数学专业英语课文翻译第二章
- 格式:docx
- 大小:1.76 MB
- 文档页数:24
2-A Why study geometry?Why do we study geometry? The student beginning the study of this text may well ask, "What is geometry? What can I expect to gain from this study?2-A为什么研究几何学?为什么我们研究几何学?刚开始学习这篇文章的学生会疑问,“几何是什么?研究几何我们能学到什么呢?Many leading institutions of higher learning have recognized that positive benefits can be gained by all who study this branch of mathematics. This is evident from the fact that they require study of geometry as a prerequisite to matriculation in those schools.许多居领导地位的学术机构承认,所有学习这个数学分支的人都将得到很好的收益。
事实是,他们需要学习几何作为学校入学考试的先决条件。
Geometry had its origin long ago in the measurements by the Babylonians and Egyptians of their lands inundated by the floods of the Nile River. The greek word geometry is derived from geo, meaning "earth," and metron, meaning "measure." As early as 2000 B. C. we find the land surveyors of these people reestablishing vanishing landmarks and boundaries by utilizing the truths of geometry.很早以前,几何学源于测量被尼罗河的洪水淹没了的巴比伦人和埃及人的土地。
Although dependence and independence are properties of sets of elements, we also apply these terms to the elements themselves. For example, the elements in an independent set are called independent elements.虽然相关和无关是元素集的属性,我们也适用于这些元素本身。
例如,在一个独立设定的元素被称为独立元素。
If s is finite set, the foregoing definition agrees with that given in Chapter 8 for the space n V . However, the present definition is not restricted to finite sets.如果S 是有限集,同意上述定义与第8章中给出的空间n V ,然而,目前的定义不局限于有限集。
If a subset T of a set S is dependent, then S itself is dependent. This is logically equivalent to the statement that every subset of an independent set is independent.如果集合S 的子集T 是相关的,然后S 本身是相关的,这在逻辑上相当于每一个独立设置的子集是独立的语句。
If one element in S is a scalar multiple of another, then S is dependent. 如果S 中的一个元素是另一个集中的多个标量的,则S 是相关的。
If S ∈0,then S is dependent. 若S ∈0,则 S 是相关的。
2.4 整数、有理数与实数4-A Integers and rational numbersThere exist certain subsets of R which are distinguished because they have special properties not shared by all real numbers. In this section we shall discuss such subsets, the integers and the rational numbers.有一些R 的子集很著名,因为他们具有实数所不具备的特殊性质。
在本节我们将讨论这样的子集,整数集和有理数集。
To introduce the positive integers we begin with the number 1, whose existence is guaranteed by Axiom 4. The number 1+1 is denoted by 2, the number 2+1 by 3, and so on. The numbers 1,2,3,…, obtained in this way by repeated addition of 1 are all positive, and they are called the positive integers.我们从数字 1 开始介绍正整数,公理 4 保证了 1 的存在性。
1+1 用2 表示,2+1 用3 表示,以此类推,由 1 重复累加的方式得到的数字 1,2,3,…都是正的,它们被叫做正整数。
Strictly speaking, this description of the positive integers is not entirely complete because we have not explained in detail what we mean by the expressions “and so on”, or “repeated addition of 1”.严格地说,这种关于正整数的描述是不完整的,因为我们没有详细解释“等等”或者“1的重复累加”的含义。
1-A What is mathematics1-A 数学是什么?Mathematics comes from man' s social practice, for example, industrial and agricultural production, commercial activities, military operations and scientific and technological researches. And in turn, mathematics serves the practice and plays a great role in all fields. No modern scientific and technological branches could be regularly developed without the application of mathematics.数学来源于人类的社会实践,例如,工农业生产,商业活动,军事行动和科学技术研究。
总之,数学服务于实践且在众多领域扮演重要角色。
没有数学的应用,现代科学技术分支也不会得到广泛地发展。
From the early need of man came the concepts of numbers and forms. Then, geometry developed out of problems of measuring land, and trigonometry came from problems of surveying. To deal with some more complex practical problems, man established and then solved equation with unknown numbers, thus algebra occurred. Before 17th century, man confined himself to the elementary mathematics, i. e. geometry, trigonometry and algebra, in which only the constants were considered.早期数字的概念和形成源于人类的需要。
数学专业英语第三版课文翻译章本文将根据数学专业英语第三版课文《Step by Step Thinking》进行翻译。
"Step by Step Thinking"is an article that introduces the concept of step-by-step thinking in mathematics.It highlights the importance of breaking down complex problems into smaller,more manageable steps in order to solve them effectively.The article begins by stating that step-by-step thinking is a fundamental skill in mathematics.It emphasizes the need to approach problems by breaking them downinto smaller components,as this helps to clarify the problem and identify potential solutions.The author argues that this approach is not only applicable tomathematics but also to various other fields,as it promotes clearer thinking and problem-solving abilities.The article then discusses the step-by-step thinking process in more detail.It suggests that the first step is tocarefully read and understand the problem, ensuring that all relevant information is identified.This is followed by breaking the problem down into smaller sub-problems or steps,each of which can be solved individually.The author emphasizes the need to be systematic and organized during this process,as it helps to prevent mistakes and confusion.Furthermore,the article highlights the importance of logical reasoning in step-by-step thinking.It states that each step should be justified with logical reasoning,ensuring that the solution is based on sound mathematical principles.The author advises against skipping steps or making assumptions without proper justification,as this can lead to erroneous results.The article also provides examples to illustrate the step-by-step thinking approach.It presents a complex problem and demonstrates how breaking it down into smaller steps can simplify the solution process.By solving each step individually and logically connecting them,the problem can be solved effectively.In conclusion,"Step by Step Thinking" emphasizes the significance of step-by-step thinking in mathematics and problem-solving. It encourages readers to approach problems systematically,breaking them down into smaller components,and justifying eachstep with logical reasoning.This approach promotes clearer thinking and enhances problem-solving abilities,not only in mathematics but also in other disciplines.。
(2-1) It is extremely hard to define dynamic range (DR) for an op amp, so lets start with a digital to analog converter (DAC) where DR is defined as the ratio of the maximum output voltage to the smallest output voltage the DAC can produce.定义运放动态范围(DR)是极其困难的,所以让我们从数字模拟转换器(DAC)开始,其中DR 被定义为DAC所能产生的最大输出电压与最小输出电压之比。
(2-2) The same definition of DR can be used for an op amp, and the maximum output voltage swing equals V OUTMAX. This output voltage swing is defined as the maximum output voltage the op amp can achieve (V OH) minus the minimum output voltage the op amp can achieve (V OL). V OH and V OL are easily obtainable from an op amp IC data sheet.同样的DR定义也可以用在运放上,最大输出电压振幅等于V OUTMAX。
输出电压的波动定义为运放所能达到的最大输出电压(V OH)减去运放所能达到的最小输出电压(VOL)。
V OH和V OL 很容易从运放IC数据表中获得。
(2-3) Noise fluctuates randomly over a period of time,so instantaneous signal or noise levels don't describe the situation adequately. Averages over a long period of time (root mean squared or RMS) are used to describe both the signal and the noise. Signal to noise ratio (SNR) was initially established as a measure of the quality of the signal that exists in the presence of noise. This SNR was a power ratio, and it was established at the output of a circuit. The SNR that we are interested in is a voltage ratio because the impedance is constant, and it is established at the input to the op amp. This means that all noise voltages, including resistor noise voltage, must be calculated in RMS volts at the op amp input.噪声在一个周期时间内随机波动,因此瞬时信号或噪声水平都不能充分地描述这种情况。
2-A Why study geometry Many leading institutions of higher learning have recognized that positive benefits can be gained by all who study this branch of mathematics. This is evident from the fact that they require study of geometry as a prerequisite to matriculation in those schools. 许多居于领导地位的学术机构承认,所有学习这个数学分支的人都将得到确实的受益,许多学校把几何的学习作为入学考试的先决条件,从这一点上可以证明。
Geometry had its origin long ago in the measurement by the Babylonians and Egyptians of their lands inundated by the floods of the Nile River. The greek word geometry is derived from geo, meaning “earth” and metron, meaning “measure” . As early as 2000 . we find the land surveyors of these people re-establishing vanishing landmarks and boundaries by utilizing the truths of geometry . 几何学起源于很久以前巴比伦人和埃及人测量他们被尼罗河洪水淹没的土地,希腊语几何来源于geo ,意思是”土地“,和metron 意思是”测量“。
数学专业英语3—A符号指示集一组的概念如此广泛利用整个现代数学的认识是所需的所有大学生。
集是通过集合中一种抽象方式的东西的数学家谈的一种手段。
集,通常用大写字母:A、B、C、进程运行·、X、Y、Z ;由小写字母指定元素:a、b 的c、进程运行·,若x、y z.我们用特殊符号x∈S 意味着x 是S 的一个元素或属于美国的x如果x 不属于S,我们写xS.≠当方便时,我们应指定集的元素显示在括号内;例如,由符号表示的积极甚至整数小于10 集{2,468} {2,4.6,进程运行·} 作为显示的所有积极甚至整数集,而三个点等的发生。
点的和等等的意思是清楚时,才使用。
上市的大括号内的一组成员方法有时称为名册符号。
涉及到另一组的第一次基本概念是平等的集。
DEFINITIONOFSETEQUALITY。
两组A 和B,据说是平等的(或相同的)如果它们包含完全相同的元素,在这种情况下,我们写A = B。
如果其中一套包含在另一个元素,我们说这些集是不平等,我们写A = B。
EXAMPLE1。
根据对这一定义,由于他们都是由构成的这四个整数2,4.6 和8 两套{2,468} 和{2,864} 一律平等。
因此,当我们用来描述一组的名册符号,元素的显示的顺序无关。
动作。
集{2,468} 和{2,2,4,4,6,8} 是平等的即使在第二组,每个元素2 和4 两次列出。
这两组包含的四个要素2,468 和无他人;因此,定义要求我们称之为这些集平等。
此示例显示了我们也不坚持名册符号中列出的对象是不同。
类似的例子是一组在密西西比州,其值等于{M、我、s、p} 一组单词中的字母,组成四个不同字母M、我、s 和体育3 —B 子集S.从给定的集S,我们可能会形成新集,称为.的子集例如,组成的那些正整数小于10 整除4 (集合{8 毫米})的一组一般是的所有甚至小于10.整数集的一个子集,我们有以下的定义。
子集的定义。
第一段翻译(2):what is the exact value of the number pai?a mathematician made an experiment in order to find his own estimation of the number pai.in his experiment,he used an old bicycle wheel of diameter 63.7cm.he marked the point on the tire where the wheel was touching the ground and he rolled the wheel straight ahead by turning it 20 times.next,he measured the distance traveled by the wheel,which was 39.69 meters.he divided the number 3969 by 20*63.7 and obtained 3.115384615 as an approximation of the number pai.of course,this was just his estimate of the number pai and he was aware that it was not very accurate.数π的精确值是什么?一位数学家做了实验以便找到他自己对数π的估计。
在试验中,他用了一直径63.1厘米的旧自行车轮。
他在车轮接触地面的轮胎上做了标记,而且将车轮向前转动20次。
接下来,他测量了车轮经过的距离,是39.69米。
他用3969除20*63.7得到了数π的近似值3.115384615。
当然,这只是对数π的估计值,并且他也意识到不是很准确。
第二段翻译(5):one of the first articles which we included in the "History Topics" section archive was on the history of pai.it is a very popular article and has prompted many to ask for a similar article about the number e.there is a great contrast between the historical developments of these two numbers and in many ways writing a history of e is a much harder task than writing one of pai.the number e is,compared to pai,a relative newcomer on the mathematical scene.我们包括在“历史专题”部分档案中的第一篇文章就是历史上的π,这是一篇很流行的文章,也促使许多人想了解下一些有关数e的类似文章。
数学专业英语第二章精读课文-- 入门必修2.1 数学方程与比例(Mathematics,Equation and Ratio)一、词汇及短语:1. Cha nge the terms about变形2. full of :有许多的充满的例The StreetS are full of people as on a holiday像假日一样,街上行人川流不息)3. in groups of ten??4. match SOmething against sb. “匹配”例Long ago ,when people had to Count many things ,they matChed them against their fingers. 古时候,当人们必须数东西时,在那些东西和自己的手指之间配对。
5. grow out of 源于由…引起例Many close friendships grew out of common acquaintance6. arrive at 得出(到达抵达达到达成)例We both arrived at the Same COnclusion我们俩个得出了相同的结论)7. stand for “表示,代表”8. in turn “反过来,依次”9. bring about 发生导致造成10. arise out of 引起起源于11. express by “用…表示”12. occur 发生,产生13. come from 来源于,起源于14. resulting method 推论法15. be equal to 等于的相等的例TWiCe two is equal to four(2 乘以 2 等于4)16. no matter 无论不管17. mathematical analysis 数学分析18. differential equation 微分方程19. higher mathematics 高等数学higher algebra 高等代数20. equation of condition 条件等式二句型及典型翻译1. For a long period of the history of mathematics, the centric place of mathematicalmethods was occupied by the logical deductions “在数学史的很长的时期内,是逻辑推理一直占据数学方法的中心地位”2. An equation is a statement of the equality between two equal numbers or numbersymbols.equation :“方程”“等式” 等式是关于两个数或数的符号相等的一种陈述3. In such an equation either the two members are alike, or become alike onperformance of the indicated operation. 这种等式的两端要么一样,要么经过执行指定的运算后变成一样。
1-A What is mathematicsMathematics comes from man’s social practice, for example, industrial and agricultural production, commercial activities, military operations and scientific and technological researches. And in turn, mathematics serves the practice and plays a great role in all fields. No modern scientific and technological branches could be regularly developed without the application of mathematics.数学来源于人类的社会实践,比如工农业生产,商业活动,军事行动和科学技术研究。
反过来,数学服务于实践,并在各个领域中起着非常重要的作用。
没有应用数学,任何一个现在的科技的分支都不能正常发展。
From the early need of man came the concepts of numbers and forms. Then, geometry developed out of problems of measuring land , and trigonometry came from problems of surveying . To deal with some more complex practical problems, man established and then solved equation with unknown numbers ,thus algebra occurred. Before 17th century, man confined himself to the elementary mathematics, i.e. , geometry, trigonometry and algebra, in which only the constants are considered.很早的时候,人类的需要产生了数和形式的概念,接着,测量土地的需要形成了几何,出于测量的需要产生了三角几何,为了处理更复杂的实际问题,人类建立和解决了带未知参数的方程,从而产生了代数学,17世纪前,人类局限于只考虑常数的初等数学,即几何,三角几何和代数。
2.1 数学、方程与比例(1)数学来源于人类的社会实践,包括工农业的劳动,商业、军事和科学技术研究等活动。
Mathematics comes from man’s social practice, for example, industrial and agricultural production, commercial activities, military operations and scientific and technological researches.(2)如果没有运用数学,任何一个科学技术分支都不可能正常地发展。
No modern scientific and technological branches could be regularly developed without the application of mathematics.(3)符号在数学中起着非常重要的作用,它常用于表示概念和命题。
Notations are a special and powerful tool of mathematics and are used to express conceptions and propositions very often.(4)17 世纪之前,人们局限于初等数学,即几何、三角和代数,那时只考虑常数。
Before 17th century, man confined himself to the elementary mathematics, i. e. , geometry, trigonometry and algebra, in which only the constants were considered.(5)方程与算数的等式不同在于它含有可以参加运算的未知量。
Equation is different from arithmetic identity in that it contains unknown quantity which can join operations.(6)方程又称为条件等式,因为其中的未知量通常只允许取某些特定的值。
7A在日常使用的英文单词"序列"和' '系列"是同义词,和他们用来建议一系列的事情或按某种顺序排列的事件。
在数学中,这句话有特别技术的意义。
"序列"一词被受雇如在共同使用这一术语,传达的理念的一套东西排列顺序,但"系列"一词用于稍有不同的意义。
概念在本节中,将讨论序列和系列将定义第11 节。
如果为每个正整数n 有关联的真实或复数a,那时有序的集据说是定义一个无限的序列。
这里最重要的是每个成员集的已标记的整数,使我们可以发言的第一届、第二个任期,以及,一般的第n 个词。
每个学期了继任者,因此,没有任何"最后"一词。
如果我们给一些规则或第n 个词描述的公式,可以构造序列的最常见的例子。
因此,例如,公式= 1 定义的序列的第五个任期是1.有时两个或多个公式可受雇作为,例如,a=1.the 第一次在这种情况下被1 的一些术语。
另一种常见方法定义一系列是一套的说明解释了如何在一个给定的开始后进行的。
因此,我们可能= 1。
此特定的规则被称为递归公式,它定义了著名的序列,其条款被称为斐波那契数。
第一次的几个术语are1。
最重要的事情是序列的序列的这样f(n) 的每个n=1.In 事实的第n 个燕鸥是序列的序列的正整数上定义一些函数 f 的任何序列,这可能是序列的序列的最方便的方法,国家技术定义。
定义。
其域是所有积极integers1 的一组函数f 称为一个无限的序列。
函数值f(n) 调用序列的第n 个词。
通过按顺序,因此编写条款通常显示的功能(即,函数值的集合)的范围:f (2)。
为简便起见,{f(n)} 符号用于指示第n 个任期是f(n) 的序列。
由使用下标,很多时候表示,n 的依赖和我们写,或类似的而不是f (n0。
除非另外指定,否则所有的序列,在这一章中假定有真实的或复杂的条款。
7B我们担心在这里主要的问题在于决定是否条款f(n) 倾向于有限的n 无限增加。
数学专业英语3—A符号指示集一组的概念如此广泛利用整个现代数学的认识是所需的所有大学生。
集是通过集合中一种抽象方式的东西的数学家谈的一种手段。
集,通常用大写字母:A、B、C、进程运行·、X、Y、Z ;由小写字母指定元素:a、 b 的c、进程运行·,若x、y z.我们用特殊符号x∈S 意味着x 是S 的一个元素或属于美国的x如果x 不属于S,我们写xS.≠当方便时,我们应指定集的元素显示在括号内;例如,由符号表示的积极甚至整数小于10 集{2,468} {2,4.6,进程运行·} 作为显示的所有积极甚至整数集,而三个点等的发生。
点的和等等的意思是清楚时,才使用。
上市的大括号内的一组成员方法有时称为名册符号。
涉及到另一组的第一次基本概念是平等的集。
DEFINITIONOFSETEQUALITY。
两组A 和B,据说是平等的(或相同的)如果它们包含完全相同的元素,在这种情况下,我们写A = B。
如果其中一套包含在另一个元素,我们说这些集是不平等,我们写A = B。
EXAMPLE1。
根据对这一定义,由于他们都是由构成的这四个整数2,4.6 和8 两套{2,468} 和{2,864} 一律平等。
因此,当我们用来描述一组的名册符号,元素的显示的顺序无关。
动作。
集{2,468} 和{2,2,4,4,6,8} 是平等的即使在第二组,每个元素2 和4 两次列出。
这两组包含的四个要素2,468 和无他人;因此,定义要求我们称之为这些集平等。
此示例显示了我们也不坚持名册符号中列出的对象是不同。
类似的例子是一组在密西西比州,其值等于{M、我、s、p} 一组单词中的字母,组成四个不同字母M、我、s 和体育3 —B子集S.从给定的集 S,我们可能会形成新集,称为.的子集例如,组成的那些正整数小于 10 整除 4 (集合{8 毫米})的一组一般是的所有甚至小于 10.整数集的一个子集,我们有以下的定义。
子集的定义。
A 一组据说是B,集的一个子集,我们写A B每当A的每个元素也属于B.我们还说包含B A或B包含。
关系称为集。
A和B的声明并不排除可能性,B。
事实上,我们可能B A和B A,但只有当A和B都具有相同的元素发生这种情况。
换句话说,A = B当且仅当B和B A。
这一命题是上述定义的平等和包容的直接后果。
如果A和B,但A≠B,然后我们说的就是你的真子集我们表明这通过编写B.在所有的应用程序集理论,我们有一套固定事先,S,我们只关心这给定组的子集。
底层的设置的不同而有所不同从一个应用程序,到另一台;它将转交作为每个特定的话语的通用组。
符号{X∣X∈S和X满足P},将指定的所有元素X在S中满足该属性集体育当通用设置为我们所指的id的理解,我们省略参照以S,我们只需写{X∣X满足P}。
这读取 '"集的所有这种x满足p。
' "在此方法中指定的设置说笔下定义的属性,例如,所有正实数的一组可以被指定为{X∣X大于 0} ;通用集S,在这种情况下理解为所有实数集。
当然,这封信x是个笨蛋,并可由任何其他方便的符号替换。
因此,我们可以写{x∣x大于0} = {y∣y大于0} = {t∣t大于 0} 等等。
它有可能设置为不包含任何元素。
这套被称为空集或无效设置,并将由symbolφ表示。
我们会考虑φto是每一集的一个子集。
有些人觉得很有用的一套类似于一个容器(例如,一个袋子或框)包含某些对象,其元素。
空集则类似于一个空的容器。
为了避免逻辑的困难,我们必须区分元素x和集{x}的唯一元素是x,(A box with a hat in it is conceptually distinct from the hat itself.)尤其是,空的setφis集合{φ}不相同。
事实上,空设置φcontains没有元素而集{φ}有一个元素φ(一个框,其中包含一个空框不是空的)。
组成一个元素的集合,有时也称为一个元素集。
2.4 整数、有理数与实数 4-A Integers and rational numbers There exist certain subsets of R which are distinguished because they have special properties not shared by all real numbers. In this section we shall discuss such subsets, the integers and the rational numbers. 有一些 R 的子集很著名,因为他们具有实数所不具备的特殊性质。
在本节我们将讨论这样的子集,整数集和有理数集。
To introduce the positive integers we begin with the number 1, whose existence is guaranteed by Axiom 4. The number 1+1 is denoted by 2, the number 2+1 by 3, and so on. Thenumbers 1,2,3,…, obtained in this way by repeated addition of 1 are all positive, and they are called the positive integers. 我们从数字 1 开始介绍正整数,公理 4 保证了 1 的存在性。
1+1 用 2 表示,2+1 用 3 表示,以此类推,由 1 重复累加的方式得到的数字 1,2,3,…都是正的,它们被叫做正整数。
Strictly speaking, this description of the positive integers is not entirely complete because we have not explained in detail what we mean by the expressions “and so on”, or “repeated addition of 1”. 严格地说,这种关于正整数的描述是不完整的,因为我们没有详细解释“等等”或者“1 的重复累加”的含义。
Although the intuitive meaning of expressions may seem clear, in careful treatment of the real-number system it is necessary to give a more precise definition of the positive integers. There are many ways to do this. One convenient method is to introduce first the notion of an inductive set. 虽然这些说法的直观意思似乎是清楚的,但是在认真处理实数系统时必须给出一个更准确的关于正整数的定义。
有很多种方式来给出这个定义,一个简便的方法是先引进归纳集的概念。
DEFINITION OF AN INDUCTIVE SET. A set of real numbers is called an inductiveset if it has the following two properties: (a) The number 1 is in the set. (b) For every x in the set, the number x+1 is also in the set.For example, R is an inductive set. So is the set . Now we shall define the positive integers to be those real numbers which belong to every inductive set. 现在我们来定义正整数,就是属于每一个归纳集的实数。
Let P denote the set of all positive integers. Then P is itself an inductive set because (a) it contains 1, and (b) it contains x+1 whenever it contains x. Since the members of P belong to every inductive set, we refer to P as the smallest inductive set. 用 P 表示所有正整数的集合。
那么 P 本身是一个归纳集,因为其中含 1,满足(a);只要包含 x 就包含 x+1, 满足(b)。
由于 P 中的元素属于每一个归纳集,因此 P 是最小的归纳集。
This property of P forms the logical basis for a type of reasoning that mathematicians call proof by induction, a detailed discussion of which is given in Part 4 of this introduction. P 的这种性质形成了一种推理的逻辑基础,数学家称之为,在介绍的第四部分将给出这种方法的详细论述。
归纳证明4-B读者是无疑熟悉实数的一条直线上的点的几何表示形式。
代表0,有权代表1,在图2-4-1 所示的0 及另一人,选择一个点。
此选项确定规模。
如果一个采用一套合适的欧几里德几何公理,然后每个真实的数字对应于这条线上的一个点,相反,在行上的每个点对应于一个且仅一个实数。
为此线通常称为真正的直线或实轴,而且很习惯使用单词实际数量和互换点。
因此我们经常讲点的x,而不是点对应的实数。
实数的订购关系有一个简单的几何解释。
如果x < y、点x 位于左侧的点的y,如图2-4-1 所示。
正数躺到左侧的0 0,负数的权利。
如果< b、点x 满足不等式< x < b 当且仅当x 是之间和b。
此设备的几何表示实数是非常有价值的工具,有助我们去发现和更好地了解实数的某些属性。
然而,读者应意识到必须将所有属性都被视为定理的实数的推断出从不涉及任何几何公理。
这并不意味着人不应该让几何研究的实数属性中的使用。
相反,几何往往表明特定的定理证明的方法和有时几何参数是比纯粹的解析证明(一个完全取决于公理的实数)更加出色。