圆锥曲线经典例题及总结(全面实用,你值得拥有!)
- 格式:doc
- 大小:2.31 MB
- 文档页数:37
圆锥曲线 1.圆锥曲线的两定义:
第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):
(1)椭圆:焦点在x 轴上时12222=+b
y a x (0a b >>),焦点在y 轴上时22
22b x a y +=1(0a b >>)。
方程22
Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22
22b
x a y -=1(0,0a b >>)。方程
22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。
(3)抛物线:开口向右时2
2(0)y px p =>,开口向左时2
2(0)y px p =->,开口向上时
22(0)x py p =>,开口向下时22(0)x py p =->。
3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):
(1)椭圆:由x 2
,y
2
分母的大小决定,焦点在分母大的坐标轴上。
(2)双曲线:由x 2,y 2
项系数的正负决定,焦点在系数为正的坐标轴上;
(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2
2
2
a b c =+,在双曲线中,c 最大,2
2
2
c a b =+。
4.圆锥曲线的几何性质:
(1)椭圆(以122
22=+b
y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两
个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a
=,椭圆⇔01e <<,
e 越小,椭圆越圆;e 越大,椭圆越扁。
(2)双曲线(以22
2
21x y a b
-=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为
22
,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:c e a
=,双曲线⇔1e >,等轴双曲线
⇔e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b
y x a
=±。
(3)抛物线(以2
2(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2
p ,其中p
的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);
④准线:一条准线2
p
x =-
; ⑤离心率:c e a =,抛物线⇔1e =。
5、点00(,)P x y 和椭圆122
22=+b
y a x (0a b >>)的关系:(1)点00(,)P x y 在椭圆外⇔2200221x y a b +>;
(2)点00(,)P x y 在椭圆上⇔220220b
y a x +=1;(3)点00(,)P x y 在椭圆内⇔2200
221x y a b +<
6.直线与圆锥曲线的位置关系:
(1)相交:0∆>⇔直线与椭圆相交; 0∆>⇒直线与双曲线相交,但直线与双曲线相交不一定有0∆>,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0∆>是直线与双曲线相交的充分条件,但不是必要条件;0∆>⇒直线与抛物线相交,但直线与抛物线相交不一定有0∆>,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故0∆>也仅是直线与抛物线相交的充分条件,但不是必要条件。
(2)相切:0∆=⇔直线与椭圆相切;0∆=⇔直线与双曲线相切;0∆=⇔直线与抛物线相切;
(3)相离:0∆<⇔直线与椭圆相离;0∆<⇔直线与双曲线相离;0∆<⇔直线与抛物线相离。
提醒:(1)直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交。如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时,直线
与抛物线相交,也只有一个交点;(2)过双曲线2222b
y a x -=1外一点00(,)P x y 的直线与双曲线只有一个
公共点的情况如下:①P 点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线
和分别与双曲线两支相切的两条切线,共四条;②P 点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P 在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P 为原点时不存在这样的直线;(3)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线。
7、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题: 2
0tan ||2
S b c y θ
==,
当0||y b =即P 为短轴端点时,m ax S 的最大值为bc ;对于双曲线2
tan
2θ
b S =
。 如 (1)短轴长为5,
8、抛物线中与焦点弦有关的一些几何图形的性质:(1)以过焦点的弦为直径的圆和准线相切;(2)设AB 为焦点弦, M 为准线与x 轴的交点,则∠AMF =∠BMF ;(3)设AB 为焦点弦,A 、B 在准线上的射影分别为A 1,B 1,若P 为A 1B 1的中点,则PA ⊥PB ;(4)若AO 的延长线交准线于C ,则BC 平行于x 轴,反之,若过B 点平行于x 轴的直线交准线于C 点,则A ,O ,C 三点共线。
9、弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则AB
12x -,若12,y y 分别为A 、B 的纵坐标,则AB =2121
1y y k
-+
,若弦AB 所在直线方程设为x ky b =+,则AB
12y -。特别地,焦点弦(过焦点的弦):焦点弦的弦长的计
算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。
抛物线: