高考数学数列大题专题
- 格式:doc
- 大小:118.50 KB
- 文档页数:2
1.〔此题总分值14 分〕设数列a的前n项和为S n,且S n4a n3(n1,2,),n〔1〕证明: 数列a n是等比数列;〔2〕假设数列b满足b n1a n b n(n1,2,),b12,求数列b n的通项公n式.2.〔本小题总分值12分〕等比数列a的各项均为正数,且n2 2a3a1,a9aa.123261.求数列a n的通项公式.2.设blogaloga......loga,求数列n31323n 1bn的前项和.3.设数列a满足n2n1 a12,a1a32nn〔1〕求数列a的通项公式;n〔2〕令b n na n,求数列的前n项和S n3.等差数列{a n}的前3项和为6,前8项和为﹣4.〕,求数列{b n}的前n项和S n.〔Ⅰ〕求数列{a n}的通项公式;n﹣1*〔Ⅱ〕设b n=〔4﹣a n〕q〔q≠0,n∈N× 5.数列{a n}满足,,n∈N.〔1〕令b n=a n+1﹣a n,证明:{b n}是等比数列;〔2〕求{a n}的通项公式....4.解:〔1〕证:因为S n4a n3(n1,2,),那么S n14a n13(n2,3,),所以当n2时,a SS14a4a1,nnnnn4整理得aa1.5分nn3由S43,令n1,得a14a13,解得a11.n an所以分a是首项为1,公比为n43的等比数列.7〔2〕解:因为4n1 a(),n3由b1ab(n1,2,),得nnn4n1 bb().9分n1n3由累加得()()()b n bbbbbbb12`132nn14n11()43n1=23()1,〔n2〕,43134n1 当n=1时也满足,所以)1b3(.n35.解:〔Ⅰ〕设数列{a n}的公比为q,由 2a39a2a6得32a39a4所以21q。
有条件9可知a>0,故1q。
311a。
故数列{a n}的通项式为a n=33由2a13a21得2a13a2q1,所以1n。
〔Ⅱ〕b logaloga...logan111111(12...n)n(n1)2故12112() bn(n1)nn1n111111112n ...2((1)()...()) bbb223nn1n1 12n...所以数列1{}bn2n 的前n 项和为n16.解:〔Ⅰ〕由,当n≥1 时,a1[(a1a)(a a1)(a2a1)]a1nnnnn2n12n33(222)222(n1)1。
高考新课标数学数列大题精选50题(含答案、知识卡片)一.解答题(共50题)1.(2019•全国)数列{a n}中,a1=,2a n+1a n+a n+1﹣a n=0.(1)求{a n}的通项公式;(2)求满足a1a2+a2a3+…+a n﹣1a n<的n的最大值.2.(2019•新课标Ⅰ)记S n为等差数列{a n}的前n项和.已知S9=﹣a5.(1)若a3=4,求{a n}的通项公式;(2)若a1>0,求使得S n≥a n的n的取值范围.3.(2019•新课标Ⅱ)已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n﹣b n+4,4b n+1=3b n﹣a n﹣4.(1)证明:{a n+b n}是等比数列,{a n﹣b n}是等差数列;(2)求{a n}和{b n}的通项公式.4.(2019•新课标Ⅱ)已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.5.(2018•新课标Ⅱ)记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.6.(2018•新课标Ⅰ)已知数列{a n}满足a1=1,na n+1=2(n+1)a n,设b n=.(1)求b1,b2,b3;(2)判断数列{b n}是否为等比数列,并说明理由;(3)求{a n}的通项公式.7.(2018•新课标Ⅲ)等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.8.(2017•全国)设数列{b n}的各项都为正数,且.(1)证明数列为等差数列;(2)设b1=1,求数列{b n b n+1}的前n项和S n.9.(2017•新课标Ⅱ)已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.10.(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.11.(2017•新课标Ⅲ)设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.12.(2016•全国)已知数列{a n}的前n项和S n=n2.(Ⅰ)求{a n}的通项公式;(Ⅱ)记b n=,求数列{b n}的前n项和.13.(2016•新课标Ⅲ)已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=,求λ.14.(2016•新课标Ⅰ)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.15.(2016•新课标Ⅲ)已知各项都为正数的数列{a n}满足a1=1,a n2﹣(2a n+1﹣1)a n﹣2a n+1=0.(1)求a2,a3;(2)求{a n}的通项公式.16.(2016•新课标Ⅱ)等差数列{a n}中,a3+a4=4,a5+a7=6.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=[a n],求数列{b n}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.17.(2016•新课标Ⅱ)S n为等差数列{a n}的前n项和,且a1=1,S7=28,记b n=[lga n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b1,b11,b101;(Ⅱ)求数列{b n}的前1000项和.18.(2015•全国)已知数列{a n}的前n项和S n=4﹣a n﹣.(Ⅰ)证明:数列{2n a n}是等差数列;(Ⅱ)求{a n}的通项公式.19.(2015•新课标Ⅰ)S n为数列{a n}的前n项和,已知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.数列全国高考数学试题参考答案与试题解析一.解答题(共50小题)1.(2019•全国)数列{a n}中,a1=,2a n+1a n+a n+1﹣a n=0.(1)求{a n}的通项公式;(2)求满足a1a2+a2a3+…+a n﹣1a n<的n的最大值.【分析】(1)由2a n+1a n+a n+1﹣a n=0可得,可知数列{}是等差数列,求出的通项公式可得a n;(2)由(1)知=,然后利用裂项相消法求出a1a2+a2a3+…+a n﹣1a n,再解不等式可得n的范围,进而得到n的最大值.【解答】解:(1)∵2a n+1a n+a n+1﹣a n=0.∴,又,∴数列{}是以3为首项,2为公差的等差数列,∴,∴;(2)由(1)知,=,∴a1a2+a2a3+…+a n﹣1a n==,∵a1a2+a2a3+…+a n﹣1a n<,∴<,∴4n+2<42,∴n<10,∵n∈N*,∴n的最大值为9.【点评】本题考查了等差数列的定义,通项公式和裂项相消法求出数列的前n项和,考查了转化思想,关键是了解数列的递推公式,明确递推公式与通项公式的异同,会根据数列的递推公式构造新数列,属中档题.2.(2019•新课标Ⅰ)记S n为等差数列{a n}的前n项和.已知S9=﹣a5.(1)若a3=4,求{a n}的通项公式;(2)若a1>0,求使得S n≥a n的n的取值范围.【分析】(1)根据题意,等差数列{a n}中,设其公差为d,由S9=﹣a5,即可得S9==9a5=﹣a5,变形可得a5=0,结合a3=4,计算可得d的值,结合等差数列的通项公式计算可得答案;(2)若S n≥a n,则na1+d≥a1+(n﹣1)d,分n=1与n≥2两种情况讨论,求出n的取值范围,综合即可得答案.【解答】解:(1)根据题意,等差数列{a n}中,设其公差为d,若S9=﹣a5,则S9==9a5=﹣a5,变形可得a5=0,即a1+4d=0,若a3=4,则d==﹣2,则a n=a3+(n﹣3)d=﹣2n+10,(2)若S n≥a n,则na1+d≥a1+(n﹣1)d,当n=1时,不等式成立,当n≥2时,有≥d﹣a1,变形可得(n﹣2)d≥﹣2a1,又由S9=﹣a5,即S9==9a5=﹣a5,则有a5=0,即a1+4d=0,则有(n﹣2)≥﹣2a1,又由a1>0,则有n≤10,则有2≤n≤10,综合可得:n的取值范围是{n|1≤n≤10,n∈N}.【点评】本题考查等差数列的性质以及等差数列的前n项和公式,涉及数列与不等式的综合应用,属于基础题.3.(2019•新课标Ⅱ)已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n﹣b n+4,4b n+1=3b n﹣a n﹣4.(1)证明:{a n+b n}是等比数列,{a n﹣b n}是等差数列;(2)求{a n}和{b n}的通项公式.【分析】(1)定义法证明即可;(2)由(1)结合等差、等比的通项公式可得【解答】解:(1)证明:∵4a n+1=3a n﹣b n+4,4b n+1=3b n﹣a n﹣4;∴4(a n+1+b n+1)=2(a n+b n),4(a n+1﹣b n+1)=4(a n﹣b n)+8;即a n+1+b n+1=(a n+b n),a n+1﹣b n+1=a n﹣b n+2;又a1+b1=1,a1﹣b1=1,∴{a n+b n}是首项为1,公比为的等比数列,{a n﹣b n}是首项为1,公差为2的等差数列;(2)由(1)可得:a n+b n=()n﹣1,a n﹣b n=1+2(n﹣1)=2n﹣1;∴a n=()n+n﹣,b n=()n﹣n+.【点评】本题考查了等差、等比数列的定义和通项公式,是基础题4.(2019•新课标Ⅱ)已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.【分析】(1)设等比数列的公比,由已知列式求得公比,则通项公式可求;(2)把(1)中求得的{a n}的通项公式代入b n=log2a n,得到b n,说明数列{b n}是等差数列,再由等差数列的前n项和公式求解.【解答】解:(1)设等比数列的公比为q,由a1=2,a3=2a2+16,得2q2=4q+16,即q2﹣2q﹣8=0,解得q=﹣2(舍)或q=4.∴;(2)b n=log2a n=,∵b1=1,b n+1﹣b n=2(n+1)﹣1﹣2n+1=2,∴数列{b n}是以1为首项,以2为公差的等差数列,则数列{b n}的前n项和.【点评】本题考查等差数列与等比数列的通项公式及前n项和,考查对数的运算性质,是基础题.5.(2018•全国)已知数列{a n}的前n项和为S n,a1=,a n>0,a n+1•(S n+1+S n)=2.(1)求S n;(2)求++…+.【分析】(1)由数列递推式可得(S n+1﹣S n)(S n+1+S n)=2,可得S n+12﹣S n2=2,运用等差数列的定义和通项公式可得所求S n;(2)化简==()=(﹣),再由数列的求和方法:裂项相消求和,化简整理可得所求和.【解答】解:(1)a1=,a n>0,a n+1•(S n+1+S n)=2,可得(S n+1﹣S n)(S n+1+S n)=2,可得S n+12﹣S n2=2,即数列{S n2}为首项为2,公差为2的等差数列,可得S n2=2+2(n﹣1)=2n,由a n>0,可得S n=;(2)==()=(﹣),即++…+=(﹣1+﹣+2﹣+…+﹣)=(﹣1).【点评】本题考查等差数列的定义和通项公式的运用,考查数列的递推式和数列的求和方法:裂项相消求和,考查运算能力,属于中档题.6.(2018•新课标Ⅱ)记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.【分析】(1)根据a1=﹣7,S3=﹣15,可得a1=﹣7,3a1+3d=﹣15,求出等差数列{a n}的公差,然后求出a n即可;(2)由a1=﹣7,d=2,a n=2n﹣9,得S n===n2﹣8n=(n﹣4)2﹣16,由此可求出S n以及S n的最小值.【解答】解:(1)∵等差数列{a n}中,a1=﹣7,S3=﹣15,∴a1=﹣7,3a1+3d=﹣15,解得a1=﹣7,d=2,∴a n=﹣7+2(n﹣1)=2n﹣9;(2)∵a1=﹣7,d=2,a n=2n﹣9,∴S n===n2﹣8n=(n﹣4)2﹣16,∴当n=4时,前n项的和S n取得最小值为﹣16.【点评】本题主要考查了等差数列的通项公式,考查了等差数列的前n项的和公式,属于中档题.7.(2018•新课标Ⅰ)已知数列{a n}满足a1=1,na n+1=2(n+1)a n,设b n=.(1)求b1,b2,b3;(2)判断数列{b n}是否为等比数列,并说明理由;(3)求{a n}的通项公式.【分析】(1)直接利用已知条件求出数列的各项.(2)利用定义说明数列为等比数列.(3)利用(1)(2)的结论,直接求出数列的通项公式.【解答】解:(1)数列{a n}满足a1=1,na n+1=2(n+1)a n,则:(常数),由于,故:,数列{b n}是以b1为首项,2为公比的等比数列.整理得:,所以:b1=1,b2=2,b3=4.(2)由于(常数),数列{b n}是为等比数列;(3)由(1)得:,根据,所以:.【点评】本题考查的知识要点:数列的通项公式的求法及应用.8.(2018•新课标Ⅲ)等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.【分析】(1)利用等比数列通项公式列出方程,求出公比q=±2,由此能求出{a n}的通项公式.(2)当a1=1,q=﹣2时,S n=,由S m=63,得S m==63,m∈N,无解;当a1=1,q=2时,S n=2n﹣1,由此能求出m.【解答】解:(1)∵等比数列{a n}中,a1=1,a5=4a3.∴1×q4=4×(1×q2),解得q=±2,当q=2时,a n=2n﹣1,当q=﹣2时,a n=(﹣2)n﹣1,∴{a n}的通项公式为,a n=2n﹣1,或a n=(﹣2)n﹣1.(2)记S n为{a n}的前n项和.当a1=1,q=﹣2时,S n===,由S m=63,得S m==63,m∈N,无解;当a1=1,q=2时,S n===2n﹣1,由S m=63,得S m=2m﹣1=63,m∈N,解得m=6.【点评】本题考查等比数列的通项公式的求法,考查等比数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.9.(2017•全国)设数列{b n}的各项都为正数,且.(1)证明数列为等差数列;(2)设b1=1,求数列{b n b n+1}的前n项和S n.【分析】(1)对已知等式两边取倒数,结合等差数列的定义,即可得证;(2)由等差数列的通项公式可得,所以,再由数列的求和方法:裂项相消求和,化简即可得到所求和.【解答】解:(1)证明:数列{b n}的各项都为正数,且,两边取倒数得,故数列为等差数列,其公差为1,首项为;(2)由(1)得,,,故,所以,因此.【点评】本题考查等差数列的定义和通项公式,考查构造数列法,以及数列的求和方法:裂项相消求和,考查化简运算能力,属于中档题.10.(2017•新课标Ⅱ)已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.【分析】(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,运用等差数列和等比数列的通项公式,列方程解方程可得d,q,即可得到所求通项公式;(2)运用等比数列的求和公式,解方程可得公比,再由等差数列的通项公式和求和,计算即可得到所求和.【解答】解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,a1=﹣1,b1=1,a2+b2=2,a3+b3=5,可得﹣1+d+q=2,﹣1+2d+q2=5,解得d=1,q=2或d=3,q=0(舍去),则{b n}的通项公式为b n=2n﹣1,n∈N*;(2)b1=1,T3=21,可得1+q+q2=21,解得q=4或﹣5,当q=4时,b2=4,a2=2﹣4=﹣2,d=﹣2﹣(﹣1)=﹣1,S3=﹣1﹣2﹣3=﹣6;当q=﹣5时,b2=﹣5,a2=2﹣(﹣5)=7,d=7﹣(﹣1)=8,S3=﹣1+7+15=21.【点评】本题考查等差数列和等比数列的通项公式和求和公式的运用,求出公差和公比是解题的关键,考查方程思想和化简整理的运算能力,属于基础题.11.(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.【解答】解:(1)设等比数列{a n}首项为a1,公比为q,则a3=S3﹣S2=﹣6﹣2=﹣8,则a1==,a2==,由a1+a2=2,+=2,整理得:q2+4q+4=0,解得:q=﹣2,则a1=﹣2,a n=(﹣2)(﹣2)n﹣1=(﹣2)n,∴{a n}的通项公式a n=(﹣2)n;(2)由(1)可知:S n===﹣[2+(﹣2)n+1],则S n+1=﹣[2+(﹣2)n+2],S n+2=﹣[2+(﹣2)n+3],由S n+1+S n+2=﹣[2+(﹣2)n+2]﹣[2+(﹣2)n+3],=﹣[4+(﹣2)×(﹣2)n+1+(﹣2)2×(﹣2)n+1],=﹣[4+2(﹣2)n+1]=2×[﹣(2+(﹣2)n+1)]=2S n,即S n+1+S n+2=2S n,∴S n+1,S n,S n+2成等差数列.【点评】本题考查等比数列通项公式,等比数列前n项和,等差数列的性质,考查计算能力,属于中档题.12.(2017•新课标Ⅲ)设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.【分析】(1)利用数列递推关系即可得出.(2)==﹣.利用裂项求和方法即可得出.【解答】解:(1)数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.n≥2时,a1+3a2+…+(2n﹣3)a n﹣1=2(n﹣1).∴(2n﹣1)a n=2.∴a n=.当n=1时,a1=2,上式也成立.∴a n=.(2)==﹣.∴数列{}的前n项和=++…+=1﹣=.【点评】本题考查了数列递推关系、裂项求和方法,考查了推理能力与计算能力,属于中档题.13.(2016•全国)已知数列{a n}的前n项和S n=n2.(Ⅰ)求{a n}的通项公式;(Ⅱ)记b n=,求数列{b n}的前n项和.【分析】(Ⅰ)运用数列的递推式:a1=S1;n≥2时,a n=S n﹣S n﹣1,计算可得所求通项;(Ⅱ)化简b n===(﹣),再由数列的求和方法:裂项相消求和,计算可得所求和.【解答】解:(Ⅰ)数列{a n}的前n项和S n=n2,可得a1=S1=1;n≥2时,a n=S n﹣S n﹣1=n2﹣(n﹣1)2=2n﹣1,上式对n=1也成立,则a n=2n﹣1,n∈N*;(Ⅱ)b n===(﹣),则数列{b n}的前n项和为(﹣1+﹣+﹣+…+﹣)=((﹣1).【点评】本题考查数列的通项公式的求法,注意运用数列的递推式,考查数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.14.(2016•新课标Ⅲ)已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=,求λ.【分析】(1)根据数列通项公式与前n项和公式之间的关系进行递推,结合等比数列的定义进行证明求解即可.(2)根据条件建立方程关系进行求解就可.【解答】解:(1)∵S n=1+λa n,λ≠0.∴a n≠0.当n≥2时,a n=S n﹣S n﹣1=1+λa n﹣1﹣λa n﹣1=λa n﹣λa n﹣1,即(λ﹣1)a n=λa n﹣1,∵λ≠0,a n≠0.∴λ﹣1≠0.即λ≠1,即=,(n≥2),∴{a n}是等比数列,公比q=,当n=1时,S1=1+λa1=a1,即a1=,∴a n=•()n﹣1.(2)若S5=,则若S5=1+λ[•()4]=,即()5=﹣1=﹣,则=﹣,得λ=﹣1.【点评】本题主要考查数列递推关系的应用,根据n≥2时,a n=S n﹣S n﹣1的关系进行递推是解决本题的关键.考查学生的运算和推理能力.15.(2016•新课标Ⅰ)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【分析】(Ⅰ)令n=1,可得a1=2,结合{a n}是公差为3的等差数列,可得{a n}的通项公式;(Ⅱ)由(1)可得:数列{b n}是以1为首项,以为公比的等比数列,进而可得:{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,(Ⅱ)由(I)知:(3n﹣1)b n+1+b n+1=nb n.即3b n+1=b n.即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.【点评】本题考查的知识点是数列的递推式,数列的通项公式,数列的前n项和公式,难度中档.16.(2016•新课标Ⅲ)已知各项都为正数的数列{a n}满足a1=1,a n2﹣(2a n+1﹣1)a n﹣2a n+1=0.(1)求a2,a3;(2)求{a n}的通项公式.【分析】(1)根据题意,由数列的递推公式,令n=1可得a12﹣(2a2﹣1)a1﹣2a2=0,将a1=1代入可得a2的值,进而令n=2可得a22﹣(2a3﹣1)a2﹣2a3=0,将a2=代入计算可得a3的值,即可得答案;(2)根据题意,将a n2﹣(2a n+1﹣1)a n﹣2a n+1=0变形可得(a n﹣2a n+1)(a n+a n+1)=0,进而分析可得a n=2a n+1或a n=﹣a n+1,结合数列各项为正可得a n=2a n+1,结合等比数列的性质可得{a n}是首项为a1=1,公比为的等比数列,由等比数列的通项公式计算可得答案.【解答】解:(1)根据题意,a n2﹣(2a n+1﹣1)a n﹣2a n+1=0,当n=1时,有a12﹣(2a2﹣1)a1﹣2a2=0,而a1=1,则有1﹣(2a2﹣1)﹣2a2=0,解可得a2=,当n=2时,有a22﹣(2a3﹣1)a2﹣2a3=0,又由a2=,解可得a3=,故a2=,a3=;(2)根据题意,a n2﹣(2a n+1﹣1)a n﹣2a n+1=0,变形可得(a n﹣2a n+1)(a n+1)=0,即有a n=2a n+1或a n=﹣1,又由数列{a n}各项都为正数,则有a n=2a n+1,故数列{a n}是首项为a1=1,公比为的等比数列,则a n=1×()n﹣1=()n﹣1,故a n=()n﹣1.【点评】本题考查数列的递推公式,关键是转化思路,分析得到a n与a n+1的关系.17.(2016•新课标Ⅱ)等差数列{a n}中,a3+a4=4,a5+a7=6.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=[a n],求数列{b n}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.【分析】(Ⅰ)设等差数列{a n}的公差为d,根据已知构造关于首项和公差方程组,解得答案;(Ⅱ)根据b n=[a n],列出数列{b n}的前10项,相加可得答案.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,∵a3+a4=4,a5+a7=6.∴,解得:,∴a n=;(Ⅱ)∵b n=[a n],∴b1=b2=b3=1,b4=b5=2,b6=b7=b8=3,b9=b10=4.故数列{b n}的前10项和S10=3×1+2×2+3×3+2×4=24.【点评】本题考查的知识点是等差数列的通项公式,等差数列的性质,难度中档.18.(2016•新课标Ⅱ)S n为等差数列{a n}的前n项和,且a1=1,S7=28,记b n=[lga n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b1,b11,b101;(Ⅱ)求数列{b n}的前1000项和.【分析】(Ⅰ)利用已知条件求出等差数列的公差,求出通项公式,然后求解b1,b11,b101;(Ⅱ)找出数列的规律,然后求数列{b n}的前1000项和.【解答】解:(Ⅰ)S n为等差数列{a n}的前n项和,且a1=1,S7=28,7a4=28.可得a4=4,则公差d=1.a n=n,b n=[lgn],则b1=[lg1]=0,b11=[lg11]=1,b101=[lg101]=2.(Ⅱ)由(Ⅰ)可知:b1=b2=b3=…=b9=0,b10=b11=b12=…=b99=1.b100=b101=b102=b103=…=b999=2,b10,00=3.数列{b n}的前1000项和为:9×0+90×1+900×2+3=1893.【点评】本题考查数列的性质,数列求和,考查分析问题解决问题的能力,以及计算能力.19.(2015•全国)已知数列{a n}的前n项和S n=4﹣a n﹣.(Ⅰ)证明:数列{2n a n}是等差数列;(Ⅱ)求{a n}的通项公式.【分析】(Ⅰ)当n=1时,,解得a1=1,当n≥2时,S n=4﹣a n﹣,S n﹣1=4﹣a n﹣.两式相减,得2a n=,由此能证明数列{2n a n}是首项为2,公差为﹣2的等差数列.﹣1(Ⅱ)求出2n a n=2+(n﹣1)×(﹣2)=4﹣2n,由此能求出{a n}的通项公式.【解答】证明:(Ⅰ)∵数列{a n}的前n项和S n=4﹣a n﹣.∴当n=1时,,解得a1=1,当n≥2时,S n=4﹣a n﹣,S n﹣1=4﹣a n﹣1﹣.两式相减,得2a n=,∴2×2n a n=2×2n a n=2×2n﹣1a n﹣1﹣4,∴=﹣2n﹣1a n﹣1==﹣2,又2a1=2,∴数列{2n a n}是首项为2,公差为﹣2的等差数列.(Ⅱ)∵数列{2n a n}是首项为2,公差为﹣2的等差数列,∴2n a n=2+(n﹣1)×(﹣2)=4﹣2n,∴a n=.∴{a n}的通项公式为a n=.【点评】本题考查等差数列的证明,考查等差数列的通项公式的求法,考查等差数列的性质、构造法等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.19.(2015•新课标Ⅰ)S n为数列{a n}的前n项和,已知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.【分析】(I)根据数列的递推关系,利用作差法即可求{a n}的通项公式:(Ⅱ)求出b n=,利用裂项法即可求数列{b n}的前n项和.【解答】解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣a n2+2(a n+1﹣a n)=4a n+1,即2(a n+1+a n)=a n+12﹣a n2=(a n+1+a n)(a n+1﹣a n),∵a n>0,∴a n+1﹣a n=2,∵当n=1时,a12+2a1=4a1+3,∴a1=﹣1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n﹣1)=2n+1:(Ⅱ)∵a n=2n+1,∴b n===(﹣),∴数列{b n}的前n项和T n=(﹣+…+﹣)=(﹣)=.【点评】本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.考点卡片1.等差数列的性质【等差数列】等差数列的通项公式为:a n=a1+(n﹣1)d;前n项和公式为:S n=na1+n(n﹣1)或S n=(n∈N+),另一重要特征是若p+q=2m,则有2a m=a p+a q(p,q,m都为自然数)例:已知等差数列{a n}中,a1<a2<a3<…<a n且a3,a6为方程x2﹣10x+16=0的两个实根.(1)求此数列{an}的通项公式;(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由.解:(1)由已知条件得a3=2,a6=8.又∵{an}为等差数列,设首项为a1,公差为d,∴a1+2d=2,a1+5d=8,解得a1=﹣2,d=2.∴an=﹣2+(n﹣1)×2=2n﹣4(n∈N*).∴数列{an}的通项公式为an=2n﹣4.(2)令268=2n﹣4(n∈N*),解得n=136.∴268是此数列的第136项.这是一个很典型的等差数列题,第一问告诉你第几项和第几项是多少,然后套用等差数列的通项公式an=a1+(n﹣1)d,求出首项和公差d,这样等差数列就求出来了.第二问判断某个数是不是等差数列的某一项,其实就是要你检验看符不符合通项公式,带进去检验一下就是的.【等差数列的性质】(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;(3)m,n∈N+,则am=an+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则as+at=ap+aq,其中as,at,ap,aq是数列中的项,特别地,当s+t=2p时,有as+at=2ap;(5)若数列{an},{bn}均是等差数列,则数列{man+kbn}仍为等差数列,其中m,k均为常数.(6)an,an﹣1,an﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2an+1=an+an+2,2an=an﹣m+an+m,(n≥m+1,n,m∈N+)(8)am,am+k,am+2k,am+3k,…仍为等差数列,公差为kd(首项不一定选a1).2.等差数列的通项公式【知识点的认识】a n=a1+(n﹣1)d,或者a n=a m+(n﹣m)d.【例题解析】eg1:已知数列{an}的前n项和为Sn=n2+1,求数列{an}的通项公式,并判断{an}是不是等差数列解:当n=1时,a1=S1=12+1=2,当n≥2时,an=Sn﹣Sn﹣1=n2+1﹣(n﹣1)2﹣1=2n﹣1,∴an=,把n=1代入2n﹣1可得1≠2,∴{an}不是等差数列考察了对概念的理解,除掉第一项这个数列是等差数列,但如果把首项放进去的话就不是等差数列,题中an的求法是数列当中常用到的方式,大家可以熟记一下.eg2:已知等差数列{an}的前三项分别为a﹣1,2a+1,a+7则这个数列的通项公式为解:∵等差数列{an}的前三项分别为a﹣1,2a+1,a+7,∴2(2a+1)=a﹣1+a+7,解得a=2.∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9,∴数列an是以1为首项,4为公差的等差数列,∴an=1+(n﹣1)×4=4n﹣3.故答案:4n﹣3.这个题很好的考察了的呢公差数列的一个重要性质,即等差中项的特点,通过这个性质然后解方程一样求出首项和公差即可.【考点点评】求等差数列的通项公式是一种很常见的题型,这里面往往用的最多的就是等差中项的性质,这也是学习或者复习时应重点掌握的知识点.3.等差数列的前n项和【知识点的认识】S n=na1+n(n﹣1)d或者S n=【例题解析】eg1:设等差数列的前n项和为S n,若公差d=1,S5=15,则S10=解:∵d=1,S5=15,∴5a1+d=5a1+10=15,即a1=1,则S10=10a1+d=10+45=55.故答案为:55点评:此题考查了等差数列的前n项和公式,解题的关键是根据题意求出首项a1的值,然后套用公式即可.eg2:等差数列{a n}的前n项和S n=4n2﹣25n.求数列{|a n|}的前n项的和T n.解:∵等差数列{a n}的前n项和S n=4n2﹣25n.∴a n=S n﹣S n﹣1=(4n2﹣25n)﹣[4(n﹣1)2﹣25(n﹣1)]=8n﹣29,该等差数列为﹣21,﹣13,﹣5,3,11,…前3项为负,其和为S3=﹣39.∴n≤3时,T n=﹣S n=25n﹣4n2,n≥4,T n=S n﹣2S3=4n2﹣25n+78,∴.点评:本题考查等差数列的前n项的绝对值的和的求法,是中档题,解题时要认真审题,注意分类讨论思想的合理运用.其实方法都是一样的,要么求出首项和公差,要么求出首项和第n项的值.【考点点评】等差数列比较常见,单独考察等差数列的题也比较简单,一般单独考察是以小题出现,大题一般要考察的话会结合等比数列的相关知识考察,特别是错位相减法的运用.4.等比数列的性质例:2,x,y,z,18成等比数列,则y=.解:由2,x,y,z,18成等比数列,设其公比为q,则18=2q4,解得q2=3,∴y=2q2=2×3=6.故答案为:6.本题的解法主要是运用了等比数列第n项的通项公式,这也是一个常用的方法,即知道某两项的值然后求出公比,继而可以以已知项为首项,求出其余的项.关键是对公式的掌握,方法就是待定系数法.【等比数列的性质】(1)通项公式的推广:a n=a m•q n﹣m,(n,m∈N*).(2)若{a n}为等比数列,且k+l=m+n,(k,l,m,n∈N*),则a k•a l=a m•a n(3)若{a n},{b n}(项数相同)是等比数列,则{λa n}(λ≠0),{a},{a n•b n},仍是等比数列.(4)单调性:或⇔{a n}是递增数列;或⇔{a n}是递减数列;q=1⇔{a n}是常数列;q<0⇔{a n}是摆动数列.5.等比数列的通项公式【知识点的认识】1.等比数列的定义2.等比数列的通项公式a n=a1•q n﹣13.等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项.G2=a•b(ab≠0)4.等比数列的常用性质(1)通项公式的推广:a n=a m•q n﹣m,(n,m∈N*).(2)若{a n}为等比数列,且k+l=m+n,(k,l,m,n∈N*),则a k•a l=a m•a n(3)若{a n},{b n}(项数相同)是等比数列,则{λa n}(λ≠0),{a},{a n•b n},仍是等比数列.(4)单调性:或⇔{a n}是递增数列;或⇔{a n}是递减数列;q=1⇔{a n}是常数列;q<0⇔{a n}是摆动数列.6.等比数列的前n项和【知识点的知识】1.等比数列的前n项和公式等比数列{a n}的公比为q(q≠0),其前n项和为S n,当q=1时,S n=na1;当q≠1时,S n==.2.等比数列前n项和的性质公比不为﹣1的等比数列{a n}的前n项和为S n,则S n,S2n﹣S n,S3n﹣S2n仍成等比数列,其公比为q n.7.数列的求和【知识点的知识】就是求出这个数列所有项的和,一般来说要求的数列为等差数列、等比数列、等差等比数列等等,常用的方法包括:(1)公式法:①等差数列前n项和公式:S n=na1+n(n﹣1)d或S n=②等比数列前n项和公式:③几个常用数列的求和公式:(2)错位相减法:适用于求数列{a n×b n}的前n项和,其中{a n}{b n}分别是等差数列和等比数列.(3)裂项相消法:适用于求数列{}的前n项和,其中{a n}为各项不为0的等差数列,即=().(4)倒序相加法:推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+a n).(5)分组求和法:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.【典型例题分析】典例1:已知等差数列{a n}满足:a3=7,a5+a7=26,{a n}的前n项和为S n.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和T n.分析:形如的求和,可使用裂项相消法如:.解:(Ⅰ)设等差数列{a n}的公差为d,∵a3=7,a5+a7=26,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1;S n==n2+2n.(Ⅱ)由(Ⅰ)知a n=2n+1,∴b n====,∴T n===,即数列{b n}的前n项和T n=.点评:该题的第二问用的关键方法就是裂项求和法,这也是数列求和当中常用的方法,就像友情提示那样,两个等差数列相乘并作为分母的一般就可以用裂项求和.【解题方法点拨】数列求和基本上是必考点,大家要学会上面所列的几种最基本的方法,即便是放缩也要往这里面考.8.数列递推式【知识点的知识】1、递推公式定义:如果已知数列{a n}的第1项(或前几项),且任一项a n与它的前一项a n﹣1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.2、数列前n项和S n与通项a n的关系式:a n=.在数列{a n}中,前n项和S n与通项公式a n的关系,是本讲内容一个重点,要认真掌握.注意:(1)用a n=S n﹣S n﹣1求数列的通项公式时,你注意到此等式成立的条件了吗?(n≥2,当n=1时,a1=S1);若a1适合由a n的表达式,则a n不必表达成分段形式,可化统一为一个式子.(2)一般地当已知条件中含有a n与S n的混合关系时,常需运用关系式a n=S n﹣S n﹣1,先将已知条件转化为只含a n或S n的关系式,然后再求解.3、数列的通项的求法:(1)公式法:①等差数列通项公式;②等比数列通项公式.(2)已知S n(即a1+a2+…+a n=f(n))求a n,用作差法:a n=.一般地当已知条件中含有a n与S n的混合关系时,常需运用关系式,先将已知条件转化为只含或的关系式,然后再求解.(3)已知a1•a2…a n=f(n)求a n,用作商法:a n,=.(4)若a n+1﹣a n=f(n)求a n,用累加法:a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1(n≥2).(5)已知=f(n)求a n,用累乘法:a n=(n≥2).(6)已知递推关系求a n,有时也可以用构造法(构造等差、等比数列).特别地有,①形如a n=ka n﹣1+b、a n=ka n﹣1+b n(k,b为常数)的递推数列都可以用待定系数法转化为公比为k的等比数列后,再求a n.②形如a n=的递推数列都可以用倒数法求通项.(7)求通项公式,也可以由数列的前几项进行归纳猜想,再利用数学归纳法进行证明.9.数列与函数的综合【知识点的知识】一、数列的函数特性:等差数列和等比数列的通项公式及前n项和公式中共涉及五个量a1,a n,q,n,S n,知三求二,体现了方程的思想的应用.解答数列与函数的综合问题要善于综合运用函数方程思想、化归转化思想等数学思想以及特例分析法,一般递推法,数列求和及求通项等方法来分析、解决问题.二、解题步骤:1.在解决有关数列的具体应用问题时:(1)要读懂题意,理解实际背景,领悟其数学实质,舍弃与解题无关的非本质性东西;(2)准确地归纳其中的数量关系,建立数学模型;(3)根据所建立的数学模型的知识系统,解出数学模型的结果;(4)最后再回到实际问题中去,从而得到答案.2.在求数列的相关和时,要注意以下几个方面的问题:(1)直接用公式求和时,注意公式的应用范围和公式的推导过程.(2)注意观察数列的特点和规律,在分析数列通项的基础上,或分解为基本数列求和,或转化为基本数列求和.(3)求一般数列的前n项和时,无一般方法可循,要注意掌握某些特殊数列的前n项和的求法,触类旁通.3.在用观察法归纳数列的通项公式(尤其是在处理客观题目时)时,要注意适当地根据具体问题多计算相应的数列的前几项,否则会因为所计算的数列的项数过少,而归纳出错误的通项公式,从而得到错误的结论.【典型例题分析】典例:已知f(x)=log a x(a>0,a≠1),设数列f(a1),f(a2),f(a3),…,f(a n)…是首项为4,公差为2的等差数列.(I)设a为常数,求证:{a n}成等比数列;(II)设b n=a n f(a n),数列{b n}前n项和是S n,当时,求S n.分析:(I)先利用条件求出f(a n)的表达式,进而求出{a n}的通项公式,再用定义来证{a n}是等比数列即可;(II)先求出数列{b n}的通项公式,再对数列{b n}利用错位相减法求和即可.解答:证明:(I)f(a n)=4+(n﹣1)×2=2n+2,即log a a n=2n+2,可得a n=a2n+2.∴==为定值.∴{a n}为等比数列.(II)解:b n=a n f(a n)=a2n+2log a a2n+2=(2n+2)a2n+2.(7分)当时,.(8分)S n=2×23+3×24+4×25++(n+1)•2n+2 ①2S n=2×24+3×25+4×26++n•2n+2+(n+1)•2n+3 ②①﹣②得﹣S n=2×23+24+25++2n+2﹣(n+1)•2n+3(12分)=﹣(n+1)•2n+3=16+2n+3﹣24﹣n•2n+3﹣2n+3.∴S n=n•2n+3.(14分)点评:本题的第二问考查了数列求和的错位相减法.错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.10.数列与不等式的综合【知识点的知识】证明与数列求和有关的不等式基本方法:(1)直接将数列求和后放缩;(2)先将通项放缩后求和;(3)先将通项放缩后求和再放缩;(4)尝试用数学归纳法证明.常用的放缩方法有:,,,=[]﹣=<<=﹣(n≥2),<=()(n≥2),,2()=<=<=2().…+≥…+==<.【解题方法点拨】证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材.这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:(1)添加或舍去一些项,如:>|a|;>n;(2)将分子或分母放大(或缩小);(3)利用基本不等式;<;(4)二项式放缩;(5)利用常用结论;(6)利用函数单调性.(7)常见模型:①等差模型;②等比模型;③错位相减模型;④裂项相消模型;⑤二项式定理模型;⑥基本不等式模型.【典型例题分析】题型一:等比模型典例1:对于任意的n∈N*,数列{a n}满足=n+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:对于n≥2,.解答:(Ⅰ)由①,。
高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。
一、数列多选题1.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54C .S 2020=a 2022-1D .a 1+a 3+a 5+…+a 2021=a 2022答案:BCD 【分析】由题意可得数列满足递推关系,依次判断四个选项,即可得正确答案. 【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,,故B 正确; 对于C ,可解析:BCD 【分析】由题意可得数列{}n a 满足递推关系()12211,1,+3n n n a a a a a n --===≥,依次判断四个选项,即可得正确答案. 【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,81+1+2+3+5+8+13+2154S ==,故B 正确; 对于C ,可得()112n n n a a a n +-=-≥, 则()()()()1234131425311++++++++++n n n a a a a a a a a a a a a a a +-=----即212++1n n n n S a a a a ++=-=-,∴202020221S a =-,故C 正确; 对于D ,由()112n n n a a a n +-=-≥可得,()()()135202124264202220202022++++++++a a a a a a a a a a a a =---=,故D 正确.故选:BCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,解题的关键是得出数列的递推关系,()12211,1,+3n n n a a a a a n --===≥,能根据数列性质利用累加法求解. 2.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4n n n a S S n a -+=≥=,则下列说法正确的是( ) A .数列{}n a 的前n 项和为1S 4n n=B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1{}nS 为递增数列 答案:AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得. 【详解】因此数列为以为首项,为公差的等差数列,也是递增数列,即D 正确;解析:AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+=11104n n n S S S -≠∴-= 因此数列1{}n S 为以114S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n=+-=∴=,即A 正确; 当2n ≥时111144(1)4(1)n n n a S S n n n n -=-=-=--- 所以1,141,24(1)n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,即B ,C 不正确;故选:AD 【点睛】本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题.3.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为8答案:BD 【分析】由题意可知,由已知条件可得出,可判断出AB 选项的正误,求出关于的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列是递增数列,则,A 选项错误解析:BD 【分析】由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列{}n a 是递增数列,则0d >,A 选项错误;753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;()()()22171117493222224n n n d n n d n n d S na nd n d -⎡⎤--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.故选:BD.4.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( ) A .60a > B .6S 最大 C .130S >D .110S >答案:ABD 【分析】转化条件为,进而可得,,再结合等差数列的性质及前n 项和公式逐项判断即可得解. 【详解】 因为,所以,即,因为数列递减,所以,则,,故A 正确; 所以最大,故B 正确; 所以,故C 错误解析:ABD 【分析】转化条件为670a a +=,进而可得60a >,70a <,再结合等差数列的性质及前n 项和公式逐项判断即可得解. 【详解】因为57S S =,所以750S S -=,即670a a +=,因为数列{}n a 递减,所以67a a >,则60a >,70a <,故A 正确; 所以6S 最大,故B 正确; 所以()113137131302a a S a+⨯==<,故C 错误; 所以()111116111102a a S a+⨯==>,故D 正确.故选:ABD.5.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 答案:AC 【分析】令,则,根据,可判定A 正确;由,可判定B 错误;根据等差数列的性质,可判定C 正确;,根据,可判定D 错误. 【详解】令,则,因为,所以为等差数列且公差,故A 正确; 由,所以,故B 错误;解析:AC 【分析】令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由256110200a a a a d -=>,可判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛⎫=+- ⎪⎝⎭,根据02>d ,可判定D 错误. 【详解】令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;由()()22225611011119209200a a a a a a d d a a d d -=++-+=>,所以56110a a a a >,故B错误;根据等差数列的性质,可得()213x x x -=+,所以13x =,213x -=, 故1011109333a =+⨯=,故C 正确; 由()111222nn n na dS d d n a nn -+⎛⎫==+- ⎪⎝⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列,故D 错误. 故选:AC . 【点睛】解决数列的单调性问题的三种方法;1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;2、作商比较法:根据1(0n n na a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断.6.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为n S 的最大值答案:BD 【分析】设等差数列的公差为,依次分析选项即可求解. 【详解】根据题意,设等差数列的公差为,依次分析选项: 是等差数列,若,则,故B 正确; 又由得,则有,故A 错误; 而C 选项,,即,可得,解析:BD 【分析】设等差数列{}n a 的公差为d ,依次分析选项即可求解. 【详解】根据题意,设等差数列{}n a 的公差为d ,依次分析选项:{}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误; 而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>, 又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的. ∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确; 故选:BD. 【点睛】本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题. 7.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =- B .23n a n =+ C .223n S n n =-D .24n S n n =+答案:AC 【分析】由求出,再由可得公差为,从而可求得其通项公式和前项和公式 【详解】由题可知,,即,所以等差数列的公差, 所以,. 故选:AC. 【点睛】本题考查等差数列,考查运算求解能力.解析:AC 【分析】由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式 【详解】由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232n n n S n n --==-.故选:AC. 【点睛】本题考查等差数列,考查运算求解能力. 8.下列命题正确的是( )A .给出数列的有限项就可以唯一确定这个数列的通项公式B .若等差数列{}n a 的公差0d >,则{}n a 是递增数列C .若a ,b ,c 成等差数列,则111,,a b c可能成等差数列D .若数列{}n a 是等差数列,则数列{}12++n n a a 也是等差数列答案:BCD 【分析】根据等差数列的性质即可判断选项的正误. 【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知,必是递增数列;C 选项:时,是等差数列,而a = 1,解析:BCD 【分析】根据等差数列的性质即可判断选项的正误. 【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知0d >,{}n a 必是递增数列;C 选项:1a b c ===时,1111a b c===是等差数列,而a = 1,b = 2,c = 3时不成立; D 选项:数列{}n a 是等差数列公差为d ,所以11112(1)223(31)n n a a a n d a nd a n d ++=+-++=+-也是等差数列;故选:BCD 【点睛】本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题.9.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a >B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .0n S <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项答案:ACD 【分析】由已知得,又,所以,可判断A ;由已知得出,且,得出时,,时,,又,可得出在上单调递增,在上单调递增,可判断B ;由,可判断C ;判断 ,的符号, 的单调性可判断D ; 【详解】 由已知解析:ACD 【分析】由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1na 在1,6n n N上单调递增,1na 在7nnN,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d=-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <,所以1na 在1,6nnN上单调递增,1na 在7nn N,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确;由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0n S <,所以当[]7,12n ∈时,0n a <,>0n S ,0nnS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确; 【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题. 10.设等差数列{}n a 的前n 项和为n S ,公差为d ,且满足10a >,1118S S =,则对n S 描述正确的有( ) A .14S 是唯一最小值 B .15S 是最小值 C .290S =D .15S 是最大值答案:CD 【分析】根据等差数列中可得数列的公差,再根据二次函数的性质可知是最大值,同时可得,进而得到,即可得答案; 【详解】 ,,设,则点在抛物线上, 抛物线的开口向下,对称轴为, 且为的最大值,解析:CD 【分析】根据等差数列中1118S S =可得数列的公差0d <,再根据二次函数的性质可知15S 是最大值,同时可得150a =,进而得到290S =,即可得答案; 【详解】1118S S =,∴0d <,设2n S An Bn =+,则点(,)n n S 在抛物线2y Ax Bx =+上, 抛物线的开口向下,对称轴为14.5x =,∴1514S S =且为n S 的最大值,1118S S =12131815070a a a a ⇒+++=⇒=,∴129291529()2902a a S a +===, 故选:CD. 【点睛】本题考查利用二次函数的性质研究等差数列的前n 项和的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.。
2024全国数学高考压轴题(数列)一、单选题1.若数列{b n }、{c n }均为严格增数列 且对任意正整数n 都存在正整数m 使得b m ∈[c n ,c n+1] 则称数列{b n }为数列{c n }的“M 数列”.已知数列{a n }的前n 项和为S n 则下列选项中为假命题的是( )A .存在等差数列{a n } 使得{a n }是{S n }的“M 数列”B .存在等比数列{a n } 使得{a n }是{S n }的“M 数列”C .存在等差数列{a n } 使得{S n }是{a n }的“M 数列”D .存在等比数列{a n } 使得{S n }是{a n }的“M 数列”2.已知函数f(x)及其导函数f ′(x)的定义域均为R 记g(x)=f ′(x).若f(x +3)为奇函数 g(32+2x)为偶函数 且g(0)=−3 g(1)=2 则∑g 2023i=1(i)=( ) A .670B .672C .674D .6763.我们知道按照一定顺序排列的数字可以构成数列 那么按照一定顺序排列的函数可以构成函数列.设无穷函数列{f n (x)}(n ∈N +)的通项公式为f n (x)=n 2+2nx+x 2+1(n+x)(n+1)x ∈(0,1) 记E n 为f n (x)的值域 E =U n=1+∞E n 为所有E n 的并集 则E 为( )A .(56,109)B .(1,109)C .(56,54)D .(1,54)4.已知等比数列{x n }的公比q >−12则( )A .若|x 1+x 2+⋅⋅⋅+x 100|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|<10B .若|x 1+x 2+⋅⋅⋅+x 100|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|>10C .若|x 1+x 2+⋅⋅⋅+x 101|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|<10D .若|x 1+x 2+⋅⋅⋅+x 101|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|>105.已知数列{a n } {b n }满足a 1=2 b 1=12 {a n+1=b n +1an b n+1=a n +1bn,,,n ,∈,N ∗ 则下列选项错误的是( ) A .a 2b 2=14B .a 50⋅b 50<112C .a 50+b 50=52√a 50⋅b 50D .|a 50−b 50|≤156.已知数列{a n }满足:a 1=2 a n+1=13(√a n +2a n )(n ∈N ∗).记数列{a n }的前n 项和为S n 则( )A .12<S 10<14B .14<S 10<16C .16<S 10<18D .18<S 10<207.已知数列 {a n } 满足: a 1=100,a n+1=a n +1an则( )A .√200+10000<a 101<√200.01+10000B .√200.01+10000<a 101<√200.1+10000C .√200.1+10000<a 101<√201+10000D .√201+10000<a 101<√210+100008.已知数列 {a n } 满足 a 1=a(a >0) √a n+1a n =a n +1 给出下列三个结论:①不存在 a 使得数列 {a n } 单调递减;②对任意的a 不等式 a n+2+a n <2a n+1 对所有的 n ∈N ∗ 恒成立;③当 a =1 时 存在常数 C 使得 a n <2n +C 对所有的 n ∈N ∗ 都成立.其中正确的是( ) A .①②B .②③C .①③D .①②③9.已知F 为抛物线y 2=4x 的焦点 点P n (x n ,y n )(n =1,2,3,⋯)在抛物线上.若|P n+1F|−|P n F|=1 则( ) A .{x n }是等差数列 B .{x n }是等比数列 C .{y n }是等差数列D .{y n }是等比数列10.已知数列 11 21 12 31 22 13 41 32 23 14… 其中每一项的分子和分母均为正整数.第一项是分子与分母之和为2的有理数;接下来两项是分子与分母之和为3的有理数 并且从大到小排列;再接下来的三项是分子与分母之和为4的有理数 并且从大到小排列 依次类推.此数列第n 项记为 a n 则满足 a n =5 且 n ≥20 的n 的最小值为( ) A .47B .48C .57D .5811.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n ,B n ,C n 所对的边分别为a n ,b n ,c n 面积为S n .若b 1=4,c 1=3,b n+12=a n+12+c n 23,c n+12=a n+12+b n 23则下列选项错误的是( )A .{S 2n }是递增数列B .{S 2n−1}是递减数列C .数列{b n −c n }存在最大项D .数列{b n −c n }存在最小项12.已知数列{a n }的各项都是正数 a n+12−a n+1=a n (n ∈N ∗).记b n =(−1)n−1a n −1数列{b n }的前n 项和为S n 给出下列四个命题:①若数列{a n }各项单调递增 则首项a 1∈(0,2)②若数列{a n }各项单调递减 则首项a 1∈(2,+∞)③若数列{a n }各项单调递增 当a 1=32时 S 2022>2④若数列{a n }各项单调递增 当a 1=23时S2022<−5则以下说法正确的个数()A.4B.3C.2D.113.已知正项数列{a n}对任意的正整数m、n都有2a m+n≤a2m+a2n则下列结论可能成立的是()A.a nm+a mn=a mn B.na m+ma n=a m+n C.a m+a n+2=a mn D.2a m⋅a n=a m+n14.古希腊哲学家芝诺提出了如下悖论:一个人以恒定的速度径直从A点走向B点要先走完总路程的三分之一再走完剩下路程的三分之一如此下去会产生无限个“剩下的路程” 因此他有无限个“剩下路程的三分之一”要走这个人永远走不到终点.另一方面我们可以从上述第一段“三分之一的路程”开始通过分别计算他在每一个“三分之一距离”上行进的时间并将它们逐个累加不难推理出这个人行进的总时间不会超过一个恒定的实数.记等比数列{a n}的首项a1=13公比为q 前n项和为S n则造成上述悖论的原理是()A.q=16,∃t∈R,∀n∈N ∗,Sn<t B.q=13,∃t∈R,∀n∈N∗,S n<tC.q=12,∃t∈R,∀n∈N ∗,Sn<t D.q=23,∃t∈R,∀n∈N∗,S n<t15.已知sinx,siny,sinz依次组成严格递增的等差数列则下列结论错误的是()A.tanx,tany,tanz依次可组成等差数列B.cosx,cosy,cosz依次可组成等差数列C.cosx,cosz,cosy依次可组成等差数列D.cosz,cosx,cosy依次可组成等差数列16.记U={1,2,⋯,100}.对数列{a n}(n∈N∗)和U的子集T 若T=∅定义S T=0;若T={t1,t2,⋯,t k}定义S T=a t1+a t2+⋯+a tk.则以下结论正确的是()A.若{a n}(n∈N∗)满足a n=2n−1,T={1,2,4,8}则S T=15B.若{a n}(n∈N∗)满足a n=2n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T< a kC.若{a n}(n∈N∗)满足a n=3n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T≥a k+1D .若{a n }(n ∈N ∗)满足a n =3n−1 且C ⊆U ,D ⊆U ,S C ≥S D 则S C +S C∩D ≥2S D17.已知数列 {a n }、{b n }、{c n } 满足 a 1=b 1=c 1=1,c n =a n+1−a n ,c n+2=bn+1b n ⋅c n (n ∈N ∗),S n =1b 2+1b 3+⋯+1b n (n ≥2),T n =1a 3−3+1a 4−4+⋯+1a n −n (n ≥3) 则下列有可能成立的是( )A .若 {a n } 为等比数列 则 a 20222>b 2022B .若 {c n } 为递增的等差数列 则 S 2022<T 2022C .若 {a n } 为等比数列 则 a 20222<b 2022D .若 {c n } 为递增的等差数列 则 S 2022>T 202218.已知数列{a n }满足a 1=1 a n =a n−1+4(√a n−1+1√an−1)(n ∈N ∗,n ≥2) S n 为数列{1a n }的前n 项和 则( ) A .73<S 2022<83B .2<S 2022<73C .53<S 2022<2 D .1<S 2022<5319.已知数列{a n }满足a n ⋅a n+1⋅a n+2=−1(n ∈N ∗),a 1=−3 若{a n }的前n 项积的最大值为3 则a 2的取值范围为( ) A .[−1,0)∪(0,1] B .[−1,0)C .(0,1]D .(−∞,−1)∪(1,+∞)20.已知正项数列{a n }的前n 项和为S n (a n +1)2=4S n 记b n =S n ⋅sin nπ2+S n+1⋅sin (n+1)π2若数列{b n }的前n 项和为T n 则T 100=( ) A .-400B .-200C .200D .40021.设S n 是等差数列{a n }的前n 项和 a 2=−7 S 5=2a 1 当|S n |取得最小值时 n =( )A .10B .9C .8D .722.已知数列{a n }中 a 2+a 4+a 6=285 na n =(n −1)a n+1+101(n ∈N ∗) 当数列{a n a n+1a n+2}(n ∈N ∗)的前n 项和取得最大值时 n 的值为( ) A .53B .49C .49或53D .49或5123.定义在R 上的函数序列{f n (x)}满足f n (x)<1nf n ′(x)(f n ′(x)为f n (x)的导函数) 且∀x ∈N ∗ 都有f n (0)=n .若存在x 0>0 使得数列{f n (x 0)}是首项和公比均为q 的等比数列 则下列关系式一定成立的是( ).A .0<q <2√2e x 0B .0<q <√33e x 0C .q >2√2e x 0D .q >√33e x 024.已知数列{a n }的前n 项和为S n 满足a 1=1 a 2=2 a n =a n−1⋅a n+1(n ≥2) 则( )A .a 1:a 2:a 3=a 6:a 7:a 8B .a n :a n+1:a n+2=1:2:2C .S 6 S 12 S 18成等差数列D .S 6n S 12n S 18n 成等比数列25.已知S n 为数列{a n }的前n 项和 且a 1=1 a n+1+a n =3×2n 则S 100=( )A .2100−3B .2100−2C .2101−3D .2101−226.已知 {a n } 为等比数列 {a n } 的前n 项和为 S n 前n 项积为 T n 则下列选项中正确的是( )A .若 S 2022>S 2021 则数列 {a n } 单调递增B .若 T 2022>T 2021 则数列 {a n } 单调递增C .若数列 {S n } 单调递增 则 a 2022≥a 2021D .若数列 {T n } 单调递增 则 a 2022≥a 2021二、多选题27.“冰雹猜想”也称为“角谷猜想” 是指对于任意一个正整数x 如果x 是奇数㩆乘以3再加1 如果x 是偶数就除以2 这样经过若干次操作后的结果必为1 犹如冰雹掉落的过程.参照“冰雹猜想” 提出了如下问题:设k ∈N ∗ 各项均为正整数的数列{a n }满足a 1=1 a n+1={a n2,a n 为偶数,a n +k ,a n 为奇数,则( )A .当k =5时 a 5=4B .当n >5时 a n ≠1C .当k 为奇数时 a n ≤2kD .当k 为偶数时 {a n }是递增数列28.已知数列{a n } a 2=12且满足a n+1a n 2=a n −a n+1 n ∈N ∗ 则( ) A .a 4−a 1=1929B .a n 的最大值为1C .a n+1≥1n+1D .√a 1+√a 2+√a 3+⋅⋅⋅+√a 35>1029.已知数列{a n }的前n 项和为S n a 1=1 且4a n ⋅a n+1=a n −3a n+1(n =1 2 …) 则( )A .3a n+1<a nB .a 5=1243C .ln(1an )<n +1D .1≤S n <171430.如图 已知正方体ABCD −A 1B 1C 1D 1顶点处有一质点Q 点Q 每次会随机地沿一条棱向相邻的某个顶点移动 且向每个顶点移动的概率相同.从一个顶点沿一条棱移动到相邻顶点称为移动一次.若质点Q 的初始位置位于点A 处 记点Q 移动n 次后仍在底面ABCD 上的概率为P n 则下列说法正确的是( )A .P 2=59B .P n+1=23P n +13C .点Q 移动4次后恰好位于点C 1的概率为0D .点Q 移动10次后仍在底面ABCD 上的概率为12(13)10+1231.已知数列{a n } {b n } 有a n+1=a n −b n b n+1=b n −a n n ∈N ∗ 则( )A .若存在m >1 a m =b m 则a 1=b 1B .若a 1≠b 1 则存在大于2的正整数n 使得a n =0C .若a 1=a a 2=b 且a ≠b 则b 2022=−b ×22020D .若a 1=−1 a 2=−3 则关于x 的方程2a 3+(2a 3+1)cosx +2cos2x +cos3x =0的所有实数根可构成一个等差数列32.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n 、B n 、C n 所对的边分别为a n 、b n 、c n 面积为S n 若b 1=4 c 1=3 b n+12=a n+12+c n 23 c n+12=a n+12+b n 23则( ) A .{S 2n }是递增数列 B .{S 2n−1}是递减数列 C .{b n −c n }存在最大项D .{b n −c n }存在最小项33.已知S n 是数列{a n }的前n 项和 且S n+1=−S n +n 2 则下列选项中正确的是( ).A .a n +a n+1=2n −1(n ≥2)B .a n+2−a n =2C .若a 1=0 则S 100=4950D .若数列{a n }单调递增 则a 1的取值范围是(−14,13)三、填空题34.已知n ∈N ∗ 将数列{2n −1}与数列{n 2−1}的公共项从小到大排列得到新数列{a n } 则1a 1+1a 2+⋯+1a 10= .35.若函数f(x)的定义域为(0,+∞) 且f(x)+f(y)=f(xy) f(a n )=n +f(n) 则∑f ni=1(a i i )= .36.在数列{a n }中 a 1=1 a n+1=a n +1an(n∈N ∗) 若t ∈Z 则当|a 7−t|取得最小值时 整数t 的值为 .37.已知函数f(x)满足f(x −2)=f(x +2),0≤x <4时 f(x)=√4−(x −2)2 g(x)=f(x)−k n x(n ∈N ∗,k n >0).若函数g(x)的图像与x 轴恰好有2n +1个不同的交点 则k 12+k 22+⋅⋅⋅+k n 2= .38.已知复数z =1+i 对于数列{a n } 定义P n =a 1+2a 2+⋅⋅⋅+2n−1a n n为{a n }的“优值”.若某数列{a n}的“优值”P n =|z|2n 则数列{a n }的通项公式a n = ;若不等式a n 2−a n +4≥(−1)nkn 对于∀n ∈N ∗恒成立 则k 的取值范围是 .39.数列{a n }是公比为q(q ≠1)的等比数列 S n 为其前n 项和. 已知a 1⋅a 3=16 S3q=12 给出下列四个结论: ①q <0 ;②若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是3; ③若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是4; ④若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最小 则m 的值只能是2. 其中所有正确结论的序号是 .40.如图 某荷塘里浮萍的面积y (单位:m 2)与时间t (单位:月)满足关系式:y =a t lna (a 为常数) 记y =f(t)(t ≥0).给出下列四个结论:①设a n=f(n)(n∈N∗)则数列{a n}是等比数列;②存在唯一的实数t0∈(1,2)使得f(2)−f(1)=f′(t0)成立其中f′(t)是f(t)的导函数;③常数a∈(1,2);④记浮萍蔓延到2m23m26m2所经过的时间分别为t1t2t3则t1+t2>t3.其中所有正确结论的序号是.41.在现实世界很多信息的传播演化是相互影响的.选用正实数数列{a n}{b n}分别表示两组信息的传输链上每个节点处的信息强度数列模型:a n+1=2a n+b n,b n+1=a n+2b n(n=1,2⋯)描述了这两组信息在互相影响之下的传播演化过程.若两组信息的初始信息强度满足a1>b1则在该模型中关于两组信息给出如下结论:①∀n∈N∗,a n>b n;②∀n∈N∗,a n+1>a n,b n+1>b n;③∃k∈N∗使得当n>k时总有|a nb n−1|<10−10④∃k∈N∗使得当n>k时总有|a n+1a n−2|<10−10.其中所有正确结论的序号是答案解析部分1.【答案】C2.【答案】D3.【答案】C4.【答案】A5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】A10.【答案】C11.【答案】B12.【答案】B13.【答案】D14.【答案】D15.【答案】B16.【答案】D17.【答案】B18.【答案】D19.【答案】A20.【答案】C21.【答案】C22.【答案】D23.【答案】D24.【答案】C25.【答案】D26.【答案】D27.【答案】A,C,D28.【答案】B,C,D29.【答案】A,D30.【答案】A,C,D 31.【答案】A,C,D 32.【答案】A,C,D 33.【答案】A,C 34.【答案】102135.【答案】n(n+1)236.【答案】4 37.【答案】n 4(n+1) 38.【答案】n+1;[−163,5] 39.【答案】①②③ 40.【答案】①②④ 41.【答案】①②③。
数列大题压轴练-新高考数学复习分层训练(新高考通用)1.(2023·云南曲靖·宣威市第七中学校考模拟预测)记n S 为数列{}n a 的前n 项和,n T 为数列{}n S 的前n 项和,已知2n n S T +=.(1)求证:数列{}n S 是等比数列;(2)求数列{}n na 的前n 项和n A .2.(2023·辽宁铁岭·校联考模拟预测)已知数列{}n a 中,11a =,214a =,且1(1)(2,3,4,)nn na n n a n a +=-=⋅⋅⋅-.(1)设*111()n n b n N a +=-∈,试用n b 表示1n b +,并求{}n b 的通项公式;(2)设*1sin 3()cos cos n n n n c N b b +=∈,求数列{}n c 的前n 项和n S .3.(2023·湖南株洲·统考一模)数列{}n a 满足13a =,212n n n a a a +-=.(1)若21n bn a =+,求证:{}n b 是等比数列.(2)若1n nnc b =+,{}n c 的前n 项和为n T ,求满足100n T <的最大整数n .4.(2023·河北衡水·河北衡水中学校考模拟预测)已知数列{}n a 满足21n n n a xa ya ++=+()N n +∈,11a =,22a =,n S 为数列{}n a 前n 项和.(1)若2x =,1y =-,求n S 的通项公式;(2)若1x y ==,设n T 为n a 前n 项平方和,证明:214n n n T S S -<恒成立.5.(2023·山西朔州·怀仁市第一中学校校考二模)已知数列{}n a 满足13a =,且12,1,n n na n a a n +⎧=⎨-⎩是偶数是奇数.(1)设221n n n b a a -=+,证明:{}3n b -是等比数列;(2)设数列{}n a 的前n 项和为n S ,求使得不等式2022n S >成立的n 的最小值.6.(2022春·河北衡水·高三校联考阶段练习)已知正项数列{}n a 的前n 项和为n S ,且满足11a =,23a =,2132n n n a a a ++=-,数列{}n c 满足()22221232341n c c c n c n +++++= .2024年高考数学专项突破数列大题压轴练(解析版)(1)求出{}n a ,{}n c 的通项公式;(2)设数列()()1221log 1n n c n a +⎧⎫⋅+⎪⎪⎨⎬+⎡⎤⎪⎪⎣⎦⎩⎭的前n 项和为n T ,求证:516<n T .7.(2022秋·河北衡水·高三河北衡水中学校考阶段练习)已知数列{}n a 的前n 项和n S 满足36S =,2n n S n na =+,*n ∈N .(1)求{}n a 的通项公式;(2)数列{}n b ,{}n c ,{}n d 满足()21211n n n a b a +=+-,12121n n n n n c b b b b --= ,且2nn nc d n =⋅,求数列{}n d 的前n 项和n T .8.(2023·广东·校联考模拟预测)已知数列{}n a 的前n 项和为n S ,且312323n S S S nS n +++⋅⋅⋅+=.(1)求数列{}n a 的通项公式;(2)若n n b na =,且数列{}n b 的前n 项和为n T ,求证:当3n ≥时,()311421n n n T n +≤+--.9.(2022秋·山东青岛·高三山东省莱西市第一中学校考阶段练习)对于项数为m 的数列{}n a ,若满足:121m a a a ≤<<< ,且对任意1i j m ≤≤≤,i j a a ⋅与j ia a 中至少有一个是{}n a 中的项,则称{}n a 具有性质P .(1)如果数列1a ,2a ,3a ,4a 具有性质P ,求证:11a =,423a a a =⋅;(2)如果数列{}n a 具有性质P ,且项数为大于等于5的奇数,试判断{}n a 是否为等比数列?并说明理由.10.(2022秋·山东青岛·高三统考期末)记数列{}n a 的前n 项和为n S ,11a =,______.给出下列两个条件:条件①:数列{}n a 和数列{}1n S a +均为等比数列;条件②:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的两个条件中任选一个,补充在上面的横线上,完成下列两问的解答:(注:如果选择多个条件分别解答,按第一个解答计分.)(1)求数列{}n a 的通项公式;(2)记正项数列{}n b 的前n 项和为n T ,12b a =,23b a =,14n n n T b b +=⋅,求211(1)ni i i i b b +=⎡⎤-⎣⎦∑.11.(2022·湖北·黄冈中学校联考模拟预测)已知数列{}n a 满足0n a ≠,*N n ∈.(1)若2210n n n a a ka ++=>且0n a >.(ⅰ)当{}lg n a 成等差数列时,求k 的值;(ⅱ)当2k =且11a =,4a =2a 及n a 的通项公式.(2)若21312n n n n a a a a +++=-,11a =-,20a <,[]34,8a ∈.设n S 是{}n a 的前n 项之和,求2020S 的最大值.12.(2022秋·湖南长沙·高三校考阶段练习)已知数列{}n a 的前n 项和1122n n n S a -⎛⎫=--+ ⎪⎝⎭(n *∈N ),数列{}n b 满足2nn n b a =.(1)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(2)设数列{}n c 满足()()131n nn n a c n λ--=-(λ为非零整数,n *∈N ),问是否存在整数λ,使得对任意n *∈N ,都有1n n c c +>.13.(2022秋·湖南衡阳·高三衡阳市一中校考期中)已知n S 为数列{}n a 的前n 项和,25a =,14n n n S S a +=++;{}n b 是等比数列,29b =,1330bb +=,公比1q >.(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n a 和{}n b 的所有项分别构成集合A ,B ,将A B ⋃的元素按从小到大依次排列构成一个新数列{}n c ,求2012320T c c c c =++++ .14.(2022·浙江·模拟预测)已知正项数列{}n a 满足11a =,当2n ≥时,22121n n a a n --=-,{}n a 的前n 项和为n S .(1)求数列{}n a 的通项公式及n S ;(2)数列{}n b 是等比数列,q 为数列{}n b 的公比,且13b q a ==,记21n n n nS a c b-+=,证明:122733n c c c ≤++⋅⋅⋅+<15.(2022秋·广东广州·高三校联考阶段练习)已知数列{}n a 的前n 项和为n S ,且12a =,132n n S S +=+,数列{}n b 满足()1122,n n n b b b n++==,其中*n ∈N .(1)分别求数列{}n a 和{}n b 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n c 的等差数列,求数列{}n n b c 的前n 项和nT16.(2023·辽宁朝阳·校联考一模)已知数列{}n a 的前n 项和为()+N 1=∈+n nS n n ,数列{}n b 满足11b =,且()1+N 2+=∈+nn n b b n b (1)求数列{}n a 的通项公式;(2)求数列{}n b 的通项公式;(3)对于N n +∈,试比较1n b +与n a 的大小.17.(2022秋·广东深圳·高三校考阶段练习)记n S 为数列{}n a 的前n 项和,已知{}12,32n n a a S =-是公差为2的等差数列.(1)求{}n a 的通项公式;(2)若{}11,n n n n n a b b a a ++=的前n 项和为n T ,求证:14n T <.18.(2022秋·江苏常州·高三常州市第一中学校考阶段练习)已知正项数列{}n a满足)1,2n n a a n n -+-∈≥N ,11a =.数列{}n b 满足各项均不为0,14b =,其前n项的乘积112n n n T b -+=⋅.(1)求数列{}n a 通项公式;(2)设2log n n c b =,求数列{}n c 的通项公式;(3)记数列(){}1nn a -的前2m 项的和2m S ,求使得不等式21210m S c c c ≥+++L 成立的正整数m 的最小值.19.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考期中)已知数列{}n a 满足2123n n n a a a ++=+,112a =,232a =.(1)证明:数列{}1n n a a ++为等比数列,求{}n a 的通项公式.(2)若数列{}n a 的前n 项和为n S ,且()*127N 4n S n n λ⎛⎫+≥-∈ ⎪⎝⎭恒成立,求实数λ的取值范围.20.(2022秋·江苏南通·高三江苏省如东高级中学校考阶段练习)等差数列{}n a 的前n 项和为n S ,且4224,21n n S S a a ==+.数列{}n b 的前n 项和为n T ,且112n n na T ++=(1)求数列{}{},n n ab 的通项公式;(2)数列{}n c 满足cos ,,n n na n n cb n π⎧=⎨⎩为奇数为偶数,求21ni i c =∑.21.(2023秋·广东·高三校联考期末)已知数列1:A a ,2a ,…,n a ,…满足10a =,11i i a a +=+(1,2,,,i n = ),数列A 的前n 项和记为n S .(1)写出3S 的最大值和最小值;(2)是否存在数列A ,使得20221011S =如果存在,写出此时2023a 的值;如果不存在,说明理由.22.(2023秋·山东日照·高三校联考期末)已知数列{}n a 的各项均为非零实数,其前n 项和为(0)n n S S ≠,且21n n n n S a S a ++⋅=⋅.(1)若32S =,求3a 的值;(2)若1a a =,20232023a a =,求证:数列{}n a 是等差数列,并求其前n 项和.23.(2023秋·江苏南京·高三南京市第一中学校考期末)已知数列{}{},n n a b 满足222,1n n n n n a b a b +=-=.(1)求{}{},n n a b 的通项公式;(2)记数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:11121n n S n +≤-+-.24.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)已知数列{}n a 各项都不为0,12a =,24a =,{}n a 的前n 项和为n S ,且满足14n n n a a S +=.(1)求{}n a 的通项公式;(2)若12311231C C CC C n nn nnnn nn nb a a a a a --=+++⋅⋅⋅++,求数列112n n n n b b b ++⎧⎫+⎨⎬⎩⎭的前n 项和n T .25.(2023春·江苏南京·高三校联考阶段练习)已知数列{}n a 中11a =,其前n 项和记为n S ,且满足()()1232n n S S S n S ++⋅⋅⋅+=+.(1)求数列()1n S n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的通项公式;(2)设无穷数列1b ,2b ,…n b ,…对任意自然数m 和n ,不等式1m n m n nb b b m a +--<+均成立,证明:数列{}n b 是等差数列.26.(2023·山东·沂水县第一中学校联考模拟预测)在如图所示的平面四边形ABCD 中,ABD △的面积是CBD △面积的两倍,又数列{}n a 满足12a =,当2n ≥时,()()1122n n n n BD a BA a BC --=++- ,记2nn n a b =.(1)求数列{}n b 的通项公式;(2)求证:2221211154n b b b +++< .27.(2022秋·湖北·高三校联考开学考试)已知数列{}n a 满足11a =,1n a +=中*N n ∈)(1)判断并证明数列{}n a 的单调性;(2)记数列{}n a 的前n 项和为n S ,证明:20213522S <<.28.(2022秋·山东潍坊·高三统考阶段练习)定义:对于任意一个有穷数列,在其每相邻的两项间都插入这两项的和,得到的新数列称为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和,得到二阶和数列,以此类推可以得到n 阶和数列,如{}2,4的一阶和数列是{}2,6,4,设n 阶和数列各项和为n S .(1)试求数列{}2,4的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想{}n S 的通项公式(无需证明);(2)设()()()()331321log 3log 3n n n n S n b S S +-+=-⋅-,{}n b 的前m 项和m T ,若20252m T >,求m 的最小值29.(2022秋·湖北黄冈·高三统考阶段练习)已知数列{}1,1,n n a a S =为数列{}n a 的前n 项和,且1(2)3n n S n a =+.(1)求数列{}n a 的通项公式;(2)求证:sin 0n n a a -<;(3)证明:212311111sin 1sin 1sin 1sin e n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ .30.(2023·浙江温州·统考二模)设n S 为正项数列{}n a 的前n 项和,满足222n n n S a a =+-.(1)求{}n a 的通项公式;(2)若不等式214na n a t ⎛⎫+ ⎪+⎝≥⎭对任意正整数n 都成立,求实数t 的取值范围;(3)设3ln(1)4n a n n b e +=(其中e 是自然对数的底数),求证:123426n n b b b b b b ++++<….数列大题压轴练-新高考数学复习分层训练(新高考通用)1.(2023·云南曲靖·宣威市第七中学校考模拟预测)记n S为数列{}n a的前n项和,n T为S T+=.数列{}n S的前n项和,已知2n n(1)求证:数列{}n S是等比数列;(2)求数列{}n na的前n项和n A.2.(2023·辽宁铁岭·校联考模拟预测)已知数列{}n a 中,11a =,24a =,且1(1)(2,3,4,)nn na n n a n a +=-=⋅⋅⋅-.(1)设*111()n n b n N a +=-∈,试用n b 表示1n b +,并求{}n b 的通项公式;(2)设*sin 3()cos cos n n c N b b =∈,求数列{}n c 的前n 项和n S .3.(2023·湖南株洲·统考一模)数列{}n a 满足13a =,212n n n a a a +-=.(1)若21n bn a =+,求证:{}n b 是等比数列.(2)若1nnc b =+,{}n c 的前n 项和为n T ,求满足100n T <的最大整数n .4.(2023·河北衡水·河北衡水中学校考模拟预测)已知数列{}n a 满足21n n n a xa ya ++=+()N n +∈,11a =,22a =,n S 为数列{}n a 前n 项和.(1)若2x =,1y =-,求n S 的通项公式;(2)若1x y ==,设n T 为n a 前n 项平方和,证明:214n n n T S S -<恒成立.5.(2023·山西朔州·怀仁市第一中学校校考二模)已知数列{}n a 满足13a =,且12,1,n n na n a a n +⎧=⎨-⎩是偶数是奇数.(1)设221n n n b a a -=+,证明:{}3n b -是等比数列;S>成立的n的最小值.(2)设数列{}n a的前n项和为n S,求使得不等式2022n6.(2022春·河北衡水·高三校联考阶段练习)已知正项数列{}n a 的前n 项和为n S ,且满足11a =,23a =,2132n n n a a a ++=-,数列{}n c 满足()22221232341n c c c n c n +++++= .(1)求出{}n a ,{}n c 的通项公式;(2)设数列()()1221log 1n n c n a +⎧⎫⋅+⎪⎪⎨⎬+⎡⎤⎪⎪⎣⎦⎩⎭的前n 项和为n T ,求证:516<n T .7.(2022秋·河北衡水·高三河北衡水中学校考阶段练习)已知数列{}n a 的前n 项和n S 满足36S =,2n n S n na =+,*n ∈N .(1)求{}n a 的通项公式;(2)数列{}n b ,{}n c ,{}n d 满足()21211n n n a b a +=+-,12121n n n n n c b b b b --= ,且2nn nc d n =⋅,求数列{}n d 的前n 项和n T .8.(2023·广东·校联考模拟预测)已知数列{}n a 的前n 项和为n S ,且312323n S S S nS n +++⋅⋅⋅+=.(1)求数列{}n a 的通项公式;(2)若n n b na =,且数列{}n b 的前n 项和为n T ,求证:当3n ≥时,()311421n n n T n +≤+-.9.(2022秋·山东青岛·高三山东省莱西市第一中学校考阶段练习)对于项数为m 的数列{}n a ,若满足:121m a a a ≤<<< ,且对任意1i j m ≤≤≤,i j a a ⋅与j ia a 中至少有一个是{}n a 中的项,则称{}n a 具有性质P .(1)如果数列1a ,2a ,3a ,4a 具有性质P ,求证:11a =,423a a a =⋅;(2)如果数列{}n a 具有性质P ,且项数为大于等于5的奇数,试判断{}n a 是否为等比数列?并说明理由.【答案】(1)证明见解析(2){}n a 为等比数列,理由见解析10.(2022秋·山东青岛·高三统考期末)记数列{}n a 的前n 项和为n S ,11a =,______.给出下列两个条件:条件①:数列{}n a 和数列{}1n S a +均为等比数列;条件②:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的两个条件中任选一个,补充在上面的横线上,完成下列两问的解答:(注:如果选择多个条件分别解答,按第一个解答计分.)(1)求数列{}n a 的通项公式;(2)记正项数列{}n b 的前n 项和为n T ,12b a =,23b a =,14n n n T b b +=⋅,求211(1)nii i i b b +=⎡⎤-⎣⎦∑.【答案】(1)12n n a -=(2)288n n+【分析】(1)选择条件①:先由{}1n S a +为等比数列结合等比中项列出式子,再设出等比数列{}n a 的公比,通过等比数列公式化简求值即可得出答案;选择条件②:先由1121222n n n n a a a na -+++⋅⋅⋅+=得出()()12121222212n n n n a a a n a n --++⋅⋅⋅+=-≥,两式做减即可得出()122n n a a n +=≥,再验证1n =时即可利用等比数列通项公式得出答案;(2)通过14n n n T b b +=⋅得出()1142n n n T b b n --⋅≥=,两式相减结合已知即可得出()1142n n b b n +--=≥,即数列{}n b 的奇数项、偶数项分别都成公差为4的等差数列,将211(1)nii i i b b+=⎡⎤-⎣⎦∑转化即可得出答案.【详解】(1)选条件①:数列{}1n S a +为等比数列,()()()2211131S a S a S a ∴+=++,即()()2121123222a a a a a a +=++,11a = ,且设等比数列{}n a 的公比为q ,()()22222q q q ∴+=++,解得2q =或0q =(舍),1112n n n a a q --∴==,选条件②:1121222n n n n a a a na -+++⋅⋅⋅+= ①,()()1212122212n n n n a a a n a n ---++⋅⋅⋅+=-≥∴,即()()12121222212n n n n a a a n a n --++⋅⋅⋅+=-≥ ②,由①②两式相减得:()()12221n n n n a na n a +=-≥-,即()122n n a a n +=≥,令1121222n n n n a a a na -+++⋅⋅⋅+=中1n=得出212a a =也符合上式,故数列{}n a 为首项11a =,公比2q =的等比数列,则1112n n n a a q --==,(2)由第一问可知,不论条件为①还是②,都有数列{}n a 为首项11a =,公比2q =的等比数列,即12n n a -=,11.(2022·湖北·黄冈中学校联考模拟预测)已知数列{}n a 满足0n a ≠,*N n ∈.(1)若2210n n n a a ka ++=>且0n a >.(ⅰ)当{}lg n a 成等差数列时,求k 的值;(ⅱ)当2k =且11a =,4a =2a 及n a 的通项公式.(2)若21312n n n n a a a a +++=-,11a =-,20a <,[]34,8a ∈.设n S 是{}n a 的前n 项之和,求2020S 的最大值.12.(2022秋·湖南长沙·高三校考阶段练习)已知数列{}n a 的前n 项和1122n n n S a -⎛⎫=--+ ⎪⎝⎭(n *∈N ),数列{}n b 满足2nn n b a =.(1)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(2)设数列{}n c 满足()()131n nn n a c n λ--=-(λ为非零整数,n *∈N ),问是否存在整数λ,使得对任意n *∈N ,都有1n n c c +>.13.(2022秋·湖南衡阳·高三衡阳市一中校考期中)已知n S 为数列{}n a 的前n 项和,25a =,14n n n S S a +=++;{}n b 是等比数列,29b =,1330bb +=,公比1q >.(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n a 和{}n b 的所有项分别构成集合A ,B ,将A B ⋃的元素按从小到大依次排列构成一个新数列{}n c ,求2012320T c c c c =++++ .【答案】(1)43n a n =-,3nn b =(2)660【分析】(1)将14n n n S S a +=++移项作差可得{}n a 是等差数列,结合25a =可求出数列{}n a 的通项公式,将1,b q 代入等式计算,即可求出数列{}n b 的通项公式;(2)由2077a =可判断前20项中最多含有123,,b b b 三项,排除23b a =可确定前20项中14.(2022·浙江·模拟预测)已知正项数列{}n a 满足11a =,当2n ≥时,22121n n a a n --=-,{}n a 的前n 项和为n S .(1)求数列{}n a 的通项公式及n S ;(2)数列{}n b 是等比数列,q 为数列{}n b 的公比,且13b q a ==,记21n n n nS a c b -+=,证明:122733n c c c ≤++⋅⋅⋅+<15.(2022秋·广东广州·高三校联考阶段练习)已知数列{}n a 的前n 项和为n S ,且12a =,132n n S S +=+,数列{}n b 满足()1122,n n n b b b n++==,其中*n ∈N .(1)分别求数列{}n a 和{}n b 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n c 的等差数列,求数列{}n n b c 的前n 项和nT【答案】(1)1*(2)3n n a n -=⋅∈N ,()*)1(n b n n n =+∈N (2)()*)121(3n n T n n =+-∈N 【分析】(1)由132n n S S +=+可得12)3(2n n S S n -=+≥,两式作差即可得数列{}n a 的递推关系,即可求通项,最后验证1a 是否符合即可;数列{}n b 利用累乘法即可求,最后验证1b 是否符合即可;(2)由题,由等差数列的性质得()11n n n a a n c +-=+,即可求出n c 的通项公式,最后利用错位相减法求n T 即可【详解】(1)由132n n S S +=+可得12)3(2n n S S n -=+≥,两式相减可得13(2)n n a a n +=≥,故数列{}n a 从第3项开始是以首项为2a ,公比3q =的等比数列.又由已知132n n S S +=+,令1n =,得213+2S S =,即12132a a a +=+,得21226a a =+=,故123)2(n n a n -=⋅≥;又12a =也满足上式,则数列{}n a 的通项公式为1*(2)3n n a n -=⋅∈N ;16.(2023·辽宁朝阳·校联考一模)已知数列{}n a 的前n 项和为()+N 1=∈+n nS n n ,数列{}n b 满足11b =,且()1+N 2+=∈+nn n b b n b (1)求数列{}n a 的通项公式;(2)求数列{}n b 的通项公式;(3)对于N n +∈,试比较1n b +与n a 的大小.17.(2022秋·广东深圳·高三校考阶段练习)记n S 为数列{}n a 的前n 项和,已知{}12,32n n a a S =-是公差为2的等差数列.(1)求{}n a 的通项公式;(2)若{}1,n n n a b b a a +=的前n 项和为n T ,求证:14n T <.18.(2022秋·江苏常州·高三常州市第一中学校考阶段练习)已知正项数列{}n a 满足)1,2n n a a n n -+-∈≥N ,11a =.数列{}n b 满足各项均不为0,14b =,其前n项的乘积112n n n T b -+=⋅.(1)求数列{}n a 通项公式;(2)设2log n n c b =,求数列{}n c 的通项公式;(3)记数列(){}1nn a -的前2m 项的和2m S ,求使得不等式21210m S c c c ≥+++L 成立的正整数m 的最小值.19.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考期中)已知数列{}n a满足2123n n n a a a ++=+,112a =,232a =.(1)证明:数列{}1n n a a ++为等比数列,求{}n a 的通项公式.(2)若数列{}n a 的前n 项和为n S ,且()*127N 4n S n n λ⎛⎫+≥-∈ ⎪⎝⎭恒成立,求实数λ的取值范围.20.(2022秋·江苏南通·高三江苏省如东高级中学校考阶段练习)等差数列{}n a 的前n 项和为n S ,且4224,21n n S S a a ==+.数列{}n b 的前n 项和为n T ,且112n n na T ++=(1)求数列{}{},n n ab 的通项公式;(2)数列{}n c 满足cos ,,n n na n n cb n π⎧=⎨⎩为奇数为偶数,求21ni i c =∑.21.(2023秋·广东·高三校联考期末)已知数列1:A a ,2a ,…,n a ,…满足10a =,11i i a a +=+(1,2,,,i n = ),数列A 的前n 项和记为n S .(1)写出3S 的最大值和最小值;(2)是否存在数列A ,使得20221011S =如果存在,写出此时2023a 的值;如果不存在,说明理由.22.(2023秋·山东日照·高三校联考期末)已知数列{}n a 的各项均为非零实数,其前n 项和为(0)n n S S ≠,且21n n n n S a S a ++⋅=⋅.(1)若32S =,求3a 的值;(2)若1a a =,20232023a a =,求证:数列{}n a 是等差数列,并求其前n 项和.23.(2023秋·江苏南京·高三南京市第一中学校考期末)已知数列{}{},n n a b 满足222,1n n n n n a b a b +=-=.(1)求{}{},n n a b 的通项公式;(2)记数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:11121n n S n +≤-+-.24.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)已知数列{}n a 各项都不为0,12a =,24a =,{}n a 的前n 项和为n S ,且满足14n n n a a S +=.(1)求{}n a 的通项公式;(2)若12311231C C CC C n nn nnnn nn nb a a a a a --=+++⋅⋅⋅++,求数列112n n n n b b b ++⎧⎫+⎨⎬⎩⎭的前n 项和n T .25.(2023春·江苏南京·高三校联考阶段练习)已知数列{}n a 中11a =,其前n 项和记为n S ,且满足()()1232n n S S S n S ++⋅⋅⋅+=+.(1)求数列()1n S n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的通项公式;(2)设无穷数列1b ,2b ,…n b ,…对任意自然数m 和n ,不等式1m n m n nb b b m a +--<+均成立,证明:数列{}n b 是等差数列.26.(2023·山东·沂水县第一中学校联考模拟预测)在如图所示的平面四边形ABCD 中,ABD △的面积是CBD △面积的两倍,又数列{}n a 满足12a =,当2n ≥时,()()1122n n n n BD a BA a BC--=++- ,记2nn n a b =.(1)求数列{}n b 的通项公式;(2)求证:22211154b b b +++< .(2)由(1)可得:当1n =时,则1b 当2n ≥时,可得()(2211212n b n n=<-则222121111111114223nb b b ⎛+++=+-+- ⎝L 27.(2022秋·湖北·高三校联考开学考试)已知数列{}n a 满足11a =,1n a +=中*N n ∈)(1)判断并证明数列{}n a 的单调性;(2)记数列{}n a 的前n 项和为n S ,证明:20213522S <<.⎫⎪⎪⎪28.(2022秋·山东潍坊·高三统考阶段练习)定义:对于任意一个有穷数列,在其每相邻的两项间都插入这两项的和,得到的新数列称为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和,得到二阶和数列,以此类推可以得到n 阶和数列,如{}2,4的一阶和数列是{}2,6,4,设n 阶和数列各项和为n S .(1)试求数列{}2,4的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想{}n S 的通项公式(无需证明);(2)设()()()()331321log 3log 3n n n n S n b S S +-+=-⋅-,{}n b 的前m 项和m T ,若20252m T >,求m 的最小值【答案】(1)230S =,384S =,133n n S +=+(2)7【分析】(1)根据123,,S S S 进行猜想,结合等比数列的知识进而求解,并进行推导.(2)利用裂项求和法求得m T ,由此列不等式,从而求得m 的最小值.【详解】(1)一阶和数列:{}2,6,4,对应112S =;二阶和数列:{}2,8,6,10,4,对应230S =;三阶和数列:{}2,10,8,14,6,16,10,14,4,对应384S =;故猜想136n n S S -=-,()1333n n S S --=-,所以数列{}3n S -是首项为139S -=,公比为3的等比数列,所以11393,33n n n n S S -+-=⋅=+.下面证明136n n S S -=-:设112124n m m S a a a a --=++++++ ,则()()()()1112112244n m m m m m S a a a a a a a a a --=+++++++++++++29.(2022秋·湖北黄冈·高三统考阶段练习)已知数列{}1,1,n n a a S =为数列{}n a 的前n 项和,且1(2)3n n S n a =+.(1)求数列{}n a 的通项公式;(2)求证:sin 0n n a a -<;(3)证明:212311111sin 1sin 1sin 1sin e n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ .30.(2023·浙江温州·统考二模)设n S 为正项数列{}n a 的前n 项和,满足222n n n S a a =+-.(1)求{}n a 的通项公式;(2)若不等式214na n a t ⎛⎫+ ⎪+⎝≥⎭对任意正整数n 都成立,求实数t 的取值范围;(3)设3ln(1)4n a n nb e+=(其中e 是自然对数的底数),求证:123426n n b b b b b b ++++<….。
全国各地数学模拟试卷《数列》题集锦1.已知数列{n a }中,111,22n n a n a a +=-,点()在直线y=x 上,其中n=1,2,3…. (1)令11n n n b a a ,+=--求证数列{}n b 是等比数列; (2)求数列{}的通项;n a⑶ 设分别为数列、n n T S {}、n a {}n b 的前n 项和,是否存在实数λ,使得数列n n S T n λ+⎧⎫⎨⎬⎩⎭为等差数列?若存在,试求出λ.若不存在,则说明理由。
解:(I )由已知得 111,2,2n n a a a n +==+2213313,11,4424a a a =--=--=- 又11,n n n b a a +=--1211,n n n b a a +++=--11112111(1)111222.1112n n n n n n n n n n n n n n a n a n a a b a a b a a a a a a +++++++++++-----∴====------ {}n b ∴是以34-为首项,以12为公比的等比数列.(II)由(I)知,13131(),4222n n n b -=-⨯=-⨯1311,22n n n a a +∴--=-⨯21311,22a a ∴--=-⨯ 322311,22a a --=-⨯⋅⋅⋅⋅⋅⋅11311,22n n n a a --∴--=-⨯将以上各式相加得:1213111(1)(),2222n n a a n -∴---=-++⋅⋅⋅+11111(1)31313221(1)(1) 2.12222212n n n n a a n n n ---∴=+--⨯=+---=+--32.2n n a n ∴=+-(III )解法一:存在2λ=,使数列{}n nS T nλ+是等差数列. 12121113()(12)2222n n n S a a a n n =++⋅⋅⋅+=++⋅⋅⋅++++⋅⋅⋅+-11(1)(1)22321212n n n n -+=⨯+--2213333(1) 3.2222n n n n n n --=-+=-++ 12131(1)313342(1).1222212n n n n n T b b b +--=++⋅⋅⋅+==--=-+- 数列{}n n S T n λ+是等差数列的充要条件是,(n nS T An B A n λ+=+、B 是常数)即2,n n S T An Bn λ+=+又2133333()2222n n n n n n S T λλ+-+=-+++-+2313(1)(1)222n n n λ-=+--∴当且仅当102λ-=,即2λ=时,数列{}n nS T nλ+为等差数列. 解法二:存在2λ=,使数列{}n nS T nλ+是等差数列. 由(I )、(II )知,22n n a b n +=-(1)222n n n S T n +∴+=- (1)222n nn n n n n T T S T n nλλ+--++=322n n T n λ--=+ 又12131(1)313342(1)1222212n n n n n T b b b +--=++⋅⋅⋅+==--=-+- 13233()222n n n S T n n n λλ++--=+-+∴当且仅当2λ=时,数列{}nn S T n λ+是等差数列. 2.已知等比数列{}n a 的各项均为正数,且公比不等于1,数列{}n b 对任意正整数n ,均有:1221223125()log ()log ()log 0n n n n n n b b a b b a b b a ++++-⋅+-+-=成立,又171,13b b ==。
数学《数列》复习资料一、选择题1.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A .4B .19C .20D .23【答案】D 【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=, 解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D .【点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.2.若{}n a 为等差数列,n S 是其前n 项和,且11223S π=,则6tan()a 的值为( )A B .C D .【答案】B 【解析】 【分析】由11162a a a +=,即可求出6a 进而求出答案. 【详解】∵()11111611221123a a S a π+=== ,∴623a π=,()62tan tan 3a π⎛⎫==⎪⎝⎭故选B. 【点睛】本题主要考查等差数列的性质,熟记等差数列的性质以及等差数列前n 项和性质即可,属于基础题型.3.数列{}n a 满足12a =,对于任意的*n N ∈,111n na a +=-,则2018a =( ) A .-1 B .12C .2D .3【答案】A 【解析】 【分析】先通过递推公式111n na a +=-,找出此周期数列的周期,再计算2018a 的值. 【详解】111n na a +=-,2111111111n n n na a a a ++∴===----, 32111111n nn n a a a a ++∴===-⎛⎫-- ⎪⎝⎭,故有3n n a a +=,则20183672221111a a a a ⨯+====-- 故选:A 【点睛】本题考查根据数列递推公式求数列各项的值,属于中档题.4.设函数()mf x x ax =+的导数为()21f x x '=+,则数列()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和是( ) A .1nn + B .21nn + C .21nn - D .()21n n+ 【答案】B 【解析】 【分析】函数()mf x x ax =+的导函数()21f x x '=+,先求原函数的导数,两个导数进行比较即可求出m ,a ,利用裂项相消法求出()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和即可.【详解】1()21m f x mx a x -'=+=+,1a ,2m =,()(1)f x x x ∴=+,112()()(1)221f n n n n n ==-++, ∴111111122[()()()]2(1)1223111n nS n n n n =-+-++-=-=+++, 故选:B . 【点睛】本题考查数列的求和运算,导数的运算法则,数列求和时注意裂项相消法的应用.5.数列{}n a 的通项公式为()n a n c n N *=-∈.则“2c <”是“{}na 为递增数列”的( )条件. A .必要而不充分 B .充要C .充分而不必要D .即不充分也不必要【答案】A 【解析】 【分析】根据递增数列的特点可知10n n a a +->,解得12c n <+,由此得到若{}n a 是递增数列,则32c <,根据推出关系可确定结果. 【详解】 若“{}n a 是递增数列”,则110n n a a n c n c +-=+--->, 即()()221n c n c +->-,化简得:12c n <+, 又n *∈N ,1322n ∴+≥,32c ∴<, 则2c <{}n a 是递增数列,{}n a 是递增数列2c ⇒<,∴“2c <”是“{}n a 为递增数列”的必要不充分条件.故选:A . 【点睛】本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.6.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9C .10D .13【答案】C 【解析】【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >, 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.7.已知公比为q 的等比数列{}n a 的首项10a >,则“1q >”是“53a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据等比数列的性质可得530,0a a >>,若53a a >,可得21q >,然后再根据充分条件和必要条件的判断方法即可得到结果. 【详解】由于公比为q 的等比数列{}n a 的首项10a >, 所以530,0a a >>,若53a a >,则233a q a >,所以21q >,即1q >或1q <-,所以公比为q 的等比数列{}n a 的首项10a >, 则“1q >”是“53a a >”的充分不必要条件, 故选:A. 【点睛】本题主要考查了等比数列的相关性质和充分必要条件的判断方法,熟练掌握等比数列的性质是解题的关键.8.已知数列{}n a 的前n 项和()2*23n S n n n N=+∈,则{}na 的通项公式为( )A .21n a n =+B .21n a n =-C .41n a n =+D .41n a n =-【答案】C 【解析】 【分析】首先根据223n S n n =+求出首项1a 的值,然后利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】因为223n S n n =+,所以,当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+,当1n =时,11235==+=a S ,上式也成立, 所以41n a n =+, 故选C. 【点睛】该题考查的是有关数列的通项公式的求解问题涉及到的知识点有数列的项与和的关系,即11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,算出之后再判断1n =时对应的式子是否成立,最后求得结果.9.设数列是公差的等差数列,为前项和,若,则取得最大值时,的值为A .B .C .或D .【答案】C 【解析】,进而得到,即,数列是公差的等差数列,所以前五项都是正数,或时,取最大值,故选C.10.等差数列{}n a 中,n S 为它的前n 项和,若10a >,200S >,210S <,则当n =( )时,n S 最大. A .8 B .9C .10D .11【答案】C 【解析】 【分析】根据等差数列的前n 项和公式与项的性质,得出100a >且110a <,由此求出数列{}n a 的前n 项和n S 最大时n 的值. 【详解】等差数列{}n a 中,前n 项和为n S ,且200S >,210S <, 即()()120201*********a a S a a +==+>,10110a a ∴+>,()1212111212102a a S a +==<,所以,110a <,则100a >,因此,当10n =时,n S 最大. 故选:C. 【点睛】本题考查了等差数列的性质和前n 项和最值问题,考查等差数列基本性质的应用,是中等题.11.已知数列22333311313571351,,,,,,,...,,,, (2222222222)nn n ,则该数列第2019项是( ) A .1019892 B .1020192C .1119892D .1120192 【答案】C 【解析】 【分析】 由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.12.已知等差数列{}n a 的前n 项和为n S ,若23109a a a ++=,则9S =( ) A .3 B .9C .18D .27【答案】D 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵23109a a a ++=∴13129a d +=,即143a d += ∴53a = ∴1999()272a a S ⨯+== 故选D.13.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( )A .4B .3C.2 D .2【答案】D 【解析】 【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值.【详解】 解:11a =,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+. 得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2.故选:D . 【点睛】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.14.已知{}n a 是公差d 不为零的等差数列,其前n 项和为n S ,若348,,a a a 成等比数列,则A .140,0a d dS >>B .140,0a d dS <<C .140,0a d dS ><D .140,0a d dS <>【答案】B 【解析】 ∵等差数列,,,成等比数列,∴,∴,∴,,故选B.考点:1.等差数列的通项公式及其前项和;2.等比数列的概念15.在等比数列{}n a 中,已知259,243a a ==,那么{}n a 的前4项和为( ). A .81 B .120C .121D .192【答案】B 【解析】 【分析】根据352a q a =求出公比,利用等比数列的前n 项和公式即可求出. 【详解】35227a q a ==, ∴ 3q =∴ 4414(1)3(13)120113a q S q --===--.故选:B【点睛】本题主要考查了等比数列的通项公式,等比数列的前n 项和,属于中档题.16.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a =C .1024是三角形数D .123111121n n a a a a n +++⋯+=+ 【答案】C 【解析】 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.17.已知{}n a 是各项都为正数的等比数列,n S 是它的前n 项和,若47S =,821S =,则16S =( )A .48B .90C .105D .106【答案】C 【解析】 【分析】根据4841281612,,,S S S S S S S ---成等比数列即可求出16S . 【详解】由等比数列的性质得4841281612,,,S S S S S S S ---成等比数列, 所以1216127,14,21,S S S --成等比数列,所以121216162128,49,4956,105S S S S -=∴=∴-=∴=. 故选:C 【点睛】本题主要考查等比数列的性质,意在考查学生对这些知识的理解掌握水平.18.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=( )A .20152016 B .40322017C .40342017D .20162017【答案】B 【解析】 【分析】首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+;接下来利用累加法可求得()12n n n a +=,从而()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++的值.【详解】因为111n n n a a a n a n +=++=++, 所以11n n a a n +-=+, 用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭, 于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭121201*********⎛⎫==- ⎪⎝⎭. 故选:B. 【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.19.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,给出下列五个命题: ①公差0d <②110S <③120S >④数列{}n S 中的最大项为11S ⑤67a a >其中正确命题的个数是( )A .2B .3C .4D .5【答案】B【解析】【分析】先由条件确定数列第六项和第七项的正负,进而确定公差的正负,最后11S ,12S 的符号由第六项和第七项的正负判定.【详解】等差数列{}n a 中,6S 最大,且675S S S >>, ∴10a >,0d <,①正确;675S S S >>,∴60a >,70a <,67 0a a +>,∴160a d +<,150a d +>,6S 最大,∴④不正确;1111115511(5)0S a d a d =+=+>,12111267 126612()12()0S a d a a a a =+=+=+>,∴③⑤正确,②错误.故选:B .【点睛】本题考查等差数列的前n 项和的应用,考查逻辑思维能力和运算能力,属于常考题.20.《九章算术·均输》中有如下问题:“今有五人分十钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分10钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )A .43钱B .73钱C .83钱D .103钱 【答案】C【解析】【分析】依题意设甲、乙、丙、丁、戊所得钱分别为a ﹣2d ,a ﹣d ,a ,a +d ,a +2d ,由题意求得a =﹣6d ,结合a ﹣2d +a ﹣d +a +a +d +a +2d =5a =10求得a =2,则答案可求.【详解】解:依题意设甲、乙、丙、丁、戊所得钱分别为a ﹣2d ,a ﹣d ,a ,a +d ,a +2d ,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=10,∴a=2,则a﹣2d=a48 333aa+==.故选:C.【点睛】本题考查等差数列的通项公式,考查实际应用,正确设出等差数列是计算关键,是基础的计算题.。
数列综合大题归类目录【题型一】“函数型”裂项求和:基础型【题型二】“函数型”裂项求和:指数函数型【题型三】“函数型”裂项求和:等差裂和型【题型四】“函数型”裂项求和:指数型裂和【题型五】“函数型”裂项求和:同构仿写型【题型六】“函数型”裂项求和:三角函数裂项型【题型七】递推公式:分式型不动点【题型八】插入数型【题型九】数列跳项型【题型十】证明数列不等式【题型十一】新结构第19题型:差分密码型【题型一】“函数型”裂项求和:基础型基础原理:m pq =m q -p 1p -1q,如:12×4=14-212-14;基本题型:①1n n +1 =1n -1n +1;②12n -1 2n +1=1212n -1-12n +1 ;注意(避免掉坑)①分母分解因式:1n 2+3n=1n n +3 =131n -1n +3 ;②系数不相同就提系数:1n 2n +4=12⋅1n n +2 =12⋅121n -1n +2 ;③求和化简时,要写到“前三后二”,并且一定要强调每项加括号,这样容易观察剩余的时首尾项(或正负项)对应.(1)1n n +k=1k 1n -1n +k ;(2)1n +k +n=1k n +k -n ;(3)12n -1 2n +1=1212n -1-12n +1;(4)1n n +1 n +2 =121n n +1 -1n +1 n +2;分式型分子裂差法形如f n a n ⋅a n +1型,如果f n =λa n +1-a n ,则可以分子裂差:f n a n ⋅a n +1=λa n +1-a n a n ⋅a n +1=λ1a n -1a n +11(22·23·龙岩·二模)已知等差数列a n 的首项为1,公差d ≠0,前n 项和为S n ,且S nS 2n为常数.(1)求数列a n 的通项公式;(2)令b n =n a n a n +1-n +1a n +1a n +2,证明:b 1+b 2+b 3+⋯+b n <13.【答案】(1)a n =2n -1(2)证明见解析【分析】(1)由S nS 2n为常数,则n [1+1+(n -1)d ]22n [1+1+(2n -1)d ]2=2-d +nd4-2d +4nd为常数,即d =2,然后结合等差数列的通项公式求解即可;(2)由(1)可得b n =n a n a n +1-n +1a n +1a n +2=n (2n -1)(2n +1)-n +1(2n +1)(2n +3),然后累加求和即可得证.【详解】(1)依题意,得:S 1S 2=S 2S 4,即a 1a 1+a 2=a 1+a 2a 1+a 2+a 3+a 4所以,12+d =2+d4+6d,化简得:d (d -2)=0因为d ≠0,所以d =2所以a n =1+2(n -1)=2n -1经检验:S n S 2n =n 24n 2=14成立(2)因为a n =2n -1所以b n =n (2n -1)(2n +1)-n +1(2n +1)(2n +3)=144n (2n -1)(2n +1)-4(n +1)(2n +1)(2n +3)=1412n -1+12n +1 -12n +1+12n +3=1412n -1-12n +3 ,所以b 1+b 2+b 3+⋯+b n =14[1-15 +13-17 +15-19 +⋯+12n -5-12n -1 +12n -3-12n +1 +12n -1-12n +3 ]=141+13-12n +1-12n +3 =1443-12n +1-12n +3 <13.2(22·23·秦皇岛·模拟预测)设等比数列a n 的前n 项和为S n ,数列b n 为等差数列,且公差d ≠0,a 1=b 1=2,a 3=b 3,S 3=b 5.(1)求数列a n 的通项公式以及前n 项和S n ;(2)数列2n +1n 2b n +4 2的前n 项和为T n ,求证:T n≤19.【答案】(1)a n =2n ,S n =2n +1-2(2)证明见解析【分析】(1)利用等差数列通项公式运算、等比数列通项公式和求和公式运算即可求解.(2)利用裂项相消法求出T n =19×1-1n +1 2,而1-1n +1 2<1,从而得出证明.【详解】(1)设a n 的公比为q ,由题意,可得a 1q 2=b 1+2d a 1+a 1q +a 1q 2=b 1+4d ,解得q =2d =3 ,所以a n =2n,所以S n =2×1-2n 1-2=2n +1-2;(2)由(1)得b n =2+3n -1 =3n -1,所以2n +1n 2b n +4 2=2n +1n 2(3n +3)2=2n +19n 2(n +1)2=191n 2-1(n +1)2,所以T n =b 1+b 2+⋯+b n =19×1-122 +122-132+⋯+1n 2-1(n +1)2=19×1-1n +1 2 ,因为1-1n +12<1,所以T n ≤19,得证.3(2024下·福建·高三校联考开学考试)已知正项数列a n 中,a 1=1,a n +1=a n +2a n +1.(1)求数列a n 的通项公式;(2)记数列b n =2a n +1a n a n +1的前n 项和S n ,求满足S n <99100的正整数n 的集合.【答案】(1)a n =n 2(2)n ∈N *|1≤n ≤8【分析】(1)由题意,可得到数列a n 是公差为1的等差数列,进而得到数列a n 的通项公式;(2)由(1)可得数列b n 的通项公式,利用裂项相消法即可求出S n ,进而解不等式.【详解】(1)由a n +1=a n +2a n +1,有a n +1=a n +1 2,即a n +12=a n +1 2,因为数列a n 是正项数列,所以a n +1=a n +1,即a n +1-a n =1,可得数列a n 是首项为1,公差为1的等差数列,所以a n =a 1+n -1=n ,故数列a n 的通项公式为a n =n 2;(2)由(1)可得b n =2n +1n 2n +1 2=n +1 2-n 2n 2n +1 2=1n 2-1n +12.所以S n =1-122+122-132+⋅⋅⋅+1n 2-1n +1 2 =1-1n +12,故不等式S n <99100可化为1-1n +1 2<99100,解得0<n <9,所以满足S n <99100的正整数n 的集合为n ∈N *|1≤n ≤8 .【题型二】“函数型”裂项求和:指数函数型指数裂项法形如mq n +r +t hq n +b hq n +1+b 型,如果mq n +r +t =λhq n +b -hq n +1+b ,则可以分子裂差:mq n +r +t hq n +b hq n +1+b=λhq n +1+b -hq n +bhqn+b hq n +1+b=λ1hq n +b -1hq n +1+b1(2023·广西玉林·校联考模拟预测)记S n 为数列a n 的前n 项和,已知a 1=2,a n +1=S n +n .(1)证明:当n ≥2时,数列a n +1 是等比数列,并求数列a n 的通项公式;(2)设b n =2n +1a n +1a n +2,数列b n 的前n 项和为T n ,证明:T n <13.【答案】(1)证明见解析,a n =2,n =12n-1,n ≥2(2)证明见解析【分析】(1)令n =1可求得a 2的值,当n ≥2时,由a n +1=S n +n ,可得a n =S n -1+n -1,两式作差,结合等比数列的定义可证得结论成立,据此可求得数列a n 的通项公式;(2)b n =12n +1-1-12n +2-1,利用裂项相消法可证得结论成立.【详解】(1)证明:因为a 1=2,a n +1=S n +n ,S n 为数列a n 的前n 项和,当n =1时,a 2=S 1+1=2+1=3,当n ≥2时,由a n +1=S n +n ①,可得a n =S n -1+n -1②,①-②可得a n +1-a n =a n +1,即a n +1=2a n +1,所以,a n +1+1=2a n +1 ,又因为a 2+1=3+1=4≠2a 1+1 ,则当n ≥2时,数列a n +1 是等比数列,其公比为2,即当n ≥2时,a n +1=a 2+1 ⋅2n -2=4×2n -2=2n ,则a n =2n -1,a 1=2不满足a n =2n -1,所以,a n =2,n =12n -1,n ≥2.(2)证明:b n =2n +1a n +1a n +2=2n +12n +1-1 2n +2-1=12n +1-1-12n +2-1,则T n =b 1+b 2+⋯+b n =122-1-123-1 +123-1-124-1 +124-1-125-1 +⋯+12n +1-1-12n +2-1=13-12n +2-1<13.综上,对任意的n ∈N ∗,T n <13.2(2023上·海南海口·高三校考阶段练习)在数列a n a n ≠0 和b n 中,a 1=1,b 1=2,且a n +1b n 是a n a n +1和a n b n +1的等差中项.(1)设c n =b na n,求证:数列c n -1 为等比数列;(2)若b n =3×2n2n +1,a n 的前n 项和为S n ,求证:S n <3.【答案】(1)证明见解析(2)证明见解析【分析】(1)由等差中项整理得a n b n +1=2a n +1b n -a n a n +1,两边同时除以a n a n +1,得c n +1-1=2(c n -1)即可证明;(2)应用裂项相消法即可求解.【详解】(1)依题a n +1b n 是a n a n +1和a n b n +1的等差中项,则2a n +1b n =a n a n +1+a n b n +1,即a n b n +1=2a n +1b n -a n a n +1,两边同时除以a n a n+1a n≠0,得b n+1a n+1=2⋅b na n-1,即c n+1=2c n-1,则c n+1-1=2(c n-1),由c1-1=b1a1-1=1≠0,所以数列c n-1是以1为首项,2为公比的等比数列.(2)由(1)得c n-1=2n-1,则c n=2n-1+1,则a n=b nc n=3×2n(2n-1+1)(2n+1)=612n-1+1-12n+1,则S n=612-13+13-15+⋯+12n-2+1-12n-1+1+12n-1+1-12n+1=612-1 2n+1=3-62n+1,因为n∈N∗,则62n+1>0,故S n<3.3(2023上·湖南长沙·高二长沙一中校考阶段练习)已知数列a n的首项a1=4,且满足a n+1=3a n -2n∈N*.(1)求证:数列a n-1为等比数列;(2)记b n=3na n⋅a n+1,求数列b n的前n项和S n.【答案】(1)证明见解析(2)S n=18-12⋅3n+1+2【分析】(1)由题设递推式可得a n+1-1=3a n-1n∈N*,根据等比数列的定义,结合已知条件,即可证a n-1为等比数列;(2)由(1)有a n=3n+1,进而求b n,利用裂项相消法求S n.【详解】(1)由a n+1=3a n-2n∈N*得a n+1-1=3a n-1n∈N*,又a1-1=3,所以a n-1是首项为3,公比为3的等比数列.(2)由(1)知,a n-1=3×3n-1=3n,所以a n=3n+1所以b n=3n3n+1⋅3n+1+1=12×13n+1-13n+1+1,S n=b1+b2+b3+⋯+b n=12×131+1-132+1+132+1-133+1+⋯+13n+1-13n+1+1=12×131+1-13n+1+1=18-12⋅3n+1+2.【题型三】“函数型”裂项求和:等差裂和型正负型:等差裂和型形如-1n⋅f na n⋅a n+1型,如果f n =λa n+1-a n,则可以分子裂差:-1 n⋅f na n⋅a n+1=-1n⋅λa n+1-a na n⋅a n+1=-1n⋅λ1a n-1a n+11(2023·河北唐山·三模)设S n 为数列a n 的前n 项和,a n >0,a 2n +2a n +1=4S n .(1)求数列a n 的通项公式;(2)求数列-1n4na n a n +1的前n 项和T n.【答案】(1)a n =2n -1(2)T n =-1+(-1)n12n +1【分析】(1)利用S n 与a n 的关系计算求通项;(2)结合(1)的结论,利用裂项相消法计算即可.【详解】(1)已知a 2n +2a n +1=4S n ①,当n =1时,a 1=1.当n ≥2时,a 2n -1+2a n -1+1=4S n -1②①-②得:a 2n +2a n -a 2n -1-2a n -1=4a n ,即a n +a n -1 a n -a n -1-2 =0.又a n >0,所以a n +a n -1≠0,a n -a n -1=2.所以数列a n 是以1为首项,2为公差的等差数列.所以a n =2n -1.(2)设b n =(-1)n 4n a n a n +1=(-1)n 4n 2n -1 2n +1=(-1)n 12n -1+12n +1 .T n =-1+13 +13+15 -15+17 +⋯+(-1)n 12n -1+12n +1 =-1+(-1)n 12n +1.2(2023·江苏镇江·二模)已知数列a n 满足:a 1=14,a n +1=nn +2a n.(1)求数列a n 的通项公式;(2)若b n =(-1)n (2n +1)a n ,求数列b n 的前n 项和S n .【答案】(1)a n =12n n +1(2)S n =-12+-1 n ⋅12n +2【分析】(1)运用累乘法计算;(2)运用裂项相消法求和.【详解】(1)由题意:a 2a 1=13,a 3a 2=24,a 4a 3=35,a 5a 4=46,⋯,a n +1a n =nn +2 ,∴a 2a 1×a 3a 2×a 4a 3×a 5a 4×⋯×a n +1a n =13×24×35×46×⋯×n n +2=2n +1 n +2,a n +1a 1=2n +1 n +2 ,a n +1=a 1×2n +1 n +2 =12n +1 n +2 ,a n =12n n +1 ,将n =1代入上式也成立,∴a n =12n n +1;(2)b n =-1 n 2n +1 a n =-1 n 2n +12n n +1=-1 n 1n +1n +1 ⋅12,S n =b 1+b 2+b 3+b 4+b 5+⋯+b n =12-1-12+12+13-13-14+⋅⋅⋅+-1 n ⋅1n +-1 n ⋅1n +1=12-1+-1 n ⋅1n +1 =-12+-1 n⋅12n +2.3(2023·湖南永州·三模)记正项数列a n 的前n 项积为T n ,且1=1-4.(1)证明:数列T n 是等差数列;(2)记b n =-1 n ⋅8n +6T n ⋅T n +1,求数列b n 的前2n 项和S 2n .【答案】(1)证明见解析(2)-8n 40n +25【分析】(1)根据题意得到T n T n -1=a n ,由1a n =1-4T n,化简得到T n -T n -1=4,求得T 1=5,结合等差数列的定义,即可求解;(2)由(1)可得T n =4n +1,得到b n =-1 n ⋅14n +1+14n +5,结合裂项法,即可求解.【详解】(1)证明:由题意得T n =a 1a 2⋯a n ,当n ≥2时,可得T n -1=a 1a 2⋯a n -1,可得Tn T n -1=a n ,(n ≥2),因为1a n =1-4T n ,所以T n -1T n =1-4T n,(n ≥2),即T n -1=T n -4(n ≥2),即T n -T n -1=4,(n ≥2),当n =1时,可得T 1=a 1,所以1T 1=1-4T 1,解得T 1=5,所以数列T n 是以5为首项,4为公差的等差数列.(2)解:由(1)可得T n =5+(n -1)×4=4n +1,所以b n =-1 n ⋅8n +6T n ⋅T n +1=-1 n ⋅8n +6(4n +1)(4n +5)=-1 n ⋅14n +1+14n +5 ,所以S 2n =-15+19+19+113 -113+117+⋯-18n -3+18n +1 +18n +1+18n +5 =-15+18n +5=-8n 40n +25.【题型四】“函数型”裂项求和:指数型裂和正负型:指数裂和型形如-1 n⋅mq n +r +t hq n +b hq n +1+b型,如果mq n +r +t =λhq n +b +hq n +1+b ,则可以分子裂和:-1 n ⋅mq n +r +t hq n +b hq n +1+b =-1 n ⋅λhq n +1+b +hq n +b hq n +b hq n +1+b=-1 n ⋅λ1hq n +b +1hq n +1+b1(23·24上·湖北·期中)已知{a n }为等比数列,且a 2+a 3+a 4=14,a 2,a 3+1,a 4成等差数列.(1)求数列{a n }的通项公式;(2)当{a n }为递增数列时,b n =(-1)n 6a n +22n +1 2n +1+1 ,数列{b n }的前n 项和为T n ,若存在n ∈N ∗,m ≥T n ,求m 的取值范围.【答案】(1)a n =2n -1或a n =25-n (2)m ≥-815【分析】(1)运用等差中项的性质和等比数列通项公式基本量运算,解方程即可得到{a n }通项.(2)由{a n }递增可得a n =2n -1,对b n 通项进行裂项展开,当n 为偶数、奇数时分别求出T n 表达式,然后再分别求出T n的范围,由存在n∈N∗,m≥T n,即可求出m的取值范围.【详解】(1)设等比数列{a n}公比为q,由a2+a3+a4=14a2+a4=2a3+1⇒a3=4q=2或a3=4q=12,∴a n=2n-1或a n=25-n.(2)当{a n}为递增数列时,a n=2n-1所以b n=(-1)n3⋅2n+22n+12n+1+1=(-1)n12n+1+12n+1+1当n为偶数时,T n=-12+1+122+1+122+1+123+1+⋯+12n+1+12n+1+1=-13+12n+1+1在n∈N*上单调递减,∴T n∈-13,-29,当n为奇数时,T n=-12+1+122+1+122+1+123+1+⋯-12n+1+12n+1+1=-13-12n+1+1在n∈N*上单调递增,∴T n∈-815,-13,∴m≥-815.2(23·24上·黔东南·阶段练习)已知数列a n满足:a1=1,a n=2a n-1+1n≥2.(1)证明:a n+1是等比数列,并求a n的通项公式;(2)令b n=(-1)n(3n+2)n(n+1)a n+1+1,求b n的前n项和S n.【答案】(1)证明见解析,a n=2n-1(2)S n=(-1)n(n+1)∙2n+1-12【分析】(1)通过构造可证a n+1为等比数列,根据等比数列通项公式可得a n+1,然后可得a n;(2)将数列b n通项公式变形为b n=(-1)n1n∙2n+1(n+1)∙2n+1,直接求和可得.【详解】(1)证明:由a n=2a n-1+1(n≥2),所以a n+1=2a n-1+2=2(a n-1+1),所以{a n+1}是以a1+1=2为首项,公比为2的等比数列,所以a n+1=2n,即a n=2n-1(2)由(1)知:a n+1+1=2n+1,所以b n=(-1)n(3n+2)n(n+1)∙2n+1.又b n=(-1)n1n∙2n+1(n+1)∙2n+1,所以S n=-12+12·22+12·22+13·23-13·23+14·24+⋯+-1 n1n·2n+1n+1·2n+1=(-1)n(n+1)∙2n+1-123(22·23高二下·黑龙江哈尔滨·期中)已知数列a n满足a1=14,a n+1=3a n-4.(1)求a n的通项公式;(2)设b n=(-1)n a n3n+13n+1+1,数列b n的前n项和为T n,若存在n∈N*,使m≥T n,求m的取值范围.【答案】(1)a n=4×3n+2(2)-720,+∞【分析】(1)依题意可得a n+1-2=3a n-2,再结合等比数列的定义即可证明;(2)由(1)可得b n=(-1)n13n+1+1 3n+1+1,再分n为偶数和奇数两类情况并结合裂项求和法讨论即可.【详解】(1)证明:因为a n+1=3a n-4,所以a n+1-2=3a n-2,即a n+1-2a n-2=3n∈N*,因为a1=14,所以a1-2=12,故数列a n-2是以12为首项,3为公比的等比数列,所以a n-2=12×3n-1=4×3n,则a n=4×3n+2.(2)解:由(1)知a n=4×3n+2,所以b n=(-1)n a n3n+13n+1+1=(-1)n4×3n+23n+13n+1+1=(-1)n13n+1+13n+1+1.当n为偶数时,T n=-13+1-1 32+1+132+1+133+1+L+-13n++113n+1+13n+1+13n++1=-13+1+13n+1+1=-14+13n+1+1,因为T n=-14+13n+1+1是单调递减的,所以-14<T n≤-314.当n为奇数时,T n=-13+1-1 32+1+132+1+133+1+⋯+13n++1+13n+1+-13n+113n+1+1=-13+1-13n+1+1=-14-13n+1+1,又T n=-14-13n+1+1是单调递增的,因为13n+1+1>0,所以-720≤T n<-14.要使存在n∈N*,使m≥T n,只需m≥T nmin,即m≥-720,故m的取值范围是-720,+∞.【题型五】“函数型”裂项求和:同构仿写型 仿写规律:t>1①b na n⋅a n+1⋅t n⇒1a n⋅t n-1-1a n+1⋅t n=λb na n⋅a n+1⋅t n(可通分反解λ);②b n⋅t na n⋅a n+1⇒t n+1a n+1-t na n=λb n⋅t na n⋅a n+1(可通分反解λ)1(23·24上·甘南·期中)在数列a n中,a1=2且∀n∈N*,a n+1=3a n+2×3n.(1)求a n的通项公式;(2)设b n=a n+3na n a n+1,若b n的前n项和为S n,证明:S n<14.【答案】(1)a n=2n⋅3n-1,n∈N∗(2)证明见解析【分析】(1)根据题意,化简得到a n+13n+1-a n3n=23,得出数列a n3n为等差数列,结合等差数列的通项公式,进而求得数列a n的通项公式;(2)由a n=2n⋅3n-1,得到b n=121a n-1a n+1,结合裂项法求和,求得S n=14-14(n+1)⋅3n,进而证得S n<1 4.【详解】(1)解:由a n+1=3a n+2×3n,两边同除以3n+1,可得a n+13n+1=a n3n+23,即a n+13n+1-a n3n=23,因为a1=2,可得a13=23,所以数列a n3n是首项为23,公差为23的等差数列,可得a n3n=23+(n-1)×23=2n3,所以a n=2n3×3n=2n⋅3n-1,即数列a n的通项公式为a n=2n⋅3n-1,n∈N∗.(2)解:由a n=2n⋅3n-1,可得b n=a n+3na n a n+1=2n⋅3n-1+3n2n⋅3n-1⋅2(n+1)⋅3n=(2n+3)⋅3n-12n⋅3n-1⋅2(n+1)⋅3n=1212n⋅3n-1-12(n+1)⋅3n=121a n-1a n+1,所以数列b n的前n项和为S n=121a1-1a2+1a2-1a3+⋯+1an-1a n+1=121a1-1a n+1=1212-12(n+1)⋅3n=14-14(n+1)⋅3n,因为4(n+1)⋅3n>0,可得14-14(n+1)⋅3n<14,即S n<14.2(23·24上·合肥·阶段练习)在数1和3之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作T n,令a n=log3T n.(1)求数列a n的通项公式;(2)若b n=n+1⋅2n-1a n a n+1,求数列b n的前n项和S n.【答案】(1)a n=n+22(2)S n=2n+2n+3-43【分析】(1)利用等比数列的基本性质结合倒序相乘法可求得T n,结合对数的运算可得出数列a n的通项公式;(2)计算得出b n=-2n+1n+2+2n+2n+3,利用裂项相消法可求得S n.【详解】(1)解:在数1和3之间插入n个实数,使得这n+2个数构成递增的等比数列,设插入的这n个数分别为c1、c2、⋯、c n,由等比数列的性质可得c1c n=c2c n-1=⋯=c n c1=1×3=3,所以,T n=1⋅c1c2⋯c n⋅3 T n=3⋅c n c n-1⋯c1⋅1,所以,T2n =1⋅3⋅c1c n⋅c2c n-1⋅⋯⋅c n c1⋅1⋅3=3n+2,易知T n>0,所以,T n=3n+22,则an=log3T n=log33n+22=n+22.(2)解:b n =n +1 ⋅2n -1a n a n +1=n +1 ⋅2n -1n +2 n +34=n +1 ⋅2n +1n +2 n +3=2n +2 -n +3 ⋅2n +1n +2 n +3=-2n +1n +2+2n +2n +3,所以,S n =-223+234 +-234+245+⋯+-2n +1n +2+2n +2n +3 =2n +2n +3-43.3(23·24上·昆明·阶段练习)已知数列a n 满足a 1=2,a n +1=2n +1a n n ∈N * .(1)求数列a n 的通项公式;(2)设b n =log 2a 2n -n 2,数列b n +22n +1b n ⋅b n +1 的前n 项和为S n ,求证:38≤S n<12.【答案】(1)a n =2n n +12(2)证明见解析【分析】(1)运用累乘法求出a n 的通项公式;(2)先运用裂项法求出S n 的解析式,再运用缩放法证明.【详解】(1)由已知a 1=2,a n +1a n=2n +1n ∈N * ,所以a n =a n a n -1⋅a n -1a n -2⋯⋯a 2a 1⋅a 1=2n ⋅2n -1⋯⋯22⋅2=2n n +12n ≥2 ,当n =1时,a 1=2满足条件,所以a n =2n n +12;(2)由于b n =log 2a 2n -n 2=n ,所以b n +22n +1b n ⋅b n +1=n +22n +1n n +1 =1n ⋅2n -1n +1 2n +1,所以S n =11×2-12×22+12×22-13×23 +13×23-14×24+⋯+1n ⋅2n 1n +1 2n +,所以S n =11×2-1n +1 2n +1,显然S n 在N *上为增函数,S 1=11×2-12×22=38,∴S n ≥S 1=38,又S n =11×2-1n +12n +1<11×2=12,所以38≤S n <12;综上,a n =2n n +12.【题型六】“函数型”裂项求和:三角函数裂项型常见的三角函数裂项:1.正切型裂项:若a n +1-a n =α,tan α=m (特殊角),则tan α=tan a n +1-a n =tan a n +1-tan a n1+tan a n +1tan a n=m ,b n =tan a n +1tan a n =1mtan a n +1-tan a n -1;2.正余弦和与差公式应用裂项型:b n =sin1cos n cos (n -1)=sin [n -(n -1)]cos n cos (n -1)=sin n cos (n -1)-cos n sin (n -1)cos n cos (n -1)=tan n -tan (n -1)1(2023·山东威海·二模)已知2n +2个数排列构成以q n q n >1 为公比的等比数列,其中第1个数为1,第2n +2个数为8,设a n =log 2q n .(1)证明:数列1a n是等差数列;(2)设b n =tanπa n tan πa n +1,求数列b n 的前100项和S 100.【答案】(1)数列1a n是以公差为23的等差数列.1a n +1-1a n =23(2)-99【分析】(1)根据等比数列的性质分析可得a n =32n +1,再结合等差数列的定义分析证明;(2)根据两角差的正切公式整理得b n =-33tan πa n +1-tan πa n-1,结合裂项相消法运算求解.【详解】(1)由题意可得:q 2n +1n=81=8,且q n >1,可得q n =232n +1,所以a n =log 2232n +1=32n +1,可得1a n =2n +13,则1a n +1-1a n =2n +1 +13-2n +13=23,所以数列1a n是以公差为23的等差数列.(2)由(1)可得πa n +1-πa n =2π3,则tan 2π3=tan πa n +1-πa n=tan πa n +1-tan πan 1+tan πa n +1tan πan=-3,整理得b n =tanπa n tan πa n +1=-33tan πa n +1-tan πa n-1,则S 100=b 1+b 2+⋅⋅⋅+b 100=-33tan πa 2-tan πa 1 -1+-33tan πa 3-tan πa 2-1 +⋅⋅⋅+-33tan πa 101-tan πa 100-1=-33tanπa 2-tan πa 1 +tan πa 3-tan πa 2 +⋅⋅⋅+tan πa 101-tan πa 100-100=-33tan πa 101-tan πa 1-100=-33tan 203π3-tanπ -100=-33tan 68π-π3 -100=33tan π3-100=-99,所以数列b n 的前100项和S 100=-99.2(22·23高三上·山东济宁·期中)已知n ∈N *,抛物线y =-x 2+n 与x 轴正半轴相交于点A ,在点A 处的切线在y 轴上的截距为a n (1)求数列a n 的通项公式;(2)若b n =4n cos n πa n -1 a n +1,求数列b n 的前项和S n .【答案】(1)a n =2n ;(2)S n =-2n +22n +1,n =2k -1-2n 2n +1,n =2k,k ∈N ∗ .【分析】(1)利用导数的几何意义求出切线方程,再求出纵截距作答.(2)由(1)的结论求出b n,再分奇偶利用裂项相消法求解作答.【详解】(1)n∈N∗,抛物线与x轴正半轴的交点坐标为(n,0),由y=-x2+n求导得:y =-2x,因此抛物线在点A处的切线的斜率为-2n,切线方程为y=-2n(x-n),当x=0时,y=2n,所以a n=2n.(2)由(1)知,a n=2n,则b n=4n cos nπ(2n-1)(2n+1)=12n-1+12n+1cos nπ,当n为偶数时,S n=-1+1 3+13+15-15+17+17+19-⋯-12n-3+12n-1+1 2n-1+1 2n+1=-1+12n+1=-2n2n+1,当n为奇数时,S n=S n+1-b n+1=-1+12n+3-12n+1+12n+3=-1-12n+1=-2n+22n+1,S n=-2n+22n+1,n=2k-1-2n2n+1,n=2k,k∈N∗.3(22·23上·芜湖·期末)已知S n是数列a n的前n项和,2S n=n+1a n.且a1=1(1)求a n的通项公式;(2)设a0=0,已知数列b n满足b n=sin1cos a n cos a n-1,求b n的前n项的和T n【答案】(1)a n=n;(2)tan n.【分析】(1)利用给定的递推公式,结合a n=S n-S n-1,n≥2变形,构造数列求解作答.(2)由(1)的结论,利用差角的正弦公式变形,再利用错位相减法求解作答.【详解】(1)因为n∈N*,2S n=n+1a n,当n≥2时,2S n-1=na n-1,两式相减得:2a n=(n+1)a n-na n-1,即(n-1)a n=na n-1,变形得a nn=a n-1n-1,于是得数列a nn是常数列,因此a nn=a11=1,即a n=n,所以数列a n的通项公式是a n=n.(2)由(1)知,a n=n,b n=sin1cos n cos(n-1)=sin[n-(n-1)]cos n cos(n-1)=sin n cos(n-1)-cos n sin(n-1)cos n cos(n-1)=tan n-tan(n-1),所以T n=(tan1-tan0)+(tan2-tan1)+(tan3-tan2)+⋅⋅⋅+[tan n-tan(n-1)]=tan n-tan0=tan n.【题型七】递推公式:分式型不动点已知分式一次型数列递推关系a n+1=Ca n+DAa n+B求通项的问题解法:法一,化归法.当D=0时,递推关系两边取倒数,再裂项构造即可;当D≠0时,为了保持取倒数后分母一致性,通常可以令a n+1+x=Ca n+DAa n+B+x=C+xAa n+D+BxAa n+B,可由1x=C+AxD+Bx解得x的值,即可得到构造方向b n+1=tb nAa n+B,通过这样的转化将问题又化归为D=0的情形再求解.法二,特征根法求解.先构造特征方程x=Cx+DAx+B,解方程得根x1,x2,若x1≠x2,则a n-x2a n-x1为等比数列;若x1=x2,则1a n-x1为等差数列.1(22-23高三·河南·阶段练习)已知数列a n满足a1=0,a n+1=-a n-22a n+3,n∈N∗.(1)证明:数列1a n+1是等差数列;(2)证明:a2 ⋅a3 ⋅a4 ⋅⋅⋅⋅⋅a n+1>12n+1.【答案】(1)证明见解析.(2)证明见解析.【分析】(1)根据条件a1=0,a n+1=-a n-22a n+3,n∈N∗可得1a n+1+1=2+1a n+1,利用等差数列的定义即可证明结论;(2)利用(1)的结论可得a n=-2n+22n-1,即得|a n |=2n-22n-1,(n≥2,n∈N∗),利用作差法可得|a n|=2n-22n-1>2n-32n-2,由此可设S=a2 ⋅a3 ⋅a4 ⋅⋅⋅⋅⋅a n+1,即得S=23⋅45⋅67⋅⋅⋅⋅⋅2n2n+1,且S>12⋅34⋅56⋅⋅⋅⋅⋅2n-12n,两式相乘可证明结论.【详解】(1)证明:根据题意a1=0,a n+1=-a n-22a n+3,n∈N∗,可得a n+1+1=a n+12a n+3,则1a n+1+1=2a n+3a n+1=2+1a n+1,故1a n+1+1-1a n+1=2,1a1+1=10+1=1故数列1a n+1是以1为首项,2为公差的等差数列.(2)由(1)知,1a n+1=1+2(n-1)=2n-1,则a n=12n-1-1=-2n+22n-1,则|a n|=2n-22n-1,(n≥2,n∈N∗),由于2n-22n-1-2n-32n-2=(2n-2)2-(2n-3)(2n-1)(2n-1)(2n-2)=1(2n-1)(2n-2)>0,故|a n|=2n-22n-1>2n-32n-2,(n≥2,n∈N∗)设S=a2⋅a3 ⋅a4 ⋅⋅⋅⋅⋅a n+1,则S=23⋅45⋅67⋅⋅⋅⋅⋅2n2n+1,且S>12⋅34⋅56⋅⋅⋅⋅⋅2n-12n,则S2>23⋅45⋅67⋅⋅⋅⋅⋅2n2n+1⋅12⋅34⋅56⋅⋅⋅⋅⋅2n-12n=12n+1,故S>12n+1,∴a2 ⋅a3 ⋅a4 ⋅⋅⋅⋅⋅a n+1>12n+1.2(2024高三·全国·专题练习)在数列{a n}中,a1=4且a n+1=3a n+2a n+4,求数列{a n}的通项公式.【答案】a n=2n-1+5n-1 5n-1-2n-2【分析】法一,由a n+1+x=3a n+2a n+4+x=(x+3)a n+4x+2a n+4,令1x=x+34x+2,解得x1=-1,x2=2,即在等式两边同减去1,可构造出形式a n+1-1=2(a n-1)a n+4,从而两边再同取倒数可得1a n+1-1=12+52⋅1a n-1,由此配凑常数,可构造等比数列1a n-1+13进而求得等比数列通项,解an可得;法二,利用特征方程x=3x+2x+4有两个不等式根:x1=1,x2=-2,确定构造方向,先构造两个等式,再作比即可构造特殊数列,即可求得特殊数列的通项,再解出a n即可.【详解】法一,由a n+1=3a n+2a n+4两边减去1得,a n+1-1=3a n+2a n+4-1=2(a n-1)a n+4,两边取倒数得,1a n+1-1=a n+42(a n-1)=a n-1+52(a n-1)=12+52⋅1a n-1,两边同加13得,1a n+1-1+13=56+52⋅1a n-1=52⋅1a n-1+13,由a1=4,则1a1-1+13=23≠0,所以有1a n+1-1+131a n-1+13=52,故1a n-1+13是以23为首项,52为公比的等比数列.所以1a n-1+13=23⋅52n-1,故a n-1=3⋅2n-12⋅5n-1+2n-1,解得a n=2n-1+5n-15n-1-2n-2.法二:因为a n+1=3a n+2a n+4,两边同减去1得a n+1-1=3a n+2a n+4-1=2a n-2a n+4①,两边同加上2得a n+1+2=3a n+2a n+4+2=5a n+10a n+4②,由已知a1=4,则a1-1=3≠0,a1+2=6≠0,①②两式相除得,a n+1-1 a n+1+2=2a n-15(a n+2),且a1-1a1+2=12≠0,所以,数列a n-1a n+2是以12为首项,25为公比的等比数列,∴a n-1a n+2=a1-1a1+2·25n-1=12⋅25 n-1,∴a n=2n-1+5n-15n-1-2n-2.3(2023高三·全国·专题练习)已知数列a n满足性质:对于n∈N,a n-1=a n+42a n+3,且a1=3,求{a n}的通项公式.【答案】a n =(-5)n -42+(-5)n【分析】根据特征方程的根,构造数列c n 的通项公式,再得到数列a n 的通项公式.【详解】依定理作特征方程x =x +42x +3,变形得2x 2+2x -4=0,其根为λ1=1,λ2=-2.故特征方程有两个相异的根,使用定理2的第(2)部分,则有c n =a 1-λ1a 1-λ2⋅p -λ1r p -λ2rn -1=3-13+2⋅1-1⋅21+2⋅2n -1,n ∈N ∴c n =25-15n -1,n ∈N .∴a n =λ2c n -λ1c n -1=-2⋅25-15 n -1-125-15n -1-1,n ∈N .即a n =(-5)n -42+(-5)n,n ∈N .【题型八】插入数型插入数型1.插入数构成等差数列在a n 和a n +1之间插入n 个数,使这n +2个数构成等差数列,可通过构造新数列{b n }来求解d nn +2个数构成等差数列,公差记为d n ,所以:b n +2=b 1+(n +2-1)d n ⇔d n =b n +2-b 1(n +2-1)2.插入数构成等比数列在a n 和a n +1之间插入n 个数,使这n +2个数构成等比数列,可通过构造新数列{b n }来求解d nn +2个数构成等比数列,公差记为d n ,所以:b n +2=b 1∙q n (n +2-1)⇔q n (n +2-1)=b n +2b 1⇔ln b n +2b 1=ln q n (n +2-1)=(n +2-1)ln q n3.插入数混合型混合型插入数列,其突破口在于:在插入这些数中,数列a n 提供了多少项,其余都是插入进来的。
一、数列多选题1.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=答案:AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,,,,故A 正确;对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误; 对于C ,,故C 正确; 对于D ,,,, , 各式相加解析:AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,32121,a a a a a ⋅⋅⋅=+=,各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误. 故选:AC. 【点睛】关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项. 2.已知数列{}n a 满足()*111n na n N a +=-∈,且12a =,则( ) A .31a =-B .201912a =C .332S =D . 2 01920192S =答案:ACD 【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】由题意,,A 正确,,C 正确; ,∴数列是周期数列,周期为3. ,B 错; ,D 正确. 故选:ACD . 【点睛】 本解析:ACD 【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】由题意211122a =-=,311112a =-=-,A 正确,3132122S =+-=,C 正确;41121a =-=-,∴数列{}n a 是周期数列,周期为3. 2019367331a a a ⨯===-,B 错;20193201967322S =⨯=,D 正确.故选:ACD . 【点睛】本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的性质:周期性,然后利用周期函数的定义求解.3.已知数列{}n a 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( )A .2-B .23C .32D .3答案:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论.【详解】 因为数列满足,, ; ; ;数列是周期为3的数列,且前3项为,,3; 故选:. 【点睛】 本题主要解析:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n na a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.4.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 答案:ABCD 【分析】由题意可得数列满足递推关系,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为,故A 正确; 对B ,,故B 正确; 对C ,由,,,……,,可得:.故是斐波那契数列中的第解析:ABCD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.对D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;故选:ABCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换.5.(多选)在数列{}n a 中,若221(2,,n n a a p n n N p *--=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .(){}1n- 是等方差数列C .{}2n是等方差数列.D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列答案:BD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可.【详解】对于A ,若是等差数列,如,则不是常数,故不是等方差数列,故A 错误; 对于B ,数列中,是常数,是等方差数列,故解析:BD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}na 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确; 对于C ,数列{}2n中,()()22221112234n n n n n aa ----=-=⨯不是常数,{}2n∴不是等方差数列,故C 错误; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+,{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BD. 【点睛】关键点睛:本题考查了数列的新定义问题和等差数列的定义,解题的关键是正确理解等差数列和等方差数列定义,利用定义进行判断.6.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为8答案:BD 【分析】由题意可知,由已知条件可得出,可判断出AB 选项的正误,求出关于的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列是递增数列,则,A 选项错误解析:BD 【分析】由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列{}n a 是递增数列,则0d >,A 选项错误;753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;()()()22171117493222224n n n d n n d n n d S na nd n d -⎡⎤--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.故选:BD.7.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =-B .310na nC .228n S n n =- D .24n S n n =-答案:AD 【分析】设等差数列的公差为,根据已知得,进而得,故,. 【详解】解:设等差数列的公差为,因为所以根据等差数列前项和公式和通项公式得:, 解方程组得:, 所以,. 故选:AD.解析:AD 【分析】设等差数列{}n a 的公差为d ,根据已知得1145460a d a d +=⎧⎨+=⎩,进而得13,2a d =-=,故25n a n =-,24n S n n =-.【详解】解:设等差数列{}n a 的公差为d ,因为450,5S a == 所以根据等差数列前n 项和公式和通项公式得:1145460a d a d +=⎧⎨+=⎩,解方程组得:13,2a d =-=,所以()31225n a n n =-+-⨯=-,24n S n n =-.故选:AD.8.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )A .若100S =,则280S S +=;B .若412S S =,则使0n S >的最大的n 为15C .若150S >,160S <,则{}n S 中8S 最大D .若78S S <,则89S S <答案:BC 【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案. 【详解】 A 选项,若,则, 那么.故A 不正确; B 选项,若,则,又因为,所以前8项为正,从第9项开始为负, 因为解析:BC 【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案. 【详解】A 选项,若1011091002S a d ⨯=+=,则1290a d +=, 那么()()2811128281029160S S a d a d a d d +=+++=+=-≠.故A 不正确; B 选项,若412S S =,则()5611128940a a a a a a ++++=+=,又因为10a >,所以前8项为正,从第9项开始为负, 因为()()116168916802a a S a a +==+=, 所以使0n S >的最大的n 为15.故B 正确; C 选项,若()115158151502a a S a +==>,()()116168916802a a S a a +==+<, 则80a >,90a <,则{}n S 中8S 最大.故C 正确;D 选项,若78S S <,则80a >,而989S S a -=,不能判断9a 正负情况.故D 不正确. 故选:BC . 【点睛】本题考查等差数列性质的应用,涉及等差数列的求和公式,属于常考题型.9.设公差不为0的等差数列{}n a 的前n 项和为n S ,若1718S S =,则下列各式的值为0的是( ) A .17aB .35SC .1719a a -D .1916S S -答案:BD 【分析】由得,利用可知不正确;;根据可知 正确;根据可知不正确;根据可知正确. 【详解】因为,所以,所以, 因为公差,所以,故不正确; ,故正确; ,故不正确; ,故正确. 故选:BD.解析:BD 【分析】 由1718S S =得180a =,利用17180a a d d =-=-≠可知A 不正确;;根据351835S a =可知 B 正确;根据171920a a d -=-≠可知C 不正确;根据19161830S S a -==可知D 正确. 【详解】因为1718S S =,所以18170S S -=,所以180a =,因为公差0d ≠,所以17180a a d d =-=-≠,故A 不正确;13518351835()35235022a a a S a +⨯====,故B 正确; 171920a a d -=-≠,故C 不正确;19161718191830S S a a a a -=++==,故D 正确.故选:BD. 【点睛】本题考查了等差数列的求和公式,考查了等差数列的下标性质,属于基础题.10.等差数列{}n a 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( ) A .109S S >B .170S <C .1819S S >D .190S >答案:ABD 【分析】先根据题意可知前9项的和最小,判断出正确;根据题意可知数列为递减数列,则,又,进而可知,判断出不正确;利用等差中项的性质和求和公式可知,,故正确.【详解】根据题意可知数列为递增解析:ABD 【分析】先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质和求和公式可知()01179179172171722a a a S a <+⨯⨯===,()1191019101921919022a a a S a +⨯⨯===>,故BD 正确. 【详解】根据题意可知数列为递增数列,90a <,100a >,∴前9项的和最小,故A 正确;()11791791721717022a a a S a +⨯⨯===<,故B 正确; ()1191019101921919022a a a S a +⨯⨯===>,故D 正确; 190a >, 181919S S a ∴=-, 1819S S ∴<,故C 不正确.故选:ABD . 【点睛】本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。
专题数列一、单选题1(全国甲卷数学(文))等差数列a n 的前n 项和为S n ,若S 9=1,a 3+a 7=()A.-2B.73C.1D.29【答案】D【分析】可以根据等差数列的基本量,即将题目条件全转化成a 1和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由S 9=1,根据等差数列的求和公式,S 9=9a 1+9×82d =1⇔9a 1+36d =1,又a 3+a 7=a 1+2d +a 1+6d =2a 1+8d =29(9a 1+36d )=29.故选:D 方法二:利用等差数列的性质根据等差数列的性质,a 1+a 9=a 3+a 7,由S 9=1,根据等差数列的求和公式,S 9=9(a 1+a 9)2=9(a 3+a 7)2=1,故a 3+a 7=29.故选:D 方法三:特殊值法不妨取等差数列公差d =0,则S 9=1=9a 1⇒a 1=19,则a 3+a 7=2a 1=29.故选:D2(全国甲卷数学(理))等差数列a n 的前n 项和为S n ,若S 5=S 10,a 5=1,则a 1=()A.-2B.73C.1D.2【答案】B【分析】由S 5=S 10结合等差中项的性质可得a 8=0,即可计算出公差,即可得a 1的值.【详解】由S 10-S 5=a 6+a 7+a 8+a 9+a 10=5a 8=0,则a 8=0,则等差数列a n 的公差d =a 8-a 53=-13,故a 1=a 5-4d =1-4×-13 =73.故选:B .3(新高考北京卷)记水的质量为d =S -1ln n,并且d 越大,水质量越好.若S 不变,且d 1=2.1,d 2=2.2,则n 1与n 2的关系为()A.n 1<n 2B.n 1>n 2C.若S <1,则n 1<n 2;若S >1,则n 1>n 2;D.若S <1,则n 1>n 2;若S >1,则n 1<n 2;【答案】C2024年高考真题【分析】根据题意分析可得n 1=eS -12.1n 2=eS -12.2,讨论S 与1的大小关系,结合指数函数单调性分析判断.【详解】由题意可得d 1=S -1ln n 1=2.1d 2=S -1ln n 2=2.2 ,解得n 1=e S -12.1n 2=e S -12.2,若S >1,则S -12.1>S -12.2,可得e S -12.1>e S -12.2,即n 1>n 2;若S =1,则S -12.1=S -12.2=0,可得n 1=n 2=1;若S <1,则S -12.1<S -12.2,可得e S -1 2.1<e S -12.2,即n 1<n 2;结合选项可知C 正确,ABD 错误;故选:C .二、填空题4(新课标全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和,若a 3+a 4=7,3a 2+a 5=5,则S 10=.【答案】95【分析】利用等差数列通项公式得到方程组,解出a 1,d ,再利用等差数列的求和公式节即可得到答案.【详解】因为数列a n 为等差数列,则由题意得a 1+2d +a 1+3d =73a 1+d +a 1+4d =5,解得a 1=-4d =3 ,则S 10=10a 1+10×92d =10×-4 +45×3=95.故答案为:95.5(新高考上海卷)无穷等比数列a n 满足首项a 1>0,q >1,记I n =x -y x ,y ∈a 1,a 2 ∪a n ,a n +1 ,若对任意正整数n 集合I n 是闭区间,则q 的取值范围是.【答案】q ≥2【分析】当n ≥2时,不妨设x ≥y ,则x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,结合I n 为闭区间可得q -2≥-1q n -2对任意的n ≥2恒成立,故可求q 的取值范围.【详解】由题设有a n =a 1q n -1,因为a 1>0,q >1,故a n +1>a n ,故a n ,a n +1 =a 1q n -1,a 1q n ,当n =1时,x ,y ∈a 1,a 2 ,故x -y ∈a 1-a 2,a 2-a 1 ,此时I 1为闭区间,当n ≥2时,不妨设x ≥y ,若x ,y ∈a 1,a 2 ,则x -y ∈0,a 2-a 1 ,若y ∈a 1,a 2 ,x ∈a n ,a n +1 ,则x -y ∈a n -a 2,a n +1-a 1 ,若x ,y ∈a n ,a n +1 ,则x -y ∈0,a n +1-a n ,综上,x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,又I n 为闭区间等价于0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n 为闭区间,而a n +1-a 1>a n +1-a n >a 2-a 1,故a n +1-a n ≥a n -a 2对任意n ≥2恒成立,故a n +1-2a n +a 2≥0即a 1q n -1q -2 +a 2≥0,故q n -2q -2 +1≥0,故q -2≥-1qn -2对任意的n ≥2恒成立,因q >1,故当n →+∞时,-1q n -2→0,故q -2≥0即q ≥2.故答案为:q ≥2.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.三、解答题6(新课标全国Ⅰ卷)设m 为正整数,数列a 1,a 2,...,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j 后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,...,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使数列a 1,a 2,...,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,...,a 4m +2是2,13 -可分数列;(3)从1,2,...,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,...,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)1,2 ,1,6 ,5,6 (2)证明见解析(3)证明见解析【分析】(1)直接根据i ,j -可分数列的定义即可;(2)根据i ,j -可分数列的定义即可验证结论;(3)证明使得原数列是i ,j -可分数列的i ,j 至少有m +1 2-m 个,再使用概率的定义.【详解】(1)首先,我们设数列a 1,a 2,...,a 4m +2的公差为d ,则d ≠0.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形a k =a k -a 1d+1k =1,2,...,4m +2 ,得到新数列a k =k k =1,2,...,4m +2 ,然后对a 1,a 2,...,a 4m +2进行相应的讨论即可.换言之,我们可以不妨设a k =k k =1,2,...,4m +2 ,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和j i <j ,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的i ,j 就是1,2 ,1,6 ,5,6 .(2)由于从数列1,2,...,4m +2中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①1,4,7,10 ,3,6,9,12 ,5,8,11,14 ,共3组;②15,16,17,18 ,19,20,21,22 ,...,4m -1,4m ,4m +1,4m +2 ,共m -3组.(如果m -3=0,则忽略②)故数列1,2,...,4m +2是2,13 -可分数列.(3)定义集合A =4k +1 k =0,1,2,...,m =1,5,9,13,...,4m +1 ,B =4k +2 k =0,1,2,...,m =2,6,10,14,...,4m +2 .下面证明,对1≤i <j ≤4m +2,如果下面两个命题同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列:命题1:i ∈A ,j ∈B 或i ∈B ,j ∈A ;命题2:j -i ≠3.我们分两种情况证明这个结论.第一种情况:如果i ∈A ,j ∈B ,且j -i ≠3.此时设i =4k 1+1,j =4k 2+2,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+1<4k 2+2,即k 2-k 1>-14,故k 2≥k 1.此时,由于从数列1,2,...,4m +2中取出i =4k 1+1和j =4k 2+2后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+2,4k 1+3,4k 1+4,4k 1+5 ,4k 1+6,4k 1+7,4k 1+8,4k 1+9 ,...,4k 2-2,4k 2-1,4k 2,4k 2+1 ,共k 2-k 1组;③4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,4m +2是i ,j -可分数列.第二种情况:如果i ∈B ,j ∈A ,且j -i ≠3.此时设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+2<4k 2+1,即k 2-k 1>14,故k 2>k 1.由于j -i ≠3,故4k 2+1 -4k 1+2 ≠3,从而k 2-k 1≠1,这就意味着k 2-k 1≥2.此时,由于从数列1,2,...,4m +2中取出i =4k 1+2和j =4k 2+1后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+1,3k 1+k 2+1,2k 1+2k 2+1,k 1+3k 2+1 ,3k 1+k 2+2,2k 1+2k 2+2,k 1+3k 2+2,4k 2+2 ,共2组;③全体4k 1+p ,3k 1+k 2+p ,2k 1+2k 2+p ,k 1+3k 2+p ,其中p =3,4,...,k 2-k 1,共k 2-k 1-2组;④4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含k 2-k 1-2个行,4个列的数表以后,4个列分别是下面这些数:4k 1+3,4k 1+4,...,3k 1+k 2 ,3k 1+k 2+3,3k 1+k 2+4,...,2k 1+2k 2 ,2k 1+2k 2+3,2k 1+2k 2+3,...,k 1+3k 2 ,k 1+3k 2+3,k 1+3k 2+4,...,4k 2 .可以看出每列都是连续的若干个整数,它们再取并以后,将取遍4k 1+1,4k 1+2,...,4k 2+2 中除开五个集合4k 1+1,4k 1+2 ,3k 1+k 2+1,3k 1+k 2+2 ,2k 1+2k 2+1,2k 1+2k 2+2 ,k 1+3k 2+1,k 1+3k 2+2 ,4k 2+1,4k 2+2 中的十个元素以外的所有数.而这十个数中,除开已经去掉的4k 1+2和4k 2+1以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,4m +2是i ,j -可分数列.至此,我们证明了:对1≤i <j ≤4m +2,如果前述命题1和命题2同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列.然后我们来考虑这样的i ,j 的个数.首先,由于A ∩B =∅,A 和B 各有m +1个元素,故满足命题1的i ,j 总共有m +1 2个;而如果j -i =3,假设i ∈A ,j ∈B ,则可设i =4k 1+1,j =4k 2+2,代入得4k 2+2 -4k 1+1 =3.但这导致k 2-k 1=12,矛盾,所以i ∈B ,j ∈A .设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m ,则4k 2+1 -4k 1+2 =3,即k 2-k 1=1.所以可能的k 1,k 2 恰好就是0,1 ,1,2 ,...,m -1,m ,对应的i ,j 分别是2,5 ,6,9 ,...,4m -2,4m +1 ,总共m 个.所以这m +1 2个满足命题1的i ,j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的i ,j 的个数为m +1 2-m .当我们从1,2,...,4m+2中一次任取两个数i和j i<j时,总的选取方式的个数等于4m+24m+12=2m+14m+1.而根据之前的结论,使得数列a1,a2,...,a4m+2是i,j-可分数列的i,j至少有m+12-m个.所以数列a1,a2,...,a4m+2是i,j-可分数列的概率P m一定满足P m≥m+12-m2m+14m+1=m2+m+12m+14m+1>m2+m+142m+14m+2=m+12222m+12m+1=18.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.7(新课标全国Ⅱ卷)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...,过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n.(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意的正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n的取值为与n无关的定值即可.思路二:使用等差数列工具,证明S n的取值为与n无关的定值即可.【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x =2k y n -kx n 1-k 2-x n =2ky n -x n -k 2x n1-k 2,相应的y =k x -x n +y n =y n +k 2y n -2kx n1-k 2.所以该直线与C 的不同于P n 的交点为Q n 2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV ⋅UW 1-UV ⋅UW UV ⋅UW2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2 c 2+d 2 -ac +bd 2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc 2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m.而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1=12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1=12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2 .这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n -121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m.这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k =x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.8(全国甲卷数学(文))已知等比数列a n 的前n 项和为S n ,且2S n =3a n +1-3.(1)求a n 的通项公式;(2)求数列S n 的通项公式.【答案】(1)a n =53n -1(2)3253 n -32【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求S n .【详解】(1)因为2S n =3a n +1-3,故2S n -1=3a n -3,所以2a n =3a n +1-3a n n ≥2 即5a n =3a n +1故等比数列的公比为q =53,故2a 1=3a 2-3=3a 1×53-3=5a 1-3,故a 1=1,故a n =53n -1.(2)由等比数列求和公式得S n =1×1-53 n1-53=3253 n -32.9(全国甲卷数学(理))记S n 为数列a n 的前n 项和,且4S n =3a n +4.(1)求a n 的通项公式;(2)设b n =(-1)n -1na n ,求数列b n 的前n 项和为T n .【答案】(1)a n =4⋅(-3)n -1(2)T n =(2n -1)⋅3n +1【分析】(1)利用退位法可求a n 的通项公式.(2)利用错位相减法可求T n .【详解】(1)当n =1时,4S 1=4a 1=3a 1+4,解得a 1=4.当n ≥2时,4S n -1=3a n -1+4,所以4S n -4S n -1=4a n =3a n -3a n -1即a n =-3a n -1,而a 1=4≠0,故a n ≠0,故an a n -1=-3,∴数列a n 是以4为首项,-3为公比的等比数列,所以a n =4⋅-3 n -1.(2)b n =(-1)n -1⋅n ⋅4⋅(-3)n -1=4n ⋅3n -1,所以T n =b 1+b 2+b 3+⋯+b n =4⋅30+8⋅31+12⋅32+⋯+4n ⋅3n -1故3T n =4⋅31+8⋅32+12⋅33+⋯+4n ⋅3n所以-2T n =4+4⋅31+4⋅32+⋯+4⋅3n -1-4n ⋅3n=4+4⋅31-3n -11-3-4n ⋅3n =4+2⋅3⋅3n -1-1 -4n ⋅3n=(2-4n )⋅3n -2,∴T n =(2n -1)⋅3n +1.10(新高考北京卷)设集合M =i ,j ,s ,t i ∈1,2 ,j ∈3,4 ,s ∈5,6 ,t ∈7,8 ,2i +j +s +t .对于给定有穷数列A :a n 1≤n ≤8 ,及序列Ω:ω1,ω2,...,ωs ,ωk =i k ,j k ,s k ,t k ∈M ,定义变换T :将数列A 的第i 1,j 1,s 1,t 1项加1,得到数列T 1A ;将数列T 1A 的第i 2,j 2,s 2,t 2列加1,得到数列T 2T 1A ⋯;重复上述操作,得到数列T s ...T 2T 1A ,记为ΩA .(1)给定数列A :1,3,2,4,6,3,1,9和序列Ω:1,3,5,7 ,2,4,6,8 ,1,3,5,7 ,写出ΩA ;(2)是否存在序列Ω,使得ΩA 为a 1+2,a 2+6,a 3+4,a 4+2,a 5+8,a 6+2,a 7+4,a 8+4,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且a 1+a 3+a 5+a 7为偶数,证明:“存在序列Ω,使得ΩA 为常数列”的充要条件为“a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8”.【答案】(1)ΩA :3,4,4,5,8,4,3,10(2)不存在符合条件的Ω,理由见解析(3)证明见解析【分析】(1)直接按照ΩA 的定义写出ΩA 即可;(2)利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可;(3)分充分性和必要性两方面论证.【详解】(1)由题意得ΩA :3,4,4,5,8,4,3,10;(2)假设存在符合条件的Ω,可知ΩA 的第1,2项之和为a 1+a 2+s ,第3,4项之和为a 3+a 4+s ,则a 1+2 +a 2+6 =a 1+a 2+sa 3+4 +a 4+2 =a 3+a 4+s,而该方程组无解,故假设不成立,故不存在符合条件的Ω;(3)我们设序列T k ...T 2T 1A 为a k ,n 1≤n ≤8 ,特别规定a 0,n =a n 1≤n ≤8 .必要性:若存在序列Ω:ω1,ω2,...,ωs ,使得ΩA 为常数列.则a s ,1=a s ,2=a s ,3=a s ,4=a s ,5=a s ,6=a s ,7=a s ,8,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.根据T k ...T 2T 1A 的定义,显然有a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....所以不断使用该式就得到,a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,必要性得证.充分性:若a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8.由已知,a 1+a 3+a 5+a 7为偶数,而a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,所以a 2+a 4+a 6+a 8=4a 1+a 2 -a 1+a 3+a 5+a 7 也是偶数.我们设T s ...T 2T 1A 是通过合法的序列Ω的变换能得到的所有可能的数列ΩA 中,使得a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 最小的一个.上面已经证明a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....从而由a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8可得a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.同时,由于i k +j k +s k +t k 总是偶数,所以a k ,1+a k ,3+a k ,5+a k ,7和a k ,2+a k ,4+a k ,6+a k ,8的奇偶性保持不变,从而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数.下面证明不存在j =1,2,3,4使得a s ,2j -1-a s ,2j ≥2.假设存在,根据对称性,不妨设j =1,a s ,2j -1-a s ,2j ≥2,即a s ,1-a s ,2≥2.情况1:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 =0,则由a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,知a s ,1-a s ,2≥4.对该数列连续作四次变换2,3,5,8 ,2,4,6,8 ,2,3,6,7 ,2,4,5,7 后,新的a s +4,1-a s +4,2 +a s +4,3-a s +4,4 +a s +4,5-a s +4,6 +a s +4,7-a s +4,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 减少4,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 >0,不妨设a s ,3-a s ,4 >0.情况2-1:如果a s ,3-a s ,4≥1,则对该数列连续作两次变换2,4,5,7 ,2,4,6,8 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2-2:如果a s ,4-a s ,3≥1,则对该数列连续作两次变换2,3,5,8 ,2,3,6,7 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的j =1,2,3,4都有a s ,2j -1-a s ,2j ≤1.假设存在j =1,2,3,4使得a s ,2j -1-a s ,2j =1,则a s ,2j -1+a s ,2j 是奇数,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8都是奇数,设为2N +1.则此时对任意j =1,2,3,4,由a s ,2j -1-a s ,2j ≤1可知必有a s ,2j -1,a s ,2j =N ,N +1 .而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,故集合m a s ,m =N 中的四个元素i ,j ,s ,t 之和为偶数,对该数列进行一次变换i ,j ,s ,t ,则该数列成为常数列,新的a s +1,1-a s +1,2 +a s +1,3-a s +1,4 +a s +1,5-a s +1,6 +a s +1,7-a s +1,8 等于零,比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 更小,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.综上,只可能a s ,2j -1-a s ,2j =0j =1,2,3,4 ,而a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8,故a s ,n =ΩA 是常数列,充分性得证.【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.11(新高考天津卷)已知数列a n 是公比大于0的等比数列.其前n 项和为S n .若a 1=1,S 2=a 3-1.(1)求数列a n 前n 项和S n ;(2)设b n =k ,n =a kb n -1+2k ,a k <n <a k +1,b 1=1,其中k 是大于1的正整数.(ⅰ)当n =a k +1时,求证:b n -1≥a k ⋅b n ;(ⅱ)求S ni =1b i .【答案】(1)S n =2n -1(2)①证明见详解;②S ni =1b i =3n -1 4n+19【分析】(1)设等比数列a n 的公比为q >0,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知a k =2k -1,b n =k +1,b n -1=k 2k -1 ,利用作差法分析证明;②根据题意结合等差数列求和公式可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1,再结合裂项相消法分析求解.【详解】(1)设等比数列a n 的公比为q >0,因为a 1=1,S 2=a 3-1,即a 1+a 2=a 3-1,可得1+q =q 2-1,整理得q 2-q -2=0,解得q =2或q =-1(舍去),所以S n =1-2n1-2=2n -1.(2)(i )由(1)可知a n =2n -1,且k ∈N *,k ≥2,当n =a k +1=2k≥4时,则a k =2k -1<2k -1=n -1n -1=a k +1-1<a k +1 ,即a k <n -1<a k +1可知a k =2k -1,b n =k +1,b n -1=b a k+a k +1-a k -1 ⋅2k =k +2k 2k -1-1 =k 2k -1 ,可得b n -1-a k ⋅b n =k 2k -1 -k +1 2k -1=k -1 2k -1-k ≥2k -1 -k =k -2≥0,当且仅当k =2时,等号成立,所以b n -1≥a k ⋅b n ;(ii )由(1)可知:S n =2n -1=a n +1-1,若n =1,则S 1=1,b 1=1;若n ≥2,则a k +1-a k =2k -1,当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列,可得∑2k -1i =2k -1b i =k ⋅2k -1+2k 2k -12k -1-1 2=k ⋅4k -1=193k -1 4k -3k -4 4k -1 ,所以∑S ni =1b i =1+195×42-2×4+8×43-5×42+⋅⋅⋅+3n -1 4n -3n -4 4n -1=3n -1 4n+19,且n =1,符合上式,综上所述:∑Sni =1b i =3n -1 4n +19.【点睛】关键点点睛:1.分析可知当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列;2.根据等差数列求和分析可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1.12(新高考上海卷)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.【答案】(1)x |1<x <2 (2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【详解】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.一、单选题1(2024·重庆·三模)已知数列a n 的前n 项和为S n ,a 1=1,S n +S n +1=n 2+1n ∈N ∗ ,S 24=()A.276B.272C.268D.266【答案】A【分析】令n =1得S 2=1,当n ≥2时,结合题干作差得S n +1-S n -1=2n -1,从而利用累加法求解S 24=即可.【详解】∵a 1=S 1=1,又∵S n +S n +1=n 2+1,当n =1时,S 1+S 2=12+1=2,解得S 2=1;当n ≥2时,S n -1+S n =(n -1)2+1,作差得S n +1-S n -1=2n -1,∴S 24=S 24-S 22 +S 22-S 20 +⋯+S 4-S 2 +S 2=223+21+⋯+3 -11+1=276.故选:A2(2024·河北张家口·三模)已知数列a n的前n项和为S n,且满足a1=1,a n+1=a n+1,n为奇数2a n,n为偶数,则S100=()A.3×251-156B.3×251-103C.3×250-156D.3×250-103【答案】A【分析】分奇数项和偶数项求递推关系,然后记b n=a2n+a2n-1,n≥1,利用构造法求得b n=6×2n-1-3,然后分组求和可得.【详解】因为a1=1,a n+1=a n+1,n为奇数2a n,n为偶数 ,所以a2k+2=a2k+1+1=2a2k+1,a2k+1=2a2k=2a2k-1+2,k∈N*,且a2=2,所以a2k+2+a2k+1=2a2k+a2k-1+3,记b n=a2n+a2n-1,n≥1,则b n+1=2b n+3,所以b n+1+3=2b n+3,所以b n+3是以b1+3=a1+a2+3=6为首项,2为公比的等比数列,所以b n+3=6×2n-1,b n=6×2n-1-3,记b n的前n项和为T n,则S100=T50=6×20+6×21+6×22+⋅⋅⋅+6×249-3×50=3×251-156.故选:A【点睛】关键点点睛:本题解题关键在于先分奇数项和偶数项求递推公式,然后再并项得b n的递推公式,利用构造法求通项,将问题转化为求b n的前50项和.3(2024·山东日照·三模)设等差数列b n的前n项和为S n,若b3=2,b7=6,则S9=()A.-36B.36C.-18D.18【答案】B【分析】利用等差数列的前n项和公式,结合等差数列的性质求解.【详解】解:S9=b1+b9×92=b3+b7×92=36,故选:B.4(2024·湖北武汉·二模)已知等差数列a n的前n项和为S n,若S3=9,S9=81,则S12=() A.288 B.144 C.96 D.25【答案】B【分析】利用等差数列的前n项和列方程组求出a1,d,进而即可求解S12.【详解】由题意S3=3a1+3×22d=9S9=9a1+9×82d=81,即a1+d=3a1+4d=9,解得a1=1d=2.于是S12=12×1+12×112×2=144.故选:B.5(2024·江西赣州·二模)在等差数列a n中,a2,a5是方程x2-8x+m=0的两根,则a n的前6项和为()A.48B.24C.12D.8【答案】B【分析】利用韦达定理确定a2+a5=8,根据等差数列性质有a2+a5=a1+a6=8,在应用等差数列前n项和公式即可求解.【详解】因为a 2,a 5是方程x 2-8x +m =0的两根,所以a 2+a 5=8,又因为a n 是等差数列,根据等差数列的性质有:a 2+a 5=a 1+a 6=8,设a n 的前6项和为S 6,则S 6=a 1+a 6 ×62=3×8=24.故选:B6(2024·湖南永州·三模)已知非零数列a n 满足2n a n +1-2n +2a n =0,则a 2024a 2021=()A.8B.16C.32D.64【答案】D【分析】根据题意,由条件可得a n +1=4a n ,再由等比数列的定义即可得到结果.【详解】由2n a n +1-2n +2a n =0可得a n +1=4a n ,则a 2024a 2021=4×4×4a 2021a 2021=64.故选:D7(2024·浙江绍兴·二模)汉诺塔(Tower of Hanoi ),是一个源于印度古老传说的益智玩具. 如图所示,有三根相邻的标号分别为A 、B 、C 的柱子,A 柱子从下到上按金字塔状叠放着n 个不同大小的圆盘,要把所有盘子一个一个移动到柱子B 上,并且每次移动时,同一根柱子上都不能出现大盘子在小盘子的上方,请问至少需要移动多少次?记至少移动次数为H n ,例如:H (1)=1,H (2)=3,则下列说法正确的是()A.H (3)=5B.H (n ) 为等差数列C.H (n )+1 为等比数列D.H 7 <100【答案】C【分析】由题意可得H (3)=7,判断A ;归纳得到H n =2n -1,结合等差数列以及等比数列的概念可判断B ,C ;求出H 7 ,判断D .【详解】由题意知若有1个圆盘,则需移动一次:若有2个圆盘,则移动情况为:A →C ,A →B ,C →B ,需移动3次;若有3个圆盘,则移动情况如下:A →B ,A →C ,B →C ,A →B ,C →A ,C →B ,A →B ,共7次,故H (3)=7,A 错误;由此可知若有n 个圆盘,设至少移动a n 次,则a n =2a n -1+1,所以a n +1=2a n -1+1 ,而a 1+1=1+1=2≠0,故a n +1 为等比数列,故a n =2n -1即H n =2n -1,该式不是n 的一次函数,则H (n ) 不为等差数列,B 错误;又H n =2n -1,则H n +1=2n ,H n +1 +1H n +1=2,则H (n )+1 为等比数列,C 正确,H 7 =27-1=127>100,D 错误,故选:C8(2024·云南曲靖·二模)已知S n 是等比数列a n 的前n 项和,若a 3=3,S 3=9,则数列a n 的公比是()A.-12或1 B.12或1 C.-12D.12【答案】A【分析】分别利用等比数列的通项公式和前n 项和公式,解方程组可得q =1或q =-12.【详解】设等比数列a n 的首项为a 1,公比为q ,依题意得a 3=a 1q 2=3S 3=a 1+a 2+a 3=a 1+a 1q +a 1q 2=9 ,解得q =1或q =-12.故选:A .9(2024·四川·模拟预测)已知数列a n 为等差数列,且a 1+2a 4+3a 9=24,则S 11=()A.33B.44C.66D.88【答案】B【分析】将a 1,a 4,a 9用a 1和d 表示,计算出a 6的值,再由S 11=11a 6得S 11的值.【详解】依题意,a n 是等差数列,设其公差为d ,由a 1+2a 4+3a 9=24,所以a 1+2a 1+3d +3a 1+8d =6a 1+30d =6a 6=24,即a 6=4,S 11=11a 1+10×112d =11a 1+5d =11a 6=11×4=44,故选:B .10(2024·北京东城·二模)设无穷正数数列a n ,如果对任意的正整数n ,都存在唯一的正整数m ,使得a m =a 1+a 2+a 3+⋯+a n ,那么称a n 为内和数列,并令b n =m ,称b n 为a n 的伴随数列,则()A.若a n 为等差数列,则a n 为内和数列B.若a n 为等比数列,则a n 为内和数列C.若内和数列a n 为递增数列,则其伴随数列b n 为递增数列D.若内和数列a n 的伴随数列b n 为递增数列,则a n 为递增数列【答案】C【分析】对于ABD :举反例说明即可;对于C :根据题意分析可得a m 2>a m 1,结合单调性可得m 2>m 1,即可得结果.【详解】对于选项AB :例题a n =1,可知a n 即为等差数列也为等比数列,则a 1+a 2=2,但不存在m ∈N *,使得a m =2,所以a n 不为内和数列,故AB 错误;对于选项C :因为a n >0,对任意n 1,n 2∈N *,n 1<n 2,可知存在m 1,m 2∈N *,使得a m 1=a 1+a 2+a 3+⋯+a n 1,a m 2=a 1+a 2+a 3+⋯+a n 2,则a m 2-a m 1=a n 1+1+a n 1+2+⋯+a n 2>0,即a m 2>a m 1,且内和数列a n 为递增数列,可知m 2>m 1,所以其伴随数列b n 为递增数列,故C 正确;对于选项D :例如2,1,3,4,5,⋅⋅⋅,显然a n 是所有正整数的排列,可知a n 为内和数列,且a n 的伴随数列为递增数列,但an 不是递增数列,故D 错误;故选:C.【点睛】方法点睛:对于新定义问题,要充分理解定义,把定义转化为已经学过的内容,简化理解和运算.11(2024·广东茂名·一模)已知T n为正项数列a n的前n项的乘积,且a1=2,T2n=a n+1n,则a5=() A.16 B.32 C.64 D.128【答案】B【分析】利用给定的递推公式,结合对数运算变形,再构造常数列求出通项即可得解.【详解】由T2n=a n+1n,得T2n+1=a n+2n+1,于是a2n+1=T2n+1T2n=a n+2n+1a n+1n,则a n n+1=a n+1n,两边取对数得n lg a n+1=(n+1)lg a n,因此lg a n+1n+1=lg a nn,数列lg a nn是常数列,则lg a nn=lg a11=lg2,即lg a n=n lg2=lg2n,所以a n=2n,a5=32.故选:B12(2024·湖南常德·一模)已知等比数列a n中,a3⋅a10=1,a6=2,则公比q为()A.12B.2 C.14D.4【答案】C【分析】直接使用已知条件及公比的性质得到结论.【详解】q=1q3⋅q4=a3a6⋅a10a6=a3⋅a10a26=122=14.故选:C.二、多选题13(2024·湖南长沙·三模)设无穷数列a n的前n项和为S n,且a n+a n+2=2a n+1,若存在k∈N∗,使S k+1 >S k+2>S k成立,则()A.a n≤a k+1B.S n≤S k+1C.不等式S n<0的解集为n∈N∗∣n≥2k+3D.对任意给定的实数p,总存在n0∈N∗,当n>n0时,a n<p【答案】BCD【分析】根据题意,得到a k+2<0,a k+1>0,a k+1+a k+2>0且a n是递减数列,结合等差数列的性质以及等差数列的求和公式,逐项判定,即可求解.【详解】由S k+1>S k+2>S k,可得a k+2=S k+2-S k+1<0,a k+1=S k+1-S k>0,且a k+1+a k+2=S k+2-S k>0,即a k+2<0,a k+1>0,a k+1+a k+2>0又由a n+a n+2=2a n+1,可得数列a n是等差数列,公差d=a k+2-a k+1<0,所以a n是递减数列,所以a1是最大项,且随着n的增加,a n无限减小,即a n≤a1,所以A错误、D正确;因为当n≤k+1时,a n>0;当n≥k+2时,a n<0,所以S n的最大值为S k+1,所以B正确;因为S2k+1=(2k+1)(a1+a2k+1)2=(2k+1)a k+1>0,S2k+3=(2k+3)a k+2<0,且S 2k +2=a 1+a 2k +22×2k +2 =k +1 ⋅a k +1+a k +2 >0,所以当n ≤2k +2时,S n >0;当n ≥2k +3时,S n <0,所以C 正确.故选:BCD .14(2024·山东泰安·模拟预测)已知数列a n 的通项公式为a n =92n -7n ∈N *,前n 项和为S n ,则下列说法正确的是()A.数列a n 有最大项a 4B.使a n ∈Z 的项共有4项C.满足a n a n +1a n +2<0的n 值共有2个D.使S n 取得最小值的n 值为4【答案】AC【分析】根据数列的通项公式,作差判断函数的单调性及项的正负判断A ,根据通项公式由整除可判断B ,根据项的正负及不等式判断C ,根据数列项的符号判断D .【详解】对于A :因为a n =92n -7n ∈N *,所以a n +1-a n =92n -5-92n -7=-182n -5 2n -7,令a n +1-a n >0,即2n -5 2n -7 <0,解得52<n <72,又n ∈N *,所以当n =3时a n +1-a n >0,则当1≤n ≤2或n ≥4时,a n +1-a n <0,令a n =92n -7>0,解得n >72,所以a 1=-95>a 2=-3>a 3=-9,a 4>a 5>a 6>⋯>0,所以数列a n 有最大项a 4=9,故A 正确;对于B :由a n ∈Z ,则92n -7∈Z 又n ∈N *,所以n =2或n =3或n =4或n =5或n =8,所以使a n ∈Z 的项共有5项.故B 不正确;对于C :要使a n a n +1a n +2<0,又a n ≠0,所以a n 、a n +1、a n +2中有1个为负值或3个为负值,所以n =1或n =3,故满足a n a n +1a n +2<0的n 的值共有2个,故C 正确;对于D :因为n ≤3时a n <0,n ≥4时a n >0,所以当n =3时S n 取得最小值,故D 不正确.故选:AC .15(2024·山东临沂·二模)已知a n 是等差数列,S n 是其前n 项和,则下列命题为真命题的是()A.若a 3+a 4=9,a 7+a 8=18,则a 1+a 2=5B.若a 2+a 13=4,则S 14=28C.若S 15<0,则S 7>S 8D.若a n 和a n ⋅a n +1 都为递增数列,则a n >0【答案】BC【分析】根据题意,求得d =98,结合a 1+a 2=a 3+a 4 -4d ,可判定A 错误;根据数列的求和公式和等差数列的性质,可判定B 正确;由S 15<0,求得a 8<0,可判定C 正确;根据题意,求得任意的n ≥2,a n >0,结合a 1的正负不确定,可判定D 错误.【详解】对于A 中,由a 3+a 4=9,a 7+a 8=18,可得a 7+a 8 -a 3+a 4 =8d =9,所以d =98,又由a 1+a 2=a 3+a 4 -4d =9-4×98=92,所以A 错误;对于B 中,由S 14=14a 1+a 14 2=14a 2+a 132=28,所以B 正确;对于C 中,由S 15=15(a 1+a 15)2=15a 8<0,所以a 8<0,又因为S 8-S 7=a 8<0,则S 7>S 8,所以C 正确;对于D 中,因为a n 为递增数列,可得公差d >0,因为a n a n +1 为递增数列,可得a n +2a n +1-a n a n +1=a n +1⋅2d >0,所以对任意的n ≥2,a n >0,但a 1的正负不确定,所以D 错误.故选:BC .16(2024·山东泰安·二模)已知等差数列a n 的前n 项和为S n ,a 2=4,S 7=42,则下列说法正确的是()A.a 5=4B.S n =12n 2+52n C.a nn为递减数列 D.1a n a n +1 的前5项和为421【答案】BC【分析】根据给定条件,利用等差数列的性质求出公差d ,再逐项求解判断即可.【详解】等差数列a n 中,S 7=7(a 1+a 7)2=7a 4=42,解得a 4=6,而a 2=4,因此公差d =a 4-a 24-2=1,通项a n =a 2+(n -2)d =n +2,对于A ,a 5=7,A 错误;对于B ,S n =n (3+n +2)2=12n 2+52n ,B 正确;对于C ,a n n =1+2n ,a n n 为递减数列,C 正确;对于D ,1a n a n +1=1(n +2)(n +3)=1n +2-1n +3,所以1a n a n +1 的前5项和为13-14+14-15+⋯+17-18=13-18=524,D 错误.故选:BC17(2024·江西·三模)已知数列a n 满足a 1=1,a n +1=2a n +1,则()A.数列a n 是等比数列B.数列log 2a n +1 是等差数列C.数列a n 的前n 项和为2n +1-n -2D.a 20能被3整除【答案】BCD【分析】利用构造法得到数列a n +1 是等比数列,从而求得通项,就可以判断选项,对于数列求和,可以用分组求和法,等比数列公式求和完成,对于幂的整除性问题可以转化为用二项式定理展开后,再加以证明.【详解】由a n +1=2a n +1可得:a n +1+1=2a n +1 ,所以数列a n +1 是等比数列,即a n =2n -1,则a 1=1,a 2=3,a 3=7,显然有a 1⋅a 3≠a 22,所以a 1,a 2,a 3不成等比数列,故选项A 是错误的;由数列a n +1 是等比数列可得:a n +1=2n ,即log 2a n +1 =log 22n =n ,故选项B 是正确的;由a n =2n -1可得:前n 项和S n =21-1+22-1+23-1+⋅⋅⋅+2n-1=21-2n 1-2-n =2n +1-n -2,故选项C是正确的;由a 20=220-1=3-1 20-1=C 020320+C 120319⋅-1 +C 220318⋅-1 2+⋅⋅⋅+C 19203⋅-1 19+C 2020-1 20-1=3×C 020319+C 120318⋅-1 +C 220317⋅-1 2+⋅⋅⋅+C 1920-1 19 ,故选项D 是正确的;方法二:由210=1024,1024除以3余数是1,所以10242除以3的余数还是1,从而可得220-1能补3整除,故选项D 是正确的;故选:BCD .18(2024·湖北·二模)无穷等比数列a n 的首项为a 1公比为q ,下列条件能使a n 既有最大值,又有最小值的有()A.a 1>0,0<q <1B.a 1>0,-1<q <0C.a 1<0,q =-1D.a 1<0,q <-1【答案】BC【分析】结合选项,利用等比数列单调性分析判断即可.【详解】a 1>0,0<q <1时,等比数列a n 单调递减,故a n 只有最大值a 1,没有最小值;a 1>0,-1<q <0时,等比数列a n 为摆动数列,此时a 1为大值,a 2为最小值;a 1<0,q =-1时,奇数项都相等且小于零,偶数项都相等且大于零,所以等比数列a n 有最大值,也有最小值;a 1<0,q <-1时,因为q >1,所以a n 无最大值,奇数项为负无最小值,偶数项为正无最大值.故选:BC 三、填空题19(2024·山东济南·三模)数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则数列a n 的前20项的和为.【答案】210【分析】数列a n 的奇数项、偶数项都是等差数列,结合等差数列求和公式、分组求和法即可得解.【详解】数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则a 2=a 4-2=4-2=2,所以数列a n 的奇数项、偶数项分别构成以1,2为首项,公差均为2的等差数列所以数列a n 的前20项的和为a 1+a 2+⋯+a 20=a 1+a 3+⋯+a 19 +a 2+a 4+⋯+a 20=10×1+10×92×2+10×2+10×92×2=210.故答案为:210.20(2024·云南·二模)记数列a n 的前n 项和为S n ,若a 1=2,2a n +1-3a n =2n ,则a 82+S 8=.【答案】12/0.5【分析】构造得a n +12n -1-4=34a n2n -2-4,从而得到a n 2n -2=4,则a n =2n ,再利用等比数列求和公式代入计算即可.【详解】由2a n +1-3a n =2n ,得a n +12n -1=34×a n 2n -2+1,则a n +12n -1-4=34a n2n -2-4,又a 12-1-4=0,则a n 2n -2=4,则a n =2n ,a 8=28,S 8=21-28 1-2=29-2,a 82+S 8=2829=12,故答案为:12.21(2024·上海·三模)数列a n 满足a n +1=2a n (n 为正整数),且a 2与a 4的等差中项是5,则首项a 1=。
专题五数列考点17 等差数列题组一、选择题1. [2023全国卷甲,5分]记S n为等差数列{a n}的前n项和.若a2+a6=10,a4a8=45,则S5= ( C )A. 25B. 22C. 20D. 15[解析]解法一由a2+a6=10,可得2a4=10,所以a4=5,又a4a8=45,所以a8=9.设等差数列{a n}的公差为d,则d=a8−a48−4=9−54=1,又a4=5,所以a1=2,所以S5=5a1+5×42×d=20,故选C.解法二设等差数列{a n}的公差为d,则由a2+a6=10,可得a1+3d=5①,由a4a8=45,可得(a1+3d)(a1+7d)=45②,由①②可得a1=2,d=1,所以S5=5a1+5×42×d=20,故选C.2. (2023全国卷乙,5分)已知等差数列{a n}的公差为2π3,集合S={cosa n|n∈N∗},若S={a,b},则ab= ( B )A. −1B. −12C. 0 D. 12[解析]由题意得a n=a1+2π3(n−1),cosa n+3=cos(a1+2π3(n+2))=cos(a1+2π3n+4π3)=cos(a1+2π3n+2π−2π3)=cos(a1+2π3n−2π3)=cosa n,所以数列{cosa n}是以3为周期的周期数列,又cosa2=cos(a1+2π3)=−12cosa1−√32sina1,cosa3=cos(a1+4π3)=−12cosa1+√32sina1,因为集合S中只有两个元素,所以有三种情况:cosa1=cosa2≠cosa3,cosa1=cosa3≠cosa2,cosa2=cosa3≠cosa1.下面逐一讨论:①当cosa1=cosa2≠cosa3时,有cosa1=−12cosa1−√32sina1,得tana1=−√3,所以ab=cosa1(−12cosa1+√32sina1)=−12cos2a1+√32sina1cosa1=−1 2cos2a1+√32sina1cosa1sin2a1+cos2a1=−12+√32tana1tan2a1+1=−12−323+1=−12.②当cosa1=cosa3≠cosa2时,有cosa1=−12cosa1+√32sina1,得tana1=√3,所以ab=cosa1(−12cosa1−√32sina1)=−12cos2a1−√32sina1cosa1=−1 2cos2a1−√32sina1cosa1sin2a1+cos2a1=−12−√32tana1tan2a1+1=−12−323+1=−12.③当cosa2=cosa3≠cosa1时,有−12cosa1−√32sina1=−12cosa1+√32sina1,得sina1=0,所以ab=cosa1(−12cosa1−√32sina1)=−12cos2a1=−12(1−sin2a1)=−12.综上,ab=−12,故选B.【速解】取a1=−π3,则cosa1=12,cosa2=cos(a1+2π3)=12,cosa3=cos(a1+4π3)=−1,所以S={12,−1},ab=−12,故选B.3. [2021北京,4分]已知{a n}和{b n}是两个等差数列,且a kb k(1≤k≤5)是常值,若a1=288 ,a5=96 ,b1=192,则b3的值为( C )A. 64B. 100C. 128D. 132[解析]因为{a n}和{b n}是两个等差数列,所以2a3=a1+a5=288+96=384,所以a3=192.因为当1≤k≤5时,a kb k 是常值,所以a3b3=a1b1=288192=192b3,从而b3=128.故选C.4. [2020全国卷Ⅱ,5分]如图,北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( C )A. 3 699块B. 3 474块C. 3 402块D. 3 339块[解析]由题意知,由天心石开始向外的每环的扇面形石板块数构成一个等差数列,记为{a n},设数列{a n}的公差为d,前n项和为S n,易知其首项a1=9,d=9,所以a n=a1+(n−1)d=9n.由等差数列的性质知S n,S2n−S n,S3n−S2n也成等差数列,所以2(S2n−S n)=S n+S3n−S2n,所以(S3n−S2n)−(S2n−S n)=S2n−2S n=2n(9+18n)2−2×n(9+9n)2=9n2=729,得n=9,所以三层共有扇面形石板的块数为S3n=3n(9+27n)2=3×9×(9+27×9)2=3402,故选C.5. [2020浙江,4分]已知等差数列{a n}的前n项和为S n ,公差d≠0,且a1d≤1 .记b1=S2,b n+1=S2n+2−S2n ,n∈N∗ ,下列等式不可能成立的是( D )A. 2a4=a2+a6B. 2b4=b2+b6C. a42=a2a8D. b42=b2b8 [解析]由b n+1=S2n+2−S2n,得b2=a3+a4=2a1+5d,b4=a7+a8=2a1+13d,b6=a11+a12,b8=a15+a16=2a1+29d.由等差数列的性质易知A成立;若2b4=b2+b6,则2(a7+a8)=a3+a4+a11+a12=2a7+2a8,故B成立;若a42=a2a8,即(a1+3d)2=(a1+d)(a1+7d),则a1=d,故C可能成立;若b42=b2b8,即(2a1+13d)2=(2a1+5d)(2a1+29d),则a1d =32,与已知矛盾,故D不可能成立.6. [2020北京,4分]在等差数列{a n}中,a1=−9 ,a5=−1 .记T n=a1a2…a n(n=1,2,…) ,则数列{T n} ( B )A. 有最大项,有最小项B. 有最大项,无最小项C. 无最大项,有最小项D. 无最大项,无最小项[解析]设等差数列{a n}的公差为d,∵a1=−9,a5=−1,∴a5=−9+4d=−1,∴d=2,∴a n=−9+(n−1)×2=2n−11.令a n=2n−11≤0,则n≤5.5,∴n≤5时,a n<0;n≥6时,a n>0.∴T1=−9<0,T2=(−9)×(−7)= 63>0,T3=(−9)×(−7)×(−5)=−315<0,T4=(−9)×(−7)×(−5)×(−3)=945>0,T5=(−9)×(−7)×(−5)×(−3)×(−1)=−945<0,当n≥6时,a n>0,且a n≥1,∴T n+1<T n<0,∴T n=a1a2…a n(n=1,2,…)有最大项T4,无最小项,故选B.7. [2019全国卷Ⅰ,5分]记S n为等差数列{a n}的前n项和.已知S4=0,a5= 5,则( A )A. a n =2n −5B. a n =3n −10C. S n =2n 2−8nD. S n =12n 2−2n[解析]解法一 设等差数列{a n } 的公差为d ,∵{S 4=0,a 5=5,∴{4a 1+4×32d =0,a 1+4d =5,解得{a 1=−3,d =2,∴a n =a 1+(n −1)d =−3+2(n −1)=2n −5 ,S n =na 1+n (n−1)2d =n 2−4n .故选A .解法二 设等差数列{a n } 的公差为d ,∵{S 4=0,a 5=5,∴{4a 1+4×32d =0,a 1+4d =5,解得{a 1=−3,d =2.选项A ,a 1=2×1−5=−3 ;选项B ,a 1=3×1−10=−7 ,排除B ;选项C ,S 1=2−8=−6 ,排除C ;选项D ,S 1=12−2=−32 ,排除D .故选A .【方法技巧】 等差数列基本运算的常见类型及解题策略 (1)求公差d 或项数n .在求解时,一般要运用方程思想. (2)求通项.a 1 和d 是等差数列的两个基本元素.(3)求特定项.利用等差数列的通项公式或等差数列的性质求解.(4)求前n 项和.利用等差数列的前n 项和公式直接求解,或利用等差中项间接求解.二、填空题8. [2022全国卷乙,5分]记S n 为等差数列{a n } 的前n 项和.若2S 3=3S 2+6 ,则公差d = 2.[解析]因为2S 3=3S 2+6 ,所以2(a 1+a 2+a 3)=3(a 1+a 2)+6 ,化简得3d =6 ,得d =2 .9. [2020新高考卷Ⅰ,5分]将数列{2n −1} 与{3n −2} 的公共项从小到大排列得到数列{a n } ,则{a n } 的前n 项和为3n 2−2n .[解析]设b n =2n −1 ,c n =3n −2 ,b n =c m ,则2n −1=3m −2 ,得n =3m−12=3m−3+22=3(m−1)2+1 ,于是m −1=2k ,k ∈N ,所以m =2k +1 ,k ∈N ,则a k =3(2k +1)−2=6k +1 ,k ∈N ,得a n =6n −5 ,n ∈N ∗.故S n =1+6n−52×n =3n 2−2n .10. (2019全国卷Ⅲ,5分)记S n为等差数列{a n}的前n项和.若a1≠0,a2= 3a1,则S10S5=4.[解析]设等差数列{a n}的公差为d,由a2=3a1,即a1+d=3a1,得d=2a1,所以S10S5=10a1+10×92d5a1+5×42d=10a1+10×92×2a15a1+5×42×2a1=10025=4.11. [2019北京,5分]设等差数列{a n}的前n项和为S n .若a2=−3,S5=−10,则a5=0,S n的最小值为−10 .[解析]设等差数列{a n}的公差为d,∵{a2=−3,S5=−10,即{a1+d=−3,5a1+10d=−10,∴可得{a1=−4,d=1,∴a5=a1+4d=0.∵S n=na1+n(n−1)2d=12(n2−9n),∴当n=4或n=5时,S n取得最小值,最小值为−10.12. [2019江苏,5分]已知数列{a n}(n∈N∗)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是16.[解析]解法一设等差数列{a n}的公差为d,则a2a5+a8=(a1+d)(a1+4d)+ a1+7d=a12+4d2+5a1d+a1+7d=0,S9=9a1+36d=27,解得a1=−5,d=2,则S8=8a1+28d=−40+56=16.解法二设等差数列{a n}的公差为d.S9=9(a1+a9)2=9a5=27,a5=3,又a2a5+a8=0,则3(3−3d)+3+3d=0,得d=2,则S8=8(a1+a8)2=4(a4+a5)= 4(1+3)=16.【方法技巧】在等差数列{a n}中,若m+n=p+q ,m ,n ,p ,q∈N∗,则a m+a n=a p+a q .三、解答题13. [2023全国卷乙,12分]记S n为等差数列{a n}的前n项和,已知a2=11 ,S10=40 .(1)求{a n}的通项公式;[答案]设{a n}的公差为d,则{a2=a1+d=11,S10=10a1+45d=40,解得a1=13,d=−2.所以{a n}的通项公式为a n=13+(n−1)⋅(−2)=15−2n.(2)求数列{|a n|}的前n项和T n .[答案]由(1)得∣a n∣={15−2n,n≤7, 2n−15,n≥8.当n≤7时,T n=S n=13n+n(n−1)2×(−2)=14n−n2,当n≥8时,T n=−S n+2S7=−(14n−n2)+2(14×7−72)=98−14n+ n2.综上,T n={14n−n2,n≤7,98−14n+n2,n≥8.14. [2023新高考卷Ⅰ,12分]设等差数列{a n}的公差为d,且d>1 .令b n=n2+na n,记S n ,T n分别为数列{a n},{b n}的前n项和.(1)若3a2=3a1+a3 ,S3+T3=21 ,求{a n}的通项公式;[答案]因为3a2=3a1+a3,所以3(a2−a1)=a1+2d,所以3d=a1+2d,所以a1=d,所以a n=nd.因为b n=n2+na n ,所以b n=n2+nnd=n+1d,所以S3=3(a1+a3)2=3(d+3d)2=6d,T3=b1+b2+b3=2d+3d+4d=9d.因为S3+T3=21,所以6d+9d =21,解得d=3或d=12,因为d>1,所以d=3.所以{a n}的通项公式为a n=3n.(2)若{b n}为等差数列,且S99−T99=99,求d . [答案]因为b n=n2+na n,且{b n}为等差数列,所以2b2=b1+b3,即2×6a2=2a1+12a3,所以6a1+d −1a1=6a1+2d,所以a12−3a1d+2d2=0,解得a1=d或a1=2d.①当a1=d时,a n=nd,所以b n=n2+na n =n2+nnd=n+1d,S99=99(a1+a99)2=99(d+99d)2=99×50d,T99=99(b1+b99)2=99(2d+100d)2=99×51d.因为S99−T99=99,所以99×50d−99×51d=99,即50d2−d−51=0,解得d=5150或d=−1(舍去).②当a1=2d时,a n=(n+1)d,所以b n=n2+na n =n2+n(n+1)d=nd,S99=99(a1+a99)2=99(2d+100d)2=99×51d,T99=99(b1+b99)2=99(1d+99d)2=99×50d.因为S99−T99=99,所以99×51d−99×50d=99,即51d2−d−50=0,解得d=−5051(舍去)或d=1(舍去).综上,d=5150.15. [2022全国卷甲,12分]记S n为数列{a n}的前n项和.已知2S nn+n=2a n+1 . (1)证明:{a n}是等差数列;[答案]由2S nn+n=2a n+1,得2S n+n2=2a n n+n①,所以2S n+1+(n+1)2=2a n+1(n+1)+(n+1)②,②−①,得2a n+1+2n+1=2a n+1(n+1)−2a n n+1,化简得a n+1−a n=1,所以数列{a n}是公差为1的等差数列.(2)若a4 ,a7 ,a9成等比数列,求S n的最小值.[答案]由(1)知数列{a n}的公差为1.由a72=a4a9,得(a1+6)2=(a1+3)(a1+8),解得a1=−12.所以S n=−12n+n(n−1)2=n2−25n2=12(n−252)2−6258,所以当n=12或13时,S n取得最小值,最小值为−78.16. [2021新高考卷Ⅱ,10分]记S n是公差不为0的等差数列{a n}的前n项和,若a3=S5 ,a2a4=S4 .(1)求数列{a n}的通项公式;[答案]设等差数列{a n}的公差为d(d≠0),则由题意,得{a1+2d=5a1+10d,(a1+d)(a1+3d)=4a1+6d得{a1=−4,d=2所以a n=a1+(n−1)d=2n−6.(2)求使S n>a n成立的n的最小值.[答案]S n=n(a1+a n)2=n(2n−10)2=n2−5n,则由n2−5n>2n−6,整理得n2−7n+6>0,解得n<1或n>6.因为n∈N∗,所以使S n>a n成立的n的最小值为7.17. [2021全国卷甲,12分]已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{√S n }是等差数列;③a2=3a1 .注:若选择不同的组合分别解答,则按第一个解答计分.[答案]①③⇒②.已知{a n}是等差数列,a2=3a1.设数列{a n}的公差为d,则a2=3a1=a1+d,得d=2a1,所以S n=na1+n(n−1)2d=n2a1.因为数列{a n}的各项均为正数,所以√S n=n√a1,所以√S n+1−√S n=(n+1)√a1−n√a1=√a1(常数),所以数列{√S n}是等差数列.①②⇒③.已知{a n}是等差数列,{√S n}是等差数列.解法一易得√S3+√S1=2√S2,即√3a2+√a1=2√a1+a2,两边同时平方得3a2+a1+2√3a1a2=4(a1+a2),整理得(√3a1−√a2)2=0,所以a2=3a1.解法二设数列{a n}的公差为d,则S n=na1+n(n−1)2d=12n2d+(a1−d2)n.因为数列{√S n}是等差数列,所以数列{√S n}的通项公式是关于n的一次函数,则a1−d2=0,即d=2a1,所以a2=a1+d=3a1.②③⇒①.已知数列{√S n}是等差数列,a2=3a1,所以S1=a1,S2=a1+a2=4a1.设数列{√S n}的公差为d,d>0,则√S2−√S1=√4a1−√a1=d,得a1= d2,所以√S n=√S1+(n−1)d=nd,所以S n=n2d2,所以a n=S n−S n−1=n2d2−(n−1)2d2=2d2n−d2(n≥2),所以a n−a n−1=2d2(n≥2),所以数列{a n}是等差数列.考点18 等比数列题组一、选择题1. [2023全国卷甲,5分]设等比数列{a n}的各项均为正数,前n项和为S n ,若a1=1,S5=5S3−4,则S4= ( C )A. 158B. 658C. 15D. 40[解析]解法一若该数列的公比q=1,代入S5=5S3−4中,有5=5×3−4,不成立,所以q≠1.由1−q 51−q =5×1−q31−q−4,化简得q4−5q2+4=0,所以q2=1(舍)或q2=4,由于此数列各项均为正数,所以q=2,所以S4=1−q41−q= 15.故选C.解法二由已知得1+q+q2+q3+q4=5(1+q+q2)−4,整理得(1+q)(q3−4q)=0,由于此数列各项均为正数,所以q=2,所以S4=1+q+q2+q3=1+2+4+8=15.故选C.2. [2023天津,5分]已知{a n}为等比数列,S n为数列{a n}的前n项和,a n+1= 2S n+2 ,则a4的值为( C )A. 3B. 18C. 54D. 152[解析]解法一因为a n+1=2S n+2,所以当n≥2时,a n=2S n−1+2,两式相减得a n+1−a n=2a n,即a n+1=3a n,所以数列{a n}是公比q=a n+1a n=3的等比数列.当n=1时,a2=2S1+2=2a1+2,又a2=3a1,所以3a1=2a1+ 2,解得a1=2,所以a4=a1q3=2×33=54,故选C.解法二设等比数列{a n}的公比为q,因为a n+1=2S n+2,所以公比q≠1,且a1q n=2a1(1−q n)1−q +2=−2a11−qq n+2a11−q+2,所以{a1=−2a11−q,0=2a11−q+2,又a1≠0,所以q=3,a1=2,所以a4=a1q3=2×33=54,故选C.3. [2023新高考卷Ⅱ,5分]记S n 为等比数列{a n } 的前n 项和,若S 4=−5 ,S 6=21S 2 ,则S 8= ( C ) A. 120B. 85C. −85D. −120[解析]解法一 设等比数列{a n } 的公比为q (q ≠0) ,由题意易知q ≠1 ,则{a 1(1−q 4)1−q=−5,a1(1−q6)1−q=21×a 1(1−q 2)1−q,化简整理得{q 2=4,a 11−q =13. 所以S 8=a 1(1−q 8)1−q=13×(1−44)=−85 .故选C . 解法二 易知S 2 ,S 4−S 2 ,S 6−S 4 ,S 8−S 6 ,…… 为等比数列,所以(S 4−S 2)2=S 2⋅(S 6−S 4) ,解得S 2=−1 或S 2=54.当S 2=−1 时,由(S 6−S 4)2=(S 4−S 2)⋅(S 8−S 6) ,解得S 8=−85 ;当S 2=54 时,结合S 4=−5得{a 1(1−q 4)1−q =−5a 1(1−q 2)1−q =54,化简可得q 2=−5 ,不成立,舍去.所以S 8=−85 ,故选C .4. [2022全国卷乙,5分]已知等比数列{a n } 的前3项和为168,a 2−a 5=42 ,则a 6= ( D ) A. 14B. 12C. 6D. 3[解析]解法一 设等比数列{a n } 的公比为q ,由题意可得{a 1+a 2+a 3=168,a 2−a 5=42,即{a 1(1+q +q 2)=168,a 1q (1−q 3)=a 1q (1−q )(1+q +q 2)=42, 解得{a 1=96,q =12, 所以a 6=a 1q 5=3 ,故选D .解法二 设等比数列{a n } 的公比为q ,易知q ≠1 ,由题意可得{a 1(1−q 3)1−q=168,a 1q (1−q3)=42,解得{a 1=96,q =12,所以a 6=a 1q 5=3 ,故选D .5. [2021全国卷甲,5分]记S n 为等比数列{a n } 的前n 项和.若S 2=4 ,S 4=6 ,则S 6= ( A ) A. 7B. 8C. 9D. 10[解析]解法一因为S2=4,S4=6,所以公比q≠1,所以由等比数列的前n项和公式,得{S2=a1(1−q2)1−q=a1(1+q)=4,S4=a1(1−q4)1−q =a1(1+q)(1+q2)=6,两式相除,(技巧点拨:与等比数列有关的方程组,求解时通常利用两式相除,达到消元、降次的目的)得q2=12,所以{a1=4(2−√2),q=√22或{a1=4(2+√2),q=−√22,所以S6=a1(1−q6)1−q=7.故选A.解法二易知公比q≠−1,则S2,S4−S2,S6−S4构成等比数列,所以S2(S6−S4)=(S4−S2)2,即4(S6−6)=22,所以S6=7.故选A.6. [2020全国卷Ⅰ,5分]设{a n}是等比数列,且a1+a2+a3=1 ,a2+a3+ a4=2 ,则a6+a7+a8= ( D )A. 12B. 24C. 30D. 32[解析]解法一设等比数列{a n}的公比为q,所以a2+a3+a4a1+a2+a3=(a1+a2+a3)qa1+a2+a3=q=2,由a1+a2+a3=a1(1+q+q2)=a1(1+2+22)=1,解得a1=17,所以a6+a7+a8=a1(q5+q6+q7)=17×(25+26+27)=17×25×(1+2+22)=32,故选D.解法二令b n=a n+a n+1+a n+2(n∈N∗),则b n+1=a n+1+a n+2+a n+3.设数列{a n}的公比为q,则b n+1b n =a n+1+a n+2+a n+3a n+a n+1+a n+2=(a n+a n+1+a n+2)qa n+a n+1+a n+2=q,所以数列{b n}为等比数列,由题意知b1=1,b2=2,所以等比数列{b n}的公比q=2,所以b n=2n−1,所以b6=a6+a7+a8=25=32,故选D.7. [2020全国卷Ⅱ,5分]数列{a n}中,a1=2 ,a m+n=a m a n .若a k+1+a k+2+⋯+a k+10=215−25 ,则k= ( C )A. 2B. 3C. 4D. 5[解析]令m=1,则由a m+n=a m a n,得a n+1=a1a n,即a n+1a n=a1=2,所以数列{a n}是首项为2、公比为2的等比数列,所以a n=2n,所以a k+1+a k+2+⋯+a k+10=a k(a1+a2+⋯+a10)=2k×2×(1−210)1−2=2k+1×(210−1)=215−25=25×(210−1),解得k=4,故选C.8. [2019全国卷Ⅲ,5分]已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3= ( C )A. 16B. 8C. 4D. 2[解析]设等比数列{a n}的公比为q,由a5=3a3+4a1得q4=3q2+4,得q2= 4,因为数列{a n}的各项均为正数,所以q=2,又a1+a2+a3+a4=a1(1+q+q2+q3)=a1(1+2+4+8)=15,所以a1=1,所以a3=a1q2= 4.二、填空题9. [2023全国卷乙,5分]已知{a n}为等比数列,a2a4a5=a3a6 ,a9a10=−8 ,则a7=−2 .[解析]解法一设数列{a n}的公比为q,则由a2a4a5=a3a6,得a1q⋅a1q3⋅a1q4=a1q2⋅a1q5.又a1≠0,且q≠0,所以可得a1q=1①.又a9a10=a1q8⋅a1q9=a12q17=−8②,所以由①②可得q15=−8,q5=−2,所以a7=a1q6=a1q⋅q5=−2.解法二设数列{a n}的公比为q.因为a4a5=a3a6≠0,所以a2=1.又a9a10= a2q7⋅a2q8=q15=−8,于是q5=−2,所以a7=a2q5=−2.10. [2019全国卷Ⅰ,5分]记S n为等比数列{a n}的前n项和.若a1=13,a42=a6,则S5=1213.[解析]解法一设等比数列{a n}的公比为q,因为a42=a6,所以(a1q3)2=a1q5,所以a1q=1,又a1=13,所以q=3,所以S5=a1(1−q5)1−q=13×(1−35)1−3=1213.解法二设等比数列{a n}的公比为q,因为a42=a6,所以a2a6=a6,所以a2=1,又a1=13,所以q=3,所以S5=a1(1−q5)1−q=13×(1−35)1−3=1213.三、解答题11. [2020全国卷Ⅰ,12分]设{a n}是公比不为1的等比数列,a1为a2,a3的等差中项.(1)求{a n}的公比;[答案]设{a n}的公比为q,由题设得2a1=a2+a3,即2a1=a1q+a1q2.所以q2+q−2=0,解得q=1(舍去)或q=−2.故{a n}的公比为−2.(2)若a1=1,求数列{na n}的前n项和.[答案]记S n为{na n}的前n项和.由(1)及题设可得,a n=(−2)n−1.所以S n=1+2×(−2)+⋯+n×(−2)n−1,−2S n=−2+2×(−2)2+⋯+(n−1)×(−2)n−1+n×(−2)n.可得3S n=1+(−2)+(−2)2+⋯+(−2)n−1−n×(−2)n=1−(−2)n3−n×(−2)n.所以S n=19−(3n+1)(−2)n9.12. [2020新高考卷Ⅰ,12分]已知公比大于1的等比数列{a n}满足a2+a4= 20 ,a3=8 .(1)求{a n}的通项公式;[答案]设{a n}的公比为q.由题设得a1q+a1q3=20,a1q2=8.解得q=12(舍去)或q=2.由题设得a1=2.所以{a n}的通项公式为a n=2n.(2)记b m为{a n}在区间(0,m](m∈N∗)中的项的个数,求数列{b m}的前100项和S100 .[答案]由题设及(1)知b1=0,且当2n≤m<2n+1时,b m=n.所以S100=b1+(b2+b3)+(b4+b5+b6+b7)+⋯+(b32+b33+⋯+b63)+ (b64+b65+⋯+b100)=0+1×2+2×22+3×23+4×24+5×25+6×(100−63)=480.【方法技巧】求解本题第(2)问的关键在于找准m的取值和a n的联系,可从小到大进行列举,找规律,从而可得结果.13. [2019全国卷Ⅱ,12分]已知{a n}是各项均为正数的等比数列,a1=2 ,a3= 2a2+16 .(1)求{a n}的通项公式;[答案]设{a n}的公比为q,由题设得2q2=4q+16,即q2−2q−8=0.解得q=−2(舍去)或q=4.因此{a n}的通项公式为a n=2×4n−1=22n−1.(2)设b n=log2a n ,求数列{b n}的前n项和.[答案]由(1)得b n =(2n −1)log 22=2n −1 ,因此数列{b n } 的前n 项和为1+3+⋯+2n −1=n 2 .考点19 递推数列与数列求和题组一一、选择题1. [2021浙江,4分]已知数列{a n } 满足a 1=1 ,a n+1=n 1+√a n ∈N ∗) ,记数列{a n } 的前n 项和为S n ,则( A ) A. 32<S 100<3B. 3<S 100<4C. 4<S 100<92D. 92<S 100<5[解析]因为a 1=1 ,a n+1=n 1+√a ,所以a n >0 ,a 2=12 ,所以S 100>32.1an+1=1+√a n a n =1a n+√a =(√a +12)2−14 .所以1a n+1<(√a +12)2,两边同时开方可得√a <√a +12 ,则√a <√a +12 ,… ,√a <√a 12 ,由累加法可得√a <√a +n2=1+n2 ,所以√a ≤1+n−12=n+12,所以√a n ≥2n+1 ,所以a n+1=n 1+√a ≤a n1+2n+1=n+1n+3a n ,即a n+1a n≤n+1n+3 ,则a nan−1≤n n+2 ,… ,a 2a 1≤24 ,由累乘法可得当n ≥2 时,a n =a n a 1≤nn+2×n−1n+1×n−2n ×…×35×24=6(n+2)(n+1)=6(1n+1−1n+2) ,所以S 100<1+6(13−14+14−15+⋯+1101−1102)=1+6(13−1102)<1+2=3 ,故选A .【方法技巧】利用放缩法,结合累加法与累乘法求得a n ≤6(1n+1−1n+2) ,从而利用裂项相消法计算S 100 的取值范围.二、填空题2. [2021新高考卷Ⅰ,5分]某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm ×12dm 的长方形纸,对折1次共可以得到10dm ×12dm ,20dm ×6dm 两种规格的图形,它们的面积之和S 1=240dm 2 ,对折2次共可以得到5dm ×12dm ,10dm ×6dm ,20dm ×3dm 三种规格的图形,它们的面积之和S 2=180dm 2 ,以此类推.则对折4次共可以得到不同规格图形的种数为5;如果对折n 次,那么∑nk=1S k = 240(3−n+32n) dm 2 .[解析]依题意得,S 1=120×2=240 ;S 2=60×3=180 ;当n =3 时,共可以得到5dm ×6dm ,52dm ×12dm ,10dm ×3dm ,20dm ×32dm 四种规格的图形,且5×6=30 ,52×12=30 ,10×3=30 ,20×32=30 ,所以S 3=30×4=120 ;当n =4 时,共可以得到5dm ×3dm ,52dm ×6dm ,54dm ×12dm ,10dm ×32dm ,20dm ×34dm 五种规格的图形,所以对折4次共可以得到不同规格图形的种数为5,且5×3=15 ,52×6=15 ,54×12=15 ,10×32=15 ,20×34=15 ,所以S 4=15×5=75 ; ……所以可归纳S k =2402k×(k +1)=240(k+1)2k.所以∑n k=1S k =240(1+322+423+⋯+n2n−1+n+12n) ①,所以12×∑nk=1S k =240(222+323+424+⋯+n2n +n+12n+1) ②,由①−② 得,12×∑nk=1S k =240(1+122+123+124+⋯+12n −n+12n+1)=240(1+122−12n ×121−12−n+12n+1)=240(32−n+32n+1) ,(提示:用等比数列的前n 项和公式S n =a 1−a n q 1−q(q ≠1) ,可避免计算数列项数时出错)所以∑nk=1S k =240(3−n+32n)dm 2 .3. [2020全国卷Ⅰ,5分]数列{a n } 满足a n+2+(−1)n a n =3n −1 ,前16项和为540,则a 1= 7.[解析]因为数列{a n } 满足a n+2+(−1)n a n =3n −1 ,所以当n =2k(k ∈N ∗) 时,a 2k+2+a 2k =6k −1(k ∈N ∗) ,所以(a 2+a 4)+(a 6+a 8)+(a 10+a 12)+(a 14+a 16)=5+17+29+41=92 .当n =2k −1(k ∈N ∗) 时,a 2k+1−a 2k−1=6k −4(k ∈N ∗) ,所以当k ≥2 时,a 2k−1=a 1+(a 3−a 1)+(a 5−a 3)+(a 7−a 5)+⋯+(a 2k−1−a 2k−3)=a 1+2+8+14+⋯+[6(k −1)−4]=a 1+(2+6k−10)(k−1)2=a 1+(3k −4)(k −1) ,当k =1 时上式也成立,所以a 2k−1=a 1+(3k −4)(k −1)(k ∈N ∗) ,即a 2k−1=a 1+3k 2−7k +4(k ∈N ∗) .解法一所以a1+a3+a5+a7+⋯+a15=8a1+3×(12+22+32+⋯+82)−7×(1+2+3+⋯+8)+4×8=8a1+3×8×(8+1)×(2×8+1)6−7×(1+8)×82+32=8a1+612−252+32=8a1+392.又前16项和为540,所以92+8a1+ 392=540,解得a1=7.解法二所以a2k−1=a1+(3k2+3k+1)−10k+3=a1+[(k+1)3−k3]−10k+3,所以a1+a3+a5+a7+⋯+a15=8a1+(23−13)+(33−23)+⋯+(93−83)−10×(1+8)×82+3×8=8a1+93−13−360+24=8a1+392.又前16项和为540,所以92+8a1+392=540,解得a1=7.【拓展结论】12+22+32+42+⋯+n2=n(n+1)(2n+1)6.三、解答题4. [2023全国卷甲,12分]记S n为数列{a n}的前n项和,已知a2=1,2S n= na n .(1)求{a n}的通项公式;[答案]当n=1时,2S1=a1,即2a1=a1,所以a1=0.当n≥2时,由2S n=na n,得2S n−1=(n−1)a n−1,两式相减得2a n=na n−(n−1)a n−1,即(n−1)a n−1=(n−2)a n,当n=2时,可得a1=0,故当n≥3时,a na n−1=n−1n−2,则a na n−1⋅a n−1a n−2⋅…⋅a3a2=n−1n−2⋅n−2n−3⋅…⋅21,整理得a na2=n−1,因为a2=1,所以a n=n−1(n≥3).当n=1,n=2时,均满足上式,所以a n=n−1.(2)求数列{a n+12n}的前n项和T n .[答案]令b n=a n+12n =n2n,则T n=b1+b2+⋯+b n−1+b n=12+222+⋯+n−12n−1+n2n①,1 2T n=122+223+⋯+n−12n+n2n+1②,由①−②得12T n=12+122+123+⋯+12n−n2n+1=12(1−12n)1−12−n2n+1=1−2+n2n+1,即T n=2−2+n2n.5. [2019全国卷Ⅱ,12分]已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1= 3a n−b n+4,4b n+1=3b n−a n−4 .(1)证明:{a n+b n}是等比数列,{a n−b n}是等差数列;[答案]由题设得4(a n+1+b n+1)=2(a n+b n),即a n+1+b n+1=12(a n+b n).又因为a1+b1=1,所以{a n+b n}是首项为1,公比为12的等比数列.由题设得4(a n+1−b n+1)=4(a n−b n)+8,即a n+1−b n+1=a n−b n+2.又因为a1−b1=1,所以{a n−b n}是首项为1,公差为2的等差数列.(2)求{a n}和{b n}的通项公式.[答案]由(1)知,a n+b n=12n−1,a n−b n=2n−1.所以a n=12[(a n+b n)+(a n−b n)]=12n+n−12,b n=12[(a n+b n)−(a n−b n)]=12n−n+12.【方法技巧】破解此类题的关键:一是用定义,即根据所给的等式的特征,将其转化为数列相邻两项的差(比)的关系,利用等差(比)数列的定义,即可证明数列为等差(比)数列;二是用公式,即会利用等差(比)数列的通项公式,得到各个数列的通项所满足的方程(组),解方程(组),即可求出数列的通项公式.【易错警示】在利用等差(比)数列的定义时,既需注意是从第二项起,又需注意是后项与前项的差(比),在运用等比数列的通项公式时,注意不要与等比数列的前n项和公式搞混.题组二解答题1. [2023新高考卷Ⅱ,12分]已知{a n}为等差数列,b n={a n−6,n为奇数2a n,n为偶数.记S n,T n分别为数列{a n} ,{b n}的前n项和,S4=32,T3=16 . (1)求{a n}的通项公式;[答案]设等差数列{a n}的公差为d.因为b n={a n−6,n为奇数, 2a n,n为偶数,所以b1=a1−6,b2=2a2=2a1+2d,b3=a3−6=a1+2d−6.(提示:由于数列{b n}是一个奇偶项数列,因此求项时需“对号入座”)因为S4=32,T3=16,所以{4a1+6d=32,(a1−6)+(2a1+2d)+(a1+2d−6)=16,(方法技巧:求等差数列的基本量时,常根据已知条件建立方程组求解)解得{a1=5,d=2,所以{a n}的通项公式为a n=2n+3.(提示:等差数列的通项公式为a n=a1+(n−1)d)(2)证明:当n>5时,T n>S n . [答案]由(1)知a n=2n+3,所以S n=n[5+(2n+3)〗2=n2+4n,b n={2n−3,n为奇数,4n+6,n为偶数,当n为奇数时,T n=(−1+14)+(3+22)+(7+30)+⋯+[(2n−7)+(4n+2)]+2n−3= [−1+3+7+⋯+(2n−7)+(2n−3)]+[14+22+30+⋯+(4n+2)]=n+12(−1+2n−3)2+n−12(14+4n+2)2=3n2+5n−102.(方法技巧:如果数列的奇数项、偶数项构成等差或等比数列,则求其前n项和时可以使用分组求和方法,使具有相同结构的部分求和,然后将结果相加、化简即可)当n>5时,T n−S n=3n2+5n−102−(n2+4n)=n2−3n−102=(n−5)(n+2)2>0,所以T n>S n.当n为偶数时,T n=(−1+14)+(3+22)+(7+30)+⋯+[(2n−5)+ (4n+6)]=[−1+3+7+⋯+(2n−5)]+[14+22+30+⋯+(4n+6)]= n2(−1+2n−5)2+n2(14+4n+6)2=3n2+7n2.当n>5时,T n−S n=3n2+7n2−(n2+4n)=n2−n2=n(n−1)2>0,所以T n>S n.综上可知,当n>5时,T n>S n.2. [2022新高考卷Ⅰ,10分]记S n为数列{a n}的前n项和,已知a1=1 ,{S na n}是公差为13的等差数列.(1)求{a n}的通项公式;[答案]因为a1=1,所以S1a1=1,又{S na n }是公差为13的等差数列,所以S na n =1+(n−1)×13=n+23.所以S n=n+23a n.因为当n≥2时,a n=S n−S n−1=n+23a n−n+13a n−1,所以n+13a n−1=n−13a n(n≥2),所以a na n−1=n+1n−1(n≥2),所以a2a1×a3a2×…×a n−1a n−2×a na n−1=31×42×53×…×nn−2×n+1n−1=n(n+1)2(n≥2),所以a n=n(n+1)2(n≥2),又a1=1也满足上式,所以a n=n(n+1)2(n∈N∗).(2)证明:1a1+1a2+⋯+1a n<2 .[答案]因为a n=n(n+1)2,所以1a n=2n(n+1)=2(1n−1n+1),所以1a1+1a2+⋯+1a n=2[(1−12)+(12−13)+⋯+(1n−1−1n)+(1n−1n+1)]=2(1−1n+1)<2.3. [2021全国卷乙,12分]记S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2S n +1b n=2 .(1)证明:数列{b n}是等差数列. [答案]因为b n是数列{S n}的前n项积,所以n≥2时,S n=b nb n−1,代入2S n +1b n=2可得,2b n−1b n+1b n=2,整理可得2b n−1+1=2b n,即b n−b n−1=12(n≥2).又2S1+1b1=3b1=2,所以b1=32,故{b n}是以32为首项,12为公差的等差数列.(2)求{a n}的通项公式.[答案]由(1)可知,b n=n+22,则2S n+2n+2=2,所以S n=n+2n+1,当n=1时,a1=S1=32,当n≥2时,a n=S n−S n−1=n+2n+1−n+1n=−1n(n+1).故a n={32,n=1,−1n(n+1),n≥2.【易错警示】研究数列{a n}的通项与前n项和S n的关系时,一定要检验n=1的情况.4. [2021新高考卷Ⅰ,10分]已知数列{a n}满足a1=1 ,a n+1={a n+1,n为奇数, a n+2,n为偶数.(1)记b n=a2n ,写出b1 ,b2 ,并求数列{b n}的通项公式;[答案]因为b n=a2n,且a1=1,a n+1={a n+1,n为奇数, a n+2,n为偶数,所以b1=a2=a1+1=2,b2=a4=a3+1=a2+2+1=5.因为b n=a2n,所以b n+1=a2n+2=a2n+1+1=a2n+1+1=a2n+2+1=a2n+3,所以b n+1−b n=a2n+3−a2n=3,所以数列{b n}是以2为首项,3为公差的等差数列,b n=2+3(n−1)=3n−1,n∈N∗.(2)求{a n}的前20项和.[答案]因为a n+1={a n+1,n为奇数, a n+2,n为偶数,所以k∈N∗时,a2k=a2k−1+1=a2k−1+1,即a2k=a2k−1+1①,a2k+1=a2k+2②,a2k+2=a2k+1+1=a2k+1+1,即a2k+2=a2k+1+1③,所以①+②得a2k+1=a2k−1+3,即a2k+1−a2k−1=3,所以数列{a n}的奇数项是以1为首项,3为公差的等差数列;②+③得a2k+2=a2k+3,即a2k+2−a2k=3,又a2=2,所以数列{a n}的偶数项是以2为首项,3为公差的等差数列.所以数列{a n } 的前20项和S 20=(a 1+a 3+a 5+⋯+a 19)+(a 2+a 4+a 6+⋯+a 20)=10+10×92×3+20+10×92×3=300 .5. [2020全国卷Ⅲ,12分]设数列{a n } 满足a 1=3 ,a n+1=3a n −4n . (1) 计算a 2 ,a 3 ,猜想{a n } 的通项公式并加以证明; [答案]a 2=5 ,a 3=7 . 猜想a n =2n +1 .由已知可得 a n+1−(2n +3)=3[a n −(2n +1)] , a n −(2n +1)=3[a n−1−(2n −1)] , …a 2−5=3(a 1−3) .因为a 1=3 ,所以a n =2n +1 . (2) 求数列{2n a n } 的前n 项和S n . [答案]由(1)得2n a n =(2n +1)2n ,所以S n =3×2+5×22+7×23+⋯+(2n +1)×2n ①. 从而2S n =3×22+5×23+7×24+⋯+(2n +1)×2n+1 ②.①−② 得−S n =3×2+2×22+2×23+⋯+2×2n −(2n +1)×2n+1 . 所以S n =(2n −1)2n+1+2 .6. [2019天津,14分]设{a n } 是等差数列,{b n } 是等比数列.已知a 1=4 ,b 1=6 ,b 2=2a 2−2 ,b 3=2a 3+4 . (Ⅰ) 求{a n } 和{b n } 的通项公式;[答案]设等差数列{a n } 的公差为d ,等比数列{b n } 的公比为q .依题意得{6q =6+2d,6q 2=12+4d,解得{d =3,q =2, 故a n =4+(n −1)×3=3n +1 ,b n =6×2n−1=3×2n .所以{a n } 的通项公式为a n =3n +1 ,{b n } 的通项公式为b n =3×2n . (Ⅱ) 设数列{c n } 满足c 1=1 ,c n ={1,2k <n <2k+1,b k ,n =2k, 其中k ∈N ∗ . (ⅰ) 求数列{a 2n (c 2n −1)} 的通项公式;[答案]a 2n (c 2n −1)=a 2n (b n −1)=(3×2n +1)(3×2n −1)=9×4n −1 . 所以数列{a 2n (c 2n −1)} 的通项公式为a 2n (c 2n −1)=9×4n −1 .(ⅱ) 求∑2ni=1a i c i (n ∈N ∗) .[答案]∑2n i=1a i c i =∑2ni=1[a i +a i (c i −1)]=∑2ni=1a i +∑ni=1a 2i (c 2i −1)=[2n×4+2n (2n −1)2×3]+∑ni=1(9×4i −1)=(3×22n−1+5×2n−1)+9×4(1−4n )1−4−n=27×22n−1+5×2n−1−n −12(n ∈N ∗) .考点20 数列的综合应用题组一一、选择题1. [2021北京,4分]数列{a n } 是递增的整数数列,且a 1≥3 ,a 1+a 2+a 3+⋯+a n =100 ,则n 的最大值为( C ) A. 9B. 10C. 11D. 12[解析]因为数列{a n } 满足三个特征,整数数列,递增,前n 项和为100,所以欲求n 的最大值,需要保证a k+1−a k (k ≤n −1) 的值取最小的正整数.又a 1≥3 ,故可取a 1=3 ,a k+1−a k =1 ,则数列{a n } 的前10项为3,4,5,6,7,8,9,10,11,12,第11项a 11=100−(3+4+5+6+7+8+9+10+11+12)=25 ,满足题意,取数列{a n } 的前11项为3,4,5,6,7,8,9,10,11,12,13,则第12项a 12=100−(3+4+5+6+7+8+9+10+11+12+13)=12 ,不满足题意,故n 的最大值为11.二、填空题2. [2020江苏,5分]设{a n } 是公差为d 的等差数列,{b n } 是公比为q 的等比数列.已知数列{a n +b n } 的前n 项和S n =n 2−n +2n −1(n ∈N ∗) ,则d +q 的值是4.[解析]解法一 当n =1 时,S 1=a 1+b 1=1 ①,当n ≥2 时,a n +b n =S n −S n−1=2n −2+2n−1 ,则a 2+b 2=4 ②,a 3+b 3=8 ③,a 4+b 4=14 ④,②−① 得d +b 1(q −1)=3 ⑤,③−② 得d +b 2(q −1)=4 ⑥,④−③ 得d +b 3(q −1)=6 ⑦,⑥−⑤ 得b 1(q −1)2=1 ,⑦−⑥ 得b 2(q −1)2=2 ,则q =2 ,b 1=1 ,d =2 ,所以d +q =4 .解法二 由题意可得S 1=a 1+b 1=1 ,当n ≥2 时,a n +b n =S n −S n−1=2n −2+2n−1 ,易知当n =1 时也成立,则a 1+(n −1)d +b 1q n−1=dn +a 1−d +b 1q n−1=2n −2+2n−1 对任意正整数n 恒成立,则d =2 ,q =2 ,d +q =4 . 【速解】 由等差数列和等比数列的前n 项和的特征可得等差数列{a n } 的前n 项和H n =n 2−n ,等比数列{b n } 的前n 项和T n =2n −1 ,则d =2 ,q =2 ,d +q =4 .【方法技巧】 公差为d 的等差数列{a n } 的前n 项和S n =An 2+Bn ,其中A =d2 ,B =a 1−d 2 ;公比为q 的等比数列{b n } 的前n 项和T n =C −Cq n,其中C =b11−q(公比q 不等于1).三、解答题3. [2023天津,15分]已知数列{a n } 是等差数列,a 2+a 5=16 ,a 5−a 3=4 . (1) 求{a n } 的通项公式和∑2n −1i=2n−1a i .[答案]设{a n } 的公差为d , 由{a 2+a 5=16,a 5−a 3=4, 得{a 1+d +a 1+4d =16,a 1+4d −(a 1+2d )=4,解得{a 1=3,d =2,所以{a n } 的通项公式为a n =3+2(n −1)=2n +1 .a 2n−1=2⋅2n−1+1=2n +1 ,a 2n −1=2(2n −1)+1=2n+1−1 .(易错:不要把a 2n−1 和a 2n −1 的表达式理解成等比数列的通项公式)从a 2n−1 到a 2n −1 共有2n −1−2n−1+1=2n−1 (项).(提醒:下标相减算项数时要加1) 所以∑2n −1i=2n−1a i =(2n +1+2n+1−1)⋅2n−12=(2n +2⋅2n )⋅2n−12=3⋅2n ⋅2n−12=3⋅22n−2 .( 或∑2n −1i=2n−1a i =2n−1⋅(2n+1)+2n−1(2n−1−1)2⋅2=3⋅22n−2)(2) 已知{b n } 为等比数列,对于任意k ∈N ∗,若2k−1≤n ≤2k −1 ,则b k <a n <b k+1 .(ⅰ) 当k ≥2 时,求证:2k −1<b k <2k +1 ; [答案]因为当2k−1≤n ≤2k −1 时,b k <a n <b k+1 , 所以当2k ≤n +1≤2k+1−1 时,b k+1<a n+1<b k+2 , 可得a n <b k+1<a n+1 .因为{a n}为递增数列,所以若2k−1≤n≤2k−1,则a2k−1≤a n≤a2k−1,得2k+ 1≤a n≤2k+1−1.同理可得2k+1+1≤a n+1≤2k+2−1.故可得2k+1−1<b k+1<2k+1+1,(提醒:大于大的,小于小的)所以2k−1<b k<2k+1.综上,当k≥2时,2k−1<b k<2k+1.(ⅱ)求{b n}的通项公式及其前n项和.[答案]由题意知{b n}是q≠1的正项等比数列,(若q=1,则{b n}为常数列,与(i)矛盾)设{b n}的通项公式为b n=p⋅q n(p>0,q>0且q≠1),(点拨:若设成b n= b1⋅q n−1,不利于下一步的化简)由(i)知,2n−1<b n<2n+1,即2n−1<p⋅q n<2n+1,则有1−12n <p⋅(q2)n<1+12n.①当q2>1,即q>2时,∃n0∈N∗,使得p⋅(q2)n0>2,与p⋅(q2)n0<1+12n0矛盾;②当0<q2<1,q≠1,即0<q<2且q≠1时,∃n1∈N∗,使得p⋅(q2)n1<12,与p⋅(q2)n1>1−12n1矛盾.故q=2.(思路引导:从(i)的结论可以观察出b n=2n,通过反证法证明q>2和0<q<2且q≠1时不等式不成立,从而得到q=2)因为2n−1<b n<2n+1,所以b n=2n.设{b n}的前n项和为S n,则S n=2(1−2n)1−2=2n+1−2.4. [2022新高考卷Ⅱ,10分]已知{a n}是等差数列,{b n}是公比为2的等比数列,且a2−b2=a3−b3=b4−a4 .(1)证明:a1=b1 ;[答案]设等差数列{a n}的公差为d,由a2−b2=a3−b3得a1+d−2b1=a1+2d−4b1,即d=2b1,由a2−b2=b4−a4得a1+d−2b1=8b1−(a1+3d),即a1=5b1−2d,将d=2b1代入,得a1=5b1−2×2b1=b1,即a1=b1.。
2024年高考数学总复习第六章《数列》测试卷及答案(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 10=100,则a 7的值为()A .11B .12C .13D .14答案C解析由S 10=100及公差为2,得10a 1+10×(10-1)2×2=100,所以a 1=1.所以a n =2n -1,故a 7=13.故选C.2.若等差数列{a n }的公差d ≠0且a 1,a 3,a 7成等比数列,则a2a 1等于()A.32B.23C.12D .2答案A解析设等差数列的首项为a 1,公差为d ,则a 3=a 1+2d ,a 7=a 1+6d .因为a 1,a 3,a 7成等比数列,所以(a 1+2d )2=a 1(a 1+6d ),解得a 1=2d .所以a 2a 1=2d +d 2d=32.故选A.3.已知等差数列{a n }的前n 项和为S n ,若S 6=30,S 10=10,则S 16等于()A .-160B .-80C .20D .40答案B解析a 1+15d =30,a 1+45d =10,解得a 1=10,d =-2,故S 16=16a 1+120d =16×10+120×(-2)=-80,故选B.4.记等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于()A .-3B .5C .-31D .33答案D解析由题意知公比q ≠1,S 6S 3=a 1(1-q 6)1-qa 1(1-q 3)1-q =1+q 3=9,∴q =2,S 10S 5=a 1(1-q 10)1-qa 1(1-q 5)1-q=1+q 5=1+25=33.5.(2019·湖南五市十校联考)已知数列{a n }满足2a n =a n -1+a n +1(n ≥2),a 2+a 4+a 6=12,a 1+a 3+a 5=9,则a 1+a 6等于()A .6B .7C .8D .9答案B解析由数列{a n }满足2a n =a n -1+a n +1(n ≥2)得数列{a n }为等差数列,所以a 2+a 4+a 6=3a 4=12,即a 4=4,同理a 1+a 3+a 5=3a 3=9,即a 3=3,所以a 1+a 6=a 3+a 4=7.6.(2019·新乡模拟)为了参加冬季运动会的5000m 长跑比赛,某同学给自己制定了7天的训练计划:第1天跑5000m ,以后每天比前1天多跑200m ,则这个同学7天一共将跑()A .39200mB .39300mC .39400mD .39500m答案A解析依题意可知,这个同学第1天,第2天,…跑的路程依次成首项为5000,公差为200的等差数列,则这个同学7天一共将跑5000×7+7×62×200=39200(m).故选A.7.等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m 等于()A .38B .20C .10D .9答案C解析因为{a n }是等差数列,所以a m -1+a m +1=2a m ,由a m -1+a m +1-a 2m =0,得2a m -a 2m =0,由S 2m -1=38知a m ≠0,所以a m =2,又S 2m -1=38,即(2m -1)(a 1+a 2m -1)2=38,即(2m -1)×2=38,解得m =10,故选C.8.(2019·青岛调研)已知各项均不相等的等比数列{a n },若3a 2,2a 3,a 4成等差数列,设S n 为数列{a n }的前n 项和,则S 3a 3等于()A.139B.79C .3D .1答案A解析设等比数列{a n }的公比为q ,∵3a 2,2a 3,a 4成等差数列,∴2×2a 3=3a 2+a 4,∴4a 2q =3a 2+a 2q 2,化为q 2-4q +3=0,解得q =1或3.又数列的各项均不相等,∴q ≠1,当q =3时,S 3a 3=a 1(33-1)3-1a 1×9=139.故选A.9.(2019·广东六校联考)将正奇数数列1,3,5,7,9,…依次按两项、三项分组,得到分组序列如下:(1,3),(5,7,9),(11,13),(15,17,19),…,称(1,3)为第1组,(5,7,9)为第2组,依此类推,则原数列中的2019位于分组序列中的()A .第404组B .第405组C .第808组D .第809组答案A解析正奇数数列1,3,5,7,9,…的通项公式为a n =2n -1,则2019为第1010个奇数,因为按两项、三项分组,故按5个一组分组是有202组,故原数列中的2019位于分组序列中的第404组,故选A.10.(2019·新疆昌吉教育共同体月考)在数列{a n }中,a 1=2,其前n 项和为S n .在直线y =2x -1上,则a 9等于()A .1290B .1280C .1281D .1821答案C解析由已知可得S n +1n +1-1=又S11-1=a 1-1=1,1,公比为2的等比数列,所以Sn n -1=2n -1,得S n =n (1+2n -1),当n ≥2时,a n =S n -S n -1=(n +1)2n -2+1,故a 9=10×128+1=1281.11.(2019·长沙长郡中学调研)已知数列{a n }的前n 项和为S n ,且S n =n 2+4n ,若首项为13的数列{b n }满足1b n +1-1b n =a n ,则数列{b n }的前10项和为()A.175264B.3988C.173264D.181264答案A解析由S n =n 2+4n ,可得a n =2n +3,根据1b n +1-1b n=a n =2n +3,结合题设条件,应用累加法可求得1b n n 2+2n ,所以b n =1n 2+2n =1n (n +2)=所以数列{b n }的前n项和为T n -13+12-14+…+1n --1n +1-所以T 10-111-=175264,故选A.12.已知数列{a n }的通项a n =nx(x +1)(2x +1)…(nx +1),n ∈N *,若a 1+a 2+a 3+…+a 2018<1,则实数x 可以等于()A .-23B .-512C .-1348D .-1160答案B 解析∵a n =nx(x +1)(2x +1)…(nx +1)=1(x +1)(2x +1)…[n (x -1)+1]-1(x +1)(2x +1)…(nx +1)(n ≥2),∴a 1+a 2+…+a 2018=x x +1+1x +1-1(x +1)(2x +1)…(2018x +1)=1-1(x +1)(2x +1)…(2018x +1),当x =-23x +1>0,nx +1<0(2≤n ≤2018,n ∈N *),此时1-1(x +1)(2x +1)…(2018x +1)>1.当x =-512时,x +1>0,x +2>0,nx +1<0(3≤n ≤2018,n ∈N *),此时1-1(x +1)(2x +1)…(2018x +1)<1;当x =-1348时,x +1>0,x +2>0,x +3>0,nx +1<0(4≤n ≤2018,n ∈N *),此时1-1(x +1)(2x +1)…(2018x +1)>1;当x =-1160时,x +1>0,x +2>0,x +3>0,x +4>0,x +5>0,nx +1<0(6≤n ≤2018,n ∈N *),此时1-1(x +1)(2x +1)…(2018x +1)>1.故选B.二、填空题(本大题共4小题,每小题5分,共20分)13.设等差数列{a n }的公差为d ,其前n 项和为S n ,若a 4+a 10=0,2S 12=S 2+10,则d 的值为________.答案-10解析由a 4+a 10=0,2S 12=S 2+10,1+3d +a 1+9d =0,a 1+12×112d2a 1+d +10,解得d =-10.14.(2019·沈阳东北育才中学模拟)等差数列{a n },{b n }的前n 项和分别为S n 和T n ,若Sn T n =2n +13n +2,则a 3+a 11+a 19b 7+b 15=________.答案129130解析原式=3a 112b 11=32·2a 112b 11=32·a 1+a 21b 1+b 21=32·S 21T 21=32·2×21+13×21+2=129130.15.(2019·荆州质检)已知数列{a n }的前n 项和为S n ,若a n =(2n -2则S 2019=________.答案2020解析∵a n =(2n -2=(1-2n )sinn π2,∴a 1,a 2,…,a n 分别为-1,0,5,0,-9,0,13,0,-17,0,21,0,…,归纳可得,每相邻四项和为4,∴S 2019=504×4+a 2017+a 2018+a 2019=2016+[(1-2×2017)+0+(2×2019-1)]=2016+4=2020.16.(2019·长沙长郡中学调研)已知点列P 1(1,y 1),P 2(2,y 2),P 3(3,y 3),…,P n +1(n +1,y n +1)在x 轴上的投影为Q 1,Q 2,…,Q n +1,且点P n +1满足y 1=1,直线P n P n +1的斜率1n n P P k +=2n .则多边形P 1Q 1Q n +1P n +1的面积为________.答案3×2n -n -3解析根据题意可得y n +1-y n =2n ,结合y 1=1,应用累加法,可以求得y n +1=2n +1-1,根据题意可以将该多边形分成n 个直角梯形计算,且从左往右,第n 个梯形的面积为S n =y n +y n +12=3×2n -1-1,总的面积应用分组求和法,可求得多边形的面积为S =3(2n -1)-n =3×2n -n -3.三、解答题(本大题共70分)17.(10分)已知{a n }是以a 为首项,q 为公比的等比数列,S n 为它的前n 项和.(1)当S 1,S 3,S 4成等差数列时,求q 的值;(2)当S m ,S n ,S l 成等差数列时,求证:对任意自然数k ,a m +k ,a n +k ,a l +k 也成等差数列.(1)解由已知,得a n =aq n -1,因此S 1=a ,S 3=a (1+q +q 2),S 4=a (1+q +q 2+q 3).当S 1,S 3,S 4成等差数列时,S 4-S 3=S 3-S 1,可得aq 3=aq +aq 2,化简得q 2-q -1=0.解得q =1±52.(2)证明若q =1,则{a n }的各项均为a ,此时a m +k ,a n +k ,a l +k 显然成等差数列.若q ≠1,由S m ,S n ,S l 成等差数列可得S m +S l =2S n ,即a (q m -1)q -1+a (q l -1)q -1=2a (q n -1)q -1,整理得q m +q l =2q n .因此a m +k +a l +k =aq k -1(q m +q l )=2aq n+k -1=2a n +k ,所以a m +k ,a n +k ,a l +k 成等差数列.18.(12分)(2019·安徽皖南八校联考)数列{a n }的前n 项和记为S n ,且4S n =5a n -5,数列{b n }满足b n =log 5a n .(1)求数列{a n },{b n }的通项公式;(2)设c n =1b n b n +1,数列{c n }的前n 项和为T n ,证明T n <1.(1)解∵4S n =5a n -5,∴4a 1=5a 1-5,∴a 1=5.当n ≥2时,4S n -1=5a n -1-5,∴4a n =5a n -5a n -1,∴a n =5a n -1,∴{a n }是以5为首项,5为公比的等比数列,∴a n =5·5n -1=5n .∴b n =log 55n =n .(2)证明∵c n =1n (n +1)=1n -1n +1,∴T n…=1-1n +1<1.19.(12分)(2019·安徽皖中名校联考)已知数列{a n }满足:a n +1=2a n -n +1,a 1=3.(1)设数列{b n }满足:b n =a n -n ,求证:数列{b n }是等比数列;(2)求出数列{a n }的通项公式和前n 项和S n .(1)证明b n +1b n =a n +1-(n +1)a n -n =2a n -n +1-(n +1)a n -n=2(a n -n )a n -n =2,又b 1=a 1-1=3-1=2,∴{b n }是以2为首项,2为公比的等比数列.(2)解由(1)得b n =2n ,∴a n =2n +n ,∴S n =(21+1)+(22+2)+…+(2n +n )=(21+22+…+2n )+(1+2+3+…+n )=2(1-2n )1-2+n (n +1)2=2n +1-2+n (n +1)2.20.(12分)(2019·湖南衡阳八中月考)已知数列{a n }的前n 项和为S n ,且S n =2a n -n (n ∈N *).(1)证明:{a n +1}是等比数列;(2)若数列b n =log 2(a n +1)n 项和T n .(1)证明当n =1时,S 1=2a 1-1,∴a 1=1.∵S n =2a n -n ,∴S n +1=2a n +1-(n +1),∴a n +1=2a n +1,∴a n +1+1=2(a n +1),∴{a n +1}是以a 1+1=2为首项,2为公比的等比数列.(2)解由(1)得a n +1=2n ,∴b n =log 22n =n ,∴1b 2n -1·b 2n +1=1(2n -1)(2n +1)=∴T n -13+13-15+…+12n -1-=n 2n +1.21.(12分)(2019·青岛调研)已知数列{a n }的各项均为正数,其前n 项和为S n .(1)若对任意n ∈N *,S n =n 2+n +12都成立,求a n ;(2)若a 1=1,a 2=2,b n =a 2n -1+a 2n ,且数列{b n }是公比为3的等比数列,求S 2n .解(1)由S n =n 2+n +12,得S n -1=(n -1)2+n2,n ≥2,两式相减得a n =n ,n ≥2,又a 1=S 1=32,不满足a n =n ,∴a n n =1,n ≥2.(2)S 2n =a 1+a 2+…+a 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n ,∵b 1=a 1+a 2=3,{b n }是公比为3的等比数列,∴S 2n =b 1+b 2+…+b n =3(1-3n )1-3=32(3n-1).22.(12分)(2019·湖南岳阳一中质检)已知数列{a n }的前n 项和为S n ,S n =2a n -2.(1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,b 1=1,点(T n +1,T n )在直线x n +1-y n =12上,若存在n ∈N *,使不等式2b 1a 1+2b 2a 2+…+2b na n≥m 成立,求实数m 的最大值.解(1)∵S n =2a n -2,①∴S n +1=2a n +1-2,②∴②-①得a n +1=2a n +1-2a n (n ≥1),∴a n +1=2a n ,即a n +1a n=2,∴{a n }是首项为2,公比为2的等比数列.∴a n =2n .(2)由题意得,T n +1n +1-T n n =12,成等差数列,公差为12.首项T 11=b11=1,∴T n n =1+12(n -1)=n +12,T n =n (n +1)2,当n ≥2时,b n =T n -T n -1=n (n +1)2-n (n -1)2=n ,当n =1时,b 1=1成立,∴b n =n .∴2b n a n =2n2n =n 2n -1=-1,令M n =2b 1a 1+2b 2a 2+…+2b na n,只需(M n )max ≥m .∴M n =1+2×12+3+…+n -1,③12M n =12+2+3+…+n ,④③-④得,12M n =1+12++…-1-n 1-12n=2-(n +,∴M n =4-(n +-1.∵M n +1-M n =4-(n +-4+(n +-1=n +12n>0.∴{M n }为递增数列,且(n +-1>0,∴M n <4.∴m ≤4,实数m 的最大值为4.。
【一专三练】 专题01 数列大题拔高练-新高考数学复习分层训练(新高考通用)1.(2023·湖北武汉·华中师大一附中校联考模拟预测)数列{}n a 满足11a =,1113n n a a n +=+.(1)设27n nn n b a -=,求{}n b 的最大项;(2)求数列{}n a 的前n 项和n S .2.(2023·安徽蚌埠·统考三模)已知数列{}n a 满足11a =,2121n n a a +=+,2212n n a a -=.(1)求数列{}n a 的通项公式;(2)设12111n nT a a a =+++ ,求证:23n T <.3.(2023·吉林通化·梅河口市第五中学校考模拟预测)已知数列{}n a 满足11a =,1,,,;n n na n n a a n n ++⎧=⎨-⎩为奇数为偶数数列nb 满足2n n b a =.(1)求数列{}n b 的通项公式;(2)求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n S .4.(2023·广东广州·统考一模)已知数列{}n a 的前n 项和为n S ,且221n n n S a +=+(1)求1a ,并证明数列2nn a ⎧⎫⎨⎬⎩⎭是等差数列:(2)若222k k a S <,求正整数k 的所有取值.5.(2023·湖南岳阳·统考二模)已知数列{}n a 的前n 项和为111,1,22n n n n S a S S ++==+(1)证明数列2n n S ⎧⎫⎨⎬⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)设3n n n b S =,若对任意正整数n ,不等式21827n m m b -+<恒成立,求实数m 的取值范围.6.(2023·广东深圳·深圳中学校联考模拟预测)在数列{}n a 中,149a =,()()()2313912n n n n a n a ++⋅+=+.(1)求{}n a 的通项公式;(2)设{}n a 的前n 项和为n S ,证明:525443n nn S +<-⋅.7.(2023·山西·校联考模拟预测)在①n b =②11n n n b a a +=;③2n n n b a =,这三个条件中任选一个补充在下面横线上,并解答问题.已知数列{}n a 的前n 项和23322n n S na n n =-+.(1)证明:数列{}n a 是等差数列;(2)若12a =,设___________,求数列{}n b 的前n 项和n T .8.(2023·吉林长春·校联考一模)已知等差数列{}n a 的首项11a =,记{}n a 的前n 项和为n S ,4232140S a a -+=.(1)求数列{}n a 的通项公式;(2)若数列{}n a 公差1d >,令212n n nn n a c a a ++=⋅⋅,求数列{}n c 的前n 项和n T .9.(2023·浙江·校联考三模)已知数列{}n a 是以d 为公差的等差数列,0,n d S ≠为{}n a 的前n 项和.(1)若6336,1S S a -==,求数列{}n a 的通项公式;(2)若{}n a 中的部分项组成的数列{}n m a 是以1a 为首项,4为公比的等比数列,且214a a =,求数列{}n m 的前n 项和n T .10.(2023·山西·统考模拟预测)已知数列{}n a 是正项等比数列,且417a a -=,238a a =.(1)求{}n a 的通项公式;(2)从下面两个条件中选择一个作为已知条件,求数列{}n b 的前n 项和n S .①()21n n b n a =-;②()22121log n n b n a =+.11.(2023·辽宁沈阳·统考一模)设*n ∈N ,向量()1,1AB n =- ,()1,41AC n n =-- ,n a AB AC =⋅ .(1)令1n n n b a a +=-,求证:数列{}n b 为等差数列;(2)求证:1211134n a a a ++⋅⋅⋅+<.12.(2023·福建厦门·厦门双十中学校考模拟预测)设数列{}n a 的前n 项和为n S .已知11a =,222n n na S n n -=-,*N n ∈.(1)求证:数列{}n a 是等差数列;(2)设数列{}n b 的前n 项和为n T ,且21nn T =-,令2n n n a c b =,求数列{}n c 的前n 项和n R .13.(2023·山东潍坊·统考一模)已知数列{}n a 为等比数列,其前n 项和为n S ,且满足()2n n S m m R =+∈.(1)求m 的值及数列{}n a 的通项公式;(2)设2log 5n n b a =-,求数列{}n b 的前n 项和n T .14.(2023·辽宁抚顺·统考模拟预测)已知n S 是等差数列{}n a 的前n 项和,n T 是等比数列{}n b 的前n 项和,且10a =,11b =,223344S T S T S T +=+=+.(1)求数列{}n a 和{}n b 的通项公式;(2)设211nn n i c a n ==⋅∑,求数列的前n 项和n P .15.(2023·湖北·校联考模拟预测)已知数列{}n a 满足()112,(1)02,N n n a n a na n n *-=-+=≥∈.(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,求2023S .16.(2023·安徽合肥·校考一模)已知数列{}n a 满足221n n n a a a ++=,13a =,23243a a =.(1)求{}n a 的通项公式;(2)若3log n n b a =,数列{}n b 的前n 项和为n S ,求12111nS S S ++⋯+.17.(2023·辽宁葫芦岛·统考一模)设等差数列{}n a 的前项和为n S ,已知1239a a a ++=,2421a a ⋅=,等比数列{}n b 满足2334b b +=,234164b b b =.(1)求n S ;(2)设n n c =,求证:1234n c c c c ++++< .18.(2023·山东枣庄·统考二模)已知数列{}n a 的首项13a =,且满足2122n n n a a +++=.(1)证明:{}2n n a -为等比数列;(2)已知2,log ,n n na nb a n ⎧=⎨⎩为奇数为偶数,n T 为{}n b 的前n 项和,求10T .19.(2023·山东聊城·统考一模)已知数列{}n a 满足1322a a a +=,13,2,n n na n a a n +⎧=⎨+⎩为奇数为偶数,数列{}n c 满足21n n c a -=.(1)求数列{}n c 和{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S .20.(2023·江苏·二模)已知数列{}n a 满足112a =-,()1120n n n a na +++=.数列{}nb 满足11b =,1n n n b k b a +=⋅+ .(1)求{}n a 的通项公式;(2)证明:当1k ≤时,1132n n n b -+≤- .21.(2023·江苏·统考一模)在数列}n a 中,若()*1123N n n a a a a a d n +-⋅⋅⋅=∈,则称数列{}n a 为“泛等差数列”,常数d 称为“泛差”.已知数列{}n a 是一个“泛等差数列”,数列{}n b 满足22212123n n n a a a a a a a b =⋅++⋅⋅⋅⋅-⋅+.(1)若数列{}n a 的“泛差”1d =,且1a ,2a ,3a 成等差数列,求1a ;(2)若数列{}n a 的“泛差”1d =-,且112a =,求数列{}nb 的通项n b .22.(2023·辽宁辽阳·统考一模)某体育馆将要举办一场文艺演出,以演出舞台为中心,观众座位依次向外展开共有10排,从第2排起每排座位数比前一排多4个,且第三排共有49个座位.(1)设第n 排座位数为()1,2,,10n a n =L ,求n a 及观众座位的总个数;(2)已知距离演出舞台最远的第10排的演出门票的价格为500元/张,每往前推一排,门票单价为其后一排的1.1倍,若门票售罄,试问该场文艺演出的门票总收入为多少元?(取101.1 2.594=)23.(2023·浙江温州·统考二模)已知{}n a 是首项为1的等差数列,公差{}0,n d b >是首项为2的等比数列,4283,a b a b ==.(1)求{}{},n n a b 的通项公式;(2)若数列{}n b 的第m 项m b ,满足__________(在①②中任选一个条件),*N k ∈,则将其去掉,数列{}n b 剩余的各项按原顺序组成一个新的数列{}n c ,求{}n c 的前20项和20S .①4log m k b a =②31m k b a =+.24.(2023·山西太原·统考一模)已知等差数列{}n a 中,11a =,n S 为{}n a 的前n 项和,且也是等差数列.(1)求n a ;(2)设()*1n n n n S b n a a +=∈N ,求数列{}n b 的前n 项和n T .25.(2023·云南红河·统考二模)已知等差数列{}n a 的公差0d >,12a =,其前n 项和为n S ,且______.在①1a ,3a ,11a 成等比数列;333S =;③221133n n n n a a a a ++-=+这三个条件中任选一个,补充在横线上,并回答下列问题.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()11nn n b a =+-,求数列{}n b 的前2n 项和2n T .注:如果选择多个条件分别解答,那么按第一个解答计分.26.(2023·辽宁大连·校联考模拟预测)已知数列{}n a 的前n 项之积为()(1)22N n n n S n -*=∈.(1)求数列{}n a 的通项公式;(2)设公差不为0的等差数列{}n b 中,11b =,___________,求数列{}2log 2n b n a +的前n 项和n T .请从①224b b =;②358b b +=这两个条件中选择一个条件,补充在上面的问题中并作答.注:如果选择多个条件分别作答,则按照第一个解答计分.27.(2023·山东·烟台二中校联考模拟预测)已知等差数列{}n a 的前n 项和为n S ,且413a =,672S =,数列{}n b 的前n 项和为n T ,且344n n T b =-.(1)求数列{}n a ,{}n b 的通项公式.(2)记()152n n n n a b c +-⋅=,若数列{}n c 的前n 项和为n Q ,数列的前n 项和为n R ,探究:n n nQ R c +是否为定值?若是,请求出该定值;若不是,请说明理由.28.(2023·湖南常德·统考一模)已知数列{}n a 满足1224444n n n a a a n +++=L (*n ∈N ).(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11n n n b a a +=,求{}n b 的前n 项和n S .29.(2023·山东济宁·统考一模)已知数列{}n a 的前n 项和为n S ,且满足:*111,2(N )n n a na S n n +==+∈. (1)求证:数列1n a n +⎧⎫⎨⎬⎩⎭为常数列;(2)设3123123333n n n a a a a a a a a T =++++ ,求n T .30.(2023·湖南长沙·湖南师大附中校考一模)如图,已知曲线12:(0)1x C y x x =>+及曲线21:(0)3C y x x=>.从1C 上的点)n P n +∈N 作直线平行于x 轴,交曲线2C 于点n Q ,再从点n Q 作直线平行于y 轴,交曲线1C 于点1n P +,点n P 的横坐标构成数列{}1102n a a ⎛⎫<< ⎪⎝⎭.(1)试求1n a +与n a 之间的关系,并证明:()21212n n a a n -+<<∈N ;(2)若113a =,求n a的通项公式.。
(完整)高考数列大题专题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高考中的数列—最后一讲(内部资料勿外传)1.已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k;(3)设,.当b1=1时,求数列{b n}的通项公式.2.设{a n}是公比为正数的等比数列a1=2,a3=a2+4.(Ⅰ)求{a n}的通项公式;(Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n.3.已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n项和为S n,且,,成等比数列.(Ⅰ)求数列{a n}的通项公式及S n;(Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小.4.已知等差数列{a n}满足a2=0,a6+a8=﹣10(I)求数列{a n}的通项公式;(II)求数列{}的前n项和.5.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5.(I)求数列{b n}的通项公式;(II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列.6.在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作T n,再令a n=lgT n,n≥1.(I)求数列{a n}的通项公式;(Ⅱ)设b n=tana n?tana n+1,求数列{b n}的前n项和S n.7.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(Ⅰ)若S 5=5,求S 6及a 1;(Ⅱ)求d 的取值范围.8.已知等差数列{a n }的前3项和为6,前8项和为﹣4.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =(4﹣a n )q n ﹣1(q ≠0,n ∈N *),求数列{b n }的前n 项和S n .9.已知数列{a n }满足a 1=0,a 2=2,且对任意m 、n ∈N *都有a 2m ﹣1+a 2n ﹣1=2a m+n ﹣1+2(m ﹣n )2(1)求a 3,a 5;(2)设b n =a 2n+1﹣a 2n ﹣1(n ∈N *),证明:{b n }是等差数列;(3)设c n =(a n+1﹣a n )q n ﹣1(q ≠0,n ∈N *),求数列{c n }的前n 项和S n .10.已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列.(Ⅰ)求数列{a n }的通项;(Ⅱ)求数列{2an }的前n 项和S n .11.已知数列{a n }满足,,n ∈N ×.(1)令b n =a n+1﹣a n ,证明:{b n }是等比数列;(2)求{a n }的通项公式.12.等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n ),均在函数y=b x +r (b >0)且b ≠1,b ,r 均为常数)的图象上.(1)求r 的值;(2)当b=2时,记b n =n ∈N *求数列{b n }的前n 项和T n .13.(本小题满分12分)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S .(Ⅰ)求n a 及n S ;(Ⅱ)令b n =211n a -(n ∈N *),求数列{}n b 的前n 项和n T .14.已知数列{a n}是一个公差大于0的等差数列,且满足a2a6=55,a2+a7=16(1)求数列{a n}的通项公式;(2)数列{a n}和数列{b n}满足等式a n=(n∈N*),求数列{b n}的前n项和S n.15.设数列{a n}的通项公式为a n=pn+q(n∈N*,P>0).数列{b n}定义如下:对于正整数m,b m是使得不等式a n≥m成立的所有n中的最小值.(Ⅰ)若,求b3;(Ⅱ)若p=2,q=﹣1,求数列{b m}的前2m项和公式;16.已知数列{x n}的首项x1=3,通项x n=2n p+np(n∈N*,p,q为常数),且成等差数列.求:(Ⅰ)p,q的值;(Ⅱ)数列{x n}前n项和S n的公式.17.设数列{a n}的前n项和为S n=2a n﹣2n,(Ⅰ)求a1,a4(Ⅱ)证明:{a n+1﹣2a n}是等比数列;(Ⅲ)求{a n}的通项公式.18.在数列{a n}中,a1=1,.(Ⅰ)求{a n}的通项公式;(Ⅱ)令,求数列{b n}的前n项和S n;(Ⅲ)求数列{a n}的前n项和T n.19.已知数列{a n}的首项,,n=1,2,3,….(Ⅰ)证明:数列是等比数列;(Ⅱ)求数列的前n项和S n.20.在数列{}n a 中,10a =,且对任意*k N ∈k N ∈,21221,,k k k a a a -+成等差数列,其公差为k d 。
数列大题基础练-新高考数学复习分层训练(新高考通用)1.(2022·浙江·模拟预测)已知数列{}n a 满足,12(1)nn n a a +=+⋅-.(1)若11a =,数列{}2n a 的通项公式;(2)若数列{}n a 为等比数列,求1a .2.(2022·海南省直辖县级单位·校联考一模)等差数列{}n a 的首项11a =,且满足2512a a +=,数列{}n b 满足2n a n b =.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和是n T ,求n T .3.(2023·黑龙江大庆·统考一模)设{}n a 是公差不为0的等差数列,12a =,3a 是1a ,11a 的等比中项.(1)求{}n a 的通项公式;(2)设13n n n b a a +=,求数列{}n b 的前n 项和n S .4.(2023·广东惠州·统考模拟预测)数列{}n a 中,12a =,121n n a a +=-.(1)求证:数列{}1n a -是等比数列;(2)若n n b a n =+,求数列{}n b 的前n 项和n T .5.(2023·广东江门·统考一模)已知数列{}n a (N n +∈)满足11a =,133n n n a a n++=,且n n ab n =.(1)求数列{}n b 是通项公式;(2)求数列{}n a 的前n 项和n S .6.(2023·江苏·统考一模)已知等比数列{}n a 的各项均为正数,且23439a a a ++=,54323a a a =+.(1)求{}n a 的通项公式;(2)数列{}n b 满足n nnb a=,求{}n b 的前n 项和n T .2024年高考数学专项突破数列大题基础练(解析版)7.(2023·重庆·统考二模)已知数列{}n a 的前n 项和为n S ,且满足()115n n na n a +-+=,且15a ≠-.(1)求证:数列5n a n +⎧⎫⎨⎬⎩⎭为常数列,并求{}n a 的通项公式;(2)若使不等式20n S >成立的最小整数为7,且1Z a ∈,求1a 和n S 的最小值.8.(2023·海南海口·校考模拟预测)已知数列{}n a 的前n 项和为n S ,14a =,12n n a n S n+=.(1)求数列{}n a 的通项公式;(2)记12nn na c =-,数列{}nc 的前n 项和为n T ,求12111n T T T ++⋅⋅⋅+的值.9.(2023·山东青岛·统考一模)已知等差数列{}n a 的前n 项和为n S ,公差0d ≠,2S ,4S ,54S +成等差数列,2a ,4a ,8a 成等比数列.(1)求n S ;(2)记数列{}n b 的前n 项和为n T ,22n n n n b T S +-=,证明数列1n n b S ⎧⎫-⎨⎬⎩⎭为等比数列,并求{}n b 的通项公式.10.(2023·山东济南·一模)已知数列{}n a 满足111,(1)1n n a na n a +=-+=.(1)若数列{}n b 满足1nn a b n+=,证明:{}n b 是常数数列;(2)若数列{}n c 满足πsin 22n an n c a ⎛⎫=+ ⎪⎝⎭,求{}n c 的前2n 项和2n S .11.(2022·辽宁鞍山·统考一模)已知等差数列{}n a 满足首项为3331log 15log 10log 42-+的值,且3718a a +=.(1)求数列{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .12.(2023·广东·统考一模)已知各项都是正数的数列{}n a ,前n 项和n S 满足()2*2n n n a S a n =-∈N .(1)求数列{}n a 的通项公式.(2)记n P 是数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和,n Q 是数列121n a -⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和.当2n ≥时,试比较n P 与n Q 的大小.13.(2022·吉林长春·东北师大附中校考模拟预测)从①12n a S n n ⎛⎫=+ ⎪⎝⎭;②23S a =,412a a a =;③12a =,4a 是2a ,8a 的等比中项这三个条件中任选一个,补充到下面横线上,并解答.已知等差数列{}n a 的前n 项和为n S ,公差d 不等于零,______.(1)求数列{}n a 的通项公式;(2)若122n n n b S S +=-,数列{}n b 的前n 项和为n W ,求n W .14.(2022·广东珠海·珠海市第三中学统考二模)已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,1221n n n a b n -+=+-,221n n n T S n -=--.(1)求11,a b 及数列{}n a ,{}n b 的通项公式;(2)设()*21N 2n n n a n k c k b n k=-⎧=∈⎨=⎩,,,求数列{}n c 的前2n 项和2n P .15.(2022·云南大理·统考模拟预测)已知数列{}n a 的前n 项和为n S ,且满足1121,1nn S a a n+==-.(1)求数列{}n a 的通项公式;(2)若数列2,,23,,n n n C n n ⎧=⎨+⎩为奇数为偶数,求数列{}n C 的前2n 项和2n T .16.(2022·湖南永州·统考一模)已知数列{}{},n n a b 满足:111a b ==,且210n n n n a b a b ++-=.(1)若数列{}n a 为等比数列,公比为121,2q a a -=,求{}n b 的通项公式;(2)若数列{}n a 为等差数列,11n n a a +-=,求{}n b 的前n 项和n T .17.(2022·广东韶关·统考一模)已知数列{}n a 的首项145a =,且满足143n n n a a a+=+,设11nnb a =-.(1)求证:数列{}n b 为等比数列;(2)若1231111140na a a a ++++> ,求满足条件的最小正整数n .18.(2022·河北·模拟预测)已知数列{}n a 的前n 项和为n S ,13a =,且1123n n n S S a +++=-.(1)求数列{}n a 的通项公式;(2)①3log n n nb a a =;②3321log log n n n b a a +=⋅;③3log n n n b a a =-.从上面三个条件中任选一个,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.19.(2022·广东广州·统考一模)已知公差不为0的等差数列{}n a 中,11a =,4a 是2a 和8a 的等比中项.(1)求数列{}n a 的通项公式:(2)保持数列{}n a 中各项先后顺序不变,在k a 与1(1,2,)k a k += 之间插入2k ,使它们和原数列的项构成一个新的数列{}n b ,记{}n b 的前n 项和为n T ,求20T 的值.20.(2023·湖北·荆州中学校联考二模)已知数列{}n a ,若_________________.(1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .从下列三个条件中任选一个补充在上面的横线上,然后对题目进行求解.①2123n a a a a n ++++= ;②11a =,47a =,()*112,2n n n a a a n n -+=+∈N ≥;③11a =,点(),n A n a ,()11,n B n a ++在斜率是2的直线上.21.(2023·江苏南通·二模)已知正项数列{}n a 的前n 项和为,且11a =,2218n n S S n +-=,*N n ∈.(1)求n S ;(2)在数列{}n a 的每相邻两项1k k a a +,之间依次插入12k a a a ⋯,,,,得到数列{}1121231234n b a a a a a a a a a a ⋯⋯:,,,,,,,,,,,求{}n b 的前100项和.22.(2023·江苏南通·海安高级中学校考一模)已知数列{}n a 满足()1122n n n a a a n -+=+≥,且12342,18a a a a =++=(1)求{}n a 的通项公式;(2)设1000na nb =-,求数列{}n b 的前15项和15T (用具体数值作答).23.(2023·安徽·模拟预测)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.24.(2023·河北衡水·河北衡水中学校考三模)已知{}n a 为等差数列,1154,115n n a n a a n+-==+.(1)求{}n a 的通项公式;(2)若()()1,414n n n n b T a a =++为{}n b 的前n 项和,求n T .25.(2023·广东广州·统考二模)设数列{}n a 的前n 项和为n S ,且()22*n n S a n =-∈N .(1)求{}n a 的通项公式;(2)设2211log log n n n b a a +=⋅,记{}n b 的前n 项和为n T ,证明:1n T <.26.(2023·江苏泰州·统考一模)在①124,,S S S 成等比数列,②4222a a =+,③8472S S S =+-这三个条件中任选两个,补充在下面问题中,并完成解答.已知数列{}n a 是公差不为0的等差数列,其前n 项和为n S ,且满足__________,__________.(1)求{}n a 的通项公式;(2)求12233411111n n a a a a a a a a +++++ .注:如果选择多个方案分别解答,按第一个方案计分.27.(2023·黑龙江·黑龙江实验中学校考一模)已知数列{}n a ,前n 项和为n S ,且满足112n n n a a a +-=-,2n ≥,*N n ∈,1514a a +=,770S =,等比数列{}n b 中,1212b b +=,且12,6b b +,3b 成等差数列.(1)求数列{}n a 和{}n b 的通项公式;(2)记n c 为区间(]()*,N n n a b n ∈中的整数个数,求数列{}n c 的前n 项和n P .28.(2023·吉林·统考二模)已知数列{}n a 的前n 项和为n S ,13a =,数列n S n ⎧⎫⎨⎬⎩⎭是以2为公差的等差数列.(1)求{}n a 的通项公式;(2)设()()112n nn nn a b a a +-+=,求数列{}nb 的前2n 项和2nT .29.(2023·山西·校联考模拟预测)已知数列{}n a 满足0n a >,22112n n n n a a a a ++=+,且13a ,23a +,3a 成等差数列.(1)求{}n a 的通项公式;(2)若12,log ,n n na nb a n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .30.(2023·黑龙江哈尔滨·哈尔滨三中校考二模)已知数列{}n a 满足:15a =,134n n a a +=-,设2n n b a =-,*N n ∈.(1)求数列{}n b 的通项公式;(2)设3132312log log log n n nb b b T b b b =++⋅⋅⋅+,()*N n ∈,求证:34n T <.数列大题基础练-新高考数学复习分层训练(新高考通用)1.(2022·浙江·模拟预测)已知数列{}n a 满足,12(1)nn n a a +=+⋅-.(1)若11a =,数列{}2n a 的通项公式;(2)若数列{}n a 为等比数列,求1a .【答案】(1)21n a =-;(2)11a =.【分析】(1)利用累加法求2n a 即可;(2)根据()121nn n a a +=+⋅-得到212a a =-,322a a =+,联立得到1q =-,然后代入求1a 即可.【详解】(1)由题意得()121nn n a a +-=⋅-,所以()()()22212122211n n n n n a a a a a a a a ---=-+-++-+ ()()()212212121211n n --=⋅-+⋅-++⨯-+ 211=-+=-.(2)设数列{}n a 的公比为q ,因为()121nn n a a +=+⋅-,所以212a a =-,322a a =+,两式相加得2311a a q a =⋅=,所以1q =±,当1q =时,2112a a a ==-不成立,所以1q =-,2112a a a =-=-,解得11a =.2.(2022·海南省直辖县级单位·校联考一模)等差数列{}n a 的首项11a =,且满足2512a a +=,数列{}n b 满足2n a n b =.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和是n T ,求n T .【答案】(1)21n a n =-;3.(2023·黑龙江大庆·统考一模)设{}n a 是公差不为0的等差数列,12a =,3a 是1a ,11a 的等比中项.(1)求{}n a 的通项公式;(2)设3n b a a =,求数列{}n b 的前n 项和n S .4.(2023·广东惠州·统考模拟预测)数列{}n a 中,12a =,121n n a a +=-.(1)求证:数列{}1n a -是等比数列;(2)若n n b a n =+,求数列{}n b 的前n 项和n T .5.(2023·广东江门·统考一模)已知数列{}n a (N n +∈)满足11a =,133n n n a a n++=,且n n ab n =.(1)求数列{}n b 是通项公式;(2)求数列{}n a 的前n 项和n S .【答案】(1)13n n b -=6.(2023·江苏·统考一模)已知等比数列{}n a 的各项均为正数,且23439a a a ++=,54323a a a =+.(1)求{}n a 的通项公式;(2)数列{}n b 满足n nb a =,求{}n b 的前n 项和n T .7.(2023·重庆·统考二模)已知数列{}n a 的前n 项和为n S ,且满足()115n n na n a +-+=,且15a ≠-.(1)求证:数列5n a n +⎧⎫⎨⎬⎩⎭为常数列,并求{}n a 的通项公式;(2)若使不等式20n S >成立的最小整数为7,且1Z a ∈,求1a 和n S 的最小值.8.(2023·海南海口·校考模拟预测)已知数列{}n a 的前n 项和为n S ,14a =,2n n S n=.(1)求数列{}n a 的通项公式;(2)记12nn na c =-,数列{}n c 的前n 项和为n T ,求111T T T ++⋅⋅⋅+的值.9.(2023·山东青岛·统考一模)已知等差数列{}n a 的前n 项和为n S ,公差0d ≠,2S ,4S ,54S +成等差数列,2a ,4a ,8a 成等比数列.(1)求n S ;(2)记数列{}n b 的前n 项和为n T ,22n n n n b T S +-=,证明数列1n n b S ⎧⎫-⎨⎬⎩⎭为等比数列,并求{}n b 的通项公式.10.(2023·山东济南·一模)已知数列{}n a 满足111,(1)1n n a na n a +=-+=.(1)若数列{}n b 满足1nn a b n+=,证明:{}n b 是常数数列;(2)若数列{}n c 满足πsin 22n an n c a ⎛⎫=+ ⎪,求{}n c 的前2n 项和2n S .11.(2022·辽宁鞍山·统考一模)已知等差数列{}n a 满足首项为333log 15log 10log 42-+的值,且3718a a +=.(1)求数列{}n a 的通项公式;(2)设1n b a a =,求数列{}n b 的前n 项和n T .12.(2023·广东·统考一模)已知各项都是正数的数列{}n a ,前n 项和n S 满足()2*2n n n a S a n =-∈N .(1)求数列{}n a 的通项公式.(2)记n P 是数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和,n Q 是数列121n a -⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和.当2n ≥时,试比较n P 与n Q 的大小.【答案】(1)n a n =(2)n nP Q <13.(2022·吉林长春·东北师大附中校考模拟预测)从①12n S n n ⎛⎫=+ ⎪⎝⎭;②23S a =,412a a a =;③12a =,4a 是2a ,8a 的等比中项这三个条件中任选一个,补充到下面横线上,并解答.已知等差数列{}n a 的前n 项和为n S ,公差d 不等于零,______.(1)求数列{}n a 的通项公式;(2)若122n n n b S S +=-,数列{}n b 的前n 项和为n W ,求n W .14.(2022·广东珠海·珠海市第三中学统考二模)已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,1221n n n a b n -+=+-,221n n n T S n -=--.(1)求11,a b 及数列{}n a ,{}n b 的通项公式;(2)设()*21N 2n n n a n k c k b n k=-⎧=∈⎨=⎩,,,求数列{}n c 的前2n 项和2n P .15.(2022·云南大理·统考模拟预测)已知数列{}n a 的前n 项和为n S ,且满足111,1nn a a n+==-.(1)求数列{}n a 的通项公式;(2)若数列2,,23,,n n n C n n ⎧=⎨+⎩为奇数为偶数,求数列{}n C 的前2n 项和2n T .16.(2022·湖南永州·统考一模)已知数列{}{},n n a b 满足:111a b ==,且210n n n n a b a b ++-=.(1)若数列{}n a 为等比数列,公比为121,2q a a -=,求{}n b 的通项公式;(2)若数列{}n a 为等差数列,11n n a a +-=,求{}n b 的前n 项和n T .17.(2022·广东韶关·统考一模)已知数列{}n a 的首项15a =,且满足13n n n a a +=+,设1n nb a =-.(1)求证:数列{}n b 为等比数列;(2)若1111140a a a a ++++> ,求满足条件的最小正整数n .18.(2022·河北·模拟预测)已知数列{}n a 的前n 项和为n S ,13a =,且1123n n n S S a +++=-.(1)求数列{}n a 的通项公式;(2)①3log n n n b a a =;②3321log log n n n b a a +=⋅;③3log n n n b a a =-.从上面三个条件中任选一个,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.19.(2022·广东广州·统考一模)已知公差不为0的等差数列{}n a 中,11a =,4a 是2a 和8a 的等比中项.(1)求数列{}n a 的通项公式:(2)保持数列{}n a 中各项先后顺序不变,在k a 与1(1,2,)k a k += 之间插入2k ,使它们和原数列的项构成一个新的数列{}n b ,记{}n b 的前n 项和为n T ,求20T 的值.20.(2023·湖北·荆州中学校联考二模)已知数列{}n a ,若_________________.(1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .从下列三个条件中任选一个补充在上面的横线上,然后对题目进行求解.①2123n a a a a n ++++= ;②11a =,47a =,()*112,2n n n a a a n n -+=+∈N ≥;③11a =,点(),n A n a ,()11,n B n a ++在斜率是2的直线上.21.(2023·江苏南通·二模)已知正项数列{}n a 的前n 项和为,且11a =,2218n n S S n +-=,*N n ∈.(1)求n S ;(2)在数列{}n a 的每相邻两项1k k a a +,之间依次插入12k a a a ⋯,,,,得到数列{}1121231234n b a a a a a a a a a a ⋯⋯:,,,,,,,,,,,求{}n b 的前100项和.22.(2023·江苏南通·海安高级中学校考一模)已知数列{}n a 满足()1122n n n a a a n -+=+≥,且12342,18a a a a =++=(1)求{}n a 的通项公式;(2)设1000na nb =-,求数列{}n b 的前15项和15T (用具体数值作答).()()1061022166490300022-==--+23.(2023·安徽·模拟预测)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.24.(2023·河北衡水·河北衡水中学校考三模)已知{}n a 为等差数列,11,115n n a a n+==+.(1)求{}n a 的通项公式;(2)若()()1,414n n b T a a =++为{}n b 的前n 项和,求n T .25.(2023·广东广州·统考二模)设数列{}n a 的前n 项和为n S ,且()22*n n S a n =-∈N .(1)求{}n a 的通项公式;(2)设1log log n b a a =⋅,记{}n b 的前n 项和为n T ,证明:1n T <.26.(2023·江苏泰州·统考一模)在①124,,S S S 成等比数列,②4222a a =+,③8472S S S =+-这三个条件中任选两个,补充在下面问题中,并完成解答.已知数列{}n a 是公差不为0的等差数列,其前n 项和为n S ,且满足__________,__________.(1)求{}n a 的通项公式;(2)求12233411111n n a a a a a a a a +++++ .注:如果选择多个方案分别解答,按第一个方案计分.27.(2023·黑龙江·黑龙江实验中学校考一模)已知数列{}n a ,前n 项和为n S ,且满足112n n n a a a +-=-,2n ≥,*N n∈,1514a a +=,770S =,等比数列{}n b 中,1212b b +=,且12,6b b +,3b 成等差数列.(1)求数列{}n a 和{}n b 的通项公式;(2)记n c 为区间(]()*,N n n a b n ∈中的整数个数,求数列{}n c 的前n 项和n P .28.(2023·吉林·统考二模)已知数列{}n a 的前n 项和为n S ,13a =,数列n n ⎧⎫⎨⎬⎩⎭是以2为公差的等差数列.(1)求{}n a 的通项公式;(2)设()()112n n n n n a b a a +-+=,求数列{}n b 的前2n 项和2n T .29.(2023·山西·校联考模拟预测)已知数列{}n a 满足0n a >,22112n n n n a a a a ++=+,且13a ,23a +,3a 成等差数列.(1)求{}n a 的通项公式;(2)若12,log ,n n n a n b a n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .30.(2023·黑龙江哈尔滨·哈尔滨三中校考二模)已知数列{}n a 满足:15a =,134n n a a +=-,设2n n b a =-,*N n ∈.(1)求数列{}n b 的通项公式;(2)设31323log log log n n b b b T b b b =++⋅⋅⋅+,()*N n ∈,求证:34n T <.。
高考数学数列大题专题
1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前
2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S
3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥
(1)求数列n a 的通项公式;
(2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。
4.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且.
(Ⅰ)求2a ,3a ;(Ⅱ)证明数列{n n a 2}是等差数列; (Ⅲ)求数列{n a }的前n 项之和n S
5.已知数列{}n a 满足31=a ,1211-=--n n n a a a .
(1)求2a ,3a ,4a ;
(2)求证:数列11n a ⎧⎫⎨
⎬-⎩⎭
是等差数列,并写出{}n a 的一个通项。
622,,4,21121+=-===++n n n n n b b a a b a a . 求证: ⑴数列{b n +2}是公比为2的等比数列;
⑵n a n n 221-=+;
⑶4)1(2221-+-=++++n n a a a n n .
7. .已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项.
(1)求数列}{n a 的通项公式n n S n a 项和及前;
(2)若数列}1{,3),(}{11n
n n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n .。