解:(1)因为∠AOB与∠BOC互补,所以∠AOB+∠BOC=180°.又因为∠AOB=40°,所以∠BOC=180°-40°=140°.因为OD是∠BOC的平分线,1所以∠COD=∠BOC=70°.2(2)因为∠AOB与∠BOC互余,所以∠AOB+∠BOC=90°.又因为∠AOB=40°,所以∠BOC=90°-40°=50°.因为OD是∠BOC的平分线,1所以∠COD=∠BOC=25°.2类型3利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决.25.一个角的余角比它的补角的还少40°,求这个角的度数.3解:设这个角的度数为x°,根据题意,得290-x=(180-x)-40.3解得x=30.所以这个角的度数是30°.6.如图,已知∠AOE是平角,∠DOE=20°,OB平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC的度数.解:设∠COD=2x°,则∠BOC=3x°.因为OB平分∠AOC,所以∠AOB=3x°.所以2x+3x+3x+20=180.解得x=20.所以∠BOC=3×20°=60°.17.如图,已知∠AOB=∠BOC,∠COD=∠AOD=3∠AOB,求∠AOB和∠COD的度数.2解:设∠AOB=x°,则∠COD=∠AOD=3∠AOB=3x°.1因为∠AOB=∠BOC,2所以∠BOC=2x°.所以3x+3x+2x+x=360.解得x=40.所以∠AOB=40°,∠COD=120°.类型4利用分类讨论思想求解在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性.28.已知∠AOB=75°,∠AOC=∠AOB,OD平分∠AOC,求∠BOD的大小.32解:因为∠AOB=75°,∠AOC=∠AOB,32所以∠AOC=×75°=50°.3因为O D平分∠AOC,所以∠AOD=∠COD=25°.如图1,∠BOD=75°+25°=100°;如图2,∠BOD=75°-25°=50°.9.已知:如图,OC是∠AOB的平分线.(1)当∠AOB=60°时,求∠AOC的度数;(2)在(1)的条件下,∠EOC=90°,请在图中补全图形,并求∠AOE的度数;(3)当∠AOB=α时,∠EOC=90°,直接写出∠AOE的度数.(用含α的代数式表示)解:(1)因为OC是∠AOB的平分线,1所以∠AOC=∠AOB.2因为∠AOB=60°,所以∠AOC=30°.(2)如图1,∠AOE=∠EOC+∠AOC=90°+30°=120°;如图2,∠AOE=∠EOC-∠AOC=90°-30°=60°.αα(3)90°+或90°-.22专题训练整式的加减运算计算:222(1)(钦南期末)a b +3ab -a b ;2解:原式=3ab .(2)2(a -1)-(2a -3)+3;解:原式=4.22(3)2(2a +9b)+3(-5a -4b);2解:原式=-11a +6b.3232(4)3(x +2x -1)-(3x +4x -2);2解:原式=2x -1.1122(5)(钦南期末)(2x -+3x)-4(x -x +);22122解:原式=2x -+3x -4x +4x -2252=6x -x -.2222222(6)3(x -x y -2x y )-2(-x +2x y -3);解:原式=3x -3x y -6x y +2x -4x y +62222=5x -7x y -6x y +6.22(7)-(2x +3xy -1)+(3x -3xy +x -3);22解:原式=-2x -3xy +1+3x -3xy +x -32=x -6xy +x -2.222(8)(4ab -b )-2(a +2ab -b );222解:原式=4ab -b -2a -4ab +2b 22=-2a +b .22(9)-3(2x -xy)+4(x +xy -6);22解:原式=-6x +3xy +4x +4xy -242=-2x +7xy -24.22(10)(钦州期中)2a -[-5ab +(ab -a )]-2ab.22解:原式=2a +5ab -ab +a -2ab 2=3a +2ab.222222。
一、选择题1.(0分)若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.2.(0分)单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.3.(0分)如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A.2+6n B.8+6n C.4+4n D.8n A解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8;第二个“金鱼”需用火柴棒的根数为6×2+2=14;第三个“金鱼”需用火柴棒的根数为6×3+2=20;……;第n个“金鱼”需用火柴棒的根数为6n+2.故选:A.【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键.4.(0分)下列说法正确的是()A.单项式34xy-的系数是﹣3 B.单项式2πa3的次数是4C.多项式x2y2﹣2x2+3是四次三项式D.多项式x2﹣2x+6的项分别是x2、2x、6C 解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A、单项式34xy-的系数是34-,此选项错误;B、单项式2πa3的次数是3,此选项错误;C、多项式x2y2﹣2x2+3是四次三项式,此选项正确;D、多项式x2﹣2x+6的项分别是x2、﹣2x、6,此选项错误;故选:C.【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.5.(0分)如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上C解析:C【分析】 由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案.【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B ,∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上.故答案为:C.【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.6.(0分)下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=-- C解析:C【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误; 2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.7.(0分)古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31C 解析:C【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n (n+1)和12(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值.【详解】∵A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和. 故选:C .【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.8.(0分)已知多项式()210m xm x +--是二次三项式,m 为常数,则m 的值为( ) A .2-B .2C .2±D .3± A 解析:A【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可.【详解】解:因为多项式()210m x m x +--是二次三项式,∴m-2≠0,|m|=2,解得m=-2,故选:A.【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 9.(0分)根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .738B解析:B【分析】观察题中的数据发现,表格内左下角的数值是上面数的平方加一,右下角的数值是:上面的数×左下角的数+上面的数=右下角的数.【详解】根据题中的数据可知:左下角的数=上面的数的平方+1∴28165x =+=右下角的值=上面的数×左下角的数+上面的数∴888658528y x =+=⨯+=∴65528593x y +=+=故选:B.【点睛】本题主要考查数字的变化规律,关键是找出规律,列出通式.10.(0分)如图是按照一定规律画出的“树形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”……照此规律,图A 6比图A 2多出“树枝”( )A .32个B .56个C .60个D .64个C解析:C【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可.【详解】∵图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”,…,∴图形从第2个开始后一个与前一个的差依次是:2, 22,…, 12n -.∴第5个树枝为15+42=31,第6个树枝为:31+52=63,∴第(6)个图比第(2)个图多63−3=60个故答案为C【点睛】此题考查图形的变化类,解题关键在于找出其规律型. 二、填空题11.(0分)多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值.【详解】 解:原式2213383x k xy y ⎛⎫=+--+ ⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =, 故答案为19. 【点睛】 本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0.12.(0分)化简:226334x x x x _________.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可.【详解】解:226334x x x x 226334xx x x 2(64)(33)x x=2106x x -+,故答案为:2106x x -+.【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 13.(0分)合并同类项(1)21123x x x --=____________________;(按字母x 升幂排列)(2)3222232223x y x y y x x y --+=_____________________;(按字母x 降幂排列) (3)222234256a b ab a b =_____________________;(按字母b 降幂排列)【分析】(1)先合并同类项再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项再将多项式按照字母b 的次数由大到小重新排 解析:256x x -+ 32222x y x y -- 221022b ab a -- 【分析】(1)先合并同类项,再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项,再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项,再将多项式按照字母b 的次数由大到小重新排列即可.【详解】解:(1)2222111155232366x x x x x x x x x x ⎛⎫--=-+=-=-+ ⎪⎝⎭; 故答案为:256x x -+; (2)解:322223223222232x y x y y x x y x y x y --+=--; 故答案为:32222x y x y --;(3)解:222222223425621021022a b ab a b a b ab b ab a +--+=-+-=--; 故答案为:221022b ab a --.【点睛】此题考查整式的降幂及升幂排列,合并同类项法则,将多项式按照某个字母重新排列时注意该项的次数及符号,利用交换律将多项式重新排列.14.(0分)m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.0【解析】由题意m+n=0所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0【解析】由题意m+n=0,所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.15.(0分)为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n 个图形有6n+2根火柴棒解析:6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n 个图形有6n+2根火柴棒.16.(0分)某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.17.(0分)将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.18.(0分)将一列数1,2,3,4,5,6---,…,按如图所示的规律有序排列.根据图中排列规律可知,“峰1”中峰顶位置(C 的位置)是4,那么“峰206”中C 的位置的有理数是______.-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝对值为以此进行分析即可【详解】解:由图可知每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝解析:-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,以此进行分析即可.【详解】解:由图可知,每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,当206n =时,52061103011029⨯-=-=,因为1029是奇数,所以“峰206”中C 的位置的有理数是1029-.故答案为:1029-.【点睛】本题考查图形的数字规律,熟练掌握根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -是解题的关键.19.(0分)王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算. 20.(0分)两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍.设第一堆原有a 个棋子,第二堆原有______个棋子.【分析】根据题意可得第二堆现在的棋子数是2(a-2)因此原来的棋子数为2(a-2)-2【详解】解:由题意可得:现在第二堆有2(a-2)个棋子因此原来第二堆有2(a-2)-2=2a-6个棋子故答案为:解析:()26a -【分析】根据题意可得第二堆现在的棋子数是2(a -2),因此原来的棋子数为2(a -2)-2.【详解】解:由题意可得:现在第二堆有2(a -2)个棋子,因此原来第二堆有2(a -2)-2=2a -6个棋子.故答案为:(2a -6).【点睛】本题考查了整式加减的应用,根据题意列出代数式是解决此题的关键.三、解答题21.(0分)观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④……(1)第⑤个式子____,第⑩个式子_____;(2)请用含n(n 为正整数)的式子表示上述的规律,并证明.解析:(1)4×6+1=52,9×11+1=102;(2)(n ﹣1)(n+1)+1=n 2;证明见解析.【分析】(1)根据已知等式中的规律即可得;(2)根据整数的平方等于前一个整数与后一个整数乘积与1的和可得,利用整理的运算法则即可验证.【详解】(1)第⑤个式子为4×6+1=52,第⑩个式子9×11+1=102;故答案为4×6+1=52,9×11+1=102;(2)第n 个式子为(n ﹣1)(n+1)+1=n 2,证明:左边=n 2﹣1+1=n 2,右边=n 2,∴左边=右边,即(n ﹣1)(n+1)+1=n 2.【点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出(n ﹣1)(n+1)+1=n 2的规律,并熟练加以运用.22.(0分)先化简,再求值(1)()223421332a a a a -+-+-,其中23a =- (2)()()22352542m mn mn m -+--+,其中22m mn -=解析:(1)原式=23362a a --+;256;(2)原式()2111m mn =-+;23. 【分析】(1)根据整式的运算法则,先将整式进行化简,再将字母的值代入计算求值即可.(2)根据整式的运算法则,去括号合并同类项,将整式化成最简,然后将字母的值代入计算即可.【详解】解(1)原式=22333-4233222a a a a ⨯-⨯++-=22363332a a a a --++-=23362a a --+ 将23a =-代入得:222336332⎛⎫⎛⎫-⨯--⨯-+ ⎪ ⎪⎝⎭⎝⎭=256; (2)原式=()()2222352542351084m mn mn m m mn mn m -+--+=+-+-- ()2111m mn =-+将22m mn -=代入得:11×2+1=23【点睛】本题考查了整式的化简求值,解决本题的挂件是正确理解题意,熟练掌握整式的运算法则,将整式正确进行化简.23.(0分)观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(______ )2= ______ .根据以上规律填空:(1)13+23+33+…+n 3=(______ )2=[ ______ ]2.(2)猜想:113+123+133+143+153= ______ .解析:1+2+3+4+5;225;1+2+…+n ;()n n 12+;11375【解析】分析:观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空;(1)、根据上述规律填空,然后把1+2+…+n 变为2n 个(n+1)相乘,即可化简;(2)、对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.详解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)、∵1+2+…+n=(1+n )+[2+(n-1)]+…+[n 2+(n-n 2+1)]=()n n 12+, ∴13+23+33+…+n 3=(1+2+…+n )2=[()n n 12+]2; (2)、113+123+133+143+153=13+23+33+...+153-(13+23+33+ (103)=(1+2+…+15)2-(1+2+…+10)2 =1202-552=11375.点睛:此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.24.(0分)已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n )2017的值. 解析:-1【分析】先把多项式进行合并同类项得(n-3)x 2+(m-1)x+3,由于关于字母x 的二次多项式-3x 2+mx+nx 2-x+3的值与x 无关,即不含x 的项,所以n-3=0,m-1=0,然后解出m 、n ,代入计算(2m-n )2017的值即可.【详解】合并同类项得(n ﹣3)x 2+(m ﹣1)x+3,根据题意得n ﹣3=0,m ﹣1=0,解得m=1,n=3,所以(2m ﹣n )2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数. 25.(0分)已知有理数a 和b 满足多项式A ,且A=(a ﹣1)x 5+x |b+2|﹣2x 2+bx+b (b≠﹣2)是关于x 的二次三项式,求(a ﹣b )2的值.解析:16或25【解析】试题分析:根据有理数a 和b 满足多项式A .A =(a ﹣1)x 5+x |b +2|﹣2x 2+bx +b 是关于x 的二次三项式,求得a 、b 的值,然后分别代入计算可得.试题解:∵有理数a 和b 满足多项式A .A =(a ﹣1)x 5+x |b +2|﹣2x 2+bx +b 是关于x 的二次三项式,∴a ﹣1=0,解得:a =1.(1)当|b +2|=2时,解得:b =0或b =4.①当b =0时,此时A 不是二次三项式;②当b =﹣4时,此时A 是关于x 的二次三项式.(2)当|b +2|=1时,解得:b =﹣1(舍)或b =﹣3.(3)当|b +2|=0时,解得:b =﹣2(舍)∴a =1,b =﹣4或a =1,b =﹣3.当a =1,b =﹣4时,(a ﹣b )2=25;当a =1,b =﹣3时,(a ﹣b )2=16.点睛:本题考查了多项式的知识,解题的关键是根据题意求得a 、b 的值,题目中重点渗透了分类讨论思想.26.(0分)数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案.【详解】解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.27.(0分)某校利用二维码进行学生学号统一编排.黑色小正方形表示1,白色小正方形表示0,将每一行数字从左到右依次记为a ,b ,c ,d ,那么利用公式321222a b c d ⨯+⨯+⨯+计算出每一行的数据.第一行表示年级,第二行表示班级,第三行表示班级学号的十位数,第四行表示班级学号的个位数.如图1所示,第一行数字从左往右依次是1,0,0,1,则表示的数据为1×23+0×22+0×21+1=9,计作09,第二行数字从左往右依次是1,0,1,0,则表示的数据为1×23+0×22+1×21=10,计作10,以此类推,图1代表的统一学号为091034,表示9年级10班34号.小明所对应的二维码如图2所示,则他的统一学号为________.解析:070629【分析】利用公式求出图2中每行表示的数据,将其组合起来即可得出结论.【详解】解:∵第一行:0×23+1×22+1×21+1=7,计作07,第二行:0×23+1×22+1×21+0=6,计作06,第三行:0×23+0×22+1×21+0=2,计作2,第四行:1×23+0×22+0×21+1=9,计作9,∴他的统一学号为070629.故答案为:070629.【点睛】本题考查了规律型:图形的变化类以及尾数特征,读懂题意,利用公式求出图2中每行表示的数据是解题的关键.28.(0分)已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.解析:(1)2212127x y xy +-;(2)114或99.【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可.【详解】解:(1)()()2222232332322A B x y xy xy y x -=+----2222664366x y xy xy y x =+--++2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y ,∴2x =或1,3=±y ,由于||x y y x -=-,∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=.当1x =,3y =时,2399A B -=.所以,23A B -的值为114或99.【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.。
(人教版)七年级上册数学《第二章整式的加减》专题含有绝对值的式子的化简一、选择题(共10小题)1.有理数a、b在如图所示数轴的对应位置上,则|b﹣a|﹣|b|化简后结果为()A.a B.﹣a C.a﹣2b D.b﹣2a【分析】代入化简后的算式,求出算式的值是多少即可.【解答】解:|b﹣a|﹣|b|=a﹣b+b=a,故选:A.【点评】此题主要考查了整式的加减﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.2.(2022秋•罗湖区校级期末)有理数a,b在数轴上如图所示,则化简|2a|﹣|b|+|2a﹣5|的结果是()A.4a+b﹣5B.4a﹣b﹣5C.b+5D.﹣b﹣5【分析】先结合数轴确定a,b的范围,再运用绝对值知识进行化简.【解答】解:由题意可得,﹣2<b<﹣1<1<a<2,∴|2a|﹣|b|+|2a﹣5|=2a﹣(﹣b)+[﹣(2a﹣5)]=2a+b﹣2a+5=b+5,故选:C.【点评】此题考查了运用数轴表示有理数及绝对值求解的能力,关键是能准确理解并运用以上知识.3.(2022秋•天山区校级期末)已知a,b,c在数轴上位置如图所示,则|a﹣b|﹣|b﹣c|+|c﹣a|可化简为()A.0B.2b﹣2a C.2a﹣2b D.﹣2a【分析】先由数轴确定a,b,c的符号和大小,再分别确定a﹣b,b﹣c,c﹣a的符号,最后化简绝对值并计算求解.【解答】解:由题意得,a<b<0<c且|a|>|b|>|c|,∴a﹣b<0,b﹣c<0,c﹣a>0,∴|a﹣b|﹣|b﹣c|+|c﹣a|=b﹣a+b﹣c+c﹣a=2b﹣2a,故选:B.【点评】此题考查了运用数轴进行绝对值的化简、计算能力,关键是能准确理解并运用以上知识.4.(2022秋•永兴县期末)有理数a,b,c在数轴上的位置如图所示,式子|a|+|b|+|a+b|+|b﹣c|化简为()A.2a+3b﹣c B.3b﹣c C.b+c D.c﹣b【分析】根据正数的绝对值等于它本身,负数的绝对值等于它的相反数可得结果.【解答】解:由数轴得,﹣1<a<0,b>1,c>b,∴a+b>0,b﹣c>0,∴|a|+|b|+|a+b|+|b﹣c|=﹣a+b+a+b﹣b+c=b+c.故选:C.【点评】本题考查了绝对值与数轴,用两种不同的方法即几何方法和代数方法进行求解.通过比较,可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.5.(2022秋•黄埔区期末)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=()A.0B.2a+2b C.2b﹣2c D.2a+2c【分析】先根据各点在数轴上的位置判断出其符号,再去绝对值符号,合并同类项即可.【解答】解:由图可知,c<a<0<b,|c|>|b|>|a|,则|a+b|+|a+c|﹣|b﹣c|=a+b﹣a﹣c﹣b+c=0.故选:A.【点评】本题考查的是整式的加减、数轴和绝对值,熟知数轴上右边的数总比左边的大是解答此题的关键.6.已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|c﹣b|=()A.0B.2a+2b C.2b﹣2c D.2a+2c【分析】根据数轴的意义可知:c<a<0<b,结合绝对值的性质化简给出的式子.【解答】解:根据数轴图可知:c<a<0<b,∴a+b>0,a+c<0,c﹣b<0,∴|a+b|+|a+c|﹣|c﹣b|=a+b﹣a﹣c+c﹣b=0.故选:A.【点评】此题考查了数轴、绝对值的有关内容,能够正确判断绝对值内的式子的符号,再根据绝对值的性质正确化简.7.已知有理数a,b在数轴上的位置如图所示,则化简|b+1|﹣|b﹣a|的结果为()A.a﹣2b﹣1B.a+1C.﹣a﹣1D.﹣a+2b+1【分析】先根据数轴判断a、b的大小,再判断所求式子中绝对值内部的符号,再化简求值.【解答】解:由数轴可知,﹣1<b<0,1<a<2,∴b+1>0,|b+1|=b+1,b﹣a<0,|b﹣a|=a﹣b,∴原式=b+1﹣(a﹣b)=1+2b﹣a,故选:D.【点评】本题考查绝对值和数轴.关键在于根据数轴判断b+1、b﹣a的符号,进而取绝对值化简求值.8.有理数a、b、c在数轴上位置如图,则|c﹣a|﹣|a+b|﹣|b﹣c|的值为()A.2a﹣2c+2b B.0C.﹣2c D.2a【分析】根据点所处的位置确定绝对值内数据的符号:c﹣a<0,a+b<0,b﹣c<0,即可求解.【解答】解:根据点所处的位置确定绝对值内数据的符号:c﹣a<0,a+b<0,b﹣c<0,原式=﹣(c﹣a)+(a+b)+(b﹣c)=2a﹣2c+2b,故选:A.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.9.已知有理数a,b,c在数轴上的位置如图,且|c|>|a|>|b|,则|a+b|﹣2|c﹣b|+|a+c|=()A.c﹣b B.0C.3b﹣3c D.2a+3b﹣c【分析】由有理数a,b,c在数轴上的位置及|c|>|a|>|b|可得:c<b<0<﹣b<a<﹣c,再按照绝对值的化简法则和有理数的加减运算法则计算即可.【解答】解:由有理数a,b,c在数轴上的位置及|c|>|a|>|b|可得:c<b<0<﹣b<a<﹣c,∴|a+b|﹣2|c﹣b|+|a+c|=a+b﹣2(b﹣c)﹣a﹣c=b﹣2b+2c﹣c=c﹣b.故选:A.【点评】本题考查了借助数轴进行的绝对值化简及有理数的加减运算,数形结合并熟练掌握相关运算法则是解题的关键.10.(2022秋•辉县市校级期末)有理数a,b,c在数轴上所对应的点的位置如图所示,试化简|a﹣b|﹣2|b ﹣c|+|a+b|﹣|c+b|的结果是()A.﹣3b+3c B.3b﹣3c C.﹣2a+3b+c D.2a﹣b+3c【分析】根据有理数a,b,c在数轴上所对应的点的位置得出c<b<0<a,|a|<|b|<|c|,然后化简绝对值即可.【解答】解:∵c<b<0<a,|a|<|b|<|c|,∴a﹣b>0,|b﹣c|>0,|a+b|<0,|c+b|<0,∴|a﹣b|﹣2|b﹣c|+|a+b|﹣|c+b|=a﹣b﹣2(b﹣c)+[﹣(a+b)]﹣[﹣(c+b)]=a﹣b﹣2b+2c﹣(a+b)+(c+b)=a﹣b﹣2b+2c﹣a﹣b+c+b=﹣3b+3c,故选:A.【点评】本题主要考查了绝对值的意义,有理数加法、减法运算,合并同类项,解题的关键是根据有理数a,b,c在数轴上所对应的点的位置得出c<b<0<a,|a|<|b|<|c|.二、填空题(共10小题)11.(2022秋•莱阳市期末)已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|+|a+b+c|﹣|c﹣b|=.【分析】由数轴上右边的数总比左边的数大,且离原点的距离大小即为绝对值的大小,判断出a+b与c ﹣b的正负,利用绝对值的代数意义化简所求式子,合并同类项即可得到结果.【解答】解:由数轴上点的位置可得:c<b<0<a,且|a|<|b|,∴a﹣b>0,c﹣b<0,a+b+c<0,则|a﹣b|+|a+b+c|﹣|c﹣b|=a﹣b﹣a﹣b﹣c+c﹣b=﹣3b.故答案为:﹣3b【点评】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.12.(2022秋•温江区校级期中)有理数a,b,c数轴上的位置如图所示,请化简:|﹣c+b|+|a﹣c|﹣|b+a|=.【分析】结合数轴判断﹣c+b<0,a﹣c>0,b+a<0,再根据绝对值的性质“正数和零的绝对值是本身,负数的绝对值是相反数”可将原式化简,即得答案.【解答】解:由数轴可知:﹣c+b<0,a﹣c>0,b+a<0,∴原式=﹣(﹣c+b)+(a﹣c)+(b+a)=c﹣b+a﹣c+b+a=2a,故答案为:2a.【点评】本题考查了数轴,绝对值,关键是根据绝对值的性质“正数和零的绝对值是本身,负数的绝对值是相反数”将原式化简.13.有理数a、b、c在数轴上的位置如图,则|a+c|+|c﹣b|﹣|a+b|=.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴得:a<b<0<c,且|a|>|b|>|c|,∴a+c<0,c﹣b>0,a+b<0,则原式=﹣a﹣c+c﹣b+a+b=0.故答案为:0.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.14.有理数a,b,c在数轴上的对应点如图所示,化简|a﹣b|﹣|a+c|+|b﹣c|=.【分析】根据绝对值的性质,可化简绝对值,根据整式的加减,可得答案.【解答】解:|a﹣b|﹣|a+c|+|b﹣c|=﹣(a﹣b)+(a+c)+(b﹣c)=﹣a+b+a+c+b﹣c=2b.故答案为:2b.【点评】本题考查了数轴,利用绝对值的性质化简是解题关键.15.有理数a,b,c在数轴上的位置如图所示,化简|a+b﹣c|﹣|c﹣b|+2|a+c|=.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:由数轴上点的位置得:a<b<0<c,且|b|<|c|<|a|,∴a+b﹣c<0,c﹣b>0,a+c<0,则原式=﹣a﹣b+c﹣c+b﹣2a﹣2c=﹣3a﹣2c,故答案为:﹣3a﹣2c.【点评】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.16.a,b,c三个数在数轴上的位置如图所示,化简|a+b|﹣|b﹣c|+|c﹣a|﹣|a﹣b|=.【分析】根据数轴点的位置得出a+b<0,b﹣c<0,c﹣a>0,a﹣b<0,再去掉绝对值符号,合并同类项即可.【解答】解:∵从数轴可知:a<b<0<c,|b|<|c|,∴a+b<0,b﹣c<0,c﹣a>0,a﹣b<0,∴|a+b|﹣|b﹣c|+|c﹣a|﹣|a﹣b|==﹣(a+b)﹣(c﹣b)+(c﹣a)﹣(b﹣a)=﹣a﹣b﹣c+b+c﹣a﹣b+a=﹣a﹣b,故答案为:﹣a﹣b.【点评】本题考查了整式的加减和数轴的应用,解此题的关键是能根据数轴去掉绝对值符号,题目比较好,难度不是很大.17.已知数a、b、c在数轴上的位置如图所示,则|a﹣c|﹣|a+b+c|﹣|b﹣a|=.【分析】先根据a、b、c在数轴上的位置进行绝对值的化简,然后去括号,合并同类项求解.【解答】解:由图可得,c<b<0<a,则原式=a﹣c+(a+b+c)+(b﹣a)=a﹣c+a+b+c+b﹣a=a+2b.故答案为:a+2b.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.18.已知有理数a,b,c在数轴上的位置如图所示,化简:|b﹣c|﹣2|b﹣a|+|c+a|=.【分析】根据数轴上右边的数总比左边的数法,判断大小;原式各项利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:c<b<0<a,|c|>|a|,∴﹣c>a,∴b﹣c>0,b﹣a<0,a+c<0,∴原式=b﹣c﹣2(a﹣b)+(﹣c﹣a)=b﹣c﹣2a+2b﹣c﹣a=﹣3a+3b﹣2c;故答案为﹣3a+3b﹣2c.【点评】此题考查了整式的加减,绝对值,以及有理数的大小比较,熟练掌握运算法则是解本题的关键.19.表示有理数a,b,c的点在数轴上的位置如图所示,请化简|a+b|﹣2|a﹣c|+|c﹣a+b|=.【分析】根据数轴先判断a、b、c的符号和大小关系,再判断a+b、a﹣c、c﹣a+b的符号,进而去绝对值化简.【解答】解:根据数轴可知,a<b<0<c,故a+b<0,a﹣c<0,c﹣a+b>b﹣a>0,∴原式=﹣(a+b)﹣2(c﹣a)+(c﹣a+b)=﹣a﹣b﹣2c+2a+c﹣a+b=﹣c.故答案为:﹣c.【点评】本题考查了绝对值的的化简.通过数轴判断a、b、c的符号,再判断绝对值中的式子符号,是解题的关键.有的时候还需要注意有理数与原点距离的远近.20.数a,b,c在数轴上的位置如图所示.化简:2|b﹣a|﹣|c﹣b|+|a+b|=.【分析】根据数轴即可将绝对值去掉,然后合并即可.【解答】解:由数轴可知:c<b<a,b﹣a<0,c﹣b<0,a+b>0,则原式=﹣2(b﹣a)+(c﹣b)+(a+b)=﹣2b+2a+c﹣b+a+b=3a﹣2b+c.故答案为:3a﹣2b+c.【点评】本题考查整式化简运算,涉及数轴,绝对值的性质,整式加减运算等知识.三、解答题(共20小题)21.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|﹣|a+c|﹣|c﹣a|+|a+b+c|+|b﹣c|【分析】由题意可知:a﹣b>0,a+c<0,c﹣a<0,a+b+c<0,b﹣c>0,根据绝对值的性质化简即可.【解答】解:由题意可知:a﹣b>0,a+c<0,c﹣a<0,a+b+c<0,b﹣c>0,原式=a﹣b+a+c+c﹣a﹣a﹣b﹣c+b﹣c=﹣b【点评】本题考查数轴、绝对值等知识,解题的关键是记住绝对值的性质:数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.22.已知有理数a、b、c在数轴上对应点的位置如图所示.化简:|a﹣b|+|b﹣c|﹣|c﹣a|+|b+c|.【分析】由数轴得出﹣1<c<0<b<1<a,|b|<|c|<|a|,去掉绝对值符号,再合并即可.【解答】解:∵由数轴可知:﹣1<c<0<b<1<a,|b|<|c|<|a|,∴a﹣b>0,b﹣c>0,c﹣a<0,b+c<0,∴原式=a﹣b+b﹣c+c﹣a﹣(b+c)=﹣b﹣c.【点评】本题考查了数轴和绝对值,能正确去掉绝对值符号是解此题的关键.23.有理数a、b、c在数轴上的位置如图所示.化简:3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|﹣|b﹣a+c|.【分析】根据数轴,先确定a、b、c的正负,再判断a﹣b,a+b,c﹣a,b﹣c,b﹣a+c的正负,最后根据绝对值的意义,对代数式化简.【解答】解:由数轴知:a<b<0<c,∴a﹣b<0,a+b<0,c﹣a>0,b﹣c<0,b﹣a+c>0所以3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|﹣|b﹣a+c|=3(b﹣a)﹣(a+b)﹣(c﹣a)+2(c﹣b)﹣(b﹣a+c)=3b﹣3a﹣a﹣b﹣c+a+2c﹣2b﹣b+a﹣c=﹣b﹣2a.【点评】本题考查了数轴上点的特点、有理数的加减法法则及绝对值的化简.根据绝对值的意义化简代数式是关键.注意:大的数﹣小的数>0,小的数﹣大的数<0.24.有理数a,b,c在数轴上的位置如图:试化简:|a﹣b|﹣|c﹣a|+|b﹣c|﹣|c|【分析】根据绝对值的性质化简即可.【解答】解:由题意:a﹣b>0,c﹣a<0,b﹣c>0,c<0,∴|a﹣b|﹣|c﹣a|+|b﹣c|﹣|c|=a﹣b+c﹣a+b﹣c+c=c.【点评】本题考查绝对值的性质、数轴等知识,熟练掌握绝对值的性质是解决问题的关键.25.已知有理数a、b、c在数轴上的位置如图,化简|a|﹣|a+b|+|c﹣a|.【分析】首先判断出a<0,a+b<0,c﹣a>0,再根据绝对值的性质化简即可.【解答】解:观察数轴可知:a<0,a+b<0,c﹣a>0∴原式=﹣a+a+b+c﹣a=b+c﹣a.【点评】本题考查数轴、绝对值的性质等知识,解题的关键是熟练掌握绝对值的性质,记住如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.26.已知a,b在数轴上对应的点如图示化简:|a|+|a+b|﹣|a﹣b|﹣|b﹣a|.【分析】首先根据图示,可得a<0,a+b<0,b﹣a>0,a﹣b<0,然后根据整数的加减的运算方法,求出算式的值是多少即可.【解答】解:根据图示,可得a<﹣b<0<b<﹣a;∴a<0,a+b<0,a﹣b<0,b﹣a>0,∴|a|=﹣a,|a+b|=﹣(a+b),|a﹣b|=﹣(a﹣b,|b﹣a|=b﹣a,∴|a|+|a+b|﹣|a﹣b|﹣|b﹣a|=﹣a﹣a﹣b+a﹣b﹣b+a=﹣3b.【点评】此题考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大.还考查了整式的加减运算,解答此类问题的关键是要明确整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.27.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|+|a﹣b|﹣|b﹣c|+|2a|.【分析】根据数轴判断出a、b、c的正负情况以及绝对值的大小,然后根据绝对值的性质去掉绝对值号,再合并同类项即可.【解答】解:由图可知,a<0,b>0,c<0且|c|>|a|>|b|,所以,a﹣b<0,b﹣c>0,a﹣c>0,所以原式=a﹣c+b﹣a﹣b+c﹣2a=﹣2a.【点评】本题考查了数轴,绝对值的性质,准确识图并判断出各数正负情况是解题的关键.28.已知有理数a、b、c在数轴上的对应点如图所示,化简:|b﹣a|﹣|a+c|+2|c﹣b|.【分析】解决此题关键要对a,b,c与0进行比较,进而确定b﹣a,a+c,c﹣b与0的关系,从而很好的去掉绝对值符号.【解答】解:由数轴可知:a>b>0>c,|a|>|c|,则b﹣a<0,a+c>0,c﹣b<0.∴|b﹣a|﹣|a+c|+2|c﹣b|=﹣(b﹣a)﹣(a+c)﹣2(c﹣b)=﹣b+a﹣a﹣c﹣2c+2b=b﹣3c.【点评】在去绝对值符号时要注意:大于0的数值绝对值是它本身,小于零的数值绝对值是它的相反数.29.已知有理数a,b,c在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b|.【分析】先根据各点在数轴上的位置判断出其符号及绝对值的大小,再去绝对值符号,合并同类项即可.【解答】解:由图可知,c<a<0<b,所以,b﹣c>0,c+a<0,a﹣b<0,所以,原式=b﹣c﹣2(c+a)﹣3(b﹣a)=b﹣c﹣2c﹣2a﹣3b+3a=a﹣2b﹣3c.【点评】本题主要考查了数轴和绝对值,理解绝对值的意义是解答此题的关键.30.如图,数a,b,c在数轴上的位置如图.(1)判断符号:a+b0,b﹣c0,a﹣c0;(填“>”、“<”)(2)化简:|b﹣c|﹣|a+b|﹣|a﹣c|.【分析】(1)根据数轴、有理数的加法可判断a+b,b﹣c,a﹣c的符号;(2)根据绝对值和a+b,b﹣c,a﹣c的符号化简式子|b﹣c|﹣|a+b|﹣|a﹣c|即可.【解答】解:(1)由数轴得,a>c>0<b,|b|>a>c,∴a+b<0,b﹣c<0,a﹣c>0;故答案为:<,<,>;(2)∵a+b<0,b﹣c<0,a﹣c>0,∴|b﹣c|﹣|a+b|﹣|a﹣c|=﹣b+c﹣(﹣a﹣b)﹣(a﹣c)=﹣b+c+a+b﹣a+c=2c.【点评】本题考查了数轴,有理数的加减运算法则,绝对值的性质,整式的加减,掌握正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0是解题的关键.31.(2022秋•綦江区期中)有理数a、b、c在数轴上的对应点的位置如图所示:(1)用“>”“<”或“=”填空:a+b0,c﹣a0,b﹣c0;(2)化简:|a+b|﹣|c﹣a|﹣|b|+|b﹣c|.【分析】(1)根据各点在数轴上的位置判断出a,b,c的符号,进而可得出结论;(2)根据(1)中a,b,c的符号去绝对值符号即可.【解答】解:(1)由各点在数轴上的位置可知,a<0<b<c,|a|>b,∴a+b<0,c﹣a>0,b﹣c<0.故答案为:<,>,<.(2)∵由(1)可知,a+b<0,c﹣a>0,b﹣c<0,∴|a+b|﹣|c﹣a|﹣|b|+|b﹣c|=﹣(a+b)﹣(c﹣a)﹣b+(c﹣b)=﹣a﹣b﹣c+a﹣b+c﹣b=﹣3b.【点评】本题考查的是有理数的大小比较,熟知数轴的特点和绝对值的性质是解题关键.32.(2022春•杜尔伯特县期中)有理数a、b、c在数轴上的位置如图所示.(1)用“<”连接:0,a、b、c.(2)化简:|c﹣a|+2|b﹣c|﹣|a+b|【分析】根据有理数a、b、c在数轴上的位置即可得到结论.【解答】解:(1)a<b<0<c;(2)原式=(c﹣a)+2(﹣b+c)﹣(﹣a﹣b),=c﹣a﹣2b+2c+a+b,=3c﹣b.【点评】本题考查了数轴和有理数的大小比较法则,能熟记有理数的大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.33.有理数a、b、c在数轴上的位置如图所示.(1)判断a﹣b0,a﹣c0,b﹣c0;(2)化简|a﹣b|+|a﹣c|﹣|b﹣c|.【分析】(1)由图可得:c<a<0<b,得a﹣c>0,a﹣b<0,b﹣c>0,从而解决此题.(2)由(1)得:a﹣c>0,a﹣b<0,b﹣c>0.根据绝对值的定义,得|a﹣c|=a﹣c,|a﹣b|=b﹣a,|b ﹣c|=b﹣c,从而解决此题.【解答】解:(1)由图可得:c<a<0<b.∴a﹣c>0,a﹣b<0,b﹣c>0.故答案为:<,>,>.(2)由(1)得:a﹣c>0,a﹣b<0,b﹣c>0,∴|a﹣c|=a﹣c,|a﹣b|=b﹣a,|b﹣c|=b﹣c,∴|a﹣b|+|a﹣c|﹣|b﹣c|=b﹣a+a﹣c+c﹣b=0.【点评】本题主要考查数轴,绝对值、整式的加减运算,熟练掌握实数的大小关系、绝对值的定义、整式的加减运算法则是解决本题的关键.34.有理数a,b,c在数轴上的位置如图所示,(1)用“<”连接0,a,b,c;(2)化简代数式:|a﹣b|+|a+b|﹣|c﹣a|+|b﹣c|.【分析】(1)数轴上右边的数总比左边的数大,从而连接即可;(2)根据数轴得出a﹣b>0,a+b<0,c﹣a<0,b﹣c>0,去掉绝对值后合并即可得出答案.【解答】解:(1)结合数轴可得:c<b<0<a;(2)由题意得:a﹣b>0,a+b<0,c﹣a<0,b﹣c>0,故|a﹣b|+|a+b|﹣|c﹣a|+|b﹣c|=a﹣b﹣a﹣b﹣a+c+b﹣c=﹣a﹣b.【点评】本题考查了整式的加减、数轴及绝对值的知识,掌握数轴上右边的数总比左边的数大是解答本题的关键.35.若有理数a、b、c在数轴上测的点A、B、C位置如图所示:(1)判断代数式c﹣b、a+c的符号;(2)化简:|﹣c|﹣|c﹣b|+|a+b|+|b|.【分析】(1)根据有理数的加减法,可得答案;(2)根据绝对值的性质,可化简去掉绝对值,根据合并同类项,可得答案.【解答】解:(1)因为a<b<0<c,|a|>|c|.所以c﹣b>0,a+c<0;(2)因为a<b<0<c,|a|>|c|.所以﹣c<0,c﹣b>0,a+b<0,原式=c﹣(c﹣b)﹣(a+b)﹣b=c﹣c+b﹣a﹣b﹣b=﹣a﹣b.【点评】本题考查了合并同类项,解题的关键是利用绝对值的性质化简绝对值,利用合并同类项得出答案.36.有理数a,b,c在数轴上的位置如图所示,(1)c0;a+c0;b﹣a0(用“>、<、=”填空)(2)试化简:|b﹣a|﹣|a+c|+|c|.【分析】(1)根据在数轴上原点左边的数小于0,得出c<0;a<0<b,再根据有理数的加减法法则判断a+c与b﹣a的符号;(2)先根据绝对值的意义去掉绝对值的符号,再合并同类项即可.【解答】解:(1)由题意,得c<a<0<b,则c<0;a+c<0;b﹣a>0;故答案为<;<;>;(2)原式=b﹣a+a+c﹣c=b.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.也考查了数轴与整式的加减.37.已知a>b>0,且|a|>|b|.(1)在数轴上画出a,b,﹣a,﹣b对应的点的大致位置;(2)化简|﹣a|﹣2|a﹣b|+|a+b|.【分析】(1)根据a,b的大小关系在数轴上画出对应点即可.(2)根据绝对值的性质化简即可.【解答】解:(1)如图所示.(2)∵a>b>0,∴a﹣b>0,a+b>0,∴|﹣a|﹣2|a﹣b|+|a+b|=a﹣2(a﹣b)+(a+b)=a﹣2a+2b+a+b=3b.【点评】本题考查作图﹣复杂作图、数轴、绝对值的性质,熟练掌握数轴和绝对值的性质是解答本题的关键.38.已知a,b,c在数轴上的位置如图所示,且|a|=|c|.(1)比较a,﹣a,b,c,﹣c大小;(2)化简|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|.【分析】(1)根据数轴即可比较大小;(2)根据绝对值的性质对整式进行化简求解.【解答】解:(1)由数轴可知:b<c<0<a,∵|a|=|c|,∴a=﹣c>﹣a=c>b.(2)∵a+b<0,a﹣b>0,b﹣c<0,a+c=0,∴原式=﹣(a+b)﹣(a﹣b)﹣(b﹣c)+0=﹣2a﹣b+c.【点评】本题考查数轴,涉及比较大小,整式化简,绝对值的性质.39.有理数a,b,c在数轴上的位置如图所示.(1)用“<”连接:0,a,b,c;(2)化简代数式:3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|.【分析】(1)根据数轴上的数,右边的总大于左边的进行判断即可;(2)根据绝对值的性质去绝对值进行计算.【解答】解:(1)如图可得,a<b<0<c;(2)由(1)得:a﹣b<0,a+b<0,c﹣a>0,b﹣c<0,3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|=﹣3(a﹣b)+[﹣(a+b)]﹣(c﹣a)+2[﹣(b﹣c)]=﹣3a+3b﹣a﹣b﹣c+a﹣2b+2c=﹣3a+c.【点评】本题考查了整式的加减,解题的关键是比较a,b,c的大小以及绝对值的性质.40.(2022秋•锦江区校级期中)知有理数a、b、c在数轴上所对应的点的位单如图所示,原点为O.(1)试化简|a+2b|﹣|a+c|﹣|c﹣2b|;(2)若数轴上有一点所表示的数为x,且|x﹣5|=3,求﹣3x﹣4|1﹣x|的值.【分析】(1)根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果;(2)根据|x﹣5|=3,得x=8或x=2,再依次代入所求式子即可解答.【解答】解:(1)根据数轴上点的位置得:a<b<0<c,∴a+2b<0,a+c<0,c﹣2b>0,则原式=﹣a﹣2b+a+c﹣c+2b=0;(2)∵|x﹣5|=3,∴x﹣5=3或x﹣5=﹣3,∴x=8或x=2,当x=8时,﹣3x﹣4|1﹣x|=﹣3×8﹣4|1﹣8|=﹣52,当x=2时,﹣3x﹣4|1﹣x|=﹣3×2﹣4|1﹣2|=﹣10,综上,﹣3x﹣4|1﹣x|的值为﹣10或﹣52.【点评】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.。
人教版七年级上册第二章整式的加减整式的化简求值专题训练一、先化简,再代入求值1. (4a 2-2a -6)-2(2a 2-2a -5),其中a =-1;2. -12a -2(a -12b 2)-(32a -13b 2),其中a =-2,b =32.3. 2(3a 2b -ab 2)-3(ab 2+2a 2b),其中a =2,b =1;4. 14 (-4x 2+2x -8)-(12x -1),其中x =12;5. (ab +3a 2)-2b 2-5ab -2(a 2-2ab),其中a =1,b =-2;6. 13x 2-3(x 2+xy -15y 2)+(83x 2+3xy +25y 2),其中x =-12,y =-2.7.6(x 2y -3x)-2(x -2x 2y)-2(-10x),其中(x +2)2+|2y -3|=0.8. 5ab -2[3ab -(4ab 2+ab)]-5ab 2,其中a =12,b =-32;9. 3x 2y -[2x 2y -3(2xy -x 2y)-xy],其中x =-12,y =2.10. 2(a 2b -ab 2)-3(a 2b -1)+2ab 2+1,其中a =2,|b +1|=0.11. 5(3a 2b -ab 2)-(ab 2+3a 2b),其中a =12,b =13.12. (x 3-2x 2+x -4)-2(x 3-x 2+2x -2),其中x =-2.13. 3x 2y -[2xy 2-2(xy -32x 2y)]+3xy 2-xy ,其中x =3,y =-13.14. -a 2+(-4a +3a 2)-(5a 2+2a -1),其中a =-23;15. (32x 2-5xy +y 2)-[-3xy +2(14x 2-xy)+23y 2],其中|x -1|+(y +2)2=0.二、整体代入求值16.已知x +4y =-1,xy =5,求(6xy +7y)+[8x -(5xy -y +6x)]的值.17.已知a 2-a -4=0.求4a 2-2(a 2-a +3)-(a 2-a -4)-4a 的值.18.已知2x 2+xy =10,3y 2+2xy =6.求4x 2+8xy +9y 2的值.19.当x =1时多项式ax 3+bx +1的值为5,则当x =-1时,多项式12ax 3+12bx +1的值为多少?三、利用“无关”求值或说明20.有这样一道题“当a =2,b =-2时,求多项式3a 3b 3-12a 2b +b -(4a 3b 3-14a 2b -b 2)+(a 3b 3+14a 2b)-2b 2+3的值”,小明做题时把a =2错抄成a =-2,小旺没抄错题,但他们做出的结果却一样,你知道这是怎么回事吗?请说明理由.21. 已知多项式(2x 2+mx -12y +3)-(3x -2y +1-nx 2)的值与字母x 的取值无关,求多项式(m +2n)-(2m -n)的值.22.在对多项式(23x 2y +5xy 2+5)-[(3x 2y 2+23x 2y)-(3x 2y 2-5xy 2-2)]代入计算时,小明发现将x ,y 任意取值代入时,结果总是同一个定值,为什么?23.已知A =2x 2+4xy -2x -3,B =-x 2+xy +2,且3A +6B 的值与x 无关,求y 的值.24.若x 2+ax -2y +7-(bx 2-2x +9y -1)的值与x 无关,求-a -b 的值.25. 已知多项式(2x2+ax-y+6)-(2bx2-3x+5y-1).(1)若多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3(a2-ab+b2)-(3a2+ab+b2),再求它的值.参考答案1. 解:原式=4a 2-2a -6-4a 2+4a +10=2a +4,当a =-1时,原式=22. 解:原式=-12a -2a +b 2-32a +13b 2=-4a +43b 2. 当a =-2,b =32时,原式=11 3. 解:原式=6a 2b -2ab 2-3ab 2-6a 2b =-5ab 2,当a =2,b =1时,原式=-5×2×12=-104. 解:原式=-x 2+12x -2-12x +1=-x 2-1, 当x =12时,原式=-(12)2-1=-545. 解:原式=ab +3a 2-2b 2-5ab -2a 2+4ab =a 2-2b 2,当a =1,b =-2时,原式=1-8=-76. 解:原式=13x 2-3x 2-3xy +35y 2+83x 2+3xy +25y 2=(13-3+83)x 2+(3-3)xy +(35+25)y 2=y 2,当x =12,y =-2时,原式=(-2)2=4 7. 解:原式=6x 2y -18x -2x +4x 2y +20x =10x 2y ,由(x +2)2+|2y -3|=0,得x =-2,y =32, 原式=10×(-2)2×32=60 8. 解:原式=5ab -6ab +8ab 2+ab -5ab 2=3ab 2,当a =12,b =-32时,原式=239. 解:原式=3x 2y -[2x 2y -6xy +3x 2y -xy]=3x 2y -2x 2y +6xy -3x 2y +xy =-2x 2y +7xy ,当x =-12,y =2时,原式=-2×(-12)2×2+7×(-12)×2=-8 10. 解:原式=2a 2b -2ab 2-3a 2b +3+2ab 2+1=-a 2b +4,因为a =2,|b +1|=0,即b =-1,所以原式=-22×(-1)+4=4+4=811. 解:5(3a 2b -ab 2)-(ab 2+3a 2b)=15a 2b -5ab 2-ab 2-3a 2b =12a 2b -6ab 2,当a =12,b =13时,原式=12×14×13-6×12×19=1-13 =2312. 解:原式=x 3-2x 2+x -4-2x 3+2x 2-4x +4=-x 3-3x ,当x =-2时,原式=-(-2)3-3×(-2)=1413. 解:原式=3x 2y -2xy 2+2xy -3x 2y +3xy 2-xy =xy 2+xy.当x =3,y =-13时,原式=3×(-13)2+3×(-13)=-2314. 解:原式=-3a 2-6a +1,当a =-23时,原式=11315. 解:原式=x 2+13y 2, 由|x -1|+(y +2)2=0得x =1,y =-2,所以原式=7316. 解:(6xy +7y)+[8x -(5xy -y +6x)]=6xy +7y +[8x -5xy+y -6x]=6xy +7y +8x -5xy+y -6x= xy +2x +8y= xy +2(x +4y)当x +4y =-1,xy =5时原式=5-2=317. 解:原式=4a 2-2a 2+2a -6-a 2+a +4-4a=a 2-a -2.又因为a 2-a -4=0,所以a 2-a =4,所以原式=4-2=218. 解:原式=4x 2+2xy +6xy +9y 2=2(2x 2+xy)+3(3y 2+2xy)=2×10+3×6=3819. 解:当x =1时,ax 3+bx +1=a +b +1=5,从而a +b =4.当x =-1时,12ax 3+12bx +1=-12a -12b +1=-12(a +b)+1=-12×4+1=-1 20. 解:因为原式=(3-4+1)a 3b 3+(-12+14+14)a 2b +(1-2)b 2+b +3=b -b 2+3,所以结果与a 的值无关21. 解:原式=(2+n)x 2+(m -3)x +32y +2,原多项式的值与x 的取值无关,所以2+n =0,m -3=0,即m =3,n =-2,所以(m +2n)-(2m -n)=m +2n -2m +n =-m +3n =-3+3×(-2)=-922. 解:(23x 2y +5xy 2+5)-[(3x 2y 2+23x 2y)-(3x 2y 2-5xy 2-2)] =23x 2y +5xy 2+5-(3x 2y 2+23x 2y -3x 2y 2+5xy 2+2) =23x 2y +5xy 2+5-3x 2y 2-23x 2y +3x 2y 2-5xy 2-2 =(23x 2y -23x 2y)+(5xy 2-5xy 2)+(-3x 2y 2+3x 2y 2)+(5-2) =3,所以结果是定值,与x ,y 的取值无关23. 解:3A +6B=3(2x 2+4xy -2x -3)+6(-x 2+xy +2)=6x 2+12xy -6x -9-6x 2+6xy +12=18xy -6x +3=(18y -6)x +3.因为3A +6B 的值与x 无关,所以18y -6=0,解得y =1324. 解:原式=x 2+ax -2y +7-bx 2+2x -9y +1=(1-b)x 2+(a +2)x -11y +8.因为该整式的值与x 无关,所以1-b =0,a +2=0,得b =1,a =-2.所以-a -b =-(-2)-1=125. 解:(1)原式=2x 2+ax -y +6-2bx 2+3x -5y +1=(2-2b)x 2+(a +3)x -6y +7,由结果与x 的取值无关,得a +3=0,2-2b =0,解得a =-3,b =1(2)原式=3a 2-3ab +3b 2-3a 2-ab -b 2=-4ab +2b 2,当a =-3,b =1时,原式=-4×(-3)×1+2×12=14。
整式的加减试题(一)及答案一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。
3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
4、已知:11=+xx ,则代数式51)1(2010-+++x x x x 的值是 。
5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。
6、计算:=-+-7533x x , )9()35(b a b a -+-= 。
7、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。
8、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。
9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。
10、若≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n = 。
11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。
12、多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。
二、选择题(每题3分,共30分)13、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。
B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍15、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 16、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a --17、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x +是多项式D 、5xy -是单项式 18、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x19、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、620、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式21、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x 22、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+三、化简下列各题(每题3分,共18分)23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值(每题5分,共10分)29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:;)()(,,0553212=+-m x y x m 满足 2312722a b b a y 与+-)(是同类项,求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。
整式的加减化简求值专项1.先化简再求值:2(3a2﹣ab)﹣3(2a2﹣ab),其中a=﹣2,b=3.2.先化简再求值:6a2b﹣(﹣3a2b+5ab2)﹣2(5a2b﹣3ab2),其中a=﹣2,b=.3.先化简,再求值:3x2y2﹣[5xy2﹣(4xy2﹣3)+2x2y2],其中x=﹣3,y=2.4.先化简,再求值:5ab2+3a2b﹣3(a2b﹣ab2),其中a=2,b=﹣1.5.先化简再求值:2x2﹣y2+(2y2﹣x2)﹣3(x2+2y2),其中x=3,y=﹣2.6.化简:﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)].7.先化简,再求值:5x2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.8.先化简,再求值:(6a2﹣6ab﹣12b2)﹣3(2a2﹣4b2),其中a=﹣,b=﹣8.10.化简求值:(﹣3x2﹣4y)﹣(2x2﹣5y+6)+(x2﹣5y﹣1),其中x、y满足|x﹣y+1|+(x﹣5)2=0.11.先化简,再求值:(1)5a2b﹣2ab2+3ab2﹣4a2b,其中a=﹣1,b=2;(2)(2x2﹣xyz)﹣2(x2﹣y2+xyz)﹣(xyz+2y2),其中x=1,y=2,z=﹣3.12.先化简,再求值:x2y﹣(2xy﹣x2y)+xy,其中x=﹣1,y=﹣2.13.已知:|x﹣2|+|y+1|=0,求5xy2﹣2x2y+[3xy2﹣(4xy2﹣2x2y)]的值.14.先化简,再求值:﹣9y+6x2+3(y﹣x2),其中x=﹣2,y=﹣.15.设A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.16.已知M=﹣xy2+3x2y﹣1,N=4x2y+2xy2﹣x(1)化简:4M﹣3N;(2)当x=﹣2,y=1时,求4M﹣3N的值.17.求代数式的值:(1)(5x2﹣3x)﹣2(2x﹣3)+7x2,其中x=﹣2;(2)2a﹣[4a﹣7b﹣(2﹣6a﹣4b)],其中a=,b=.18.先化简,再求值:5(xy+3x2﹣2y)﹣3(xy+5x2﹣2y),其中x=,y=﹣1.19.化简:(1)(9y﹣3)+2(y﹣1)(2)求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.20.先化简,再求值:(5a+2a2﹣3+4a3)﹣(﹣a+4a3+2a2),其中a=1.21.当|a|=3,b=a﹣2时,化简代数式1﹣{a﹣b﹣[a﹣(b﹣a)+b]}后,再求这个代数式的值.22.先化简,再求值:a2﹣(2a2+2ab﹣b2)+(a2﹣ab﹣b2),其中a=3,b=﹣2.23.先化简再求值:3a2﹣(2ab+b2)+(﹣a2+ab+2b2),其中a=﹣1,b=2.24.化简求值:3a2b﹣〔2ab2﹣2(ab﹣a2b)+ab〕+3ab2,其中a=3,b=﹣.25.已知3x a﹣2y2z3和﹣4x3y b﹣1z3是同类项,求3a2b﹣[2ab2﹣2(a2b+2ab2)]的值.26.先化简,再求值:﹣8xy2+3xy﹣2(xy2﹣xy),其中x=,y=﹣2.27.已知,A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,求:(1) 2A﹣B;(2)当时,2A﹣B的值.28.先化简,后计算:2(a2b+ab2)﹣[2ab2﹣(1﹣a2b)]﹣2,其中a=﹣2,b=.29.先化简,再求值:2(a2﹣2ab)﹣3(a2+2ab),其中a=﹣1,b=2.30.已知A=4(2﹣x2)﹣2x,B=2x2﹣x+3.(1)当x=时,求A﹣2B的值;(2)若A与2B互为相反数,求x的值.31.先化简再求值,已知a=﹣2,b=﹣1,c=3,求代数式5abc﹣2a2b﹣[(4ab2﹣a2b)﹣3abc]的值.32.化简(求值)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y的值,其中x=﹣2,y=2.33.先化简,再求值:﹣2(ab﹣3a2)﹣[a2﹣5(ab﹣a2)+6ab],其中a=2,b=﹣3.34.先化简,再求值:3a3﹣[a3﹣3b+(6a2﹣7a)]﹣2(a3﹣3a2﹣4a+b)其中a=2,b=﹣1,35.先化简,再求值:(5a2b+4b3﹣2ab2+3a3)﹣(2a3﹣5ab2+3b3+2a2b),其中a=﹣2,b=3.36.先化简,再求值,其中a=1,b=﹣2.37.先化简再求值:(a2﹣3ab﹣2b2)﹣(a2﹣2b2),其中,b=﹣8.38.化简:,其中x=.39.化简求值:3(x3﹣2y2﹣xy)﹣2(x3﹣3y2+xy),其中x=3,y=1.40.先化简再求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=,y=﹣5.41.先化简,再求值:8mn﹣[4m2n﹣(6mn2+mn)]﹣29mn2,其中m=﹣1,n=.42.先化简,再求值:4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)],其中a=1,b=﹣3.43.先化简,再求值:3x2+4x﹣2x2﹣2(x2+2x﹣1)﹣x+1,其中x=﹣2.44.化简求值:(2x2﹣x﹣1)﹣(x2﹣x﹣)+(3x2﹣3),其中x=.45.化简求值:3(x2﹣xy)﹣5(),其中x=﹣2,y=﹣3.46.先化简,再求值:9(xy﹣x2y)﹣2(xy﹣x2y﹣1)其中xy+1=0.47.先化简,再求值:4(3x2y﹣xy2)﹣2(xy2+3x2y),其中x=,y=﹣1.48.已知x=﹣3,y=﹣,求代数式的值.49.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.50.先化简,再求值:(8xy﹣3x2)﹣5xy﹣3(xy﹣2x2+3),其中.51.先化简,再求值:,其中.52.先化简,再求值:3a2﹣7a+[3a﹣2(a2﹣2a﹣1)],其中a=﹣2.53.先化简﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)],再求值,其中x=,y=.54.先化简,再求值:,其中x=﹣2,.55.先化简,再求值:3()﹣(5x2y﹣4xy2),其中x=2,y=﹣1.56.先化简,再求值,已知a=1,b=﹣,求多项式的值.57.先化简,再求值:3(x2﹣xy)﹣(4x2﹣3xy﹣1),其中.58.先化简,再求值:,其中.59.先化简,再求值:2(x2y﹣xy2﹣1)﹣(2x2y﹣xy2﹣y),其中x=2,y=﹣1.60.先化简,再求值:(2m2n+2mn2)﹣2(m2n﹣1)﹣3+mn,其中.61.先化简,再求值.3x﹣5(x﹣2xy2)+8(x﹣3xy2),其中.62.先化简,再求值:,其中x=﹣2.63.先化简,再求值:﹣5x2y﹣[3x2y﹣2(xy2﹣x2y)].其中x=2,y=﹣1.64.先化简,再求值:,其中,y=2008.65.先化简,再求值:5a2﹣3b2+[﹣(a2﹣2ab﹣b2)﹣(5a2+2ab+3b2)],其中a=1,b=﹣.66.先化简,再求值:2x2+3x+5+[4x2﹣(5x2﹣x+1)],其中x=3.67.先简化再求值:(其中x=﹣2,y=)68.先化简,再求值.2(a2b+2b3﹣ab2)+3a3﹣(2a2b﹣3ab2+3a3)﹣4b3,其中a=﹣3,b=2.69.先化简再求值:2(a2b+ab3)﹣3(a2b﹣3)﹣2ab3﹣1,其中a=2,b=﹣2.70.已知a,b满足等式,求代数式的值.71.先化简,再求值.4xy﹣[2(x2+xy﹣2y2)﹣3(x2﹣2xy+y2)],其中x=﹣,y=72.先化简,再求值:2x2+(﹣x2+3xy+2y2)﹣( x2﹣xy+2y2),其中 x=,y=3.73.先化简,再求值:(2x2﹣5xy)﹣3(x2﹣y2)+x2﹣3y2,其中x=﹣3,y=.74.先化简,再求值:5a2b+3b2﹣2(3a2b+ab2)+(4a2b﹣3b2),其中a=﹣2,b=1.75.先化简,再求值:5a﹣[a2+(5a2﹣3a)﹣6(a2﹣2a)],其中a=﹣.76.先化简再求值:3x2y﹣[2xy2﹣4(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣1.77.先化简,再求值:2(a2b+ab2)﹣3(a2b﹣3)﹣2ab2﹣1.其中a=﹣2,b=2.78.先化简,再求值:,其中x=3,y=.79.化简后再求值:x﹣2(3y2﹣2x)﹣4(2x﹣y2),其中|x﹣2|+(y+1)2=0.80.先化简,再求值,5x2﹣(3y2+5x2﹣2xy)+(﹣7xy+4y2),其中:x=﹣1,y=﹣.81.先化简,再求值:,其中x,y满足(x﹣2)2+|y+3|=0.82.先化简,再求值:2(x2﹣3xy﹣y2)﹣(2x2﹣7xy﹣2y2),其中x=4,y=﹣1时.83.求代数式的值:2(3xy+4x2)﹣3(xy+4x2),其中x=﹣3,.84.先化简,再求值:5(a2b﹣ab2)﹣(ab2+3a2b),其中85.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b)﹣4(3a2b﹣ab2),其中a=﹣2,b=.86.先化简,再求值:(a2b﹣2ab2﹣b3)÷b+(b﹣a)(b+a),其中a=﹣,b=2012.87.先化简,再求值:,其中.88.先化简,再求值:4m3﹣(3m2+5m﹣2)+2(3m+m2﹣2m3)﹣1,其中m=2011.89.先化简,再求值 2(3x2﹣x+4)﹣3(2x2﹣2x+3),其中.90.先化简,再求值.2(2xy2﹣y2)﹣(4xy2+y2﹣x2y)﹣y2,其中x=,y=﹣.整式化简求值90题参考答案:1.原式=6a2﹣2ab﹣6a2+3ab=ab,当a=﹣2,b=3时,原式=ab=﹣2×3=﹣6.2.原式=6a2b+3a2b﹣5ab2﹣10a2b+6ab2=﹣a2b+ab2把a=﹣2,b=代入上式得:原式=﹣(﹣2)2×+(﹣2)×2=﹣2﹣=﹣2.3.原式=3x2y2﹣5xy2+4xy2﹣3﹣2x2y2=x2y2﹣xy2﹣3∴当x=﹣3,y=2时,原式=454.原式=5ab2+3a2b﹣3a2b+2ab2(4分)=7ab2.(6分)当a=2,b=﹣1时,原式=7×2×(﹣1)2(7分)=14.5.原式=2x2﹣y2+2y2﹣x2﹣3x2﹣6y2=﹣2x2﹣5y2.当x=3,y=﹣2时,原式=﹣18﹣20=﹣38.6.﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)]=﹣x2﹣3x+5+[4x2﹣3x2+x+y]=﹣2x+6y,7.原式=5x2﹣(x2+5x2﹣2x﹣2x2+6x)=x2﹣4x当x=时,上式=8.原式=6a2﹣6ab﹣12b2﹣6a2+12b2=﹣6ab,当a=﹣,b=﹣8时,原式=﹣6×(﹣)×(﹣8)=﹣24.9.=﹣a2﹣9a+7当a=﹣2时,原式=﹣(﹣2)2﹣9×(﹣2)+7=﹣4+18+7=21.10.∵|x﹣y+1|+(x﹣5)2=0,则x﹣y+1=0,x﹣5=0,解得x=5,y=6.(﹣3x2﹣4y)﹣(2x2﹣5y+6)+(x2﹣5y﹣1)=﹣3x2﹣4y﹣2x2+5y﹣6+x2﹣5y﹣1=﹣4x2﹣4y﹣7=﹣100﹣24﹣7=﹣13111.(1)原式=a2b+ab2,当a=﹣1,b=2时,原式=(﹣1)2×2+(﹣1)×22,=﹣2;(2)原式=2x2﹣xyz﹣2x2+2y2﹣2xyz﹣xyz﹣2y2,=﹣4xyz,当x=1,y=2,z=﹣3时,原式=﹣4×1×2×(﹣3)=2412.原式=x2y﹣2xy+x2y+xy=2x2y﹣xy,当x=﹣1,y=﹣2时,原式=2×(﹣1)2×(﹣2)﹣(﹣1)×(﹣2)=﹣6.13.∵|x﹣2|+|y+1|=0,∴x﹣2=0,y+1=0,解得x=2,y=﹣1,原式=5xy2﹣2x2y+3xy2﹣4xy2+2x2y,=4xy2,=4×2×1,=814.原式=﹣9y+6x2+3y﹣3x2=3x2﹣6y,由x=﹣2,y=﹣得:原式=12+2=1415.∵|x﹣2a|+(y﹣3)2=0∴x=2a,y=3∵B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+2x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣4x﹣4y=﹣7x﹣5y又B﹣2A=a∴﹣7×2a﹣5×3=a∴a=﹣116.(1)4M﹣3N=4(﹣xy2+3x2y﹣1)﹣3(4x2y+2xy2﹣x)=﹣4xy2+12x2y﹣4﹣12x2y﹣6xy2+3x=﹣10xy2+3x﹣4;(2)当x=﹣2,y=1时,4M﹣3N=﹣10×(﹣2)×1+3×(﹣2)﹣4=20﹣6﹣4=10.17.(1)原式=(5x2﹣3x)﹣2(2x﹣3)+7x2=12x2﹣7x+6,当x=﹣2时,原式=12×(﹣2)2﹣7×(﹣2)+6=68;(2)原式=2a﹣[4a﹣7b﹣2+6a+4b],=2a﹣[10a﹣3b﹣2],=﹣8a+3b+2,当a=,b=时,原式=618.原式=5xy+15x2﹣10y﹣3xy﹣15x2+6y=2xy﹣4y,当x=,y=﹣1时,原式=2××(﹣1)﹣4×(﹣1)=3.19.(1)原式=3y﹣1+2y﹣2=5y﹣3;(2)原式=x﹣2x+y2﹣x+y2=﹣3x+y2当x=﹣2,y=时,原式=﹣3×(﹣2)+()2=6+=620.(5a+2a2﹣3+4a3)﹣(﹣a+4a3+2a2)=5a+2a2﹣3+4a3+a﹣4a3﹣2a2=(5a+a)+(2a2﹣2a2)﹣3+(4a3﹣4a3)=6a﹣3当a=1时原式=6×1﹣3=6﹣3=321.化简代数式得,原式=1+a+b;当a=3时,b=1,代数式的值为5;当a=﹣3时,b=﹣5,代数式的值为﹣7.22.a2﹣(2a2+2ab﹣b2)+(a2﹣ab﹣b2)=a2﹣2a2﹣2ab+b2+a2﹣ab﹣b2=﹣a2﹣3ab.当a=3,b=﹣2时,原式=﹣×32﹣3×3×(﹣2)=﹣3+18=1523.原式=2a2﹣ab+b2其中a=﹣1,b=2.所以2a2﹣ab+b2=8 24.原式=3a2b﹣(2ab2﹣2ab+3a2b+ab)+3ab2=ab2+ab;将a=3,b=﹣代入得,原式=ab2+ab=﹣25. ∵3x a﹣2y2z3和﹣4x3y b﹣1z3是同类项∴a﹣2=3,b﹣1=2∴a=5,b=3.3a2b﹣[2ab2﹣2(a2b+2ab2)]=3a2b﹣[2ab2﹣2a2b﹣4ab2]=3a2b﹣2ab2+2a2b+4ab2=5a2b+2ab2当a=5,b=3时,原式=5×52×3+2×5×32=465.26.﹣8xy2+3xy﹣2(xy2﹣xy)=﹣8xy2+3xy﹣2xy2+2xy=﹣10xy2+5xy.当x=,y=﹣2时,原式=﹣10xy2+5xy=﹣10××(﹣2)2+5××(﹣2)=﹣8﹣2=﹣1027.(1)2A﹣B=2(3x2+3y2﹣5xy)﹣(2xy﹣3y2+4x2)=6x2+6y2﹣10xy﹣2xy+3y2﹣4x2=2x2+9y2﹣12xy;(2)当时,2A﹣B=2x2+9y2﹣12xy=3128. 原式=2a2b+2ab2﹣2ab2+1﹣a2b﹣2=a2b﹣1,当a=﹣2,b=时,∴原式=a2b﹣1=(﹣2)2×﹣1=2﹣1=1.29.2(a2﹣2ab)﹣3(a2+2ab)=2a2﹣4ab﹣3a2﹣6ab=﹣a2﹣10ab当a=﹣1,b=2时,原式=﹣(﹣1)2﹣10×(﹣1)×2=﹣1+20=19.30.(1)A=4(2﹣x2)﹣2x,B=2x2﹣x+3.A﹣2B=4(2﹣x2)﹣2x﹣2(2x2﹣x+3)=﹣8x2+2当x=时,A﹣2B=﹣8×()2+2=;(2)A=4(2﹣x2)﹣2x,B=2x2﹣x+3,即:2B=4x2﹣2x+6,由于A与2B互为相反数,即:A+2B=0,4(2﹣x2)﹣2x+4x2﹣2x+6=04x=14,解得:x=所以,x的值为:.31.原式=5abc﹣2a2b﹣4ab2+a2b+3abc=8abc﹣a2b﹣4ab2;a=﹣2,b=﹣1,c=3时,原式=8×2×1×3﹣4×(﹣1)﹣4×(﹣2)×1=60.32.2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y=2x2y+2 xy2﹣2x2y+2x﹣2xy2﹣2y=2x﹣2y;把x=﹣2,y=2代入上式,原式=2×(﹣2)﹣2×2=﹣833.原式=﹣2ab+6a2﹣(a2﹣5ab+5a2+6ab)=﹣2ab+6a2﹣a2+5ab﹣5a2﹣6ab=﹣3ab;当a=2,b=﹣3时,原式=﹣3×2×(﹣3)=1834.原式=3a3﹣[a3﹣3b+6a2﹣7a]﹣2a3+6a2+8a﹣2b=3a3﹣a3+3b﹣6a2+7a﹣2a3+6a2+8a﹣2b=15a+b当a=2,b=﹣1时,则原式=15×2﹣1=29.35.原式=5a2b+4b3﹣2ab2+3a3﹣2a3+5ab2﹣3b3﹣2a2b=a3+3a2b+3ab2+b3,当a=﹣2,b=3时,原式=(﹣2)3+3×(﹣2)2×3+3×(﹣2)×32+33=﹣8+36﹣54+27=1.36.=a﹣2ab﹣2b2a+2ab+b2=(+)a+(﹣2+2)ab+(﹣2+1)b2=2a+0﹣b2=2a﹣b2把a=1,b=﹣2代入上式,得上式=2×1﹣(﹣2)2=2﹣4=﹣2.37.原式=a2﹣3ab﹣2b2﹣a2+2b2(3分)=﹣3ab,当,b=﹣8时,原式=﹣3×()×(﹣8)(7分)=﹣12.38.原式=2x2﹣0.5+3x﹣4x+4x2﹣2+x+2.5=6x2;当x=时,原式=6×=.39.原式=3x3﹣6y2﹣3xy﹣3x3+6y2﹣2xy=﹣5xy,当x=3,y=1时,原式=﹣5×3×1=﹣15.40.原式=3x2y﹣[2xy2﹣(2xy﹣3x2y)+xy]+3xy2=3x2y﹣(2xy2﹣2xy+3x2y+xy)+3xy2=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2=xy+xy2,当x=,y=﹣5时,原式=×(﹣5)+×25=.41.原式=8mn﹣[4m2n﹣6mn2﹣mn]﹣29mn2=8mn﹣4m2n+6mn2+mn﹣29mn2=9mn﹣4m2n﹣23mn2当m=﹣1,n=时原式=9×(﹣1)×﹣4×12×﹣23×(﹣1)×=﹣﹣2+=﹣.42.原式=4ab﹣3b2﹣2b2=4ab﹣5b2,当a=1,b=﹣3时,原式=4×1×(﹣3)﹣5×(﹣3)2=﹣57.43.原式=3x2+4x﹣2x2﹣2x2﹣4x+2﹣x+1=﹣x2﹣x+3,当x=﹣2时,原式=﹣(﹣2)2﹣(﹣2)+3=1 44.(2x2﹣x﹣1)﹣(x2﹣x﹣)+(3x2﹣3)=2x2﹣x﹣1﹣x2+x++3x2﹣3=4x2﹣4,当x=,原式=1﹣4=﹣3.45.原式=3x2﹣3xy﹣3x2+5xy=2xy,当x=﹣2,y=﹣3时,原式=2×(﹣2)×(﹣3)=12.46.原式=3xy﹣x2y﹣2xy+x2y+2…(1分)=xy+2…(2分)∵xy+1=0,∴xy=﹣1…(3分)∴原式=﹣1+2=1…(447.原式=12x2y﹣4xy2﹣2xy2﹣6x2y=6x2y﹣6xy2当x=,y=﹣1时,原式=6x2y﹣6xy2=6xy(x﹣y)=6×(﹣)×(+1)==﹣4.48.原式=x2﹣y﹣x2﹣y=﹣x2﹣y,当x=﹣3,y=﹣时原式=﹣×(﹣3)2﹣(﹣)=﹣3+=﹣.49.原式=4xy﹣2x2﹣5xy+y2+2x2+6xy)=5xy+y2.当x=﹣2,y=1时,原式=5×(﹣2)+1=﹣9.50.(8xy﹣3x2)﹣5xy﹣3(xy﹣2x2+3)=8xy﹣3x2﹣5xy﹣3xy+6x2﹣9=3x2﹣9,当时,原式=51.原式=x2﹣[7x﹣2x+﹣2x2]+=x2﹣7x+2x﹣+2x2+=3x2﹣5x当x=﹣时,原式=3×(﹣)2+5×=+=.52.3a2﹣7a+[3a﹣2(a2﹣2a﹣1)]=3a2﹣7a+3a﹣2a2+4a+2=a2+2,当d=﹣2时,原式=4+4=8.53.﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)]=﹣x2﹣3x+5y+[4x2﹣3x2+x+y]=﹣x2﹣3x+5y+4x2﹣3x2+x+y=﹣2x+6y.当x=,y=时,原式=﹣2×+6×=154.原式=x﹣x+y2﹣x+y2=﹣2x+y2,当x=2,y=时,原式=﹣2×2+()2=﹣4+=﹣.55.原式=x2y﹣3xy2﹣5x2y+4xy2=﹣x2y+xy2,当x=2,y=﹣1时,原式=﹣×22×(﹣1)+2×(﹣1)2=1656.=a3﹣2b3+2ab2﹣a2b﹣2ab2+2b3=a3﹣a2b,把a=1,b=﹣代入得:原式=13﹣12×=1+=.57.原式=3x2﹣3xy﹣4x2+3xy+1=﹣x2+1,当x=2,y=﹣3时,原式=﹣22+1=﹣3.58.原式=9x+6x2﹣3x+2x2﹣6x+6=8x2+6,当x=﹣时,原式=8×(﹣)2+6=2+6=8.59.原式=2x2y﹣2xy2﹣2﹣2x2y+xy2+y=﹣xy2+y﹣2,当x=2,y=﹣1时,原式=﹣2×(﹣1)2﹣1﹣2=﹣2﹣1﹣2=﹣5.60.原式=2m2n+2mn2﹣2m2n+2﹣3+mn=2mn2+mn﹣1,当m=﹣2,n=时,原式=2×(﹣2)×()2+(﹣2)×﹣1=﹣361.3x﹣5(x﹣2xy2)+8(x﹣3xy2)=3x﹣5x+10xy2+8x﹣24xy2=6x﹣14xy2,当x=4,y=﹣时,原式=6×4﹣14×4×(﹣)2=24﹣126=﹣102.62.(2x2﹣x+1)﹣4(x﹣x2+)=2x2﹣x+1﹣4x+4x2﹣2=6x2﹣x﹣1,当x=﹣2时,原式=6×(﹣2)2﹣×(﹣2)﹣1=24+9﹣1=3263.原式=﹣5x2y﹣3x2y+2xy2﹣2x2y=2xy2,当x=2,y=﹣1时,原式=2×2×(﹣1)2=4.故答案为464.原式=﹣x2+x﹣2y+x+2y=﹣x2+x,当x=,y=2008时,原式=﹣()2+×=﹣+=.65.原式=5a2﹣3b2﹣a2+2ab+b2﹣5a2﹣2ab﹣3b2=﹣a2﹣5b2,当a=1,b=﹣时,原式=﹣1﹣5×=﹣66.原式=2x2+3x+5+[4x2﹣5x2+x﹣1]=2x2+3x+5+4x2﹣5x2+x﹣1=2x2+4x2﹣5x2+3x+x+5﹣1=x2+4x+4,∵x=3,∴x2+4x+4=9+12+4=25.67.原式=x2﹣xy+y2﹣x2+xy﹣y2=﹣x2﹣xy,当x=﹣2,y=时,原式=﹣2+=﹣1.68.原式=2a2b+4b3﹣2ab2+3a3﹣2a2b+3ab2﹣3a3﹣4b3=ab2,当a=﹣3,b=2时,原式=﹣3×22=﹣12.69.原式=2a2b,2ab3﹣3a2b+9﹣2ab3﹣1=2a2b﹣3a2b+2ab3﹣2ab3+9﹣1=﹣a2b+8∵a=2,b=﹣2,∴﹣a2b+8=8+8=1670.∵,∴a+=0,3b+2=0,∴a=﹣,b=﹣,=a﹣b+a+b﹣a+b+a+b﹣a+ b=(+﹣+﹣)a+(﹣++++)b=a+ b=×(﹣)+×(﹣)=﹣.71.∵4xy﹣[2(x2+xy﹣2y2)﹣3(x2﹣2xy+y2)]=4xy﹣(2x2+2xy﹣4y2﹣3x2+6xy﹣3y2)=x2﹣4xy+7y2,∴当x=﹣,y=时,原式=x2﹣4xy+7y2=(﹣)2﹣4×(﹣)×+7×()2=+1+=372.原式=2x2﹣x2+3xy+2y2﹣x2+xy﹣2y2,=(2﹣1﹣1)x2+(3+1)xy+(2﹣2)y2,=4xy,当x=,y=3时,原式=4××3=673.原式=2x2﹣5xy﹣3x2+3y2+x2﹣3y2=(2﹣3+1)x2+(3﹣3)y2﹣5xy=﹣5xy,当x=﹣3,y=时,原式=(﹣5)×(﹣3)×=574.原式=5a2b+3b2﹣6a2b﹣2ab2+4a2b﹣3b2=3a2b﹣2ab2,当a=﹣2,b=1时,原式=12+4=16.75.原式=5a﹣a2﹣5a2+3a+6a2﹣12a=8a﹣12,当a=﹣时,原式=﹣2﹣12=﹣14.76.原式=3x2y﹣[2xy2﹣2xy+3x2y+xy]+3xy2=3x2y﹣2xy2+xy﹣3x2y+3xy2=xy2+xy,把x=3,y=﹣1代入得:原式=xy2+xy=077.2(a2b+ab2)﹣3(a2b﹣3)﹣2ab2﹣1,=2a2b+2ab2﹣3a2b+9﹣2ab2﹣1,=﹣a2b+8,当a=﹣2,b=2时,原式=﹣(﹣2)2×2+8=0.78.原式=﹣3x+5y2﹣+=﹣4x+y2,当x=3,y=时,原式=(﹣4)×3+×()2=0.79.∵|x﹣2|+(y+1)2=0,∴x=2,y=﹣1,x﹣2(3y2﹣2x)﹣4(2x﹣y2)=x﹣6y2+4x﹣8x+4y2=﹣3x﹣2y2,当x=2,y=﹣1时,原式=﹣6﹣2=﹣8.80.原式=5x2﹣3y2﹣5x2+2xy﹣7xy+4y2=﹣5xy+y2,当x=﹣1,y=﹣时,原式=﹣5×(﹣1)×(﹣)+(﹣)2=﹣+=﹣.81.原式==﹣3x+y2,由(x﹣2)2+|y+3|=0,知x﹣2=0,y+3=0,解得x=2,y=﹣3,代入化简结果得,原式=﹣3×2+(﹣3)2=382.原式=x2﹣6xy﹣2y2﹣2x2+7xy+2y2=﹣x2+xy,当x=4,y=﹣1时,原式=﹣42+4×(﹣1)=﹣2083.∵原式=5a2b﹣5ab2﹣ab2﹣3a2b=2a2b﹣6ab2,∴当时,原式==.84.∵原式=5a2b﹣5ab2﹣ab2﹣3a2b=2a2b﹣6ab2,∴当时,原式==.85.原式=15a2b﹣5ab2﹣ab2﹣3a2b﹣12a2b+4ab2=﹣2ab2,当a=﹣2,b=时,原式=﹣2×(﹣2)×=186.原式=a2﹣2ab﹣b2+b2﹣a2=﹣2ab,当a=﹣,b=2012时,原式=﹣2×(﹣)×2012=2012.87.原式=2x﹣y﹣6x+y=﹣4x,当x=﹣,y=2010时,原式=﹣4×(﹣)=1.88.原式=6x2﹣2x+8﹣6x2+6x﹣9=4x﹣1,当时,原式==﹣7.89.原式=6x2﹣2x+8﹣6x2+6x﹣9=4x﹣1,当时,原式==﹣7.90.原式=4xy2﹣y2﹣4xy2﹣y2+x2y﹣y2=﹣3y2+x2y.当x=,y=﹣时,原式=﹣3×(﹣)2+()2×(﹣)==.。
人教版七年级数学上册整式化简求值60题作业不是惩罚,而是为了让你们拥有更强大的能力,在研究的道路上飞得更远更高!化简后求值:(3a2-8a)+(2a3-13a2+2a)-2(a3-3),其中a=-4.化简后求值:(-x2+5-4x3)-2(-x3+5x-4),其中x=-2.求表达式1/2(x-2(x-1312/3y2)+(-2x+3y2))的值,其中x=-2,y=3/2.化简后求值:-a2b-31/2a2b-3(abc-3a2c)-4a2c+3abc,其中a=-1,b=-3,c=1.化简后求值:5(a2b-ab2)-(ab2+3a2b),其中a=11/2,b=3.求多项式A,使得A+3x-5x2+2=2x-4x2+3.求表达式7a2bc-[8a2cb-(bca2+(ab-2a2bc))]的值。
化简后求值:(2a2-5a)-2(3a-5+a2),其中a=-1.化简后求值:5(a2b-ab2)-(ab2+3a2b),其中a=11/2,b=3.求表达式2(3xy+4x2)-3(xy+4x2)的值,其中x=-3,y=1/3.化简后求值:2(3a-1)-3(2-5a),其中a=-2.化简后求值:-2(xy-1/2x2)-[x2-3(xy+y2)+2xy],其中x=2,y=-1/2.化简后求值:2x(3x2-4x+1)-3x2(2x-3)-1,其中x=-5.化简后求值:3x2-[7x-(4x-3)-2x2],其中x=2.化简后求值:(-x2+5x+4)+(5x-4+2x2),其中x=-2.化简后求值:3(x-1)-(x-5),其中x=2.3(2x+1)+2(3﹣x),其中x=﹣1.化简:3(2(-1)+1)+2(3-(-1))=3(-1)+2(4)=-1+8=7求值:73a2﹣ab+7)﹣(5ab﹣4a2+7),其中a=2,b=.化简:3a2-ab+7-5ab+4a2-7=7a2-6ab求值:7(2^2)-6( )=284x22x8)(x1),其中x化简:-4(-1)^2+2(-1)-8-(-1)+1=4-2-8+1=-5求值:-51)(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中a化简:5a2+2a+1-12+32a-8a2+3a2-a=0求值:0作业对你们不是惩罚,只是为了你们在研究的天空里拥有一副更坚强的翅膀,飞翔更辽阔的远方!2x2(3x23)(5x23),其中x化简:2(-1)^2-(3(-1)^2+3)-(-5(-1)^2+3)=2-6+5+3=4求值:42(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y的值,其中x=﹣2,y=2.化简:2(-2^2*2+(-2)*2^2)-2(-2^2*2+(-2))+2*2^2-2*2=-16+8+8-4=-4求值:-44xy﹣[2(x2+xy﹣2y2)﹣3(x2﹣2xy+y2)],其中x,y化简:4(-1)y-[2((-1)^2+(-1)y-2y^2)-3((-1)^2-2(-1)y+y^2)]=-4y+[2(-1-y-2y^2)-3(1+2y-y^2)]=-4y+[-2-2y-4y^2-3+6y-3y^2]=-7y-7y^2-5求值:-7(-2)-7(-2)^2-5=92x2+(﹣x2+3xy+2y2)﹣(x2﹣xy+2y2),其中x=,y=3.化简:2x2-(-x^2+3xy+2y^2)-(x^2-xy+2y^2)=2x^2+x^2-3xy-2y^2-x^2+xy-2y^2=xy-2y^2求值:-152x22(x2y)3(y2x),其中,x3,y 2化简:2(3)^2-2(3^2-2)+3(2-2*3)=18-6-6=-6求值:-63(x22xy)[3x22y2(xy y)],其中x12y 3.化简:3((-1/2)^2-2(-1/2)(-3))-3(-1/2)^2+2(-3)+2((-1/2)*(-3)-3)=-9/4+3/4-4+9/2=-17/4求值:-17/4a32b32ab21a2b2ab22b3已知a = 1,—13b =化简:a^3-2b^3+2ab^2-1/a+b-2ab^2+2b^3=-1/a+b求值:-1/45(3x2y﹣xy2)﹣(xy2+3x2y),其中x=-1y=2.化简:5(3(-1)^2*2-(-1)*2^2)-(2(-1)*2^2+3(-1)^2*2)=30 求值:30x22x3(x223x),其中x=-1化简:(-1)^2+2(-1)+3((-1)^2-2(-1)/3)=1-2+5/3=1/3求值:1/35x2﹣3y2)﹣3(x2﹣y2)﹣(﹣y2),其中x=5,y=﹣3.化简:5(5)^2-3(-3)^2-3(5)^2+3(-3)^2-(-3)^2=25求值:25x2+5x)﹣(x﹣3)﹣4x,其中x=﹣1化简:(-1)^2+5(-1)-(-1+3)-4(-1)=1-5+4+4=4求值:4文章已经没有格式错误和明显有问题的段落了,以下是对每段话的小幅度改写:1.做作业并不是惩罚,而是为了让你们在研究的道路上变得更加坚强,拥有更广阔的视野和更强的能力。
整式的化简求值
一、选择题
1、若a=2,b=−1,则a+2b+3的值为()
A. 1
B. 3
C. 5
D. 7
2、当x=−2时,−(x−3)+(2−x)+(3x−1)的值为()
A. 2
B. 3
C. 4
D. 5
3、已知m−n=100,x+y=−1,则代数式(n+x)−(m−y)的值是()
A. 99
B. −99
C. 101
D. −101
4、代数式x2+ax−2y+7−(bx2−2x+9y−1)的值与x的取值无关,则a+b的值为()
A. 1
B. −1
C. 2
D. −2
二、填空题
5、若单项式−2m2和n x−15a4b2c的次数相同,则代数式x2−2x+3的值为()
6、若2x−3y−1=0,则5−4x+6y的值为().
7、若2m−n2=4,则代数式10+4m−2n2的值为().
8、如果代数式4x2−2x+5的值为7,那么代数式2x2−x+1=().
9、若(x−1)2+4|y−6|=0,则(5x+6y)−(4x+8y)的值为().
10、将4个数a、b、c、d排成2行2列,两边各加上一条竖直线记成|a b
c d |,定|a b
c d
|=
ad−bc,|a b
c d |就叫做2阶行列式,若|−53x2+5
2x2−3
|=−6,则11x2−5的值是()
三、解答题
11、先化简,再求值:
(1)3(x2−2x−1)−4(3x−2)+2(x−1),其中x=−3;
(2)2x−y+(2y2−x2)−(x2+2y2),其中x=1,y=−2.
12、先化简,再求值:3(2a2b−ab2)−2(5a2b−2ab2),其中a=2,b=−1.
13、化简并求值:
3(x2−2xy)−[(−1
2
xy+y2)+(x2−2y2)],其中x、y在数轴上的位置如图所示.
14、先阅读下面例题的解题过程,再解答后面的题目:
已知式子9−6y−4y2=7,求2y2+3y+7的值.
解:由9−6y−4y2=7,得−6y−4y2=7−9=−2,那么6y+4y2=2,
所以2y2+3y=1,2y2+3y+7=8.
题目:已知式子14x+5−21x2的值是−2,求6x2−4x+5的值.
15、已知−6x m y为四次单项式,x2n y−3x n y+1为五次多项式,求m n的值.
16、已知(a−3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2−3ab+b2的值.
17、已知多项式1
5x m+1y2+xy−4x3+1与单项式1
8
x2y3z的次数相同,求整式
(−m)3+2m的值.
18、已知代数式x4+ax3+3x2+5x3−7x2−bx2+6x−2合并同类项后不含x3,x2项,求2a+3b的值.
19、已知A=5x2−mx+n,B=−3y2+2x−1,若A+B中不含有一次项和常数项,求m2−2mn+n2的值.
20、若代数式(2x2+ax−y+6)−(2bx2−3x+5y−1)的值与字母x所取的值无关,求代
数式1
3a3−2b2−(1
4
a3−3b2)的值.
一、选择题
1-4、BADB
二、填空题
5、27
6、3
7、18
8、2
9、−11
10、6
三、解答题
11、(1)原式=3x2−16x+3=78;(2)原式=2x−y−2x2=2.
12、原式=−4a2b+ab2=18.
13、原式=2x2−5.5xy+y2=20.
14、7.
15、9.
16、−5.
17、−21.
18、−22.
19、1.
.
20、−5
4。